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Abstract

We consider the critical branching processes in correlated random environment which
is positively associated and study the probability of survival up to the n-th generation.
Moreover, when the environment is given by fractional Brownian motion, we estimate
also the tail of progeny as well as the tail of width.
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1 Introduction and results

In the theory of branching process, branching processes in random environment
(BPRE), as an important part, was introduced by Smith and Wilkinson [10] by supposing
that the environment is i.i.d. This model has been well investigated by lots of authors.
One can refer to [1],[3],[2] for various properties obtained in this setting. In fact, for
this so called Smith-Wilkinson model, the behaviour of BPRE depends largely on the
behaviour of the corresponding random walk constructed by the logarithms of the
quenched expectation of population sizes. As this random walk is of i.i.d. increments
due to i.i.d. environment, many questions on this model become quite clear.

However, we are interested in branching processes in correlated random environment.
More precisely, we consider the Athreya-Karlin model of BPRE where the environment is
assumed to be stationary and ergodic; and moreover correlated.

Let us introduce some notation. Consider a branching process (Zn)n≥0 in random
environment given by a sequence of random generating functions E = {f0, f1, . . . , fn, . . .}.
Given the environment, individuals reproduce independently of each other and the
offspring of an individual in the n-th generation has generating function fn. If Zn denotes
the number of individuals in the n-th generation, then under the quenched probability
PE (and the quenched expectation EE ),

EE [sZn+1 |Z0, · · · , Zn] = (fn(s))Zn ,∀n ≥ 0.

We will assume that Z0 = 1. Here the random environment E = {fn;n ≥ 0} is supposed
to be stationary, ergodic and correlated. The process (Zn)n≥0 will be called a branching
process in correlated environment (BPCE, for short).
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First of all, the criterion for the process to be subcritical, critical or supercritical was
proven by Tanny [11]. In this paper, we only consider the non-sterile critical case, i.e.

E[log f ′0(1)] = 0,PE(Z1 = 1) < 1, (1.1)

where E(·) is the annealed expectation. Let P be the annealed probability.
We are interested in some important quantities related to this branching process,

such as the tail distribution of its extinction time T := inf{n ≥ 1 : Zn = 0}, of its
maximum population and of its total population size:

P(T > n), P
(

max
j≥0

Zj > N
)
, P
(∑
j≥0

Zj > N
)
.

Let us mention that this problem was considered in [4] in the case where the offspring
sizes are geometrically distributed, using the well-known correspondence between
recurrent random walks in random environment and critical branching processes in
random environment with geometric distribution of offspring sizes. Our aim is to
generalise the results obtained in [4] to more general generating functions (fn)n≥0.

More precisely, let Xi+1 := − log(f ′i(1)) for every i ≥ 0. Assume that (Xi)i≥1 is a
stationary, ergodic and centered sequence and define the sequence (S0 = 0)

Sn :=

n∑
i=1

Xi for n ≥ 1.

We also assume that the scaling limit of (Sn)n≥0 is a stochastic process (W (t))t≥0:(
n−H`(n)−1/2S[nt]

)
t≥0

L
=⇒
n→∞

(W (t))t≥0 , (1.2)

where H ∈ (0, 1) and ` is a slowly varying function at infinity such that as n→∞

σ2
n := E[S2

n] ∼ n2H`(n)E[W 2(1)] with E[W 2(1)] <∞. (1.3)

We will also assume that the tail distribution of the random variable X1 decreases
sufficiently fast, namely there exist some constants α ∈ (1,+∞) and C0, C1 > 0 such that
for any x ≥ 0,

P(|X1| ≥ x) ≤ C0e
−C1x

α

. (1.4)

Let us recall that a collection {ξ1, . . . , ξn} of random variables defined on a same
probability space is said quasi-associated if for any i = 1, . . . , n−1 and all coordinatewise
nondecreasing, measurable functions h : Ri → R and g : Rn−i → R,

Cov
(
h(ξ1, . . . , ξi), g(ξi+1, . . . , ξn)

)
≥ 0,

whenever the covariance is defined. We will say that {ξ1, . . . , ξn} is positively associated
if for all coordinatewise nondecreasing, measurable functions h, g : Rn → R,

Cov
(
h(ξ1, . . . , ξn), g(ξ1, . . . , ξn)

)
≥ 0

assuming that the covariance exists. We refer to [6] for details concerning positively
associated random variables. Clearly positive association is a stronger assumption than
quasi-association. A sequence of random variables (ξi)i≥1 is said positively associated
(resp. quasi-associated ) if for every n ≥ 2, the set {ξ1, . . . , ξn} is positively associated
(resp. quasi-associated ). Throughout this paper, we assume that the sequence (Xi)i≥1 is
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positively associated. Then for any nonnegative, measurable functions h, g which are
either both coordinatewise nondecreasing or both coordinatewise nonincreasing,

E[h(X1, · · · , Xn)g(X1, · · · , Xn)] ≥ E[h(X1, · · · , Xn)]E[g(X1, · · · , Xn)].

For every i ≥ 0, we denote by σ2(fi) the variance of the probability distribution
with generating function fi. Remark that σ2(fi) = f ′′i (1) + f ′i(1) − (f ′i(1))2. Our main
assumption concerning the sequence (σ2(fn))n≥0 is the following one:

Assumption 1.1. There exist positive constants A,B and C such that for every i ≥ 0,

σ2(fi) ≤ A(f ′i(1))2 +Bf ′i(1) + C.

Remark that the assumption 1.1 is satisfied for the classical discrete probability
distributions such as the Poisson distribution, the Geometric distribution, the uniform
distribution, the Binomial distribution etc.

In this setup we obtain the following theorem.

Theorem 1.2. Assume that the sequence (Xi)i≥1 is positively associated. Under as-
sumption 1.1, there exist positive constants C2, C3 such that for large enough n,

n−(1−H)
√
`(n)(log n)−C2 ≤ P

[
T > n

]
≤ C3n

−(1−H)
√
`(n).

Remark 1.3. To get this theorem, we mainly use the results on the persistence of
the random walk (Sn)n with stationary and positively associated increments, namely
Theorems 2 and 4 in [5].

Assumption 1.4. Let (Xi)i≥1 be a stationary centered Gaussian sequence with variance
one and correlations r(j) := E[X0Xj ] = E[XkXj+k] ≥ 0 satisfying as n→ +∞,

n∑
i,j=1

r(i− j) = n2H`(n), (1.5)

where H ∈ (0, 1) and ` is a slowly varying function at infinity.

Under assumption 1.4, the limit process (W (t))t≥0 in (1.2) is the fractional Brownian
motion BH with Hurst parameter H (see [12], [13, Theorem 4.6.1]). Recall that BH is
the real centered Gaussian process with covariance function

E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t− s|2H).

As the correlation function r is non-negative (which implies that H ≥ 1/2), the sequence
(Xi)i≥0 is positively associated as positively correlated Gaussian random variables.

Theorem 1.5. Under assumptions 1.1 and 1.4, there exists a function L that is slowly
varying at infinity such that for large enough N

(logN)−
(1−H)
H

L(logN)
≤ P

[
max
k≥0

Zk > N
]
≤ (logN)−

(1−H)
H L(logN).

Note that
max
j≥0

Zj ≤
∑
j≥0

Zj ≤ T max
j≥0

Zj .

As a consequence,

P
(∑
j≥0

Zj > N2
)
− P(T > N) ≤ P(max

j≥0
Zj > N) ≤ P

(∑
j≥0

Zj > N
)
.

So Theorems 1.2 and 1.5 lead to the following result.
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Theorem 1.6. Under assumptions 1.1 and 1.4, there exists a function L̃ that is slowly
varying at infinity such that for large enough N

(logN)−
(1−H)
H

L̃(logN)
≤ P

[∑
k≥0

Zk > N
]
≤ (logN)−

(1−H)
H L̃(logN).

The key tools in the proofs of Theorems 1.2, 1.5 and 1.6 are persistence probabilities
of the process (Sn)n≥0. We heavily use recent results from [5]. In order to be self-
contained, we recall these results in Section 2. A maximal inequality for demimartingales
will be also recalled in Section 2. Section 3 (respectively Section 4) contains the proof of
Theorem 1.2 (respectively Theorem 1.5).

2 Preliminary results

In this section we first state some results from [5] on the persistence probabilities of
stationary increment processes. Let V = {Vn}n≥0 be a stochastic process defined on a
probability space (Ω,F ,P). We define V ∗n := max1≤k≤n Vk.

Lemma 2.1 (Lemma 1 in [5]). Assume that there exists a sub-σ-algebra F0 of F such
that, given F0, the increments of V are positively associated and that their common
conditional distribution is independent of F0. Then, for any a ≥ 0 and m > 0 such that
P(V1 ≤ −m) > 0,

P(V ∗n ≤ −m) ≤ P (V ∗n ≤ a) ≤
P(V ∗n+da/me+1 ≤ −m)

(P(V1 ≤ −m))da/me+1
.

Theorem 2.2 (Theorem 2 in [5]). Let (Vn)n≥0 be a centered process with stationary
increments. Then

∀a > 0 : P (V ∗n ≤ −a) ≤
E
[
V ∗n+1

]
an

.

We can deduce the next result which will be useful in the proof of Theorem 1.2.

Proposition 2.3. Let (Vn)n≥0 be a centered process with stationary and positively
associated increments, then there exists some constant C4 > 0 such that

P(V ∗n ≤ 0) ≤ C4
E[V ∗n+2]

n+ 1
.

This fact follows immediately from Lemma 2.1 and Theorem 2.2 by taking C4 =
1

P(V1≤−m)m with m > 0 such that P(V1 ≤ −m) > 0.
The next fact states one case of Theorem 4 in [5] which will be used in the proof of

Theorem 1.2.

Theorem 2.4 (part of Theorem 4 in [5]). Assume that (Vn)n≥0 is a centered process with
stationary increments and that there exists an ε > 0 such that

ρ := lim inf
n→∞

E[V ∗n+bεnc]

E[V ∗n ]
> 1. (2.1)

Assume also that (bn) is a sequence of positive numbers such that

K := lim sup
n→∞

nP(−V1 > bn) <∞, (2.2)

and that there exists p > 1 such that

κ := lim sup
n→∞

(
E[(V ∗n+bεnc − Vn+bεnc)

p]
)1/p

E[V ∗n ]
<∞. (2.3)
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Then there is an integer d such that

lim inf
n→∞

nbdn
E[V ∗n ]

P(V ∗n < 0) > 0.

The next result deals with persistence probabilities of processes (Vn)n≥0 given as the
sum of stationary Gaussian random variables {Xi, i ≥ 0}, namely Vn :=

∑n
i=1Xi (with

the convention V0 = 0). This statement is borrowed from Theorem 11 in [5].

Theorem 2.5 (part of Theorem 11 in [5]). Assume (Xi)i≥0 is a stationary centered
Gaussian sequence with variance one and correlations r(j) = E[X0Xj ] = E[XkXj+k]

such that (1.5) holds with H ∈ (0, 1) and ` slowly varying. If moreover, the correlation
function r is nonnegative, then, for every b ∈ R, there is some constant c > 0 such that

∀n ≥ 1 : c−1n−(1−H)

√
`(n)√
log n

≤ P (V ∗n ≤ b) ≤ c n−(1−H)
√
`(n). (2.4)

Next, we state some maximal inequality for demimartingales from [8]. A sequence
{Vn;n ≥ 1} is a demimartingale (see Definition 1.1 of [8]) if Vn ∈ L1 for any n ≥ 1 and

E[(Vn+1 − Vn)g(V1, · · · , Vn)] ≥ 0,

for any coordinatewise nondecreasing function g such that the expectation is defined.
Then we have the following result which is obtained from Theorem 2.1 and Corollary 2.1
of [8] by taking φ(x) = xp with p > 1, g(x) = |x| and ck = 1 for any k ≥ 1.

Fact 2.6. Assume that {Vk, k ≥ 1} is a demimartingale. If for some p > 1,
E[(max1≤k≤n |Vk|)p] <∞ for any n ≥ 1, then

E

[
( max
1≤k≤n

|Vk|)p
]
≤
(

p

p− 1

)p
E [|Vn|p] .

3 Extinction time: proof of Theorem 1.2

3.1 Upper bound

Observe that for any 0 ≤ m ≤ n,

PE(T > n) ≤ PE(T > m) = PE(Zm ≥ 1) ≤ EE [Zm] = e−Sm .

Then,

P(T > n) ≤ E[e−max0≤m≤n Sm ] =

∫ ∞
0

e−xP( max
0≤m≤n

Sm ≤ x)dx (3.1)

as max0≤m≤n Sm ≥ 0. Let us bound P(max1≤m≤n Sm ≤ x) for x > 0. Recall that
S∗n = max1≤m≤n Sm. Note that for every integer K ≥ 0,

P(S∗n ≤ 0) ≥P(S∗n+K ≤ 0)

≥P( max
1≤j≤K−1

Sj ≤ 0;SK ≤ −x; max
1≤j≤n

(SK+j − SK) ≤ x)

≥P( max
1≤j≤K−1

Sj ≤ 0;SK ≤ −x)P( max
1≤j≤n

(SK+j − SK) ≤ x) (3.2)

by quasi-association of {Sk; 1 ≤ k ≤ n+K}. Note that by stationarity, we have

P( max
1≤j≤n

(SK+j − SK) ≤ x) = P(S∗n ≤ x).

On the other hand, by positive association,

P( max
1≤j≤K−1

Sj ≤ 0;SK ≤ −x) ≥ P(S∗K ≤ 0)P(SK ≤ −x).

ECP 24 (2019), paper 71.
Page 5/13

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP268
http://www.imstat.org/ecp/


BP in correlated RE

So, (3.2) implies that

P(S∗n ≤ x)P(S∗K ≤ 0)P(SK ≤ −x) ≤ P(S∗n ≤ 0). (3.3)

Let us prove that the sequence (Sn)n≥1 satisfies the hypotheses of Theorem 2.4 to
get a lower bound for P(S∗K ≤ 0) for large K � 1. Note that (1.2) and (1.3) imply that
E[|Sn|p] ∼ npH`(n)p/2E [|W (1)|p]. To verify (2.1) and (2.3), we only need to show that for
any p ∈ (1, 2),

E[|S∗n|p] ∼ npH`(n)p/2E

[
( sup
t∈[0,1]

W (t))p

]
, and E[S∗n] ∼ nH`(n)1/2E

[
sup
t∈[0,1]

W (t)

]
. (3.4)

Due to the convergence in law of ((n−H`(n)−1/2Sbntc)t) to (W (t))t as n goes to in-
finity, we get that for any p ∈ (1, 2) fixed, (n−pH`(n)−p/2|max1≤k≤n Sk|p) converges in
distribution to (supt∈[0,1]W (t))p as n goes to infinity (see Section 12.3 in [13]). Moreover,

one can show that (n−pH`(n)−p/2|S∗n|p)n≥1 is uniformly integrable by using the fact that
the increments of (Sn)n≥1 are centered and positively associated. Indeed, the positive
association of {Xn}n≥1 and (1.3) implies that (Sn)n≥1 is a demimartingale. By Fact 2.6,
we obtain that

E
[
|S∗n|

2
]
≤ E

[
max

j=1,...,n
|Sj |2

]
≤ 4E

[
S2
n

]
,

which combined with assumption (1.3) yields the uniform integrability of (
|S∗n|

p

npH`(n)p/2
)n≥1

for any p ∈ (1, 2). Consequently, we obtain (3.4). It remains to verify (2.2) which is direct
from (1.4) by taking bn = log n.

Applying Theorem 2.4 for {Sn} implies that there exists c1 > 0 such that for every
K ≥ 2,

P(S∗K ≤ 0) ≥ c1
K−(1−H)

logK

√
`(K).

Moreover, if we choose x = KH
√
`(K), the probability P(SKx ≤ −1) converges to

P(W (1) ≤ −1) ∈ (0, 1). Going back to (3.3), we get that for x large and for any n ≥ 1,

P(S∗n ≤ x) ≤ c2
log x
˜̀(x)

x
1
H−1P(S∗n ≤ 0)

where ˜̀ is a slowly varying function at infinity. Then, by Proposition 2.3 and (3.4), we get
that for x large and for any n ≥ 1,

P(S∗n ≤ x) ≤ c3
log x
˜̀(x)

x
1
H−1n−(1−H)

√
`(n). (3.5)

Plugging this into (3.1) implies that there exists c4 > 0 such that for every n ≥ 1,

P(T > n) ≤ c4 n−(1−H)
√
`(n).

3.2 Lower bound

Note that (see (2.1) in [7])

PE(T > n) = PE(Zn ≥ 1) = 1− f0 ◦ f1 ◦ · · · ◦ fn−1(0).

It is known in [7] that

1

1− f0 ◦ f1 ◦ · · · ◦ fn−1(0)
=

n−1∏
i=0

f ′i(1)−1 +

n−1∑
k=0

k−1∏
i=0

f ′i(1)−1 × ηk,n
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where

ηk,n =: gk(fk+1 ◦ · · · ◦ fn−1(0)) with gk(s) :=
1

1− fk(s)
− 1

f ′k(1)(1− s)

From Lemma 2.1 in [7],

ηk,n ≤
f ′′k (1)

f ′k(1)2
=
σ2(fk) + f ′k(1)2 − f ′k(1)

f ′k(1)2
.

As a consequence,

P(T > n) ≥E

 1∏n−1
i=0 f

′
i(1)−1 +

∑n−1
k=0

σ2(fk)+f ′k(1)2−f ′k(1)

f ′k(1)2

∏k−1
i=0 f

′
i(1)−1


=E

[
1

eSn +
∑n−1
k=0 e

Sk+2Xk+1(σ2(fk) + e−2Xk+1 − e−Xk+1)

]

≥E

[
1∑n−1

k=0 e
Sk+1+Xk+1σ2(fk) +

∑n
k=0 e

Sk −
∑n−1
k=0 e

Sk+1

]
This yields that

P(T > n) ≥ E

[
1

1 +
∑n−1
k=0 σ

2(fk)eSk+1+Xk+1

]
(3.6)

≥E
[

1

1 +A+ (A+B)
∑n
k=1 e

Sk + C
∑n
k=1 e

Sk+Xk

]
from Assumption 1.1

In the following, let αn ∈ N+, an ∈ R and βn ∈ [log n,∞) which will be determined later.
Set X∗n := max1≤k≤nXk.

Then observe that on the event {S∗αn ≤ 0;X∗αn ≤ an; maxαn<j≤n Sj ≤ −βn;

maxαn<j≤nXj ≤ βn − log n},

1 +A+ (A+B)

n∑
k=1

eSk + C

n∑
k=1

eSk+Xk

≤1 +A+ (A+B)αne
S∗αn + (A+B)nemaxαn+1≤j≤n Sj

+ Cαne
S∗αn+X∗αn + Cnemaxαn+1≤j≤n Sj+maxαn+1≤j≤nXj

≤c5 + c6αn + c7αne
an

where (ci)i=5,6,7 are positive constants. It hence follows that

P(T > n) (3.7)

≥(c5 + c6αn + c7αne
an)−1

× P
(
S∗αn ≤ 0;X∗αn ≤ an; max

αn<j≤n
Sj ≤ −βn; max

αn<j≤n
Xj ≤ βn − log n

)
.

By the fact that the increments of the sequence (Sn)n≥0 are positively associated, one
sees that

P

(
S∗αn ≤ 0;X∗αn ≤ an; max

αn<j≤n
Sj ≤ −βn; max

αn<j≤n
Xj ≤ βn − log n

)
≥P

(
S∗αn ≤ 0;X∗αn ≤ an;Sαn ≤ −βn; max

1+αn≤j≤n
(Sj − Sαn) ≤ 0; max

αn<j≤n
Xj ≤ βn − log n

)
≥P(S∗αn ≤ 0)P(X∗αn ≤ an)P(Sαn ≤ −βn)P(S∗n−αn ≤ 0)P(X∗n ≤ βn − log n).
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From now on, we fix βn = αHn
√
`(αn) where αn = b(β log n)

1
H−ε c with β > 2 and any

ε ∈ (0, H) so that for n large enough

βn ≥ (β/2) log n.

Consequently, by (1.4), for large n,

P
(
X∗n > βn − log n

)
≤ nP

(
X1 ≥

(β
2
− 1
)

log n
)
≤ C0ne

−C1( β2−1)α(logn)α = e−Θ(1)(logn)α .

Again by (1.4), take an =
(

1
C1

log(2C0αn))1/α so that

P(X∗αn > an) ≤ αnP(X1 > an) ≤ C0αne
−C1a

α
n =

1

2
.

Now by remarking that P(Sαn ≤ −βn) = P(
Sαn

αHn

√
`(αn)

≤ −1) converges to P(W (1) ≤
−1) > 0 and by applying again Theorem 2.4, there exists some constant c8 > 0 such that
for n large enough

P(T > n) ≥ n−(1−H)

(log n)c8

√
`(n).

4 Maximal population and total population

4.1 Proof of Theorem 1.5

In this section, we are interested in P(max0≤k<T Zk ≥ N). In fact, instead of
maxk≥0 Zk, we consider the quenched expectation EE [Zk] = e−Sk and the event that the
branching process survives at some time k where −Sk = Θ(logN).

Let T̃ (x) be the first passage time of the sequence (Sk)k≥0 above/below the level
x 6= 0

T̃ (x) :=

{
inf{k ∈ N; Sk ≥ x} if x > 0,

inf{k ∈ N; Sk ≤ x} if x < 0.

4.2 Upper bound

Let us define for every k ≥ 0, the random variable

Wk :=
Zk

EE [Zk]
=

Zk∏k−1
i=0 f

′
i(1)

.

It is well-known that (Wk)k≥0 is a martingale under the quenched probability. Note that
for every k ≥ 0,

Zk = WkE
E [Zk] = Wke

−Sk .

Observe that for any N ≥ 1 and n ≥ 1,

P

(
max

0≤k<T
Zk ≥ N

)
=P

(
max

0≤k<T
Zk ≥ N ;T ≤ n

)
+ P

(
max

0≤k<T
Zk ≥ N ;T > n

)
First, from the upper bound in Theorem 1.2, there exists some constant C3 > 0 such that
for n large (n will be chosen later)

P

(
max

0≤k<T
Zk ≥ N ;T > n

)
≤ P(T > n) ≤ C3n

−(1−H)
√
`(n). (4.1)
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On the other hand, for any δ ∈ (0, 1),

P

(
max

0≤k<T
Zk ≥ N ;T ≤ n

)
≤P

(
max

0≤k≤n
Zk ≥ N

)
≤P

(
max

0≤k≤n
Wk · max

0≤k≤n
EE [Zk] ≥ N

)
≤P

(
max

0≤k≤n
Wk ≥ Nδ

)
+ P

(
max

0≤k≤n
EE [Zk] ≥ N1−δ

)
(4.2)

Since (Wk)k≥0 is a martingale under the quenched distribution PE , we get

P

(
max

0≤k≤n
Wk ≥ Nδ

)
= E

[
PE
(

max
0≤k≤n

Wk ≥ Nδ

)]
≤ E[

EE [Wn]

Nδ
] =

1

Nδ
. (4.3)

By observing that EE [Zk] = e−Sk , the second probability in (4.2) is bounded from above
by

P

(
min
k≤n

Sk ≤ −(1− δ) logN

)
which is equal, by symmetry of Gaussian variables, to P (maxk≤n Sk ≥ (1− δ) logN).
Applying the maximal inequality in Proposition 2.2 in [9] implies that

P

(
max
k≤n

Sk ≥ (1− δ) logN

)
≤ 2P (Sn ≥ (1− δ) logN)

= 2P
(
σ2
n X1 ≥ (1− δ) logN

)
≤ 2 exp

(
− (1− δ)2(logN)2

2σ2
n

)
where σ2

n := n2H`(n) is the variance of Sn.

Let us choose n = sup{k;σk ≤ (logN)(log logN)−
q
2 } with q > 1. Then, n = (logN)1/H

`0(logN)

with `0 slowly varying at infinity. We thus have

P

(
max

0≤k≤n
EE [Zk] ≥ N1−δ

)
≤ 2 exp

(
− (1− δ)2(log logN)q

2

)
. (4.4)

In view of (4.1), (4.2), (4.3) and (4.4), we obtain that for large N ,

P

(
max

0≤k<T
Zk ≥ N

)
=P

(
max

0≤k<T
Zk ≥ N ;T > n

)
+ P

(
max

0≤k<T
Zk ≥ N ;T ≤ n

)
≤C3n

−(1−H)
√
`(n) +N−δ + 2 exp

(
− (1− δ)2(log logN)q

2

)
≤(logN)−

1−H
H L(logN)

where L is a slowly varying function at infinity according to our choice of n.

4.3 Lower bound

To get the lower bound, for N ≥ 2, we take T̃ (−xN ) and T̃ (1) with xN = log(2N).
Then,

P

(
max

0≤k<T
Zk ≥ N

)
≥P

(
ZT̃ (−xN ) ≥ N ; T̃ (−xN ) < T̃ (1) ≤ n

)
≥P

(
WT̃ (−xN ) × E

E [ZT̃ (−xN )] ≥ N ; T̃ (−xN ) < T̃ (1) ≤ n
)

≥P
(
WT̃ (−xN ) ≥ 1/2; T̃ (−xN ) < T̃ (1) ≤ n

)
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where the last inequality holds because EE [ZT̃ (−xN )] = e
−ST̃ (−xN ) ≥ 2N . By Paley-

Zygmund inequality, one sees that

P

(
max

0≤k<T
Zk ≥ N

)
≥E

[
PE
(
WT̃ (−xN ) ≥

1

2
EE [WT̃ (−xN )]

)
; T̃ (−xN ) < T̃ (1) ≤ n

]
≥E

[
1

4

EE [WT̃ (−xN )]
2

EE [W 2
T̃ (−xN )

]
; T̃ (−xN ) < T̃ (1) ≤ n

]

=
1

4
E

[
1

EE [W 2
T̃ (−xN )

]
; T̃ (−xN ) < T̃ (1) ≤ n

]

As (Wk)k≥0 is a martingale, the following equality holds

EE [W 2
k ] = EE [W 2

k−1] +
σ2(fk−1)EE [Zk−1]

(EE [Zk])2

where EE [Zk] =
∏k−1
i=0 f

′
i(1) = e−Sk and σ2(fj) = f ′′j (1) + f ′j(1)− (f ′j(1))2. It follows that

EE [W 2
n ] =1 +

n∑
j=1

σ2(fj−1)EE [Zj−1]

(EE [Zj ])2
= 1 +

n−1∑
k=0

σ2(fk)eSk+1+Xk+1

≤1 +A+ (A+B)

n∑
k=1

eSk + C

n∑
k=1

eSk+Xk from Assumption 1.1

Therefore,

P

(
max

0≤k<T
Zk ≥ N

)
≥ 1

4
E

[
1

1 +A+ (A+B)
∑T̃ (−xN )
k=1 eSk + C

∑T̃ (−xN )
k=1 eSk+Xk

; T̃ (−xN ) < T̃ (1) ≤ n

]

It is enough to bound from below the following expectation (since S0 = 0)

E

[
1∑T̃ (−xN )

k=0 eSk +
∑T̃ (−xN )
k=1 eSk+Xk

; T̃ (−xN ) < T̃ (1) ≤ n

]

Let ε > 0. Let us consider the set GN defined by:

GN := G(1)
N ∩ G

(2)
N ∩ G

(3)
N ,

with

G(1)
N :=

{
T̃ (−xN ) < T̃ (1)

}
,

G(2)
N :=

{
T̃ (1) < (logN)

1+ε
H

}
,

G(3)
N :=


T̃ (−xN )∑

k=0

eSk +

T̃ (−xN )∑
k=1

eSk+Xk

−1

≥ f(N)

 ,

where f(N) := 1
γ(log logN)3/H

with γ > 0 determined in (4.9). The lower bound will follow
from the following lemma.

Lemma 4.1. There exists a function L̂ that is slowly varying at infinity such that for
large N ,

P
(
GN
)
≥ (logN)−( 1−H

H )L̂(logN).
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Indeed,

P

(
max

0≤k<T
Zk ≥ N

)
≥ c9E

1GN
T̃ (−xN )∑

k=0

eSk +

T̃ (−xN )∑
k=1

eSk+Xk

−1


≥ c9f(N)P
(
GN
)

≥ (logN)−( 1−H
H )L(logN)

where L is a function slowly varying at infinity.
The proof of Lemma 4.1 rests on the two following lemmas.

Lemma 4.2. There exists a function L̂0 slowly varying at infinity such that for large N ,

P
[
G(1)
N ∩ G

(3)
N

]
≥ (logN)−( 1−H

H )L̂0(logN).

Lemma 4.3.

P
[(
G(2)
N

)c]
= O

(
(logN)−

(1−H)
H (1+ε)

√
`
(
b(logN)

1+ε
H c
))

.

Proof of Lemma 4.1. Note that, by Lemma 4.3, there exists c10 > 0 such that for every
N ,

P
[(
G(2)
N

)c] ≤ c10(logN)−( (1−H)(1+ε/2)
H ). (4.5)

Due to Lemma 4.2, for large N ,

P
(
GN
)
≥ P

[
G(1)
N ∩ G

(3)
N

]
− P

[(
G(2)
N

)c] ≥ (logN)−( 1−H
H )L̂0(logN)/2,

since the probability of the set
(
G(2)
N

)c
is of a lower order by (4.5).

Proof of Lemma 4.2. (see Step 1 in the proof of Lemma 9 in [4]) Let d := LK with
K := KN := min{k ∈ N : k2H ≥ 33(2 logN)2} and L := LN :=

⌊
(log logN)

q
2H

⌋
, with

q > H/2(1−H) and q > 2H. Then,

P
[
G(1)
N ∩ G

(3)
N

]
= P

[
T̃ (−xN ) < T̃ (1);

1∑T̃ (−xN )
k=0 eSk +

∑T̃ (−xN )
k=1 eSk+Xk

≥ f(N)

]
≥ P

[
T̃ (−xN ) ≤ d < T̃ (1);

1∑d
k=0 e

Sk +
∑d
k=1 e

Sk+Xk
≥ f(N)

]
= P

[
T̃ (1) > d;

1∑d
k=0 e

Sk +
∑d
k=1 e

Sk+Xk
≥ f(N)

]
(4.6)

− P

[
T̃ (−xN ) > d; T̃ (1) > d;

1∑d
k=0 e

Sk +
∑d
k=1 e

Sk+Xk
≥ f(N)

]
We show that the last term in (4.6) is not relevant since it is bounded from above by the
probability

P
[

max
k=1,...,d

|Sk| ≤ log(2N)
]
≤ (logN)−

(1−H)
H −1 (4.7)

using inequality (35) in [4]. For the first term in (4.6), observe that

P

[
T̃ (1) > d;

1∑d
k=0 e

Sk +
∑d
k=1 e

Sk+Xk
≥ f(N)

]
≥ P

(
S∗αd ≤ 0;X∗αd ≤ ad; max

αd<j≤d
Sj ≤ −βd; max

αd<j≤d
Xj ≤ βd − log d

)
(4.8)
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where αd, ad, βd are defined in the proof of the lower bound in Theorem 1.2 (see Section
3). On the set inside the previous probability (Remark that for large N , d ≤ (logN)

2
H

and that we take H − ε > H/3):

d∑
k=0

eSk +

d∑
k=1

eSk+Xk ≤ c11 + c12αd + c13αde
ad ≤ γ(log logN)3/H = f(N)−1. (4.9)

Using techniques developed in the proof of the lower bound in Theorem 1.2, the proba-
bility (4.8) is bounded from below by

d−(1−H)

(log d)c8

√
`(d) ≥ (logN)−

(1−H)
H

L(logN)

for N large enough.

Proof of Lemma 4.3.

P
[(
G(2)
N

)c]
= P[T̃ (1) ≥ (logN)(1+ε)/H ]

≤ P

(
max

k=0,...,[(logN)(1+ε)/H ]
Sk ≤ 1

)
= O

(
(logN)−

(1−H)
H (1+ε)

√
`
(
b(logN)

1+ε
H c
))

by applying Theorem 2.5.
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