Bi-log-concavity: some properties and some remarks towards a multi-dimensional extension

Adrien Saumard*

Abstract

Bi-log-concavity of probability measures is a univariate extension of the notion of log-concavity that has been recently proposed in a statistical literature. Among other things, it has the nice property from a modelisation perspective to admit some multimodal distributions, while preserving some nice features of log-concave measures. We compute the isoperimetric constant for a bi-log-concave measure, extending a property available for log-concave measures. This implies that bi-log-concave measures have exponentially decreasing tails. Then we show that the convolution of a bi-logconcave measure with a log-concave one is bi-log-concave. Consequently, infinitely differentiable, positive densities are dense in the set of bi-log-concave densities for L_{p}-norms, $p \in[1,+\infty]$. We also derive a necessary and sufficient condition for the convolution of two bi-log-concave measures to be bi-log-concave. We conclude this note by discussing a way of defining a multi-dimensional extension of the notion of bi-log-concavity.

Keywords: bi-log-concavity; isoperimetric constant; log-concavity.
AMS MSC 2010: 60E05; 60E15.
Submitted to ECP on April 10, 2019, final version accepted on September 17, 2019.

1 Introduction

Bi-log-concavity (of a probability measure on the real line) is a property recently introduced by Dümbgen, Kolesnyk and Wilke ([5]), that aims at bypassing some restrictive aspects of log-concavity while preserving some of its nice features. More precisely, bi-log-concavity amounts to log-concavity of both F and $1-F$, where F is a cumulative distribution function, and a simple application of Prékopa's theorem on stability of log-concavity through marginalization ([10], see also [13] for a discussion on the various proofs of this fundamental theorem) shows that log-concave measures are also bi-logconcave (see [1] for a more direct, elementary proof of this latter fact).

From a modelisation perspective, bi-log-concavity and log-concavity may be seen as shape constraints. In statistics, when they are available, shape constraints represent an interesting alternative to more classical parametric, semi-parametric or non-parametric approaches and constitute an active contemporary line of research ([14, 12]). Bi-logconcavity was indeed proposed in the aim to contribute to this research area ([5]). It was used in [5] to construct efficient confidence bands for the cumulative distribution

[^0]function and some functionals of it. The authors highlight that bi-log-concave measures admit multi-modal measures while it is well-known that log-concave measures are unimodal. Furthermore, Dümbgen et al. [5] establish the following characterization of bi-log-concave distributions. For a (cumulative) distribution function F, denote
$$
J(F) \equiv\{x \in \mathbb{R}: 0<F(x)<1\}
$$
and call "non-degenerate", the functions F such that $J(F) \neq \emptyset$.
Theorem 1.1 (Characterization of bi-log-concavity, [5]). Let F be a non-degenerate distribution function. The following four statements are equivalent:
(i) F is bi-log-concave, i.e. F and $1-F$ are log-concave functions in the sense that their logarithm is concave.
(ii) F is continuous on \mathbb{R} and differentiable on $J(F)$ with derivative $f=F^{\prime}$ such that, for all $x \in J(F)$ and $t \in \mathbb{R}$,
$$
1-(1-F(x)) \exp \left(-\frac{f(x)}{1-F(x)} t\right) \leq F(x+t) \leq F(x) \exp \left(\frac{f(x)}{F(x)} t\right)
$$
(iii) F is continuous on \mathbb{R} and differentiable on $J(F)$ with derivative $f=F^{\prime}$ such that the hazard function $f /(1-F)$ is non-decreasing and reverse hazard function f / F is non-increasing on $J(F)$.
(iv) F is continuous on \mathbb{R} and differentiable on $J(F)$ with bounded and strictly positive derivative $f=F^{\prime}$. Furthermore, f is locally Lipschitz continuous on $J(F)$ with L_{1}-derivative $f^{\prime}=F^{\prime \prime}$ satisfying
$$
\frac{-f^{2}}{1-F} \leq f^{\prime} \leq \frac{f^{2}}{F}
$$

Note that if one includes degenerate measures - that is Dirac masses - it is easily seen that the set of bi-log-concave measures is closed under weak limits.

Just as s-concave measures generalize log-concave ones, Laha and Wellner [8] proposed the concept of bi- s^{*}-concavity, that generalizes bi-log-concavity and that includes s-concave densities. Some characterizations of bi- s^{*}-concavity, that extend the previous theorem, are derived in [8].

On the probabilistic side, even if some characterizations are available, many important questions remain about the properties of bi-log-concave measures. Indeed, log-concave measures satisfy many nice properties (see for instance [7, 13, 4] and references therein) and it is natural to ask whether some of those are extended to bi-log-concave measures. Answering this question is the primary object of this note.

We show in Section 2 that the isoperimetric constant of a bi-log-concave measure is simply equal to two times the value of its density with respect to the Lebesgue measure that indeed exists - at its median, thus extending a property available for log-concave measures. We deduce that a bi-log-concave measure has exponential tails, also extending a property valid in the log-concave case.

In Section 3, we show that the convolution of a log-concave measure and a bi-logconcave measure is bi-log-concave. As a consequence, we get that any bi-log-concave measure can be approximated by a sequence of bi-log-concave measures having regular densities. Furthermore, we give a necessary and sufficient condition for the convolution of two bi-log-concave measures to be bi-log-concave.

Finally, we discuss in Section 3.1 a possible way to obtain a multivariate notion of bi-log-concavity, extending the univariate notion. In particular, log-concave vectors are bi-log-concave and the proposed definition ensures stability through convolution by any
log-concave measure. The question of providing a nice definition of bi-log-concavity in higher dimension, that would also impose existence of some exponential moments, remains open.

2 Isoperimetry and concentration for bi-log-concave measures

Let $F(x)=\mu((-\infty, x])$ be the distribution function of a probability measure μ on the real line. Assume that μ is non-degenerate (in the sense of its distribution function being non-degenerate) and let f be the density of its absolutely continuous part.

Recall the following formula for the isoperimetric constant $I s(\mu)$ of μ, due to Bobkov and Houdré [3],

$$
I s(\mu)=\operatorname{ess} \inf _{x \in J(F)} \frac{f(x)}{\min \{F(x), 1-F(x)\}} .
$$

The following theorem extends a well-known fact related to the isoperimetric constant of a log-concave measure to the case of a bi-log-concave measure.
Theorem 2.1. Let μ be a probability measure with non-degenerate distribution function F being bi-log-concave. Then μ admits a density $f=F^{\prime}$ on $J(F)$ and it holds

$$
I s(\mu)=2 f(m),
$$

where m is the median of μ.
In general, the isoperimetric constant is hard to compute, but in the bi-log-concave case Theorem 2.1 provides a straightforward formula, that extends a formula valid for log-concave measures (see for instance [13]).

In the following, we will also use the notation $J(F)=(a, b)$.
Proof. Note that the median m is indeed unique by Theorem 1.1 above. For $x \in(a, m]$,

$$
I_{F}(x):=\frac{f(x)}{\min \{F(x), 1-F(x)\}}=\frac{f(x)}{F(x)}
$$

As μ is bi-log-concave, I_{F} is thus non-increasing on $(a, m]$. For $x \in[m, b)$,

$$
I_{F}(x)=\frac{f(x)}{1-F(x)}
$$

Thus, I_{F} is non-decreasing on $[m, b)$. Consequently, the minimum of $I_{F}(x)$ is attained on m and its value is $I s(\mu)=2 f(m)$.

Corollary 2.2. Let μ as above be a bi-log-concave measure with median m. Then $f(m)>0$ and μ satisfies the following Poincaré inequality: for any square integrable function $g \in L_{2}(\mu)$ with derivative $g^{\prime} \in L_{2}(\mu)$,

$$
\begin{equation*}
f^{2}(m) \operatorname{Var}_{\mu}(g) \leq \int\left(g^{\prime}\right)^{2} d \mu \tag{2.1}
\end{equation*}
$$

where $\operatorname{Var}_{\mu}(g)=\int g^{2} d \mu-\left(\int g d \mu\right)^{2}$ is the variance of g with respect to μ. Consequently, μ has bounded Ψ_{1} Orlicz norm and achieves the following exponential concentration inequality,

$$
\begin{equation*}
\alpha_{\mu}(r) \leq \exp (-r f(m) / 3) \tag{2.2}
\end{equation*}
$$

where α_{μ} is the concentration function of μ, defined by $\alpha_{\mu}(r)=$ $\sup \left\{1-\mu\left(A_{r}\right): A \subset \mathbb{R}, \mu(A) \geq 1 / 2\right\}$, where $r>0$ and $A_{r}=\{x \in \mathbb{R}: \exists y \in A,|x-y|<r\}$ is the (open) r-neighborhood of A.

As it is well-known (see [9] for instance), inequality (2.2) implies that for any 1Lipschitz function g,

$$
\mu\left(g \geq m_{g}+r\right) \leq \exp (-r f(m) / 3)
$$

where m_{g} is a median of g, that is $\mu\left(g \geq m_{g}\right) \geq 1 / 2$ and $\mu\left(g \leq m_{g}\right) \geq 1 / 2$.
Proof. The fact that $f(m)>0$ is given by point (iii) of Theorem 1.1 above. Then Inequality (2.1) is a consequence of Theorem 2.1 via Cheeger's inequality for the first eigenvalue of the Laplacian (see for instance Inequality 3.1 in [9]). Inequality (2.2) is a classical consequence of Inequality (2.1) as well (see Theorem 3.1 in [9]).

We shortly describe now another proof of the fact that log-concave measures are bi-log-concave. Indeed, by Theorem 1.1 above, bi-log-concavity of μ reduces to non-increasingness of the functions f / F and $-f /(1-F)$, which is equivalent to nonincreasingness of $I(p) / p$ and $-I(p) /(1-p)$, with $I(p)=f\left(F^{-1}(p)\right)$. Furthermore, following Bobkov [2], for a log-concave probability measure μ on \mathbb{R} having a positive density f on $J(F)$, the function I is concave. As $I(0)=I(1)=0$, concavity of I implies non-increasingness of the ratios $I(p) / p$ and $-I(p) /(1-p)$. Hence, the conclusion follows.
Example 2.3. The function $I(p)=f\left(F^{-1}(p)\right)$ is in general hard to compute. But a few easy examples exist. For instance, for the logistic distribution, $F(x)=1 /(1+\exp (-x))$, we have $I(p)=p(1-p)$. For the Laplace distribution, $f(x)=\exp (-|x|) / 2, I(p)=$ $\min \{p, 1-p\}$.

3 Stability through convolution

Take X and Y two independent random variables with respective distribution functions F_{X} and F_{Y} that are bi-log-concave. Hence X and Y have densities, denoted by f_{X} and f_{Y}. Then

$$
\begin{equation*}
F_{X+Y}(x)=\mathbb{P}(X+Y \leq x)=\mathbb{E}[\mathbb{P}(X \leq x-Y \mid Y)]=\int F_{X}(x-y) f_{Y}(y) d y \tag{3.1}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
1-F_{X+Y}(x)=\int\left(1-F_{X}(x-y)\right) f_{Y}(y) d y \tag{3.2}
\end{equation*}
$$

Proposition 3.1. If X is bi-log-concave, Y is log-concave and X is independent of Y, then $X+Y$ is bi-log-concave.

Proof. By using formulas (3.1) and (3.2), this is a direct application of the stability through convolution of the log-concavity property (also known as Prékopa's theorem, [10]).

Corollary 3.2. Take a (non-degenerate) bi-log-concave measure on \mathbb{R}, with density f. Then there exists a sequence of infinitely differentiable bi-log-concave densities, positive on \mathbb{R}, that converge to f in $L_{p}(L e b)$, for any $p \in[1,+\infty]$.

Corollary 3.2 is also an extension of an approximation result available in the set of log-concave distributions, see [13, Section 5.2].

Proof. Note first that the density f is uniformly bounded on \mathbb{R}. Indeed, by point (iii) of Theorem 1.1 above, the ratio f / F is non-increasing, so that for any $x \in J(F), x \geq m$, $f(x) \leq f(x) / F(x) \leq 2 f(m)$. Symmetrically, as the ratio $f /(1-F)$ is non-decreasing, we deduce that $f(x) \leq 2 f(m)$ for every $x \in(-\infty, m) \cap J(F)$. This gives that $\|f\|_{\infty}=$ $\sup _{x \in \mathbb{R}}|f(x)| \leq 2 f(m)$. Hence, the density f belongs to $L_{1}($ Leb $) \bigcap L_{\infty}$ (Leb), so it belongs
to any L_{p} (Leb), $p \in[1,+\infty]$. It suffices now to consider the convolution of f with a sequence of centered Gaussian densities with variances converging to zero. Indeed, a simple application of classical theorems about convolution in L_{p} (see for instance [11, p. 148]) allows to check that the approximations converge to f in any L_{p} (Leb), $p \in[1,+\infty]$.

More generally, the following theorem gives a necessary and sufficient condition for the convolution of two bi-log-concave measures to be bi-log-concave.
Theorem 3.3. Take X and Y two independent bi-log-concave random variables with respective densities f_{X} and f_{Y} and cumulative distribution functions F_{X} and F_{Y}. Denote $w(x, y)=f_{Y}(y) F_{X}(x-y)$ and $\bar{w}(x, y)=f_{Y}(y)\left(1-F_{X}\right)(x-y)$ and consider for any $x \in J\left(F_{X+Y}\right)$, the following measures on \mathbb{R},

$$
d m_{x}(y)=\frac{w(x, y) d y}{\int w(x, y) d y}=\frac{w(x, y) d y}{F_{X+Y}(x)}
$$

and

$$
d \bar{m}_{x}(y)=\frac{\bar{w}(x, y) d y}{\int \bar{w}(x, y) d y}=\frac{\bar{w}(x, y) d y}{1-F_{X+Y}(x)} .
$$

Then $X+Y$ is bi-log-concave if and only if for any $x \in J\left(F_{X+Y}\right)$,

$$
\begin{equation*}
\operatorname{Cov}_{m_{x}}\left(\left(-\log f_{Y}\right)^{\prime},\left(-\log F_{X}\right)^{\prime}(x-\cdot)\right) \geq 0 \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Cov}_{\bar{m}_{x}}\left(\left(-\log f_{Y}\right)^{\prime},\left(-\log \left(1-F_{X}\right)\right)^{\prime}(x-\cdot)\right) \geq 0 . \tag{3.4}
\end{equation*}
$$

Theorem 3.3 allows to formulate the question of stability through convolution of two bi-log-concave measures as a problem of covariance inequalities. For instance, as the functions $\left(-\log F_{X}\right)^{\prime}(x-\cdot)$ and $\left(-\log \left(1-F_{X}\right)\right)^{\prime}(x-\cdot)$ are non-decreasing for any $x \in J\left(F_{X+Y}\right)$, an application of the FKG inequality ([6]) shows that conditions (3.3) and (3.4) are satisfied if $\left(-\log f_{Y}\right)^{\prime}$ is non-decreasing, which means that f_{Y} is log-concave, in which case we recover Proposition 3.1 above. But Theorem 3.3 is more general. Indeed, it is easily checked by direct computations that the convolution of the Gaussian mixture $2^{-1} \mathcal{N}(-1.34,1)+2^{-1} \mathcal{N}(1.34,1)$ - which is bi-log-concave but not log-concave, see [5, Section 2] - with itself is bi-log-concave.

To prove Theorem 3.3, we will use the following lemma.
Lemma 3.4. Take $p, q \in[1,+\infty]$ such that $p^{-1}+q^{-1}=1$ and a measure ν on \mathbb{R} with absolutely continuous density $f=\exp (-\phi)$ and $f^{\prime} \in L_{p}(\nu)$. Take $g \in L_{q}(\nu)$ Lipschitz continuous such that $g^{\prime} \in L_{1}(\nu)$ and

$$
\lim _{x \rightarrow+\infty} f(x)\left(g(x)-\mathbb{E}_{\nu}[g]\right)=\lim _{x \rightarrow-\infty} f(x)\left(g(x)-\mathbb{E}_{\nu}[g]\right)=0
$$

then

$$
\mathbb{E}_{\nu}\left[g^{\prime}\right]=\operatorname{Cov}_{\nu}\left(g, \phi^{\prime}\right)
$$

In the case where ν is a Gaussian measure, Lemma 3.4 is known as Stein's lemma.

Proof of Lemma 3.4. This is a simple integration by parts: from the assumptions, we have

$$
\mathbb{E}_{\nu}\left[g^{\prime}\right]=\int g^{\prime} f d x=-\int\left(g-\mathbb{E}_{\nu}[g]\right) f^{\prime} d x=\int\left(g-\mathbb{E}_{\nu}[g]\right) \phi^{\prime} f d x
$$

Proof of Theorem 3.3. Recall that we have

$$
F_{X+Y}(x)=\int f_{Y}(y) F_{X}(x-y) d y=\int w(x, y) d y
$$

Our first goal is to find some conditions such that F_{X+Y} is log-concave. It is sufficient to prove that, for any $x \in J\left(F_{X+Y}\right)$,

$$
\frac{\left(F_{X+Y}^{\prime}(x)\right)^{2}}{F_{X+Y}(x)}-F_{X+Y}^{\prime \prime}(x) \geq 0
$$

or equivalently,

$$
\left(\frac{F_{X+Y}^{\prime}(x)}{F_{X+Y}(x)}\right)^{2}-\frac{F_{X+Y}^{\prime \prime}(x)}{F_{X+Y}(x)} \geq 0
$$

Denote $\rho_{X}=\left(\log F_{X}\right)^{\prime}$. We have

$$
\begin{aligned}
F_{X+Y}(x) & =\int w(x, y) d y \\
f_{X+Y}(x) & =F_{X+Y}^{\prime}(x)=\int \rho_{X}(x-y) w(x, y) d y \\
F_{X+Y}^{\prime \prime}(x) & =\int\left(\rho_{X}^{\prime}(x-y)+\rho_{X}^{2}(x-y)\right) w(x, y) d y
\end{aligned}
$$

Furthermore, we get

$$
\left(\frac{F_{X+Y}^{\prime}(x)}{F_{X+Y}(x)}\right)^{2}-\frac{\int w \rho_{X}^{2}(x-y) d y}{F_{X+Y}(x)}=-\operatorname{Var}_{m_{x}}\left(\rho_{X}(x-\cdot)\right)
$$

Now, by Lemma 3.4, it holds,

$$
\begin{aligned}
\frac{\int \rho_{X}^{\prime}(x-y) w(x, y) d y}{F_{X+Y}(x)} & =\mathbb{E}_{m_{x}}\left[\rho_{X}^{\prime}(x-\cdot)\right] \\
& =\operatorname{Cov}_{m_{x}}\left(-\rho_{X}(x-\cdot),\left(-\log f_{Y}\right)^{\prime}+\rho_{X}(x-\cdot)\right)
\end{aligned}
$$

Gathering the equations, we get

$$
\begin{aligned}
\left(\frac{F_{X+Y}^{\prime}(x)}{F_{X+Y}(x)}\right)^{2}-\frac{F_{X+Y}^{\prime \prime}(x)}{F_{X+Y}(x)} & =\operatorname{Cov}_{m_{x}}\left(-\rho_{X}(x-\cdot),\left(-\log f_{Y}\right)^{\prime}\right) \\
& =\operatorname{Cov}_{m_{x}}\left(-\log F_{X}(x-\cdot),\left(-\log f_{Y}\right)^{\prime}\right)
\end{aligned}
$$

which gives condition (3.3). Likewise condition (3.4) arises from the same type of computations when studying log-concavity of $\left(1-F_{X+Y}\right)$.

3.1 Towards a multivariate notion of bi-log-concavity

We consider the following multidimensional extension of the univariate notion of bi-log-concavity defined in [5] and studied above.
Definition 3.5. Let μ be a probability measure on $\mathbb{R}^{d}, d \geq 1$. Then μ is said to be bi-logconcave if for every line $\ell \subset \mathbb{R}^{d}$, the (Euclidean) projection measure μ_{ℓ} of μ onto the line ℓ is a (one-dimensional) bi-log-concave measure on ℓ (that can be possibly degenerate). More explicitly, for any $x \in \ell$ and any Borel set $B \subset \mathbb{R}$,

$$
\mu_{\ell}(x+B u)=\mu\left\{y \in \mathbb{R}^{d}:(y-x) \cdot u \in B\right\}
$$

where u is a unit directional vector of the line ℓ.

Note that log-concave measures on \mathbb{R}^{d} are also bi-log-concave in the sense of Definition 3.5. The following result states that our mutivariate notion of bi-log-concavity is stable through convolution by log-concave measures.
Proposition 3.6. The convolution of a log-concave measure on \mathbb{R}^{d} with a bi-log-concave one is bi-log-concave.

Proof. The formula $(X+Y) \cdot u=X \cdot u+Y \cdot u$ shows that the projection of the convolution of two measures on a line is the convolution of the projections of measures on this line. This allows to reduce the stability through convolution by a log-concave measure to dimension one and concludes the proof.

It is moreover directly seen that the proposed multivariate notion of bi-log-concavity is stable by affine transformations of the space.

Actually, in addition to containing log-concave measures and being stable through convolution by a log-concave measure, there are at least two other properties that one would naturally require for a convenient multidimensional concept of bi-log-concavity: existence of a density with respect to the Lebesgue measure on the convex hull of its support and existence of a finite exponential moment for the (Euclidean) norm. We can express this latter remark through the following open problem, that concludes this note.

Open Problem: Find a nice characterization of probability measures on \mathbb{R}^{d} that are bi-log-concave in the sense of Definition 3.5, that admit a density with respect to the Lebesgue measure on the convex hull of their support and whose associated random vector has an Euclidean norm with exponentially decreasing tails.

References

[1] M. Bagnoli and T. Bergstrom, Log-concave probability and its applications, Econom. Theory 26 (2005), no. 2, 445-469. MR-2213177
[2] S. Bobkov, Extremal properties of half-spaces for log-concave distributions, Ann. Probab. 24 (1996), no. 1, 35-48. MR-1387625
[3] S. G. Bobkov and C. Houdré, Isoperimetric constants for product probability measures, Ann. Probab. 25 (1997), no. 1, 184-205. MR-1428505
[4] A. Colesanti, Log-concave functions, Convexity and concentration, IMA Vol. Math. Appl., vol. 161, Springer, New York, 2017, pp. 487-524. MR-3837280
[5] L. Dümbgen, P. Kolesnyk, and R. A. Wilke, Bi-log-concave distribution functions, J. Statist. Plann. Inference 184 (2017), 1-17. MR-3600702
[6] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre, Correlation inequalities on some partially ordered sets, Comm. Math. Phys. 22 (1971), no. 2, 89-103. MR-0309498
[7] O. Guédon, Concentration phenomena in high dimensional geometry, Proceedings of the Journées MAS 2012 (Clermond-Ferrand, France), 2012. MR-3178607
[8] N. Laha and J. A. Wellner, Bi-s*-concave distributions, (2017), arXiv:1705.00252, preprint.
[9] M. Ledoux, The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89, American Mathematical Society, Providence, RI, 2001. MR-1849347
[10] A. Prékopa, On logarithmic concave measures and functions, Acta Sci. Math. (Szeged) 34 (1973), 335-343. MR-0404557
[11] W. Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987. MR-0924157
[12] R. J. Samworth, Recent progress in log-concave density estimation, Statist. Sci. 33 (2018), no. 4, 493-509. MR-3881205
[13] A. Saumard and J. A. Wellner, Log-concavity and strong log-concavity: A review, Statist. Surv. 8 (2014), 45-114. MR-3290441

Bi-log-concavity

[14] G. Walther, Inference and modeling with log-concave distributions, Statist. Sci. 24 (2009), no. 3, 319-327. MR-2757433

Acknowledgments. I express my deepest gratitude to Jon Wellner, who introduced me to the intriguing notion of bi-log-concavity and who provided several numerical computations during his visit at the Crest-Ensai, that helped to understand the convolution problem for bi-log-concave measures. Many thanks also to Jon for his comments on a previous version of this note. Finally, I am grateful to an anonymous referee, whose comments and suggestions helped to improve the presentation of the paper.

[^0]: *Univ Rennes, Ensai, CNRS, CREST - UMR 9194, F-35000 Rennes, France.
 E-mail: adrien.saumard@ensai.fr

