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Abstract

In [8], the existence of the solution is proved for a scalar linearly growing
backward stochastic differential equation (BSDE) when the terminal value is
L exp(µ

√
2 log(1 + L))-integrable for a positive parameter µ > µ0 with a critical

value µ0, and a counterexample is provided to show that the preceding integrability
for µ < µ0 is not sufficient to guarantee the existence of the solution. Afterwards, the
uniqueness result (with µ > µ0) is also given in [3] for the preceding BSDE under the
uniformly Lipschitz condition of the generator. In this note, we prove that these two
results still hold for the critical case: µ = µ0.
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1 Introduction

Let us fix a positive integer d and a positive real number T > 0. For any two elements
x, y in Rd, denote by x · y their scalar inner product. Let (Bt)t∈[0,T ] be a d-dimensional
standard Brownian motion defined on some complete probability space (Ω,F ,P), and
(Ft)t∈[0,T ] its natural filtration augmented by all P-null sets of F . We study the following
backward stochastic differential equation (BSDE for short):

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

Zs · dBs, t ∈ [0, T ], (1.1)

where ξ is a real-valued and FT -measurable random variable called the terminal condition
or terminal value, the function (called the generator) g(ω, t, y, z) : Ω× [0, T ]×R×Rd 7→ R

is (Ft)-progressively measurable for each (y, z) and continuous in (y, z), and the pair
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Scalar BSDEs with integrable terminal values: the critical case

of processes (Yt, Zt)t∈[0,T ] with values in R×Rd is called the solution of (1.1), which is
(Ft)-progressively measurable such that P− a.s., t 7→ Yt is continuous, t 7→ Zt belongs
to L2(0, T ), t 7→ g(t, Yt, Zt) is integrable, and verifies (1.1). By BSDE(ξ, g), we mean the
BSDE with terminal value ξ and generator g.

Denote g0 :=
∫ T
0
g(t, 0, 0)dt. It is well known that for any p > 1, if the generator g

satisfies the linear growth condition (see the assumption (H1) in section 2) and the
terminal value ξ + g0 is Lp-integrable, then BSDE(ξ, g) admits a minimal (maximal)
solution (Y·, Z·) in the space of the processes Sp ×Mp (see their definitions in section
2), and the solution is unique in the space Sp ×Mp if g further satisfies the uniformly
Lipschitz condition (see the assumption (H2) in section 2). See e.g. [10, 5, 9, 1, 7] for
more details. However, if the random variable ξ + g0 is only integrable, one needs to
restrict the generator g to grow sub-linearly with respect to z, i.e., with some q ∈ [0, 1),

|g(ω, t, y, z)| ≤ |g0(ω, t)|+ β|y|+ γ|z|q, (ω, t, y, z) ∈ Ω× [0, T ]×R×Rd,

for BSDE(ξ, g) to have a minimal (maximal) adapted solution and a unique solution when
g satisfies (H1) and (H2) respectively. See for example [1, 2, 6] for more details.

Recently, by applying the dual representation of solution to BSDE with convex gener-
ator, see for instance [5, 11, 4], to establish some a priori estimate and the localization
procedure, the authors in [8] proved the existence of a solution to BSDE(ξ, g) when

the generator g satisfies (H1) and the terminal value ξ + g0 is L exp
(
µ
√

2 log(1 + L)
)

-

integrable for a positive parameter µ > µ0 with a critical value µ0 = γ
√
T , and showed

by a counterexample that the conventionally expected L logL integrability and even the
preceding integrability for a positive parameter µ < µ0 is not enough for the existence
of a solution to a BSDE with the generator g satisfying (H1). Furthermore, by establish-

ing some properties of the function ψ(x, µ) = x exp
(
µ
√

2 log(1 + x)
)

and observing the

property of the obtained solution Y that ψ(|Y |, a) belongs to class (D) for some a > 0, the
authors in [3] divided the whole interval [0, T ] into a finite number of subintervals and
proved the uniqueness of the solution to the preceding BSDE(ξ, g) with the generator g
satisfying (H2) and µ > µ0.

In this note, we prove that the existence and uniqueness result obtained respectively
in [8] and [3] is still true in the critical value case: µ = γ

√
T , see Theorem 3.1 in section

3.

For the existence of the solution to BSDE(ξ, g), in order to apply the localization
procedure put forward initially in [2], the key idea is always to establish some uniform
a priori estimate for the first process Y n,p· in the solution of the approximated BSDEs
(see the definition and the a priori estimate of Y n,p· in the proof of the existence part
of Theorem 3.1 after Remark 3.6 in section 3). For this, instead of applying the dual
representation of solution to BSDE with convex generator, our whole idea consists in
searching for an appropriate function φ(s, x; t) in order to apply Itô-Tanaka’s formula
to φ(s, |Y n,ps |; t) on the time interval s ∈ [t, τm] with (Ft)-stopping time τm valued in
[t, T ] (see the proof of Proposition 3.5 in section 3 for details). More specifically, we
need to find a positive, continuous, strictly increasing and strictly convex function
φ(s, x; t) : [t, T ]× [0,+∞) 7→ (0,+∞) with t ∈ (0, T ] satisfying

− γφx(s, x; t)|z|+ 1

2
φxx(s, x; t)|z|2 +φs(s, x; t) ≥ 0, (s, x, z) ∈ [t, T ]× [0,+∞)×Rd, (1.2)

where and hereafter, for each t ∈ (0, T ], φs(·, ·; t) denotes the first-order partial derivative
of φ(·, ·; t) with respect to the first variable, and φx(·, ·; t) and φxx(·, ·; t) respectively the
first-order and second order partial derivative of φ(·, ·; t) with respect to the second
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Scalar BSDEs with integrable terminal values: the critical case

variable. Observe from the basic inequality 2ab ≤ a2 + b2 that

−γφx(s, x; t)|z|+ 1

2
φxx(s, x; t)|z|2 = φxx(s, x; t)

(
−γφx(s, x; t)

φxx(s, x; t)
|z|+ 1

2
|z|2
)

≥ −γ
2

2

φ2x(s, x; t)

φxx(s, x; t)
.

Hence, it suffices if for each t ∈ (0, T ], the function φ(·, ·; t) satisfies the following
condition:

− γ2

2

φ2x(s, x; t)

φxx(s, x; t)
+ φs(s, x; t) ≥ 0, (s, x) ∈ [t, T ]× [0,+∞). (1.3)

Inspired by the investigation in [8] and [3], we can choose the following function, for
each t ∈ (0, T ],

φ(s, x; t) := (x+ e) exp

(
µs
√

2 log(x+ e) +

∫ s

t

krdr

)
, (s, x) ∈ [t, T ]× [0,+∞) (1.4)

to explicitly solve the inequality (1.3). We find that (1.3) is satisfied for φ(s, x; t) when

µs = γ
√
s and kr =

γ

2

(
γ +

√
2

r

)
. (1.5)

For the uniqueness of the solution to BSDE(ξ, g), by virtue of two useful inequalities
obtained in [8], we use a similar idea to that in [3] to divide the whole interval [0, T ] into
some sufficiently small subintervals and show successively the uniqueness of the solution
in these subintervals. However, different from [3], in our case the number of these subin-
tervals, which are [3T/4, T ], [32T/42, 3T/4], [33T/43, 32T/42], · · · , [3nT/4n, 3n−1T/4n−1],
· · · , is infinite. Fortunately, observing that the left end points of these subintervals tend
to 0 as n → ∞ and in view of the continuity of the first process in the solution with
respect to the time variable, we can obtain the uniqueness of the solution on the whole
interval [0, T ] by taking the limit.

The rest of this note is organized as follows. In next section, we introduce some
notations and assumptions which will be used later, and in section 3 we state and prove
the main result.

2 Notations and assumptions

First, for any real number p ≥ 1, let Lp represent the set of (equivalent classes of) all
real-valued and FT -measurable random variables ξ such that E[|ξ|p] < +∞, Lp the set
of (equivalent classes of) all real-valued and (Ft)-progressively measurable processes
(Xt)t∈[0,T ] such that

‖X‖Lp :=

{
E

[(∫ T

0

|Xt|dt

)p]}1/p

< +∞,

Sp the set of (equivalent classes of) all real-valued, (Ft)-progressively measurable and
continuous processes (Yt)t∈[0,T ] such that

‖Y ‖Sp :=

(
E[ sup
t∈[0,T ]

|Yt|p]

)1/p

< +∞,
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andMp the set of (equivalent classes of) allRd-valued and (Ft)-progressively measurable
processes (Zt)t∈[0,T ] such that

‖Z‖Mp :=

E
(∫ T

0

|Zt|2dt

)p/2
1/p

< +∞.

Secondly, we recall that a real-valued and (Ft)-progressively measurable process
(Xt)t∈[0,T ] belongs to class (D) if the family of random variables {Xτ : τ ∈ ΣT } is uniformly
integrable, where and hereafter ΣT is the set of all (Ft)-stopping times τ valued in [0, T ].

Finally, we use the following two assumptions with respect to the generator g. The
first one is called the linear growth condition, and the second one is called the uniformly
Lipschitz condition, which is obviously stronger than the linear growth condition.

(H1) There exist two positive constants β and γ such that dP × dt − a.e., for each
(y, z) ∈ R×Rd,

|g(ω, t, y, z)| ≤ |g(ω, t, 0, 0)|+ β|y|+ γ|z|;

(H2) There exist two positive constants β and γ such that dP× dt− a.e., for all (yi, zi) ∈
R×Rd, i = 1, 2,

|g(ω, t, y1, z1)− g(ω, t, y2, z2)| ≤ β|y1 − y2|+ γ|z1 − z2|.

3 Existence and uniqueness

Define the function ψ:

ψ(x, µ) = x exp
(
µ
√

2 log(1 + x)
)
, (x, µ) ∈ [0,+∞)× [0,+∞), (3.1)

which is introduced in [8] and [3].

The following existence and uniqueness theorem is the main result of this note.

Theorem 3.1. Let ξ be a terminal condition and g be a generator which is continuous in
(y, z). If g satisfies assumption (H1) with parameters β and γ, and

ψ

(
|ξ|+

∫ T

0

|g(t, 0, 0)|dt, γ
√
T

)
∈ L1,

then BSDE(ξ, g) admits a solution (Yt, Zt)t∈[0,T ] such that
(
ψ
(
|Yt|, γ

√
t
))
t∈[0,T ]

belongs to

class (D), and P− a.s., for each t ∈ [0, T ],

|Yt| ≤ ψ(|Yt|, γ
√
t) ≤ CE

[
ψ

(
|ξ|+

∫ T

0

|g(t, 0, 0)|dt, γ
√
T

)∣∣∣∣∣Ft
]

+ C, (3.2)

where C is a positive constant depending only on (β, γ, T ).
Furthermore, if g also satisfies assumption (H2), then BSDE(ξ, g) admits a unique

solution (Yt, Zt)t∈[0,T ] such that
(
ψ
(
|Yt|, γ

√
t
))
t∈[0,T ]

belongs to class (D).

In order to prove the above theorem, we need the following lemmas and propositions.
First, the following lemma have been proved in Proposition 2.3 and Theorem 2.5 of [3].

Lemma 3.2. We have the following assertions on ψ:

(i) For each x ≥ 0, ψ(x, ·) is nondecreasing on [0,+∞).
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(ii) For µ ≥ 0, ψ(·, µ) is a positive, strictly increasing and strictly convex function on
[0,+∞).

(iii) For c ≥ 1, we have ψ(cx, µ) ≤ ψ(c, µ)ψ(x, µ), for all x, µ ≥ 0.

(iv) For all x1, x2, µ ≥ 0, we have ψ(x1 + x2, µ) ≤ 1
2ψ(2, µ) [ψ(x1, µ) + ψ(x2, µ)] .

In order to apply Itô-Tanaka’s formula to establish the a priori estimate (see Proposi-
tion 3.5), for each t ∈ [0, T ] we define the following function ϕ:

ϕ(s, x; t) := (x+e) exp

(
γ
√

2s log(x+ e) +
γ

2

∫ s

t

(
γ +

√
2

r

)
dr

)
, (s, x) ∈ [t, T ]× [0,+∞),

(3.3)
which is the function φ in (1.4) with µs and kr defined in (1.5). We have, for each t ∈ (0, T ]

and each (s, x) ∈ [t, T ]× [0,+∞),

ϕx(s, x; t) = ϕ(s, x; t)
γ
√
s+

√
2 log(x+ e)

(x+ e)
√

2 log(x+ e)
> 0,

ϕxx(s, x; t) = ϕ(s, x; t)
γ
√
s
(

2 log(x+ e) + γ
√

2s log(x+ e)− 1
)

(x+ e)2
(√

2 log(x+ e)
)3 > 0,

and

ϕs(s, x; t) =
γϕ(s, x; t)

2

(√
2 log(x+ e) +

√
2√

s
+ γ

)
> 0.

Moreover, the following proposition holds.

Proposition 3.3. We have the following assertions on ϕ:

(i) For t ∈ [0, T ], ϕ(·, ·; t) is continuous on [t, T ] × [0,+∞); And, for all t ∈ (0, T ],
ϕ(·, ·; t) ∈ C1,2([t, T ]× [0,+∞));

(ii) For all t ∈ (0, T ], ϕ(·, ·; t) satisfies the inequality in (1.2), i.e.,

−γϕx(s, x; t)|z|+ 1

2
ϕxx(s, x; t)|z|2 + ϕs(s, x; t) ≥ 0, (s, x, z) ∈ [t, T ]× [0,+∞)×Rd.

Proof. The first assertion is obvious. From the introduction we know that the inequality
(1.3) implies the inequality (1.2). Then, in order to prove Assertion (ii), it suffices to
prove that the inequality (1.3) holds for the function ϕ(·, ·; t) with t ∈ (0, T ]. In fact, by a
simple computation, we have, for each (s, x) ∈ [t, T ]× [0,+∞),

−γ
2

2

ϕ2
x(s, x; t)

ϕxx(s, x; t)
= −γϕ(s, x; t)

2

(
γ
√
s+

√
2 log(x+ e)

)2√
2 log(x+ e)

√
s
(

2 log(x+ e) + γ
√
s
√

2 log(x+ e)− 1
) .

Define v =
√

2 log(x+ e). Then,

−γ
2

2

ϕ2
x(s, x; t)

ϕxx(s, x; t)
+ ϕs(s, x; t) =

γϕ(s, x; t)

2

[
1√
s

(
v − (γ

√
s+ v)

2
v

v2 + γ
√
sv − 1

)
+ γ +

√
2

s

]
.

Furthermore, in view of the fact of v ≥
√

2, we know that

(γ
√
s+ v)

2
v

v2 + γ
√
sv − 1

− v =
γ
√
s(v2 + γ

√
sv − 1) + v + γ

√
s

v2 + γ
√
sv − 1

≤ γ
√
s+

v + γ
√
s

1
2 (v2 + γ

√
sv)

= γ
√
s+

2

v
≤ γ
√
s+
√

2.
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Hence, for each t ∈ (0, T ],

−γ
2

2

ϕ2
x(s, x; t)

ϕxx(s, x; t)
+ ϕs(s, x; t) ≥ 0, (s, x) ∈ [t, T ]× [0,+∞).

Then, Assertion (ii) is proved, and the proof is complete.

The two functions ψ and ϕ defined respectively on (3.1) and (3.3) have the following
connection.

Proposition 3.4. There exists a universal constant K > 0 depending only on γ and T

such that for all t ∈ [0, T ] and (s, x) ∈ [t, T ]× [0,+∞),

ψ(x, γ
√
s) ≤ ϕ(s, x; t) ≤ Kψ(x, γ

√
s) +K. (3.4)

In particular, by letting s = t, we have

ψ(x, γ
√
t) ≤ ϕ(t, x; t) ≤ Kψ(x, γ

√
t) +K, (t, x) ∈ [0, T ]× [0,+∞). (3.5)

Proof. The first inequality in (3.4) is clear, and (3.5) is a direct corollary of (3.4). We now
prove the second inequality in (3.4). In fact, for each t ∈ [0, T ] and (s, x) ∈ [t, T ]× [1,+∞),

ϕ(s, x; t)

ψ(x, γ
√
s) + 1

=
(x+ e) exp

(
γ
√

2s log(x+ e) + γ
2

∫ s
t

(
γ +

√
2
r

)
dr
)

x exp
(
γ
√

2s log(1 + x)
)

+ 1

≤ x+e
x exp

(
γ
√
T
(√

2 log(x+ e)−
√

2 log(x+ 1)
)

+ γ2T
2 + γ

√
2T
)

=: H1(x, γ, T ).

And, in the case of x ∈ [0, 1],

ϕ(s, x; t)

ψ(x, γ
√
s) + 1

≤ (e+ 1) exp

(
γ
√

2T log(1 + e) +
γ2T

2
+ γ
√

2T

)
=: H2(γ, T ).

Hence, for all x ∈ [0,+∞), we have

ϕ(s, x; t)

ψ(x, γ
√
s) + 1

≤ H1(x, γ, T )1x≥1 +H2(γ, T )10≤x<1. (3.6)

With inequality (3.6) in hand and in view of the fact that the function H1(x, γ, T ) is
continuous on [1,+∞) and tends to

exp

(
γ2T

2
+ γ
√

2T

)
as x→ +∞, we obtain the second inequality in (3.4). The proof is complete.

The following Proposition 3.5 establishes some a priori estimate for the solution to a
BSDE with an Lp (p > 1) terminal value and a linear-growth generator.

Proposition 3.5. Let ξ be a terminal condition and g be a generator which is continuous
in (y, z). If g satisfies assumption (H1) with parameters β and γ, (ξ, g(t, 0, 0)) ∈ Lp × Lp
for some p > 1, and (Yt, Zt)t∈[0,T ] is a solution in Sp ×Mp to BSDE(ξ, g), then P − a.s.,
for each t ∈ [0, T ], we have

|Yt| ≤ ψ(|Yt|, γ
√
t) ≤ CE

[
ψ

(
|ξ|+

∫ T

0

|g(t, 0, 0)|dt, γ
√
T

)∣∣∣∣∣Ft
]

+ C, (3.7)

where C is a positive constant depending only on (β, γ, T ), and ψ is defined in (3.1).
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Proof. Note first that if (ξ, g(t, 0, 0)) ∈ Lp × Lp for some p > 1, then

ψ

(
|ξ|+

∫ T

0

|g(t, 0, 0)|dt, µ

)
∈ L1

for any µ ≥ 0, which has been shown in Remark 1.2 of [8]. Define

Ȳt := eβt|Yt|+
∫ t

0

eβs|g(s, 0, 0)|ds and Z̄t := eβtsgn(Yt)Zt, t ∈ [0, T ], (3.8)

where sgn(y) = 1y>0−1y≤0. It then follows from Itô-Tanaka’s formula that, with t ∈ [0, T ],

Ȳt = ȲT +

∫ T

t

eβs (sgn(Ys)g(s, Ys, Zs)− β|Ys| − |g(s, 0, 0)|) ds−
∫ T

t

Z̄s · dBs −
∫ T

t

eβsdLs,

where L· denotes the local time of Y· at 0. Now, fixing t ∈ (0, T ] and applying Itô-Tanaka’s
formula to the process ϕ(s, Ȳs; t), where the function ϕ(·, ·; t) is defined in (3.3), we derive,
in view of assumption (H1),

dϕ(s, Ȳs; t)

= eβsϕx(s, Ȳs; t) (−sgn(Ys)g(s, Ys, Zs) + β|Ys|+ |g(s, 0, 0)|) ds+ ϕx(s, Ȳs; t)Z̄s · dBs

+eβsϕx(s, Ȳs; t)dLs +
1

2
e2βsϕxx(s, Ȳs; t)|Zs|2ds+ ϕs(s, Ȳs; t)ds

≥
[
−γeβsϕx(s, Ȳs; t)|Zs|+ 1

2e
2βsϕxx(s, Ȳs; t)|Zs|2 + ϕs(s, Ȳs; t)

]
ds+ϕx(s, Ȳs; t)Z̄s · dBs.

Furthermore, by letting x = Ȳs and z = eβsZs in Assertion (ii) of Proposition 3.3 we get
that

dϕ(s, Ȳs; t) ≥ ϕx(s, Ȳs; t)Z̄s · dBs, s ∈ [t, T ]. (3.9)

Let us consider, for each integer n ≥ 1, the following stopping time

τn := inf

{
s ∈ [t, T ] :

∫ s

t

[
ϕx(r, Ȳr; t)

]2 |Z̄r|2dr ≥ n
}
∧ T,

with the convention that inf ∅ = +∞. It follows from the inequality (3.9) and the definition
of τn that for each t ∈ (0, T ] and n ≥ 1,

ϕ(t, Ȳt; t) ≤ E
[
ϕ(τn, Ȳτn ; t)

∣∣Ft] .
Thus, thanks to Proposition 3.4, we know the existence of a positive constant K depend-
ing only on γ and T such that

ψ(Ȳt, γ
√
t) ≤ ϕ(t, Ȳt; t) ≤ E

[
ϕ(τn, Ȳτn ; t)

∣∣Ft] ≤ KE [ψ(Ȳτn , γ
√
τn)
∣∣Ft]+K, (3.10)

and, from the definition of Ȳt in (3.8), we have

|Yt| ≤ Ȳt and Ȳτn ≤ eβT
(
|Yτn |+

∫ τn

0

|g(s, 0, 0)|ds
)
. (3.11)

By virtue of (ii) and (iii) in Lemma 3.2 together with the fact that ψ(x, µ) ≥ x for each
x, µ ≥ 0 due to (3.1), we obtain from (3.10) and (3.11) that for each t ∈ (0, T ] and n ≥ 1,

|Yt| ≤ ψ
(
|Yt|, γ

√
t
)
≤ ψ(Ȳt, γ

√
t) ≤ KE

[
ψ(Ȳτn , γ

√
τn)
∣∣Ft]+K

≤ Kψ
(
eβT , γ

√
τn
)
E

[
ψ

(
|Yτn |+

∫ τn

0

|g(s, 0, 0)|ds, γ
√
τn

)∣∣∣∣Ft]+K,

from which the inequality (3.7) follows for t ∈ (0, T ] by sending n to infinity. Finally, in
view of the continuity of Y· and the martingale in the right side hand of (3.7) with respect
to the time variable t, we know that (3.7) holds still true for t = 0. The proposition is
then proved.
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Remark 3.6. We specially point out that, to the best of our knowledge, in the critical
case: µ = γ

√
T , the method of the dual representation used in [8] can not be applied to

obtain the desired a priori estimate as that in (3.7) at the time t = 0.

Now, we give the proof of the existence part of Theorem 3.1.

The proof of the existence part of Theorem 3.1. Let us fix two positive integers n and p.
Set ξn,p := ξ+ ∧ n− ξ− ∧ p, gn,p(t, 0, 0) := g+(t, 0, 0) ∧ n− g−(t, 0, 0) ∧ p and gn,p(t, y, z) :=

g(t, y, z)−g(t, 0, 0)+gn,p(t, 0, 0). As the terminal condition ξn,p and gn,p(t, 0, 0) are bounded
(hence square-integrable) and gn,p(t, y, z) is a continuous and linear-growth generator, in
view of the existence result in [9], BSDE(ξn,p, gn,p) admits a minimal solution (Y n,p· , Zn,p· )

in S2 ×M2. It then follows from Proposition 3.5 that there exists a positive constant C
depending only on (β, γ, T ) such that for each t ∈ [0, T ] and each n, p ≥ 1,

|Y n,pt | ≤ ψ(|Y n,pt |, γ
√
t) ≤ CE

[
ψ

(
|ξn,p|+

∫ T

0

|gn,p(t, 0, 0)|dt, γ
√
T

)∣∣∣∣∣Ft
]

+ C

≤ CE

[
ψ

(
|ξ|+

∫ T

0

|g(t, 0, 0)|dt, γ
√
T

)∣∣∣∣∣Ft
]

+ C.

(3.12)
Since Y n,p· is nondecreasing in n and non-increasing in p by the comparison theorem
(see, for example, Theorem 2.3 in [6]), then in view of (3.12) and assumption (H1),
by virtue of the localization method put forward in [2], we know that there exists an
(Ft)-progressively measurable process (Zt)t∈[0,T ] such that (Y· := infp supn Y

n,p
· , Z·) is

an adapted solution to BSDE(ξ, g). Finally, sending n and p to infinity in (3.12) yields
the inequality (3.2), and then the process

(
ψ
(
|Yt|, γ

√
t
))
t∈[0,T ]

belongs to class (D). The
proof is complete.

Remark 3.7. From the above proof, it is easy to see that the linear-growth assumption
(H1) in Theorem 3.1 and Proposition 3.5 can be easily weakened to the following one-
sided linear-growth assumption: There exist two real constants β ≥ 0, γ > 0 and a
nonnegative, real-valued and (Ft)-progressively measurable process (ft)t∈[0,T ] such that
dP× dt− a.e., for each (y, z) ∈ R×Rd,

sgn(y)g(ω, t, y, z) ≤ ft(ω) + β|y|+ γ|z| and |g(ω, t, y, z)| ≤ ft(ω) + h(|y|) + γ|z|,

where h(·) is a deterministic, continuous and nondecreasing function with h(0) = 0. In
this case, |g(t, 0, 0)| in the conditions of Theorem 3.1 and Proposition 3.5 only needs to
be replaced with ft.

In order to prove the uniqueness part of Theorem 3.1, we need the following two
lemmas, which are Lemmas 2.4 and 2.6 in [8].

Lemma 3.8. For each x ∈ R, y ≥ 0 and µ > 0, we have

exy ≤ e
x2

2µ2 + e2µ
2

ψ(y, µ),

where the function ψ is defined in (3.1) again.

Lemma 3.9. Let (qt)t∈[0,T ] be a d-dimensional and (Ft)-progressively measurable process
with |q·| ≤ γ almost surely. For each t ∈ [0, T ], if 0 ≤ λ < 1

2γ2(T−t) , then

E
[
eλ|

∫ T
t
qs·dBs|2

∣∣∣Ft] ≤ 1√
1− 2λγ2(T − t)

.

ECP 24 (2019), paper 49.
Page 8/10

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP254
http://www.imstat.org/ecp/


Scalar BSDEs with integrable terminal values: the critical case

Now, we give the proof of the uniqueness part of Theorem 3.1.

The proof of the uniqueness part of Theorem 3.1. Let g satisfy assumption (H2), and for
i = 1, 2, let (Y it , Z

i
t)t∈[0,T ] be a solution of BSDE(ξ, g) such that

(
ψ
(
|Y it |, γ

√
t
))
t∈[0,T ]

belongs to class (D). Define δY· := Y 1
· − Y 2

· and δZ· := Z1
· − Z2

· . Then the pair (δY·, δZ·)

verifies the following BSDE:

δYt =

∫ T

t

(usδYs + vs · δZs) ds−
∫ T

t

δZs · dBs, t ∈ [0, T ],

where g(s, Y 1
s , Z

1
s ) − g(s, Y 2

s , Z
2
s ) = usδYs + vs · δZs with a pair of (Ft)-progressively

measurable process (u·, v·) such that |us| ≤ β and |vs| ≤ γ by a standard linearization
procedure. For each t ∈ (0, T ] and each positive integer n ≥ 1, define the following
stopping times:

σn := inf

{
s ∈ [t, T ] : |δYs|+

∫ s

t

|δZr|2dr ≥ n
}
∧ T,

with the convention that inf ∅ = +∞. Then,

δYt = E
[
e
∫ σn
t

usds+
∫ σn
t

vs·dBs− 1
2

∫ σn
t
|vs|2dsδYσn

∣∣∣Ft] .
Therefore,

|δYt| ≤ eβTE
[
e
∫ σn
t

vs·dBs |δYσn |
∣∣∣Ft] . (3.13)

Furthermore, by virtue of Lemma 3.8 we know that for each n ≥ 1,

e
∫ σn
t

vs·dBs |δYσn | ≤ e
1

2γ2t
(
∫ σn
t

vs·dBs)
2

+ e2γ
2tψ(|δYσn | , γ

√
t), t ∈ (0, T ]. (3.14)

And, it follows from Lemma 3.9 that for all n ≥ 1,

E

[∣∣∣∣e 1
2γ2t

(
∫ σn
t

vs·dBs)
2
∣∣∣∣2
]

= E

[
e

1
γ2t

(
∫ σn
t

vs·dBs)
2
]
≤ 1√

1− 2(T−t)
t

≤
√

3, t ∈ [3T/4, T ],

and, thus, the family of random variables e
1

2γ2t
(
∫ σn
t

vs·dBs)
2

is uniformly integrable on
the time interval [3T/4, T ]. On the other hand, in view of (i), (ii) and (iv) in Lemma 3.2,
observe that for all n ≥ 1,

e2γ
2tψ(|δYσn | , γ

√
t) ≤ e2γ

2Tψ(
∣∣Y 1
σn

∣∣+
∣∣Y 2
σn

∣∣ , γ√σn)

≤ e2γ
2Tψ(2, γ

√
T )

2

[
ψ(
∣∣Y 1
σn

∣∣ , γ√σn) + ψ(
∣∣Y 2
σn

∣∣ , γ√σn)
]
, t ∈ [0, T ].

Thus, from (3.14) we can conclude that, for t ∈ [3T/4, T ], the family of random vari-
ables e

∫ σn
t

vs·dBs |δYσn | is uniformly integrable. Consequently, by letting n → ∞ in the
inequality (3.13) we have δY· = 0 on the interval [3T/4, T ]. It is clear that δZ· = 0 on the
interval [3T/4, T ]. The uniqueness of the solution on the interval [3T/4, T ] is obtained.
In a same way, we successively have the uniqueness on the intervals [32T/42, 3T/4],
[33T/43, 32T/42], · · · , [3pT/4p, 3p−1T/4p−1], · · · . Finally, in view of the continuity of pro-
cess δYt with respect to the time variable t, we obtain the uniqueness on the whole
interval [0, T ] by sending p to infinity. The proof is then complete.

Remark 3.10. By a similar analysis to Remark 2.6 in [3], we know that the uniformly
Lipschitz assumption (H2) in Theorem 3.1 can be relaxed to the following monotone
assumption:

sgn(y1 − y2)
(
g(ω, t, y1, z)− g(ω, t, y2, z)

)
≤ β|y1 − y2|

and
|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ γ|z1 − z2|.
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