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Abstract
We propose new concentration inequalities for self-normalized martingales. The main
idea is to introduce a suitable weighted sum of the predictable quadratic variation
and the total quadratic variation of the martingale. It offers much more flexibility
and allows us to improve previous concentration inequalities. Statistical applications
on autoregressive process, internal diffusion-limited aggregation process, and online
statistical learning are also provided.
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1 Introduction

Let (M,,) be a locally square integrable real martingale adapted to a filtration F = (F,,)
with My = 0. The predictable quadratic variation and the total quadratic variation of
(M,,) are respectively given by

<M>,= E[AM|Fi_1] and (M), =AM
k=1 k=1

where AM,, = M,,— M,,_; with <M>,= 0 and [M], = 0. Since the pioneer work of Azuma
and Hoeffding [1], [16], a wide literature is available on concentration inequalities for
martingales. We refer the reader to the recent books [2], [5], [10] where the celebrated
Azuma-Hoeffding, Freedman, Bernstein, and De la Pefla inequalities are provided. Over
the last two decades, there has been a renewed interest in this area of probability.
More precisely, extensive studies have been made in order to establish concentration
inequalities for (M,,) without boundedness assumptions on its increments [4], [12], [14],
[18], [19]. For example, it was established in [4] that for any positive x and y,

2

P(My| > 2, [M], + <M>,< y) < 2exp(—5- ). (1.1)
Y
We shall improve inequality (1.1) by showing that for any positive x and y,
8x2
P(Mo| > 2, Mo+ <M>< y) < 2exp(— - ). (1.2)
Y
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Moreover, it was proven by Delyon [12] that for any positive x and y,

3 2

P(|M,| > @, [M], +2 <M>,< y) < 2exp(—2—‘”’;). (1.3)
We will show that inequality (1.3) is a special case of a more general result involving a
suitable weighted sum of [M],, and <M >,,. Furthermore, it was shown by De la Pefia
and Pang [11] that for any positive z,

n /3 2
P(\Aﬂﬂn+‘iﬁ§ln-+EUW2]>in g) s (%)13$ %%exp(—%é)- (1.4)

We shall improve inequality (1.4) by using of the tailor-made normalization

Sp(a) = [M], + c(a) <M>,, (1.5)
where for any a > 1/8,
e(a) = 2(1 — 2a;a2_\ /1a(a + 1)) (1.6)

The novelty of our approach is that S, (a) is a suitable weighted sum <M>,, and [M],,.
For small values of n, the behavior of <M>,, may be totally different from that of [M],,.
Consequently, our approach provides interesting concentration inequalities in many
situations where <M>,# [M],,. The paper is organised as follows. Section 2 is devoted
to our new concentration inequalities for self-normalized martingales which improve
some previous results of Bercu and Touati [4], Delyon [12] and De la Pefia and Pang
[11]. Section 3 deals with statistical applications on autoregressive process, internal
diffusion-limited aggregation process, and online statistical learning. All technical proofs
are postponed to Sections 4 and 5.

2 Main results

Our first result holds without any additional assumption on (M,,).
Theorem 2.1. Let (M,,) be a locally square integrable real martingale. Then, as soon as
a > 1/8, we have for any positive x and y,

2

X
P Mn 2 aS’n g g 2 (_7>a 2.1
(10a] > 2, 5,(0) < ) < 205~ @.1)

where S,,(a) = [M],, + ¢(a) <M>,, and c(a) is given by (1.6).

Remark 2.2. The function c is positive, strictly convex and c¢(a) ~ 1/2a as a tends to
infinity. Special values are given in Table 1.

Table 1: Special values of the function c¢(a)
a || 9/55 | 4/21 | 9/40 | 25/96 | 1/3 | 9/16 | 49/72 | 4/5
c(a) 10 6 4 3 2 1 4/5 2/3

In the special case where <M >, = [M],, Sn(a) reduces to S, (a) = (1 + ¢(a)) <M>,
and the best choice of a is clearly the one that minimizes a5, (a) = a(l + ¢(a)) <M>,,
thatis a =1/3.

Remark 2.3. On the one hand, c¢(a) = 1 if and only if ¢ = 9/16. Replacing the value
a = 9/16 into (2.1) immediately leads to (1.2) as S, (a) = [M],+ <M >,,. On the other
hand, c(a) = 2 if and only if a = 1/3. Hence, in this special case, S,(a) = [M], +2 <M>,
and we find again (1.3) by taking the value a = 1/3 into (2.1).
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Our second result for self-normalized martingales is as follows.

Theorem 2.4. Let (M,,) be a locally square integrable real martingale. Then, as soon as
a > 1/8, we have for any positive x and y,

| M, | xzy
P > x,5(a) 2y) <2 (f—) 2.2
<Sn(a) x,Sn(a) =y exp o (2.2)
where S,,(a) = [M],, + c(a) <M>,, and c(a) is given by (1.6). Moreover, we have for any
positive z,
1/p
| M| . (p— 1)$25n(a)
P15 ) <oiaf (1fosp(- 27D S0@) 23
Sn(a) * poi xp 2a (2.3)
Remark 2.5. In the case a = 9/16, we find from (2.2) and (2.3) that for any positive =
and y,
| M, | 82y
Pl >, M|, M>,> <2 (— ),
<[M]n+ ST z, [M]p+ <M>,>vy exp 9
/p
| M, | . 8(p — 1)22 !
—_ > < - .
([M]n+ <M>, ~ x) S 2nf E[‘”‘p( 9 ([M]”JF <M>”m

Similar concentration inequalities for self-normalized martingales can be obtained for
a = 1/3. In addition, via the same lines as in the proof of Theorem 2.4, we find that for
any positive x and y,

|Mn| 1'29
Al S > < - J .
P <<M>n > 2, cla) <M>n> [M]n +y ) < 26Xp< 2ac2(a)), (2.4)
/p
| M| . (p—1Da?<M>, !
_ > < < — .
Py 2 o M < o)y <M>a ) <2 int (E[exp( 2ac(a)(1 + y) )] (2.5)

Our third result deals with missing factors in exponential inequalities for self-
normalized martingales with upper bounds independent of [M],, or <M>,,.

Theorem 2.6. Let (M,,) be a locally square integrable real martingale. Assume that
E[|M,|P] < oo for some p > 2. Then, as soon as a>1/8, we have for any positive z,

P > < C q —_— 2.6
(Vs o 2 vE) <G eol-3) 20

where ¢ = p/(p — 1) is the Hélder conjugate exponent of p,

By/2
B, = _7 and Cq= ( g ) o
2qg—1 29 —1
In particular, for p = 2, we have for any positive x,
M, 3 2\ 1/3 - 2
IP( | | >z 7) < (7> 23 exp(fx—) (2.7)
aSy(a) + E[MF] 2 3 2

Remark 2.7. In the case a = 9/16, we deduce from (2.7) that for any positive z,

2

|Mn| 3 2 1/3 _2/3 X
e sl < (0) (),
Va([M],+ <M>,) + E[M2] 2 3 2
Since a < 1, this inequality clearly leads to (1.4). Consequently, in the case a = 9/16,
(2.7) provides a tighter upper bound than inequality (1.4). Moreover, if a = 1/3, we
obtain from (2.7) that for any positive x,

(s> o) < 0l )
> — )< | = x exp|——).
VM, 2 <M>, 13E[MZ] ~ V2 S \3 P2
Proof. The proofs are given in Sections 4 and 5. O
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3 Statistical applications

3.1 Autoregressive process

Consider the first-order autoregressive process given, for all n > 1, by
Xpn=0X,_1+en (3.1)

where X,, and ¢,, are the observation and the driven noise of the process, respectively.
Assume that (¢,,) is a sequence of independent random variables sharing the same
N (0, 0?) distribution where o2 > 0. The process is said to be stable if || < 1, unstable if
|| = 1, and explosive if |#| > 1. We estimate 6 by the standard least-squares estimator
given, for alln > 1, by

5 — ZZT} Xk—Zle

2okt Xioa

It is well-known that whatever the value of 6 is, 5,1 converges almost surely to . Moreover,
White [20] has shown that in the stable case 0| < 1,

Vi (6, — 6) L, nvo,1—67),

(3.2)

while in the explosive case |f| > 1 with initial value Xy = 0,

o B, — 0) S5 (62 - 1)c
where C stands for the Cauchy distribution. Furthermore, in the stable case |0] < 1,
it was proven in [3] that the sequence (én) satisfies a large deviation principle with a
convex-concave rate function. A fairly simple concentration inequality for the estimator
@L was established in [4], whatever the value of # is. More precisely, assume that X is
independent of (&,,) with A'(0,72) distribution where 72 > ¢2. Then, for all n > 1 and for
any positive x, we have

P(10, — 6] > z) <2 ( na” ) (3.3)
— x expl ————— .
" - h P 2(1+yz)
where y,, is the unique positive solution of the equation h(y,) = 22 and h is the function
given, for any positive z, by h(z) = (1 + z)log(1 + =) — x. It follows from (3.3) that, as
soonas 0 < x<1/2,

P (|6, — 0] > ) <2 ( na” )

— x expl—————=— ).

The situation in which (&,,) is not normally distributed, is much more difficult to handle. If
(e,) is a sequence of independent and identically distributed random variables, uniformly
bounded with symmetric distribution, we can use De la Pefia’s inequality [9] for self-
normalized conditionally symmetric martingales, to prove concentration inequalities
for the least-sqgares estimator, see [2]. Our motivation is to establish concentration
inequalities for 6,, in the situation where the distribution of (¢,,) is non-symmetric.

Corollary 3.1. Assume that (¢,) is a sequence of independent and identically distributed
random variables such that, for alln > 1,

2q with probability p,
En =
—2p with probability q,

where p €]0,1/2] and ¢ = 1 — p. Moreover, assume that X, is independent of (e,,) with
|Xo| > 2p. Then, for any a > 1/8 and for any x in the interval [0, v/ad(a)], we have

~ 242 4(¢? + pgc(a))’
P(f, — 6] > o) <2exp(-"22)  where  d(a) = e +pact)” gy,
ad(a) (p? + pgc(a))
ECP 24 (2019), paper 63. http://www.imstat.org/ecp/
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Remark 3.2. In the symmetric case p = 1/2, we clearly have from (3.6) that <M>,=
[M],, Sn(a) = (1 + ¢(a)) <M>, and d(a) reduces to d(a) = 1 + ¢(a). Hence, if a = 1/3,
c(a) = 2 and d(a) = 3. Consequently, we deduce from (3.4) that for any z in [0, 1],

2

IP(|§n -0 > a:) < 2exp(f%).

Moreover, in the nonsymmetric case p # 1/2, we always have <M >,# [M],. For
example, if p =1/3 and a = 9/16, ¢(a) = 1 and d(a) = 16/3 which implies that ad(a) = 3.
Therefore, we obtain from (3.4) that for any  in [0, /3],
~ nx?
P([6, — 0] > 2) <2 (——)

(I |2 @) < 2exp(—-

Proof. It immediately follows from (3.1) together with (3.2) that foralln > 1
o Mn

O, — 0 =0>—"— 3.5
" 7 M, (3.5)
where 02 = 4pq and (M,,) is the locally square integrable real martingale given by
M, =" Xy 1ck, <M>p=0>> X7, (M, =Y Xi et (3.6)
k=1

We clearly have (c(a) +r) <M>,< S,(a) < (c(a) +r7') <M>, with r = p/q. Hence, we
obtain from (2.3) that for any a > 1/8 and for any positive z,

228, (a) 12
P(|M,| > 28, (a)) < 2 E{exp(—T)} 3.7)
which implies via (3.5) that
~ 2 <M>, 1/2

where d(a) is given by (3.4). It only remains to find a suitable upper-bound for the
Laplace transform of <M >,. We have from (3.1) that X2 = 62X2_, +20X,,_1e, + £2.

Hence, if 7,, = 0(Xo,...,X,), we obtain that for any real ¢ and for all n > 1,
Elexp(tX2)|Fn_1] = exp(t0*> X2 _ )N, _1(t) (3.9)
where
Ap—1(t) = pexp(4tq2 + 49thn,1) + qexp(4tp2 — 49thn,1). (3.10)

It follows from the so-called Kearns-Saul’s inequality given in Lemma 2.36, page 37 of
[2] that for any real s,

2
‘p(Z)S ) 3.11)

where ¢(p) = (¢ — p)/log(q/p) € [0,1/2]. Then, we deduce from (3.10) and (3.11) with
s = 40tX,,_ that for any ¢ < 0, A, (¢) < exp(4tp® + 4<p( )t262X2_,) leading to

Elexp(tX7)|Fn-1] < exp(4tp® + t0° X2 _1 (1 + 4p(p)t)). (3.12)

As soon as t € [-1/2,0], we get from (3.12) that E[exp(tX2)|F,_1] < exp(4tp?). Conse-
quently, for any ¢t € [-1/202,0] and foralln > 1,

Elexp(t <M>,)] < Elexp(t <M>,_1)]exp(4tp’c?) < exp(4ntp’c?) (3.13)
as |Xo| = 2p. Therefore, it follows from (3.8) and (3.13) that for any x € [0, \/ad(a)],

~ 2,2
IP(|0n -0 > x) < 2exp(—zz(§))

which achieves the proof of Corollary 3.1. O

pexp(gs) + gexp(—ps) < e><p(

ECP 24 (2019), paper 63. http://www.imstat.org/ecp/
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3.2 Internal diffusion-limited aggregation process

Our second application deals with the internal diffusion-limited aggregation process.
This aggregation process, first introduced in Mathematics by Diaconis and Fulton [13],
is a cluster growth model in Z? where explorers, starting from the origin at time 0, are
travelling as a simple random walk on Z? until they reach an uninhabited site that is
added to the cluster. In the special case d = 1, the cluster is an interval A(n) = [L,, Ry]
which, properly normalized, converges almost surely to [—1,1]. In dimension d > 2,
Lawler, Bramson and Griffeath [17] have shown that the limit shape of the clusteris a
sphere. We shall restrict our attention on the one-dimensional internal diffusion-limited
aggregation process. Consider the simple random walk on the integer number line Z
starting from the origin at time 0. At each step, the explorer moves to the right +1 or to
the left —1 with equal probability 1/2. Let (A(n)) be the sequence of random subsets of
Z, recursively defined as follows: A(0) = {0} and, for alln > 0,

A(n)U{L, —1}

A(”“):{ A(m)U{R, + 1)

if the explorer leaves A(n) by the left side or by the right side, respectively, where L,, and
R, stand for being the minimum and the maximum of A(n) = {L,, L, +1,..., R, —1, R, }.
The random set A(n) is characterized by X,, = L, + R, as R, — L, = n. One can
observe that L,, and R,, correspond to the number of negative and positive sites of A(n),
respectively. It was proven in [13] that

X7I
lim - =0 a.s.
n—oo N
and
Xn 1
Xn L, (0.5)-
vn 3
It is possible to prove from Azuma-Hoeffding’s inequality [2] that for any positive z,
Xn
]P(| | >x> éQexp(fgnaﬁ). (3.14)
n

Our goal is to improve this inequality with a suitable use of Theorems 2.1 and 2.6.
Corollary 3.3. For any a in the interval ]1/8,9/16] and for any positive x, we have

() <2on( 5220 )
and X )
IP(|\/% > 17) < (dp(a))/3z72/3 exp(fgdj(a)) (3.16)
where
oo - (B (PE0) (D) () 0

Remark 3.4. The calculation of ¢, (a) and d,(a) is quite straightforward. As a matter
of fact, if a = 1/3, ¢(a) = 2 and it immediately follows from (3.17) that for all n > 1
¢n(a) < 3 and d,(a) < 4. We can deduce from (3.15) that for any positive z,

2

X
IP(—' n‘ 2:5) <2exp(——mlj )
n 2

which clearly outperforms inequality (3.14). In addition, (3.16) implies that for any

positive z,
2

n 2/ T
(55 < (3)" ol -22)
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Moreover, if a = 25/96, ¢(a) = 3 and we obtain from (3.17) that foralln > 1, ¢,(a) < 7/2
and d,(a) < 9/2. We find from (3.15) that for any positive z,

| X0l 96nz>
(1 5.) <2o0(-225).
n 2% AT

It improves the above inequality for « = 1/3. Finally, we deduce from (3.16) that

2 2
(Bl ) < () on(-22)

Proof. It follows from a stopping time argument for gambler’s ruin that for all n >
1, X,, = X,,—1 + &, where the distribution of ¢, given F,_; is a Rademacher R(p,)
distribution with

- (TL+ 1 7Xn_1)
Pn = 2(7’L T 1)
Hence, we clearly have
n
E[X | Fp 1] = Xpy + Bl | Fry] = (7))(”_ 3.18
[(Xn|Fn-1] 1+ E[¢, | Fn-1] T 1 ( )
and
E[X2|Fp 1] = X2, +2X, 1 E - Ui Ple

oy n,l] =X,_1+ n—1 [€n|]:n71} +1=1+ 1 X, 1. (3.19)

Let (M,,) be the sequence defined by M,, = (n + 1)X,,. We immediately deduce from
(3.18) and (3.19) that (M,,) is a locally square integrable real martingale such that

<M>n:§n: k+1)2 ZXk .-

k=1
Moreover, for all n > 1, | X,,| < n. Hence,

Z DXi — kXpo1)® = (k& + Xi)? 3Zk2 Zxk.
k= k=1

One can observe that we always have <M>,,# [M],. In addition,

n

n—1
Sp(a) < 3+ cla Zkz + (1 —c(a)) ZX,f—i—Xz—l—c(a)n(n—i—Q). (3.20)
k=1

For any a €]1/8,9/16], ¢(a) > 1. Therefore, we obtain from (3.20) that
Sn(a) < 3+ cla Zk2—|—n n+c(a)(n+2)) <n(n+1)%c,(a) (3.21)

where ¢, (a) is given by (3.17). Hence, it follows from (2.1) with y=n(n + 1)?c,(a) that
for any a€]1/8,9/16] and for any positive z,

X, 2
p(5e > 0) = (M > o0+ 1),5,00) < ) < 200~ ).

which is exactly inequality (3.15). Furthermore, we can deduce from identity (3.19) that
foralln > 1,

(n+2) (n+1)%(n+2)

3 3 '
Finally, we find from (2.7) together with (3.17), (3.21) and (3.22) that for any a €
]1/8,9/16] and for any positive z,

E[X2] = and E[M? = (3.22)

Pl a5 < (3) o em(-2)

which clearly leads to (3.16), completing the proof of Corollary 3.3. O
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3.3 Online statistical learning

Our third application is devoted to the study of the statistical risk of hypothesis during
an online learning process using concentration inequalities for martingales. We refer the
reader to the survey of Cesa-Bianchi and Lugosi [8] for a rather exhaustive description
of the underlying theory concerning online learning. Our approach is based on the
contributions of Cesa-Bianchi et al. [6], [7] dealing with the statistical risk of hypothesis
in the situation where the ensemble of hypotheses is produced by training a learning
algorithm incrementally on a data set of independent and identically distributed random
variables. Their bounds rely on Freedman concentration inequality for martingales
[15]. Consider the task of predicting a sequence in an online manner with inputs and
outputs taking values in some abstract measurable spaces X and )/, respectively. We
call hypothesis H, the classifier or regressor generated by a learning algorithm after
training. The predictive performance of hypothesis H is evaluated by the theoretical risk
denoted R(H), which is the expected loss on a realisation (X,Y) € X x ) drawn from
the underlying distribution

R(H) = E[((H(X),Y)]

where / is a nonnegative and bounded loss function. For the sake of simplicity, we assume
that ¢ is bounded by 1. Denote by S,,={(X1,Y1),...,(X,,Y,)} a training data set of inde-
pendent random variables sharing the same unknown distribution as (X,Y’). Our goal
is to predict Y,,+1 € Y given X,,11 € X, on the basis of S,,. Let H,, = {Ho, H1,..., H_1}
be a finite ensemble of hypotheses generated by an online learning algorithm where
the initial hypothesis Hj is arbitrarily chosen.The empirical risk and the average risk
associated with H,, and the training data set S, are respectively given by

n

~ 1 1 &
Ry =~ ;e(Hk,l(Xk), Vi) and Ry =— ; R(Hj_1). (3.23)

Our bound on the average risk R,, is as follows.
Corollary 3.5. Let H,, = {Hy, H1, ..., H,,_1 } be a finite ensemble of hypotheses generated

by a learning algorithm. Then, for any a in the interval |1/8,9/16] and for any positive x,

we have 5

= nx
P(R, > R, +x) < eXP(—m), (3.24)
where
1 n
Vo= > BI*(Hp1(X),Y)]. (3.25)
k=1

In other words, for any 0 < 6 < 1,

IP(R,L SRt \/2{1(1 + c(a):bfn) log(l/d)) <6 (3.26)

Moreover, denote m(a) = max(4(1 + c(a)),c?(a))/2. Then, for any 0 < § < 1 and for all
integer n > am(a)log(1/6), we also have

]P(Rn SR+ ac(a) lzg(1/5) +\/aAn(a);0g(1/5)> <5 (3.27)

where A, (a) = 2 + 2¢(a) Ry, + ac?(a)log(1/8) /n.
Remark 3.6. On the one hand, (3.26) improves the deviation inequality given in Propo-
sition 1 of Cesa-Bianchi, Conconi and Gentile [6],

2log(1/9)

P(Rn>§n+ -

)<,

ECP 24 (2019), paper 63. http://www.imstat.org/ecp/
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as V,, is always smaller than 1. On the other hand, (3.27) is drastically more accurate
than the deviation inequality given in Proposition 2 of Cesa-Bianchi and Gentile [7],

IP(Rn >R, + % log<n§"+3) ¥ 2\/}%” log<n§"+3)> <. (3.28)

] o

Indeed, one can observe that the right-hand sides of (3.27) and (3.28) are increasing
functions of R,. The smallest value in (3.28) for R, = 0 is given by 36log(3/8)/n.
Consequently, inequality (3.28) is only effective for n > 361og(3/d), which implies that
n must always be greater than 40. For example, if 6 = 1/5, it is necessary to assume
that n > 361og(15), that is n > 98. If a = 1/3, then ¢(a) = 2 and m(a) = 6. Consequently,
inequality (3.27) is interesting as soon as n > —2log(d). For example, if § = 1/5, it is
necessary to assume that n > 4. For instance, if § = 1/5, n = 100 and a = 1/3, the
smallest values in (3.27) and (3.28) are respectively given by 0.220 and 0.975. Finally, for
all values of §, n and a, one can easily check that (3.27) is always sharper than (3.28).

Proof. Let (M,,) be the locally square integrable real martingale given by
M, = Z (Hy—1) — 0(Hy—1(X3), Y2)), (3.29)

where we recall that R(H) = E[¢(H(X),Y)]. We clearly have
<M>,= Y (B[*(Hio1(X), V)= R*(Hy-)), (Ml =
k=1

(R(Hy_1)—L(Hy—1(X1), V).

NE

ES
Il

1

Consequently, for any a €]1/8,9/16],
Sp(a) < (1—c(a ZRQ (Hj_1) Z(Q(Hk_l(Xk ), Vi) + c(a Z]E€2 (Hip_1(X),Y)]
k=1

Hence, as ¢(a) > 1 and ¢ is bounded by 1, we obtain from (3.25) that S, (a) < n(14c(a)V,).
Therefore, it follows from (2.1) with y=n(1 + ¢(a)V,,) that for any a €]1/8,9/16] and for

any positive z,
M, na?
P25 0) comp(- "), 330
n =5 ST A T v (3.30)

However, we clearly have from (3.29) that M,, = n(Rn — }A%n) Hence, (3.30) immediately
implies (3.24) and (3.26). It only remains to prove (3.27). Since / is bounded by 1, we
obtain from (3.25) that V,, < R,,. Consequently, (3.26) ensures that forany 0 < § <1

P(®4(Rn) > Ry) <9 (3.31)
where the function ®, is defined, for all « in [0, 1], by

u(0) = 2 - | 2L LD oR1/D)

n

It is not hard to see that, as soon as n > am(a)log(1/d) with m(a) = max(4(1 +
c(a)),c(a))/2, ®, is a strictly convex and increasing function on [0,1]. Then, ®, is
invertible and it follows from straightforward calculations that

‘I)_l(w) =T+ ac(a) lzg(l/é) + \/alogT(Ll/(S) (2 + 2¢(a)z + M).

@ n

Finally, we immediately obtain from (3.31) that

P(®,(R,) > R,) = P(R, > &, '(R,)) <6 (3.32)
which is exactly inequality (3.27), completing the proof of Corollary 3.5. O
ECP 24 (2019), paper 63. http://www.imstat.org/ecp/
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4 Two keystone lemmas

Our first lemma deals with a sharp upper bound on the Hermite generating function
associated with a centered random variable X.
Lemma 4.1. Let X be a square integrable random variable with zero mean and variance
o2. For allt € R, denote ,

t
Lit)=F [exp (tX - %XQH 4.1)

with a > 1/8. Then, forallt € R,

b(a)t? 2a(1 — 2a + 24/ 1
L) <14 A9 where pa) = 22l =20+ 2ya(a+ 1) 4.2)
2 8a—1
Proof. In order to simplify the notation, denote b = b(a). The proof of Lemma 4.1 relies
on the following Hermite inequality, see also Proposition 12 in Delyon [12] for the special

value ¢ = 1/3. For all z € R, we have

2 b 2
exp(m—ﬂ) <1+x—|—i. 4.3)
2 2
As a matter of fact, let
bx? az?
apa(x)zlog(l—i—x—l—T) —m—&—T. (4.4)

It is of course necessary to assume that b > 1/2 which ensures that 1 + = + bx?/2 is
positive whatever the value of x is. We clearly have

2\ -1
90:1(‘7") = (1 +x+ b%) xPa,b(x)v (45)

where the second degree polynomial F, ; is given by

abr®  (2a —b)
Pa,b(x) - 9 + 9
Hereafter, assume that ¢ > 1/8 and b # 1—a. The unique positive root of the discriminant
of P,; is gven by b = b(a). Consequently, as ¢, (0) = 0 and ¢,(0) = 0, we deduce from
(4.5) that the function ¢, reaches its minimum at x = 0 and we find that for all z € R,
pa(z) = 0 which immediately leads to (4.3). Therefore, we obtain from (4.3) that for all
tec R,

x—f—a—i—b—l.

t? b2 X2 b2
which is exactly what we wanted to prove. 0

Our second exponential supermartingale lemma is as follows.

Lemma 4.2. Let (M,,) be a locally square integrable real martingale. For allt € R and

n > 0, denote ) )
at bla)t
Viu(t) = exp (tMn - S 1M) - (2)

with a > 1/8. Then, (V,(t)) is a positive supermartingale such that E[V,,(¢)] < 1.

<M>n) (4.6)

Proof. The proof follows from Lemma 4.1 together with standard arguments, see [4]
page 1860.

5 Proofs of the main results

Proof of Theorem 2.1. For any positive z and y, let A, = {|M,| > z,aS,(a) < y}. We
have the decomposition A,, = A} U A, where A} = {M,, > z,aS,(a) < y} and A, =
{Mn <—z,a5,(a) < y} It follows from Markov’s inequality together with Lemma 4.2

ECP 24 (2019), paper 63. http://www.imstat.org/ecp/
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that for all positive ¢,

2 2

P(AT) < Boxp(iM, — t2)1e] < Bexp(10, — TaSu(a)) exp(GaSu(a) — 1)Ly .
2 2

t t
< exp(Ty — tm)E[Vn(t)] < exp(Ty — tm).
Hence, by taking the optimal value ¢t = z/y in the above inequality, we find that

P(A) < ew(-1)

We also obtain the same upper bound for P(A;;) which ensures that

2

X
P(A,) < 2exp<—@). (5.1)
Finally, inequality (5.1) clearly leads to (2.1) replacing y by ay. O

Proof of Theorem 2.4. For any positive z and y, let B, = {|M,| > S,(a), Sh(a) >y} =
B U B, where B = {M, > zS,(a),Sy(a) >y} and B, = {M,, <—25,(a),S,(a) > y}.
Proceeding as in the proof of Theorem 2.1, we have that for all 0 < ¢ < 2z/a,

P(B;) < E{exp(tMn — t:rSn(a)>IB;r] (5.2)
12 t
< _ 2 aS Yt —
< E [exp (tMn 5 aSn(a)> exp(2 (ta 233)Sn(a))IBﬂ,
t t
< - — < _ _
< exp(2 (ta Qx)y)E[Vn(t)] < exp(2 (ta 2x)y> (5.3)
Consequently, we find from (5.3) with the particular choice ¢t = z:/a that
2
) < _ry
P(5]) <exp(-57). (5.4)

The same upper bound holds for P(B,,) which clearly implies (2.2). Furthermore, for
any positive z, let C,, = {|M,| > 25,(a)} = C;} UC, where C;} = {M,, > 25,(a)} and
C, = {M, <-zS,(a)}. By Holder’s inequality, we have for all positive ¢ and ¢ > 1,

tx

;Sn(a))lcﬁ} )

< EB[((0) " e (5 (ta—205,(0)) .

P(C) < E[exp(éMn -

t 1/p
< (E [exp(—p(ta — 23:)Sn(a))D . (5.5)
2q
Consequently, as p/q = p — 1, we deduce from (5.5) with the optimal value ¢ = z/a that

P(C}) < inf (IE {exp(—wﬂ)l/.p

p>1 2a
We find the same upper bound for P(C}; ), completing the proof of Theorem 2.4. O

Proof of Theorem 2.6. We already saw from Lemma 4.2 that for allt € R,
t2
E[exp(tAn — §B,2l>} <1

where A,, = M,, and B2 = a[M],,+b(a) <M>,. It means that the pair of random variables
(A, By,) safisties the canonical assumption in [11]. Theorem 2.6 follows from Theorem
2.1in[11]. O
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