
Electron. Commun. Probab. 24 (2019), no. 48, 1–14.
https://doi.org/10.1214/19-ECP257
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Variational estimates for martingale paraproducts
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Abstract

We show that bilinear variational estimates of Do, Muscalu, and Thiele [7] remain
valid for a pair of general martingales with respect to the same filtration. Our result
can also be viewed as an off-diagonal generalization of the Burkholder–Davis–Gundy
inequality for martingale rough paths by Chevyrev and Friz [4].
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1 Introduction

If f = (fn)∞n=0 is a discrete-time real-valued martingale with respect to a filtration
F = (Fn)∞n=0, then Lépingle’s variational inequality [18] claims∥∥∥∥∥ sup

m∈N
n0<n1<···<nm

( m∑
k=1

|fnk − fnk−1
|%
)1/%

∥∥∥∥∥
Lp

≤ Cp,%‖f‖Lp (1.1)

for any exponents p ∈ (1,∞) and % ∈ (2,∞). Here for any random variable h we write
‖h‖Lp := (E|h|p)1/p and for a martingale f we set

‖f‖Lp := sup
n≥0
‖fn‖Lp . (1.2)

Inequality (1.1) fails at the endpoint % = 2 and then the corresponding result is Bourgain’s
jump inequality [2],∥∥∥∥∥

(
sup
m∈N

n0<n1<···<nm

card
{
k ∈ {1, . . . ,m}

∣∣∣ ∣∣fnk − fnk−1

∣∣ ≥ λ})1/2
∥∥∥∥∥

Lp

≤ Cpλ−1‖f‖Lp (1.3)

for any exponent p ∈ (1,∞) and any threshold λ ∈ (0,∞). The supremum of cardinalities
on the left hand side of (1.3) is usually called the λ-jump counting function and denoted
by Nλ(f), so that (1.3) can be rewritten more elegantly as∥∥Nλ(f)1/2

∥∥
Lp
≤ Cpλ−1‖f‖Lp .
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Variational estimates for martingale paraproducts

Inequalities (1.1) and (1.3) provide quantitative refinements of the martingale conver-
gence theorem, at least for martingales that are bounded in the Lp-norm. The reader can
consult the paper [19] for their elegant proofs and Banach-space-valued generalizations.

Let us now take two martingales, f = (fn)∞n=0 and g = (gn)∞n=0, with respect to the
same filtration F . Their paraproduct is a stochastic process Π(f, g) = (Πn(f, g))∞n=0

defined as

Π0(f, g) := 0, Πn(f, g) :=

n∑
j=1

fj−1(gj − gj−1) for n ≥ 1.

Truncated paraproducts are random variables Πn,n′(f, g) defined for 0 ≤ n < n′ as

Πn,n′(f, g) :=

n′∑
j=n+1

(fj−1 − fn)(gj − gj−1) = Πn′(f, g)−Πn(f, g)− fn(gn′ − gn).

If

dfn := fn − fn−1 for n ≥ 1

denotes martingale differences, then the truncated paraproducts can be written, quite
elegantly, as

Πn,n′(f, g) =
∑

n<i<j≤n′
dfi dgj . (1.4)

Note that g 7→ Π(f, g) can be seen as a particular case of Burkholder’s martingale
transform [3]. He took f to be an arbitrary process adapted to the filtration F and
bounded in the L∞-norm, ‖h‖L∞ := ess sup|h|, and showed

‖Π(f, g)‖Lq ≤ Cq‖f‖L∞‖g‖Lq

for any q ∈ (1,∞). On the other hand, we additionally assume that f is a martingale, pos-
sibly unbounded. Indeed, the word “paraproduct” will be preferred because martingales
f and g can be treated symmetrically thanks to a simple summation by parts identity.
Estimates for martingale paraproducts outside Burkholder’s range were first studied by
Bañuelos and Bennett [1] (even though in the continuous time and with respect to the
Brownian filtration only) and by Chao and Long [5]. Inequalities on the Lp-spaces in the
largest possible open range of exponents follow from [5, Theorem 7]:

‖Π(f, g)‖Lr ≤ Cp,q‖f‖Lp‖g‖Lq , (1.5)

whenever

p, q ∈ (1,∞), r ∈
(1

2
,∞
)
,

1

p
+

1

q
=

1

r
. (1.6)

Indeed, [5, Theorem 7] deals with a maximal estimate, namely∥∥∥sup
n≥0
|Πn(f, g)|

∥∥∥
Lr
≤ Cp,q‖f‖Lp‖g‖Lq , (1.7)

which is stronger than (1.5) when r ≤ 1. If r > 1, then Π(f, g) is again a martingale
adapted to F , so in particular it also satisfies (1.1). However, one still cannot relax the
condition % > 2 for general f and g.

It is a bit surprising that there exists a variant of Lépingle’s inequality for truncated
martingale paraproducts that allows % to go below 2. This is the main result of our paper
and it is a generalization of Theorem 1.2 from the paper [7] by Do, Muscalu, and Thiele.
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Variational estimates for martingale paraproducts

Theorem 1.1. Take exponents p, q, r satisfying (1.6). If f = (fn)∞n=0 and g = (gn)∞n=0 are
martingales with respect to the same filtration, then∥∥∥∥∥ sup

m∈N
n0<n1<···<nm

( m∑
k=1

∣∣∣Πnk−1,nk(f, g)
∣∣∣%)1/%

∥∥∥∥∥
Lr

≤ Cp,q,%‖f‖Lp‖g‖Lq (1.8)

for any % ∈ (1,∞) and∥∥∥∥∥ sup
m∈N

n0<n1<···<nm

card

{
k ∈ {1, . . . ,m}

∣∣∣∣ ∣∣∣Πnk−1,nk(f, g)
∣∣∣ ≥ λ}∥∥∥∥∥

Lr

≤ Cp,qλ−1‖f‖Lp‖g‖Lq (1.9)

for any λ ∈ (0,∞).

Indeed, Do, Muscalu, and Thiele [7] considered variants of Theorem 1.1 for either
dyadic martingales or Littlewood–Paley-type convolutions. They motivate their result
by an application to the bilinear iterated Fourier integral in the sequel paper [8]. The
main purpose of this note is to generalize their result to arbitrary martingales, since [7]
repeatedly relies on doubling conditions to both raise and lower the exponents p and q.
In our approach we adapt many ideas from [7], but we also use some fundamental mar-
tingale inequalities that only recently became available in the literature. Consequently,
we are even able to give a somewhat shorter proof.

1.1 Continuous-time martingales

One benefit of having Theorem 1.1 formulated for general discrete-time martingales
is that estimates (1.8) and (1.9) immediately transfer to continuous-time martingales
X = (Xt)t≥0 and Y = (Yt)t≥0. It is standard in stochastic calculus to assume that X
and Y almost surely have càdlàg paths and that their filtration F = (Ft)t≥0 satisfies
“the usual hypotheses” from Protter’s book [21], i.e. that F0 is complete and that F is
right-continuous. We fix the exponents p, q, r satisfying (1.6) and additionally assume
that

‖X‖Lp := sup
t≥0
‖Xt‖Lp <∞ and ‖Y ‖Lq := sup

t≥0
‖Yt‖Lq <∞. (1.10)

Under more restrictive conditions on X and Y , such as ‖X‖L∞ < ∞ and ‖Y ‖L2 < ∞,
the papers [1] and [17] proceed by defining the paraproduct as the process Π(X,Y ) =

(Πt(X,Y ))t≥0 given by the stochastic integral

Πt(X,Y ) :=

∫
(0,t]

Xs− dYs. (1.11)

Here Xs− stands for the left limit limu→s−Xu. The above integral is understood as the
Itô integral and it yields another process with almost surely càdlàg paths. In order to
extend the definition of Π(X,Y ) to the martingales satisfying (1.10) only, and to enable
the application of Theorem 1.1, we prefer to construct the martingale paraproduct as a
limit of certain discrete-time paraproducts, namely the Riemann sums of (1.11).

A random partition of [0,∞) will be any tuple Σ = (τ0, τ1, . . . , τl) of finite stopping
times with respect to F such that 0 = τ0 ≤ τ1 ≤ · · · ≤ τl. We define the corresponding Rie-
mann sum of the integral (1.11) as the stochastic process S(X,Y ; Σ) = (St(X,Y ; Σ))t≥0
given by

St(X,Y ; Σ) :=

l∑
j=1

Xmin{t,τj−1}
(
Ymin{t,τj} − Ymin{t,τj−1}

)
.

Following the language of [21], let us say that a sequence of random partitions (Σn)∞n=1,

Σn = (τ
(n)
0 , τ

(n)
1 , . . . , τ

(n)
ln

), tends to the identity if they satisfy limn→∞ τ
(n)
ln

=∞ a.s. and

limn→∞max1≤j≤ln |τ
(n)
j − τ (n)j−1| = 0 a.s.
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Variational estimates for martingale paraproducts

Corollary 1.2. (a) There exists a unique (up to indistinguishability) stochastic proces
Π(X,Y ) = (Πt(X,Y ))t≥0 with a.s. càdlàg paths such that for any sequence of random
partitions (Σn)∞n=1 tending to the identity the Riemann sums S(X,Y ; Σn) converge
uniformly on compacts in probability (u.c.p.) towards Π(X,Y ), i.e.

lim
n→∞

P
(

sup
s∈[0,t]

|Ss(X,Y ; Σn)−Πs(X,Y )| > ε
)

= 0

for each ε > 0 and each t > 0. We say that Π(X,Y ) is the paraproduct of martingales
X and Y .

(b) Truncated paraproducts are now defined as random variables

Πt,t′(X,Y ) := Πt′(X,Y )−Πt(X,Y )−Xt(Yt′ − Yt)

for any 0 ≤ t < t′ <∞. We have∥∥∥∥ sup
m∈N

t0<t1<···<tm

( m∑
k=1

∣∣∣Πtk−1,tk(X,Y )
∣∣∣%)1/%∥∥∥∥

Lr
≤ Cp,q,%‖X‖Lp‖Y ‖Lq (1.12)

for any % ∈ (1,∞) and∥∥∥∥∥ sup
m∈N

t0<t1<···<tm

card

{
k ∈ {1, . . . ,m}

∣∣∣∣ ∣∣∣Πtk−1,tk(X,Y )
∣∣∣ ≥ λ}∥∥∥∥∥

Lr

≤ Cp,qλ−1‖X‖Lp‖Y ‖Lq

(1.13)
for any λ ∈ (0,∞).

1.2 Connection with rough paths

One can view the triple
Hn := (fn, gn,Πn(f, g))

as a process with values in a 3-dimensional Heisenberg group H ∼= R3 with the group
operation

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

Then the truncated martingale paraproducts Πn,n′ are precisely the z-coordinates of the
differences of this process. More precisely, for any times n ≤ n′ we have

Hn · (fn′ − fn, gn′ − gn,Πn,n′(f, g)) = Hn′ .

This corresponds to Chen’s relation [10, (2.1)] in the theory of rough paths.
On the Heisenberg group we consider the homogeneous box norm ‖(x, y, z)‖ :=

max(|x|, |y|, |z|1/2) and the corresponding distance function d(H,H ′) := ‖H−1H ′‖. One
can verify that ‖H ·H ′‖ ≤ ‖H‖+‖H ′‖, and this implies the triangle inequality d(H,H ′′) ≤
d(H,H ′) + d(H ′, H ′′). Any other left-invariant homogeneous distance, e.g. the Carnot–
Carathéodory distance, would work equally well. Combining (1.9) and (1.3) one can
obtain the jump estimate∥∥∥∥∥
(

sup
m∈N

n0<n1<···<nm

card
{
k ∈ {1, . . . ,m}

∣∣∣d(Hnk , Hnk−1
) ≥ λ

})1/2
∥∥∥∥∥

Lp

≤ Cpλ−1(‖f‖Lp+‖g‖Lp).

Either using this estimate and [19, Lemma 2.17] or combining (1.8) and (1.1) one can
also obtain the variational estimate∥∥∥∥∥ sup

m∈N
n0<n1<···<nm

( m∑
k=1

d(Hnk , Hnk−1
)%
)1/%

∥∥∥∥∥
Lp

≤ Cp,%(‖f‖Lp + ‖g‖Lp) (1.14)
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Variational estimates for martingale paraproducts

for any % > 2. The estimate (1.14) for continuous martingales is a special case of a
result of Friz and Victoir [11, Theorem 14], and for general càdlàg martingales it is a
special case of a result of Chevyrev and Friz [4, Theorem 4.7] with F (x) = xr. Indeed,
in our notation these results can be stated as (1.14) with f, g replaced by Sf,Sg on the
right-hand side, where S denotes the martingale square function as in (2.1). Hence the
estimate (1.13) can be seen as an off-diagonal and endpoint version of the cited results.

2 Some known martingale inequalities

We begin this section with a few words on the notation. Then we review several
known martingale inequalities that will be needed in subsequent sections. Some of them
we could not find formulated elsewhere with exactly the same assumptions. However,
the proofs of those inequalities are still quite straightforward using the results available
in the existing literature and we include them for completeness.

For any two quantities A,B ∈ [0,∞] we will write A . B when there exists an
unimportant constant C ∈ [0,∞) such that A ≤ CB. Furthermore, we will write A ∼ B if
both A . B and B . A hold. Dependencies of the implicit constants on some parameters
will be denoted in the subscripts of . and ∼. For real numbers a and b we will write
a ∧ b := min{a, b} and a ∨ b := max{a, b}.

We have already encountered the Lp-quasinorms h 7→ ‖h‖Lp in the introductory
section, both for finite p and for p = ∞. Recall that for a martingale f = (fn)∞n=0 the
quantity ‖f‖Lp is defined by (1.2). Any nonnegative random variable w gives rise to the
weighted Lp-quasinorms, given for p ∈ (0,∞) as

‖h‖Lp(w) :=
(
E(|h|pw)

)1/p
.

On the other hand, the weak Lp-quasinorm is defined as

‖h‖Lp,∞ :=
(

sup
α∈(0,∞)

αpP(|h| > α)
)1/p

for any p ∈ (0,∞). Any sequence of random variables h = (h(k))∞k=1 can be regarded as
a vector-valued random element and for p ∈ (0,∞] and q ∈ (0,∞) we define the mixed
Lp(`q)-quasinorm

‖h‖Lp(`q) =
∥∥h(k)∥∥

Lp(`qk)
:=

∥∥∥∥( ∞∑
k=1

∣∣h(k)∣∣q)1/q∥∥∥∥
Lp
.

Finally, p′ will always denote the conjugated exponent of p ∈ [1,∞], i.e. the unique
number p′ ∈ [1,∞] such that 1/p+ 1/p′ = 1.

For any martingale f = (fn)∞n=0 with respect to a fixed filtration F = (Fn)∞n=0 one
defines the maximal function

Mf := sup
n≥0
|fn|

and the square function

Sf :=
( ∞∑
n=1

|dfn|2
)1/2

. (2.1)

Note that Mf and Sf are two random variables taking values in [0,∞]. In different
terminology these are the limits of the maximum process of f and the quadratic variation
of f , respectively. If we start merely from a random variable h, then we automatically
assign to it the martingale (hn)∞n=0 defined by hn := E(h | Fn), so Mh and Sh still make
sense.
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Variational estimates for martingale paraproducts

The well known Burkholder–Davis–Gundy inequality claims that

‖Mf‖Lp ∼p ‖Sf‖Lp (2.2)

for every p ∈ [1,∞). Indeed, the case p > 1 is due to Burkholder [3], while the case
p = 1 was shown by Davis [6]. A weighted version of the latter case was established by
Osękowski [20]:

‖Mf‖L1(w) . ‖Sf‖L1(Mw), (2.3)

where w is a nonnegative integrable random variable, interpreted as a weight. The
implicit constant in (2.3) is an absolute one and Osękowski could choose 16(

√
2 + 1).

Inequality (2.3) can also be viewed as a probabilistic analogue of a weighted estimate by
Fefferman and Stein [9].

Moreover, Doob’s maximal inequality reads

‖Mf‖Lp ≤ p
′‖f‖Lp (2.4)

for every p ∈ (1,∞]. It also has a weighted version, formulated for instance as a part of
Theorem 3.2.3 in the book [15]:

‖Mf‖Lp(w) ≤ p
′‖f∞‖Lp(Mw) (2.5)

for p ∈ (1,∞]. In (2.5) we assume, for convenience, that (fn)∞n=0 eventually becomes a
constant sequence, so that f∞ := limn→∞ fn trivially makes sense with respect to every
possible mode of convergence.

Suppose that T0 ≤ T1 ≤ T2 ≤ · · · is a sequence of stopping times taking values in N0

with respect to the filtration F and assume that each Tk is bounded. These stopping times
will be used for the purpose of certain “localization.” Boundedness of each individual
Tk is a convenient assumption for the application of the optional sampling theorem; see
e.g. [13]. For every k ∈ N and every n ∈ N0 we note that (n∨Tk−1)∧Tk is also a stopping
time with respect to F and define

F (k)
n := F(n∨Tk−1)∧Tk . (2.6)

That way, each F (k) := (F (k)
n )∞n=0 becomes a filtration of the original probability space

and each of these sequences of σ-algebras becomes constant for sufficiently large indices
n.

Lemma 2.1. Let (Tk)∞k=0 be an increasing sequence of bounded stopping times, let
(F (k))∞k=1 be a sequence of filtrations defined by (2.6), and for each k ∈ N let f (k) =

(f
(k)
n )∞n=0 be a martingale with respect to F (k) that eventually becomes a constant

sequence. For any p, q ∈ (1,∞) we have∥∥Mf (k)
∥∥

Lp(`qk)
.p,q

∥∥f (k)∞ ∥∥
Lp(`qk)

. (2.7)

Lemma 2.1 can be viewed as an `q-valued extension of Doob’s maximal inequality
(2.4). The proof of (2.7) is based on (2.5) and it already exists as the proof of [15,
Theorem 3.2.7]. However, the working assumption in [15] is that f (k) are arbitrary
martingales with respect to the same filtration, which is not the case here. For this
reason and for the sake of completeness we prefer to repeat the short argument, rather
than just invoke the result from [15].

Proof of Lemma 2.1. The case p ≥ q is handled first. Let r ∈ (1,∞] denote the conjugated
exponent of p/q. To an arbitrary random variable w ≥ 0 satisfying ‖w‖Lr = 1 we associate

the martingales (wn)∞n=0 and w(k) = (w
(k)
n )∞n=0, for each k ∈ N, via

wn := E(w | Fn), w(k)
n := E(w | F (k)

n ). (2.8)
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Variational estimates for martingale paraproducts

Consider the expression

E

(( ∞∑
k=1

(
Mf (k)

)q)
w

)
=

∞∑
k=1

E

((
Mf (k)

)q
w

)
=

∞∑
k=1

∥∥Mf (k)
∥∥q

Lq(w)
.

By (2.5) this is at most a constant depending on q times

∞∑
k=1

∥∥f (k)∞ ∥∥q
Lq(Mw(k))

=

∞∑
k=1

E
(∣∣f (k)∞ ∣∣q(Mw(k)

))
≤ E

(( ∞∑
k=1

∣∣f (k)∞ ∣∣q)(Mw
))
≤
∥∥∥ ∞∑
k=1

∣∣f (k)∞ ∣∣q∥∥∥
Lp/q

∥∥Mw
∥∥

Lr
.

Applying (2.4) to ‖Mw‖Lr and recalling the freedom that we had in choosing w, we obtain∥∥∥ ∞∑
k=1

(
Mf (k)

)q∥∥∥
Lp/q

.p,q
∥∥∥ ∞∑
k=1

∣∣f (k)∞ ∣∣q∥∥∥
Lp/q

,

which transforms into (2.7) after taking the q-th root of both sides.
Turning to the case p ≤ q, we take some r ∈ (1, p) and denote a := p/r ∈ (1,∞),

b := q/r ∈ (1,∞). Write

∥∥Mf (k)
∥∥r

Lp(`qk)
=

(
E(

∞∑
k=1

(
Mf (k)

)q
)
p/q

)r/p
=
∥∥(Mf (k)

)r∥∥
La(`bk)

. (2.9)

We are going to dualize the mixed La(`b)-norm above and for this we take a sequence
h = (h(k))∞k=1 of nonnegative random variables such that ‖h‖La′ (`b′ ) < ∞. Each h(k)

defines a martingale (h
(k)
n )∞n=0 by h

(k)
n := E(h(k) | F (k)

n ). Using (2.5) for each fixed k

followed by Hölder’s inequality we obtain

E

∞∑
k=1

(
Mf (k)

)r
h(k) =

∞∑
k=1

∥∥Mf (k)
∥∥r

Lr(h(k))
.r

∞∑
k=1

∥∥f (k)∞ ∥∥r
Lr(Mh(k))

= E

∞∑
k=1

∣∣f (k)∞ ∣∣r(Mh(k)
)
≤
∥∥∣∣f (k)∞ ∣∣r∥∥

La(`bk)

∥∥Mh(k)
∥∥

La
′
(`b
′
k )
.

Then applying the previous case of (2.7) (with p, q replaced by a′, b′) to get∥∥Mh(k)
∥∥

La
′
(`b
′
k )

.a,b
∥∥h(k)∞ ∥∥La

′
(`b
′
k )

= ‖h‖La′ (`b′ )

and using duality we end up with∥∥(Mf (k)
)r∥∥

La(`bk)
.a,b

∥∥∣∣f (k)∞ ∣∣r∥∥
La(`bk)

.

Recall the computation (2.9) and take the r-th root of both sides.

Now, let f = (fn)∞n=0 be a single martingale with respect to F . For every k ∈ N and
every n ∈ N0 we denote, for the rest of the paper,

f (k)n := f(n∨Tk−1)∧Tk − fTk−1
, (2.10)

i.e.

f (k)n =


0 for n ≤ Tk−1,
fn − fTk−1

for Tk−1 < n ≤ Tk,
fTk − fTk−1

for n > Tk.
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Variational estimates for martingale paraproducts

That way, for each k ∈ N we have now defined a particular martingale f (k) := (f
(k)
n )∞n=0

with respect to the filtration F (k) given by (2.6). It is “interesting” only for moments
between Tk−1 and Tk. Consequently, the sequence (f

(k)
n )∞n=0 eventually becomes constant

and, in particular, the limit f (k)∞ := limn→∞ f
(k)
n exists (in every possible way) and simply

equals fTk − fTk−1
. Many classical inequalities in terms of martingale f have their vector-

valued extensions in terms of its “localized pieces” f (k). Our next goal is to formulate
and prove a couple of those, as they will be needed in the next section.

Lemma 2.2. Let (Tk)∞k=0 be an increasing sequence of bounded stopping times and let
f be a martingale, both with respect to F . Moreover, let (f (k))∞k=1 be a sequence of
martingales defined by (2.10).

(a) For any p ∈ (1,∞) we have ∥∥Mf (k)
∥∥

Lp(`2k)
.p ‖f‖Lp . (2.11)

(b) For any p ∈ (1,∞) we have ∥∥Sf (k)∥∥
Lp(`2k)

.p ‖f‖Lp . (2.12)

Proof of Lemma 2.2. (a) Since the stopping times Tk are bounded, using the optional
sampling theorem (see Section 12.4 of the book [13]) and applying (2.2) and (2.4) to the
“optionally sampled” martingale (fTn)∞n=0 we get

∥∥f (k)∞ ∥∥
Lp(`2k)

=
∥∥∥( ∞∑

k=1

∣∣f (k)∞ ∣∣2)1/2∥∥∥
Lp

=
∥∥∥( ∞∑

k=1

∣∣fTk − fTk−1

∣∣2)1/2∥∥∥
Lp

= ‖S(fTk)∞k=0‖Lp .p ‖M(fTk)∞k=0‖Lp .p ‖f‖Lp .

Combining this with estimate (2.7) from Lemma 2.1 specialized to q = 2 establishes
(2.11).

(b) Estimate (2.12) is immediate. We only need to observe

Sf (k) =
( ∑
Tk−1<n≤Tk

|dfn|2
)1/2

and ( ∞∑
k=1

(
Sf (k)

)2)1/2 ≤ Sf,

and then apply (2.2) and (2.4):∥∥Sf (k)∥∥
Lp(`2k)

≤ ‖Sf‖Lp .p ‖Mf‖Lp .p ‖f‖Lp .

2.1 Multilinear interpolation

We will repeatedly use a multilinear version of the Marcinkiewicz interpolation
theorem. We caution the reader that many such results exist in the literature, and not
every version would be adequate for our purposes. We refer to [12, Corollary 1.1], of
which the result below is a special case, although it also follows e.g. from the result of
[16] on abstract interpolation spaces.

Theorem 2.3. Let T be a bisublinear operator, i.e., |T (f1 + f2, g)| ≤ |T (f1, g)|+ |T (f2, g)|
and |T (f, g1 +g2)| ≤ |T (f, g1)|+ |T (f, g2)|, initially defined on simple functions on a pair of
measure spaces with values in measurable functions on a third measure space. Suppose
that the estimate

‖T (f, g)‖Lr,∞ ≤ C‖f‖Lp‖g‖Lq (2.13)
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holds with 0 < p, q ≤ ∞, 1/r = 1/p + 1/q, and (1/p, 1/q) being the vertices of a non-
degenerate triangle ∆ ⊂ [0,∞)2. Then for every 0 < p, q ≤ ∞ such that (1/p, 1/q) is in
the interior of ∆ and for 1/r = 1/p+ 1/q we have

‖T (f, g)‖Lr ≤ C‖f‖Lp‖g‖Lq ,

where the constant C depends only on ∆, p, q, and the constants in (2.13).

3 A vector-valued estimate for martingale paraproducts

The main ingredient in the proof of Theorem 1.1 is the following proposition.

Proposition 3.1. Let (Tk)∞k=0 be an increasing sequence of bounded stopping times
and let f and g be martingales, all with respect to the same filtration F . Moreover, let
(f (k))∞k=1 and (g(k))∞k=1 be sequences of martingales defined from f and g, respectively,
via (2.10). Then for any exponents p, q, r satisfying (1.6) we have the estimate∥∥Π∞(f (k), g(k))

∥∥
Lr(`1k)

.p,q ‖f‖Lp‖g‖Lq . (3.1)

Note that, for each k ∈ N, the paraproduct Π(f (k), g(k)) is a martingale with respect
to the filtration F (k) given by (2.6). The sequence (Πn(f (k), g(k)))∞n=0 eventually becomes
constant, so that Π∞(f (k), g(k)) makes sense. A crucial observation, following from (1.4)
and needed later, is

Π∞(f (k), g(k)) =
∑

Tk−1<i<j≤Tk

dfi dgj (3.2)

and these are precisely the truncated paraproducts appearing on the left hand sides of
estimates (1.8) and (1.9) if we replace each nk with Tk.

Proof of Proposition 3.1. Let us first discuss the case r ≥ 1 of estimate (3.1). We begin
by proving the `1-valued estimate∥∥Π∞(f (k), g(k))

∥∥
Lr(`1k)

.p
∥∥SΠ(f (k), g(k))

∥∥
Lr(`1k)

. (3.3)

We will reduce it to the weighted estimate (2.3) for martingales Π(f (k), g(k)). Take an
arbitrary nonnegative random variable satisfying ‖w‖Lr′ = 1 and define (wn)∞n=0 and

w(k) = (w
(k)
n )∞n=0 as in (2.8). We have

E

(( ∞∑
k=1

∣∣Π∞(f (k), g(k))
∣∣)w) ≤ E(( ∞∑

k=1

MΠ(f (k), g(k))
)
w

)

=

∞∑
k=1

E

((
MΠ(f (k), g(k))

)
w

)
=

∞∑
k=1

∥∥MΠ(f (k), g(k))
∥∥

L1(w)

and, by (2.3) applied to martingale Π(f (k), g(k)) for each fixed k, this is at most a constant
times

∞∑
k=1

∥∥SΠ(f (k), g(k))
∥∥

L1(Mw(k))
=

∞∑
k=1

E

((
SΠ(f (k), g(k))

)(
Mw(k)

))

≤ E
(( ∞∑

k=1

SΠ(f (k), g(k))
)(

Mw
))
≤
∥∥SΠ(f (k), g(k))

∥∥
Lr(`1k)

∥∥Mw
∥∥

Lr
′ .

Using Doob’s inequality (2.4) for the martingale (wn)∞n=0 we end up with

E

(( ∞∑
k=1

∣∣Π∞(f (k), g(k))
∣∣)w) . r

∥∥SΠ(f (k), g(k))
∥∥

Lr(`1k)
.
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Recalling the freedom that we had in choosing w we establish (3.3) by dualization.
In order to complete the proof of (3.1) in the case r ≥ 1, observe that the expression

on the right hand side of (3.3) is, by the definition of the paraproduct, equal to∥∥∥ ∞∑
k=1

( ∞∑
n=1

(f
(k)
n−1)2(dg(k)n )2

)1/2∥∥∥
Lr
≤
∥∥∥ ∞∑
k=1

Mf (k)Sg(k)
∥∥∥

Lr
,

which is, by Hölder’s inequality, in turn bounded by∥∥Mf (k)
∥∥

Lp(`2k)

∥∥Sg(k)∥∥
Lq(`2k)

.p,q ‖f‖Lp‖g‖Lq .

In the last inequality we used (2.11) and (2.12) for the martingales f and g, respectively.
We will now prove the weak-type estimate∥∥Π∞(f (k), g(k))

∥∥
Lr,∞(`1k)

.p ‖f‖Lp‖g‖L1 (3.4)

for any p ∈ (1,∞) and r ∈ (1/2, 1) such that 1/p+ 1 = 1/r. This will conclude the proof of
(3.1) for r < 1 by real interpolation with the previously established cases (Theorem 2.3).
By the homogeneity of (3.4) we can normalize: assume ‖f‖Lp = 1 and ‖g‖L1 = 1. Fix a
number ν > 0 and perform Gundy’s decomposition [14] of the martingale g at height
α = νr; see its formulation as Theorem 3.4.1 in the book [15]. It splits g as

gn = ggood
n + gbad

n + gharmless
n ,

where ggood = (ggood
n )∞n=0, g

bad = (gbad
n )∞n=0, and gharmless = (gharmless

n )∞n=0 are martingales
with respect to F satisfying

ggood
0 = g0, gbad

0 = gharmless
0 = 0,

‖ggood‖L∞ ≤ 2α, ‖ggood‖L1 ≤ 4‖g‖L1 , (3.5)

P(Mgbad > 0) ≤ 3α−1‖g‖L1 , (3.6)
∞∑
n=1

‖dgharmless
n ‖L1 ≤ 4‖g‖L1 . (3.7)

Construct the martingales ggood,(k), gbad,(k), and gharmless,(k) for the given sequence of
stopping times via the formula (2.10). Using the previously established case r = 1 of
estimate (3.1) and (3.5) we obtain

P
( ∞∑
k=1

∣∣Π∞(f (k), ggood,(k))
∣∣ > ν

2

)
. ν−1

∥∥∥ ∞∑
k=1

∣∣Π∞(f (k), ggood,(k))
∣∣∥∥∥

L1

.p ν
−1‖f‖Lp‖g

good‖Lp′ ≤ ν
−1‖f‖Lp‖g

good‖1/pL∞ ‖g
good‖1/p

′

L1 . ν−1νr/p = ν−r.

Next, (3.6) yields

P
( ∞∑
k=1

∣∣Π∞(f (k), gbad,(k))
∣∣ > 0

)
≤ P(Mgbad > 0) . ν−r.

Finally, by Hölder’s inequality, Doob’s inequality (2.4), and (3.7) we conclude

P
( ∞∑
k=1

∣∣Π∞(f (k), gharmless,(k))
∣∣ > ν

2

)
.r ν

−r
∥∥∥ ∞∑
k=1

∣∣Π∞(f (k), gharmless,(k))
∣∣∥∥∥r

Lr

≤ ν−r
∥∥∥ ∞∑
k=1

∑
Tk−1<j≤Tk

|fj−1 − fTk−1
||dgharmless

j |
∥∥∥r

Lr

. ν−r
∥∥∥(Mf)

∞∑
n=1

|dgharmless
n |

∥∥∥r
Lr
≤ ν−r‖Mf‖rLp

∥∥∥ ∞∑
n=1

|dgharmless
n |

∥∥∥r
L1

.p,r ν
−r.

Combining the above three estimates finishes the proof of (3.4).
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4 Proof of variational and jump inequalities

Proof of Theorem 1.1. In the process of proving estimates (1.8) and (1.9) we can con-
strain the numbers n0, n1, . . . , nm to a finite interval of integers {0, 1, 2, . . . , nmax}. Then
we only need to take care that the obtained constants do not depend on nmax. Afterwards
we will be able to let nmax →∞ and use the monotone convergence theorem, recovering
Theorem 1.1 in its full generality.

Let us begin with a stopping time argument enabling us to apply Proposition 3.1. We
are given two martingales, f = (fn)∞n=0 and g = (gn)∞n=0, with respect to the filtration F .
Fix λ > 0 and recursively define an increasing sequence of stopping times (Sk)∞k=0 by
setting S0 := 0 and

Sk := min

{
n > Sk−1

∣∣∣∣∣∣∣ ∑
Sk−1<i<j≤n

dfi dgj

∣∣∣ ≥ λ

3
or max

n′∈(Sk−1,n]

∣∣fn′ − fSk−1

∣∣∣∣gn − gn′ ∣∣ ≥ λ

3

}
,

with the convention min ∅ =∞. Then for each k ∈ N0 set Tk := Sk ∧ nmax.
Denote by Nλ(f, g) the supremum of cardinalities on the left hand side of (1.9), so

that the desired estimate (1.9) becomes

‖Nλ(f, g)‖Lr .p,q λ
−1‖f‖Lp‖g‖Lq .

On the other hand, denote

Ñλ(f, g) := sup{k ∈ N0 | Sk ≤ nmax}.

Let us show that

Nλ(f, g) ≤ Ñλ(f, g) (4.1)

and for this it is sufficient to show that each interval of integers (n′, n′′] ⊆ (0, nmax] such
that ∣∣∣ ∑

n′<i<j≤n′′
dfi dgj

∣∣∣ ≥ λ (4.2)

has to contain at least one of the stopping times (Sk)∞k=1. If that was not the case, then
we could choose an index k ∈ N such that Sk−1 ≤ n′ < n′′ < Sk, where we allow Sk to be
infinite. Let us use the identity∑
n′<i<j≤n′′

dfi dgj =
∑

Sk−1<i<j≤n′′
dfi dgj −

∑
Sk−1<i<j≤n′

dfi dgj −
(
fn′ − fSk−1

)(
gn′′ − gn′

)
and the fact that Sk is strictly larger than n′ and n′′, which implies that each of the three
terms on the right hand side is strictly less than λ/3 in the absolute value. That way we
arrive at a contradiction with (4.2) and complete the proof of (4.1).

We plan to apply Proposition 3.1 with the above sequence of stopping times (Tk)∞k=0.
By the definitions of Sk and Tk we have

λÑλ(f, g) ≤ 3

Ñλ(f,g)∑
k=1

∣∣∣ ∑
Tk−1<i<j≤Tk

dfi dgj

∣∣∣+ 3

Ñλ(f,g)∑
k=1

max
n′∈(Tk−1,Tk]

∣∣fn′ − fTk−1

∣∣∣∣gTk − gn′ ∣∣.
In the first term above we use (3.2), while the second term is bounded by

6

Ñλ(f,g)∑
k=1

(
max

n∈[Tk−1,Tk]

∣∣fn − fTk−1

∣∣)( max
n∈[Tk−1,Tk]

∣∣gn − gTk−1

∣∣) .
∞∑
k=1

(
Mf (k)

)(
Mg(k)

)
.
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Altogether, by the Cauchy–Schwarz inequality,

λÑλ(f, g) .
∞∑
k=1

∣∣Π∞(f (k), g(k))
∣∣+
( ∞∑
k=1

(
Mf (k)

)2)1/2( ∞∑
k=1

(
Mg(k)

)2)1/2
,

so using Hölder’s inequality, (3.1), and (2.11) we obtain

‖λÑλ(f, g)‖Lr .
∥∥Π∞(f (k), g(k))

∥∥
Lr(`1k)

+
∥∥Mf (k)

∥∥
Lp(`2k)

∥∥Mg(k)
∥∥

Lq(`2k)
.p,q ‖f‖Lp‖g‖Lq .

Recalling (4.1) we complete the proof of the jump inequality (1.9).
By [19, Lemma 2.17] the jump estimate (1.9) immediately implies the weak type

Lp × Lq → Lr,∞ analogue of (1.8). The strong type %-variational estimate (1.8) then
follows by real interpolation for multisublinear operators (Theorem 2.3).

5 Continuous-time martingales

Proof of Corollary 1.2. (a) In the particular case ‖X‖L∞ <∞ and ‖Y ‖L2 <∞ we already
know that S(X,Y ; Σn) converge u.c.p. as n → ∞ to the stochastic process given by
(1.11). This is the content of Theorem 21 in Chapter II of the book [21].

In the general case, for any δ > 0 we find càdlàg martingales X ′ = (X ′t)t≥0 and
Y ′ = (Y ′t )t≥0 with respect to F such that ‖X ′‖L∞ <∞, ‖X −X ′‖Lp < δ, ‖Y ′‖L2 <∞, and
‖Y − Y ′‖Lq < δ. Rewrite the difference Ss(X,Y ; Σm)− Ss(X,Y ; Σn) as the sum of

Ss(X
′, Y ′; Σm)− Ss(X ′, Y ′; Σn)

and

Ss(X −X ′, Y ; Σm) + Ss(X
′, Y − Y ′; Σm) + Ss(X

′, Y ′ − Y ; Σn) + Ss(X
′ −X,Y ; Σn). (5.1)

From the first part of the proof we know

lim
m,n→∞

P
(

sup
s∈[0,t]

|Ss(X ′, Y ′; Σm)− Ss(X ′, Y ′; Σn)| > ε
)

= 0 (5.2)

for each ε > 0 and each t > 0. By sampling arbitrary continuous-time martingales X̃ and
Ỹ at times t ∧ τ (n)j we obtain discrete-time martingales such that (S

t∧τ(n)
j

(X̃, Ỹ ; Σn))lnj=0

is their paraproduct. Thus, estimate (1.7) applies and, together with Doob’s inequality
for Y , easily gives ∥∥∥ sup

s∈[0,t]

∣∣Ss(X̃, Ỹ ; Σn)
∣∣∥∥∥

Lr
.p,q

∥∥X̃∥∥
Lp

∥∥Ỹ ∥∥
Lq
,

with a constant independent of the partition Σn. Applying this to each of the four terms in
(5.1), using the Markov–Chebyshev inequality, applying (5.2), and finally letting δ → 0+,
we obtain

lim sup
m,n→∞

P
(

sup
s∈[0,t]

|Ss(X,Y ; Σm)− Ss(X,Y ; Σn)| > ε
)

= 0

for ε, t > 0. Thus, S(X,Y ; Σn) converge u.c.p. as n → ∞ to some stochastic process,
which we denote by Π(X,Y ). Note that Π(X,Y ) still has càdlàg paths a.s., since this
property is preserved under taking u.c.p. limits. It is standard to conclude that Π(X,Y )

does not depend on the choice of (Σn)∞n=0.
(b) We explain how (1.8) implies (1.12); very similarly one can use (1.9) to prove

(1.13). It is sufficient to establish a variant of (1.12) in which the numbers t0, t1, . . . , tm
are only taken from a fixed finite set of nonnegative rational numbers Σ, but with a
constant that does not depend on Σ. Afterwards, we can let those sets Σ exhaust

ECP 24 (2019), paper 48.
Page 12/14

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP257
http://www.imstat.org/ecp/


Variational estimates for martingale paraproducts

[0,∞) ∩ Q, invoking the monotone convergence theorem. At the very end one can
recall that Π(X,Y ) almost surely has càdlàg paths, so that Πt,t′(X,Y ) is almost surely
right-continuous in t and t′.

Starting with a finite set Σ we take an increasing sequence (Σn)∞n=0 of finite subsets
of [0,∞) with the following properties. If we write explicitly

Σn =
{
a
(n)
0 , a

(n)
1 , . . . , a

(n)
ln

}
, a

(n)
0 < a

(n)
1 < · · · < a

(n)
ln
,

then we require a(n)0 = 0 for n ≥ 1, limn→∞ a
(n)
ln

=∞, limn→∞max1≤j≤ln
∣∣a(n)j − a

(n)
j−1
∣∣ = 0,

and Σ0 = Σ. From part (a) applied to deterministic partitions Σn we know that

Πtk−1,tk(X,Y ) = lim
n→∞

(
Stk(X,Y ; Σn)− Stk−1

(X,Y ; Σn)−Xtk−1
(Ytk − Ytk−1

)
)

= lim
n→∞

∑
j : tk−1<a

(n)
j ≤tk

(
X
a
(n)
j−1
−Xtk−1

)(
Y
a
(n)
j
− Y

a
(n)
j−1

)
in probability. Repeatedly passing to almost surely convergent subsequences, we can
assume that we already have almost sure convergence above for each of the finitely
many choices of the numbers t0 < t1 < · · · < tm from Σ and for each 1 ≤ k ≤ m. It
remains to apply estimate (1.8) to discrete-time martingales (X

a
(n)
j

)lnj=0 and (Y
a
(n)
j

)lnj=0 for

each fixed n ∈ N, recognizing their truncated paraproducts in the last display. Then we
use Fatou’s lemma as n→∞ to obtain control of the left hand side of (1.12).
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