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Abstract

For ξ ≥ 0, Liouville first passage percolation (LFPP) is the random metric on εZ2

obtained by weighting each vertex by εeξhε(z), where hε(z) is the average of the
whole-plane Gaussian free field h over the circle ∂Bε(z). Ding and Gwynne (2018)
showed that for γ ∈ (0, 2), LFPP with parameter ξ = γ/dγ is related to γ-Liouville
quantum gravity (LQG), where dγ is the γ-LQG dimension exponent. For ξ > 2/d2,
LFPP is instead expected to be related to LQG with central charge greater than 1. We
prove several estimates for LFPP distances for general ξ ≥ 0. For ξ ≤ 2/d2, this leads
to new bounds for dγ which improve on the best previously known upper (resp. lower)
bounds for dγ in the case when γ >

√
8/3 (resp. γ ∈ (0.4981,

√
8/3)). These bounds

are consistent with the Watabiki (1993) prediction for dγ . However, for ξ > 1/
√
3 (or

equivalently for LQG with central charge larger than 17) our bounds are inconsistent
with the analytic continuation of Watabiki’s prediction to the ξ > 2/d2 regime. We also
obtain an upper bound for the Euclidean dimension of LFPP geodesics.
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1 Introduction

Let γ ∈ (0, 2], let U ⊂ C be an open set, and let h be some variant of the Gaussian free
field (GFF) on U . The γ-Liouville quantum gravity (LQG) surface associated with (U, h) is,
heuristically speaking, the random two-dimensional Riemannian manifold parametrized
by U with Riemannian metric tensor eγh (dx2 + dy2), where dx2 + dy2 is the Euclidean
metric tensor. LQG surfaces arise as the scaling limits of various discrete random
geometries, such as random planar maps and Liouville first passage percolation, which
we discuss just below.

The above definition of an LQG surface does not make literal sense since h is a
distribution, not a function. Nevertheless, it is possible to make sense of the volume
form associated with an LQG surface as a limit of regularized versions of eγh dz, where
dz denotes Lebesgue measure; see [Kah85, DS11, RV14]. One can also make sense of
LQG as a random metric space. This was first done in the special case when γ =

√
8/3

by Miller and Sheffield [MS15, MS16a, MS16b], in which case the resulting metric
space is isometric to the so-called Brownian map [Le 13, Mie13]. Very recently, Gwynne
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LFPP bounds

and Miller [GM19c] constructed the γ-LQG metric for all γ ∈ (0, 2), building on the
works [DDDF19, DFG+19, GM19d, GM19a].

Several important properties of the γ-LQG are not yet fully understood. For example,
for γ 6=

√
8/3, the Hausdorff dimension of the γ-LQG metric is unknown (the dimension is

4 for γ =
√
8/3). However, recent progress on related problems has been made in [DG16,

DD19, DZ16, DZZ18, GHS19, GHS17, DG18, DF18, DD18]. Particularly relevant to us
are the articles [GHS17, DZZ18, DG18] which establish for each γ ∈ (0, 2) the existence
of an exponent dγ > 2 which arises in a variety of different approximations of LQG
distances and which is equal to the Hausdorff dimension of the LQG metric [GP19].
See (1.5) below for the appearance of dγ in our paper. We define d2 := limγ→2− dγ , which
exists since γ 7→ dγ is increasing [DG18]. It is known that d√

8/3
= 4 [DG18, Theorem

1.2], but for other γ the value of dγ is unknown. The best-known physics prediction, due
to Watabiki [Wat93], is

dWat
γ = 1 +

γ2

4
+

1

4

√
(4 + γ2)2 + 16γ2. (1.1)

But, it was proven by Ding and Goswami [DG16] that this prediction is false for small
values of γ.

One of the most natural ways to study γ-LQG distances is to consider the random
metric obtained by exponentiating a continuous approximation of the GFF (as is done in
several of the above-cited works). Such approximate metrics are referred to as Liouville
first passage percolation (LFPP). In this article, we will prove several estimates for LFPP
distances which in particular lead to new bounds for dγ for general γ ∈ (0, 2], improving
on the previous best known upper (resp. lower) bound from [DG18] in the case when
γ >

√
8/3 (resp. γ ∈ (0.4981,

√
8/3)) (Corollary 2.5). We also establish an upper bound

for the Euclidean dimension of LFPP geodesics.
Our bounds are valid not only for discretizations of γ-LQG with γ ∈ (0, 2] but also

for discreteizations of a certain extension of LQG beyond this phase: LQG with central
charge in (1, 25), which corresponds to ξ > 2/d2 in the model which we define just below.
In this extended regime, our bounds are inconsistent with the analytic continuation of
Watabiki’s prediction for a range of parameter values; see Corollary 2.4.

Definition of the model

Let h be a whole-plane GFF, normalized so that its circle average over ∂D is zero. For
ε > 0 and z ∈ C, we write hε(z) for the average of h over the circle of radius ε centered at
z (see [DS11, Section 3.1] for more on the circle average process). We write S := [0, 1]2.
For ε > 0, we define Sε := (εZ2) ∩ S and we equip Sε with its standard nearest-neighbor
graph structure.

For ε, ξ ≥ 0 and a lattice path P : {0, 1, . . . , N} → Sε for some N ∈ N, we define the
ε-LFPP length of P , with parameter ξ, by

Lξ,εh (P ) :=

N∑
j=0

εeξhε(P (j)). (1.2)

The reason for the factor of ε is that edges of Z2 have side length ε, so this factor makes
it so that Lξ,εh approximates the integral of eξhε along a linearly interpolated version of P .
For z, w ∈ Sε, we define the ξ-LFPP distance by1

Dξ,ε
h (z, w) := inf

P :z→w
Lξ,εh (P ), (1.3)

1 There are several other natural variants of LFPP besides the one we consider here. For example, we can
replace the circle average process by the white noise approximation or by the discrete GFF. We can also define
distances by integrating along continuous paths rather than by summing along paths in εZ2. The arguments of
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where the infimum is over all lattice paths in Sε from z to w. Let ∂LSε (resp. ∂RSε) be
the left (resp. right) boundary of Sε, i.e., the set of vertices of Sε whose nearest neighbor
to the left (resp. right) in εZ2 is not in Sε. For ξ ≥ 0, we define the ξ-LFPP distance
exponent

λ(ξ) := sup
{
α ∈ R : lim inf

ε→0
P
[
Dξ,ε
h (∂LS

ε, ∂RS
ε) ≤ εα

]
= 1
}
. (1.4)

We have the following a priori bounds for λ(ξ).

Lemma 1.1. λ(ξ) ∈ [−1/2, 1] for all ξ ≥ 0. Furthermore, ξ 7→ λ(ξ) is 2-Lipschitz on
[0,∞).

Proof. Let ζ > 0 be a small exponent. By [GHPR19, Lemma 5.3], it holds with probability
tending to 1 as ε → 0 that there is a path P from ∂LS

ε to ∂RSε whose total number of
vertices satisfies #P ≤ ε−3/2−ζ such that |hε(P (j))| ≤ ζ log ε−1 for each j = 0, . . . ,#P −1.
For this path, one has Lξ,εh (P ) ≤ ε−1/2−(ξ+1)ζ , so λ(ξ) ≥ −1/2 − (ξ + 1)ζ. Furthermore,
any path between the upper and lower boundaries of Sε must cross P , so must have
Lξ,εh -length at least ε1+ξζ . By π/2-rotational symmetric this implies λ(ξ) ≤ 1 + ξζ. Since
ζ > 0 is arbitrary we get λ(ξ) ∈ [−1/2, 1].

For the Lipschitz continuity, we observe that supz∈S |hε(z)| ≤ (2+ ζ) log ε−1 with prob-
ability tending to 1 as ε→ 0 (see, e.g., [MS16a, Proposition 2.4]). On the event that this

bound holds, for any path P and any 0 ≤ ξ̃ ≤ ξ, we have ε(2+ζ)(ξ−ξ̃) ≤ Lξ,εh (P )/Lξ̃,εh (P ) ≤
ε−(2+ζ)(ξ−ξ̃). Therefore |λ(ξ)− λ(ξ̃)| ≤ (2 + ζ)(ξ − ξ̃). Again since ζ > 0 is arbitrary, we
get the 2-Lipschitz continuity.

It is shown in [DG18, Theorem 1.5] (c.f. Footnote 1) that, with dγ the dimension expo-

nent for γ-LQG, it holds with probability tending to 1 as ε→ 0 that D
γ/dγ ,ε
h (∂LS

ε, ∂RS
ε) =

ε1−γQ/dγ+oε(1), where Q = 2/γ + γ/2. Moreover, the same is true for several other
quantities related to LFPP distances, such as diameters and point-to-point distances. In
particular,

λ(γ/dγ) = 1− γ

dγ
Q = 1− γ

dγ

(
2

γ
+
γ

2

)
, ∀γ ∈ (0, 2]. (1.5)

Note that (1.5) for γ = 2 follows from the case γ < 2 and the continuity of λ. Since
d√

8/3
= 4, (1.5) implies that λ(1/

√
6) = 1/6.

As we will explain in Section 4, we expect that LFPP with ξ > 2/d2 is connected
to Liouville quantum gravity with central charge in (1, 25] (note that γ-LQG for γ ∈
(0, 2] corresponds to central charge in (−∞, 1]). In this regime, we do not know that
Dξ,ε
h (∂LS

ε, ∂RS
ε) ≥ ελ(ξ)+oε(1) with high probability. However, we expect that this can be

proven using arguments similar to those used to show the existence of an exponent for
Liouville graph distance in [DZZ18].

By (1.5), Watabiki’s prediction (1.1) is equivalent to λ(ξ) = ξ2, ∀ξ ∈ [0, 2/d2]: indeed,
dWat
γ is the positive solution to d2γ − γQdγ = γ2, and dividing this by d2γ gives 1− ξQ = ξ2.

One might guess that λ(ξ) is an analytic function of ξ at least up until the smallest
ξ > 0 for which λ(ξ) = 1. Indeed, as explained in Section 4, λ(ξ) = 1 corresponds to the
critical point at which the “background charge” Q is zero and the “central charge” c is
25. We do not know if there is a finite value of ξ∗ > 0 for which λ(ξ∗) = 1, but if such a ξ∗

this paper work for any of these approximations; all we need is that the variance of the approximating field is
of order log ε−1 +Oε(1), uniformly over S. It follows from [DG18, Lemma 3.1 and Proposition 3.16] that with
probability tending to 1 as ε → 0, LFPP distances are scaled by a factor of at most εoε(1) if we replace the
circle average process by the white noise decomposition and/or we integrate along continuous paths instead of
discrete paths. [Ang19, Theorem 1.4] gives a similar statement comparing LFPP defined using the discrete
GFF instead of the circle average process of the continuum GFF. In particular, the exponents for distances
in the above variants of LFPP are all the same. We will use this fact without comment when we cite results
from [DG18].
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exists we expect that LFPP is in some sense degenerate for ξ > ξ∗. The vast majority
of exponents associated with LQG depend analytically on their parameter values in the
range for which the objects are non-degenerate. For example, the KPZ formula extends
analytically to the case when c ∈ (1, 25) [GHPR19, Theorem 1.5].2 We emphasize, though,
that the analyticity of λ(ξ) for ξ < ξ∗ is only a guess, and we would not be very surprised
if this guess turns out to be false.

If λ(ξ) were analytic for ξ < ξ∗, then we would have the following extension of
Watabiki’s prediction from the case when ξ ∈ (0, 2/d2] to the case of general ξ > 0:

λWat(ξ) = min{ξ2, 1}, ∀ξ ≥ 0. (1.6)

We will show in Corollary 2.4 that (1.6) is false for a specific subset of [2/d2,∞).

2 Main results

The starting point of our main results is the following comparison of LFPP lengths
of a path for different values of ξ, which will be proven (via a one-page argument) in
Section 3.

Theorem 2.1. Let 0 ≤ ξ̃ ≤ ξ and fix a small parameter ζ > 0. With probability tending
to 1 as ε→ 0, each simple path P in Sε with Dξ,ε

h -length Lξ,εh (P ) ≤ ελ(ξ)−ζ satisfies

Lξ̃,εh (P ) ≤ ελ(ξ)−(ξ−ξ̃)
(√

2+2λ(ξ)+ξ2−ξ
)
−ζ
. (2.1)

Corollary 2.2 (Upper differential inequality for λ). If 0 ≤ ξ̃ < ξ, then

λ(ξ)− λ(ξ̃)
ξ − ξ̃

≤
√

2 + 2λ(ξ) + ξ2 − ξ. (2.2)

In particular, for Lebesgue-a.e. ξ ≥ 0,

λ′(ξ) ≤
√
2 + 2λ(ξ) + ξ2 − ξ. (2.3)

Proof. The relation (2.2) is immediate from the definition (1.4) of λ and Theorem 2.1
applied to a path from ∂LS

ε to ∂RSε with minimal Dξ,ε
h -length. This relation implies (2.3)

since ξ 7→ λ(ξ) is Lipschitz, hence differentiable a.e.

Corollary 2.2 complements the monotonicity relation from [DG18, Lemma 2.5] which
shows that for 0 ≤ ξ̃ ≤ ξ,

λ(ξ̃) +
ξ̃2

2
≤ λ(ξ) + ξ2

2
and hence λ′(ξ) ≥ −ξ. (2.4)

By combining these two differential inequalities and the fact that λ(0) = 0 and λ(1/
√
6) =

1/6 (see the discussion just below (1.5)), we get the following theorem.

Theorem 2.3 (Bounds for λ(ξ)). For ξ ≥ 0,

λ(ξ) ≤ λ(ξ) ≤ λ(ξ) (2.5)

2If one assumes that a metric on LQG with ξ > 2/d2 and Q ∈ (0, 2) exists and satisfies certain axioms
(which should be satisfied if LFPP for ξ > 2/d2 has a scaling limit), then one can show that the formulas for
exponents/dimensions from [GP19, DFG+19] extend analytically to this regime, provided they still give finite
positive answers. Examples of such formulas include the optimal Hölder exponent of the Euclidean metric
w.r.t. the LQG metric [DFG+19, Theorem 1.7] and the LQG dimension of the α-thick points of the field [GP19,
Theorem 1.5]. The proofs of these formulas should be the same as the proofs in [GP19, DFG+19], but such
proofs have not been written down.
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where

λ(ξ) :=


max

{(√
5

2
− 1√

6

)
ξ −
√
15− 2

6
,−ξ

2

2

}
, ξ ≤ 1√

6

max

{
1

4
− ξ2

2
,−1

2

}
ξ ≥ 1√

6

(2.6)

and

λ(ξ) :=


min

{
1

4
− ξ2

2
,
√
2ξ

}
, ξ ≤ 1√

6

min

{(√
5

2
− 1√

6

)
ξ −
√
15− 2

6
, 1

}
, ξ ≥ 1√

6
.

(2.7)

Proof. Recall from Lemma 1.1 that λ(ξ) ∈ [−1/2, 1] for all ξ ≥ 0. Since λ(0) = 0, by
setting ξ̃ = 0 in (2.2) and (2.4) and solving for λ(ξ), we get

− ξ2

2
≤ λ(ξ) ≤

√
2ξ, ∀ξ ≥ 0. (2.8)

Since λ(1/
√
6) = 1/6, by setting ξ̃ = 1/6 in (2.2) and (2.4) and solving for λ(ξ), we get

1

4
− ξ2

2
≤ λ(ξ) ≤

(√
5

2
− 1√

6

)
ξ −
√
15− 2

6
, ∀ξ ≥ 1/

√
6. (2.9)

By instead setting ξ = 1/6 and solving for λ(ξ̃), we get (2.9) with the inequality signs
flipped for ξ ≤ 1/

√
6. Combining these inequalities gives (2.5).

See Figure 1, left, for a plot of the bounds (2.5). At the time this paper was written,
the bounds for λ(ξ) from Theorem 2.3 were the best known except when ξ is very
small (non-explicit), in which case [DG16] gives λ(ξ) ≥ cξ4/3/ log(1/ξ) for a non-explicit
universal constant c > 0. However, very recently improved lower bounds have been
obtained in some cases; see Remark 2.6. From Corollary 2.2 and Theorem 2.3, we get
the following.

Corollary 2.4. The extended Watabiki prediction (1.6) is false on a dense subset of

{ξ ≥ 1/
√
3 : λ(ξ) < 1} and for all ξ ∈

(√
5
2 −

√
2
3 ,

4+
√
15√

2(3
√
5−
√
3)

)
≈ (0.7646, 1.1187).

Proof. If λ(ξ) = ξ2 holds on a neighborhood of ξ and ξ > 1/
√
3, then λ′(ξ) = 2ξ <√

2 + 2ξ2 + ξ2 − ξ, contrary to (2.3). The second statement follows since the upper

bound in (2.7) is strictly less than ξ2 for ξ >
√

5
2 −

√
2
3 and strictly less than 1 for

ξ < 4+
√
15√

2(3
√
5−
√
3)

.

As explained in Section 4, the conditions in Corollary 2.4 correspond to central
charge in (17, 25) and in (21.741 . . . , 25), respectively. The combination of Corollary 2.4
and [DG16] shows that if Watabiki’s prediction is true for a non-trivial interval of ξ-values,
then λ(ξ) must fail to be analytic at at least two different values of ξ with λ(ξ) < 1. Since
the existence of two non-analytic points would be more surprising than the existence of
just one such point, this provides further evidence against the statement that Watabiki’s
prediction is true for a non-trivial interval of ξ-values.

In contrast, all known bounds for λ(ξ) (including those of Corollary 2.2, Theorem 2.3,
and [DG16]) are consistent with the alternative guess for the dimension of γ-LQG

from [DG18, Equation (1.16)], namely dDG
γ = 2 + γ2

2 + γ√
6
, which is equivalent to λ(ξ) =
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Figure 1: Left. Graph of the lower bound λ(ξ) (red) and the upper bound λ(ξ) (blue) from
Theorem 2.3 together with the extended Watabiki prediction λ(ξ) = max{ξ2, 1} (green)
and the alternative guess λ(ξ) = max{ξ/

√
6, 1} (orange) for ξ ∈ [0, 1]. Right. Graph of

the upper bound for the geodesic dimension g(ξ), obtained from plugging in the lower
bound for λ(ξ) from Theorem 2.3 into Corollary 2.7, on the interval [0,

√
5/2] (the range

on which they are non-trivial). The upper bound is constant at 1
6 (4 +

√
15) ≈ 1.31216 for

ξ ∈
[
0.241 . . . , 1/

√
6
]

but we expect that g(ξ) is strictly increasing, at least on [0, 2/d2].

The dashed red line is at our upper bound 2 −
√
5/2 ≈ 0.4189 for 2/d2. The vertical

coordinate where it crosses the graph is 2
√
10−5 ≈ 1.3246, which is (at least heuristically)

an upper bound for the largest possible Euclidean dimension of a γ-LQG geodesic for
γ ∈ (0, 2].

ξ/
√
6 for ξ ∈ [0, 2/d2] and corresponds to the extended guess

λDG(ξ) = min{ξ/
√
6, 1}, ∀ξ ≥ 0. (2.10)

Note that if λ(ξ) = λDG(ξ), then the Ding-Goswami bound λ(ξ) ≥ cξ4/3/ log(1/ξ) for small
ξ would be far from optimal. We emphasize, though, that there is currently no theoretical
justification for the above alternative guess, even at a heuristic level.

Using (1.5), we can translate Theorem 2.3 for ξ ∈ (0, 2/d2] into bounds for the γ-LQG
dimension.

Corollary 2.5 (Bounds for dγ). For γ ∈ (0, 2), one has

dγ ≤ dγ ≤ dγ (2.11)

for

dγ :=


max

{
12−

√
6γ + 3

√
10γ + 3γ2

4 +
√
15

,
2γ2

4 + γ2 −
√
16 + γ4

}
, γ ≤

√
8/3

1

3

(
4 + γ2 +

√
16 + 2γ2 + γ4

)
, γ ≥

√
8/3

(2.12)
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Figure 2: Left. Graph of the lower bound dγ (red) and the upper bound dγ (blue)
from Corollary 2.5 together with the Watabiki prediction dWat

γ from (1.1) (green) and
the previous best known bounds (dashed blue and dashed red). Note that the bounds
dγ ≤ dγ ≤ dγ are consistent with the Watabiki prediction (so the only contradiction to
Watabiki for γ ∈ (0, 2) is still [DG16]). Right. Graph of the same functions but restricted
to the interval [

√
2, 2].

and

dγ :=


min

{
1

3

(
4 + γ2 +

√
16 + 2γ2 + γ4

)
, 2 +

γ2

2
+
√
2γ

}
, γ ≤

√
8/3

12−
√
6γ + 3

√
10γ + 3γ2

4 +
√
15

, γ ≥
√

8/3

. (2.13)

See Figure 2 for a plot of the bounds for Corollary 2.5, the previous best known bounds
from [DG18], and the Watabiki prediction (1.1). The new bounds are still consistent
with Watabiki’s prediction for γ ∈ (0, 2] (since 2/d2 < 1/

√
3). The upper (resp. lower)

bound from Corollary 2.5 is strictly better than previously known bounds in the case
when γ ≥

√
8/3 (resp. γ ∈ (0.4981,

√
8/3)). For γ ≥

√
8/3, the upper bound differs from

Watabiki’s prediction by at most 0.008.

Remark 2.6. The recent paper [Ang19] shows that λ(ξ) ≥ 0 for a slightly different
definition of λ(ξ), using distance between the inner and outer boundaries of an annulus,
rather than distance across a circle. All of our arguments still work with this alternative
definition of λ(ξ) (the definitions are known to be equivalent when ξ ≤ 2/d2, and we
expect that they are equivalent for all ξ ≥ 0). The bound λ(ξ) ≥ 0 improves on our
lower bound for λ(ξ) from Theorem 2.3 in the case when ξ ∈ (0, 0.2661 . . . ) ∪ (1/

√
2,∞).

By (1.5), for γ ∈ (0, 2), λ(ξ) ≥ 0 implies that dγ ≥ 2 + γ2/2, which improves on our lower
bound for dγ from Corollary 2.5 in the case when γ ∈ (0, 0.5765 . . . ).
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Geodesic dimension

In addition to the Hausdorff dimension/distance exponent, another natural quantity
associated with the LQG metric is the Euclidean dimension of its geodesics. Theorem 2.1
also leads to a bound for this dimension. Let P ξ,εh be the a.s. unique path in Sε connecting

the left and right boundaries with minimal Dξ,ε
h -length.3 We define the LFPP geodesic

dimension

g(ξ) := inf
{
α > 0 : lim inf

ε→0
P
[
#P ξ,εh ≤ ε−α

]
= 1
}
, (2.14)

where here and in what follows we write #P for the number of vertices in a path P . Then
g(ξ) is a reasonable notion of the “Euclidean dimension” of the path P ξ,εh since #P is the

number of Euclidean squares of side length ε needed to cover P . If (as expected) Dξ,ε
h

converges to a limiting metric as ε→ 0, then g(ξ) should be the Euclidean Minkowski
dimension of a typical geodesic for this limiting metric.

In [DZ16] it is shown that g(ξ) > 1 whenever λ(ξ) > 0, which we know is the case
for ξ sufficiently small by [DG16] and for ξ > 0.266 . . . by Theorem 2.3. We also note
that [MQ18, Proposition 4.8] shows that the Hausdorff dimension of geodesics for the
continuum γ-LQG metric is strictly less than 2. Neither of these works prove a non-trivial
explicit bound. Here we prove the first non-trivial explicit bound for g(ξ).

Corollary 2.7 (Geodesic dimension upper bound). For each ξ > 0 and each ζ > 0, it holds
with probability tending to 1 as ε → 0 that each simple path P in Sε with Dξ,ε

h -length

Lξ,εh (P ) ≤ ελ(ξ)−ζ satisfies

#P ≤ ελ(ξ)−ξ
(√

2+2λ(ξ)+ξ2−ξ
)
−1−ζ

. (2.15)

In particular,

g(ξ) ≤ 1− λ(ξ) + ξ
(√

2 + 2λ(ξ) + ξ2 − ξ
)
. (2.16)

Proof. Apply Theorem 2.1 with ξ̃ = 0 and note that L0,ε
h (P ) = ε#P .

The upper bound (2.16) is a decreasing function of λ(ξ) whenever λ(ξ) ≥ −1, and
we know that λ(ξ) ≥ −1/2 by Lemma 1.1. Plugging our lower bound for λ(ξ) from
Theorem 2.3 into (2.16) gives an upper bound for g(ξ) in terms of ξ which is non-trivial
(< 2) for ξ <

√
5/2. We plot this bound in Figure 1, right. Recall from the discussion

just after (2.14) that g(ξ) is expected to be the Euclidean dimension of geodesics with
respect to the continuum limit of the metrics Dξ,ε

h . By setting ξ = γ/dγ for γ ∈ (0, 2)

in (2.16) and using (1.5), we get the following heuristic bound:

(Euclidean dimension of γ-LQG geodesics) ≤ γ

dγ

(
2

γ
+
γ

2
− γ

dγ
+

√
2 + 2

γ

dγ
+
γ2

d2γ

)
.

(2.17)
For γ =

√
8/3, in which case dγ =

√
8/3, the right side of (2.17) is 1

6 (4 +
√
15) ≈ 1.31216.

In [GP19], we prove that (2.17) holds for geodesics of the continuum γ-LQG metric
from [GM19c].

3 Proof of Theorem 2.1

The only estimate needed for the proof of Theorem 2.1 is the following lemma.

3The uniqueness of P ξ,ε follows since there are only finitely many simple paths in Sε and a.s. no two such
paths have the same Dξ,εh -length, which in turn is a consequence of the fact that a.s. hε(z) 6= hε(w) for each
distinct z, w ∈ Sε.
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Lemma 3.1. For α > 0,

E[#{z ∈ Sε : hε(z) < α log ε}] = Oε

(
ε−(2−α

2/2)
)
.

Proof. The calculations in [DS11, Section 3.1] show that for each vertex z ∈ Sε, the
circle average hε(z) is centered Gaussian with variance log ε−1 +Oε(1), where the Oε(1)
is uniform over all z ∈ Sε.4 The lemma now follows by applying the Gaussian tail bound
to each of these random variables, then summing over the Oε(ε−2) vertices of Sε.

Proof of Theorem 2.1. Fix α > 0 to be chosen later, in a manner depending only on ξ

and ξ̃. Our strategy for bounding the ξ̃-LFPP length of a path P in terms of its ξ-LFPP
length is to partition the set of points z ∈ P according to whether hε(z) < α log ε or
hε(z) ≥ α log ε. The idea is that the contribution of points z with hε(z) ≥ α log ε to the
ξ̃-LFPP length can be bounded in terms of their contribution to the ξ-LFPP length; on
the other hand, we can crudely bound the set of z ∈ P with hε(z) < α log ε in terms of
the total number of such points in Sε.

Let us now proceed with the details. By Lemma 3.1, it holds with probability tending
to 1 as ε→ 0 that

#{z ∈ Sε : hε(z) < α log ε} ≤ ε−(2−α
2/2)−ζ . (3.1)

Henceforth assume that (3.1) holds. We will show that (2.1) holds.
Let P : {0, 1, . . . , N} → Sε be a simple path in Sε with Lξ,εh (P )-length at most ελ(ξ)−ζ .

We partition the points in the sum defining Lξ̃,εh (P ) according to whether hε(P (j)) <
α log ε or hε(P (j)) ≥ α log ε:

Lξ̃,εh (P ) =

N∑
j=0

εeξ̃hε(P (j)) =
∑

j:hε(P (j))<α log ε

εeξ̃hε(P (j)) +
∑

j:hε(P (j))≥α log ε

εeξ̃hε(P (j))

≤ ε1+αξ̃#{j : hε(P (j)) < α log ε}+
∑

j:hε(P (j))≥α log ε

εeξ̃hε(P (j)).

(3.2)

Since P is a simple path, the bound (3.1) shows that the first term on the right in (3.2)
is at most εξ̃α+α

2/2−1−ζ . As for the second term, since ξ̃ ≤ ξ, if hε(P (j)) ≥ α log ε, then

eξ̃hε(P (j)) ≤ ε−(ξ−ξ̃)αeξhε(P (j)). Plugging these two estimates into (3.2) shows that

Lξ̃,εh (P ) ≤ εξ̃α+α
2/2−1+oε(1) + ε−(ξ−ξ̃)αLξ,εh (P ) ≤ εξ̃α+α

2/2−1−ζ + ελ(ξ)−(ξ−ξ̃)α−ζ . (3.3)

We now choose α > 0 so that the two powers on ε on the right in (3.3) are equal, i.e.,

α =
√

2 + 2λ(ξ) + ξ2 − ξ. (3.4)

Plugging this into (3.3) gives (2.1).

4 Relating ξ to the central charge

The exponent λ(ξ) of (1.4) gives rise to a notion of “central charge” for LFPP with
exponent ξ, as we will now explain. Following [DS11], one can define a γ-Liouville
quantum gravity (LQG) surface for γ ∈ (0, 2] to be an equivalence class of pairs (U, h)

4The calculations in [DS11, Section 3.1] are carried out for the zero-boundary GFF on a proper subdomain of
C, but similar calculations work in the whole-plane case. Alternatively, the whole-plane case can be extracted
from the zero-boundary case using either the Markov property of the whole-plane GFF [MS17, Proposition 2.8];
or the fact that h|(−1,2)2 can be expressed as the limit (in the total variation sense) of (̊hn − h̊n1 (0))|(−1,2)2 as

n→∞, where for n ∈ N, h̊n is the zero-boundary GFF on the ball Bn(0) [MS17, Proposition 2.10].
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where U ⊂ C is a simply connected domain and h is a random distribution on U (always
taken to be a realization of some variant of the GFF on U ), with two pairs (U, h) and
(Ũ , h̃) considered to be equivalent if there is a conformal map φ : Ũ → U such that

h̃ = h ◦ φ+Q log |φ′| for Q =
2

γ
+
γ

2
≥ 2. (4.1)

We think of equivalent pairs as different parametrizations of the same surface. Objects
associated with LQG are invariant under coordinate changes of the form (4.1). This is
proven for the measure in [DS11, Proposition 2.1] and the metric in [GM19b, Theorem
1.1].

The parameter Q in (4.1) is called the background charge. It is related to the so-
called central charge by c = 25− 6Q2. We have c ∈ (−∞, 1] for γ ∈ (0, 2]. In the physics
literature, the parameter c, rather than the parameter γ, is often viewed as the more
natural one. The above definition of an LQG surface makes sense for any value of Q > 0

(not just Q ≥ 2) and hence for any central charge c ∈ (−∞, 25). See [GHPR19] for
further discussion of LQG with c ∈ (1, 25).

It is not hard to see (see [DG18, Proposition 2.3]) that if Dξ,ε
h has a scaling limit, then

at least for complex affine maps φ the limiting metric must be invariant under coordinate
changes of the form (4.1) for Q = (1− λ(ξ))/ξ. This leads us to define the background
charge and central charge, respectively, for LFPP with parameter ξ by

Q(ξ) := (1− λ(ξ))/ξ and c(ξ) := 25− 6Q(ξ)2. (4.2)

It is shown in [DG18, Theorem 1.5] that for γ ∈ (0, 2), one has Q(γ/dγ) = 2/γ + γ/2, as
expected. Since λ(ξ) ≤ 1, one always has Q(ξ) ≥ 0.

For ξ = 1/
√
3, the extended Watabiki prediction (1.6) gives λ(ξ) = 1/3 and hence

Q(ξ) =
√
4/3 and c(ξ) = 17. Similarly, under (1.6), ξ =

√
5/2 −

√
2/3 corresponds to

c(ξ) = 21.741 . . . . Combined with Corollary 2.4 and Lemma 4.1 just below, this means
that the extended Watabiki prediction (1.6) is false for a dense subset of central charge
values in (17, 25) (resp. for all c ∈ (21.741 . . . , 25)).

Lemma 4.1. The background charge Q(ξ) is strictly decreasing on (0, 0.7), non-increas-
ing on [0.7,∞), and satisfies limξ→∞Q(ξ) = 0.

Proof. Since λ(ξ) ∈ [−1/2, 1] (Lemma 1.1), it is obvious that lim infξ→∞Q(ξ) = 0.
Since Q(ξ) is a Lipschitz continuous function of ξ (Lemma 1.1), it is absolutely

continuous and so is differentiable Lebesgue-a.e. Hence to show that Q(ξ) is strictly
decreasing on (0, 0.7) it suffices to show that its derivative is strictly negative there.
By (2.4), λ′(ξ) ≥ −ξ and hence

Q′(ξ) =
1

ξ2
(−λ′(ξ)ξ − 1 + λ(ξ)) ≤ 1

ξ2
(
−ξ2 − 1 + λ(ξ)

)
.

Plugging in our upper bound for λ(ξ) from Theorem 2.3 shows that this is negative for

ξ <

√
2− 1

6

√
113− 8

√
15 ≈ 0.70044.

Finally, we show Q(ξ) is always non-increasing. Let 0 ≤ ξ̃ ≤ ξ. For ε > 0, let P̃ = P ξ̃,εh

be the minimal-Dξ̃,ε
h -length path between the left and right boundaries of Sε. Since

x 7→ xξ̃/ξ is subadditive,

[
Lξ,εh (P̃ )

]ξ̃/ξ
= εξ̃/ξ

 N∑
j=0

eξhε(P̃ (j))

ξ̃/ξ

≤ εξ̃/ξ−1Lξ̃,εh (P̃ ).
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By the definition (1.4) of λ, it holds with probability tending to 1 as ε→ 0 that[
Dξ,ε
h (∂LS, ∂RS)

]ξ̃/ξ
≤
[
Lξ,εh (P̃ )

]ξ̃/ξ
≤ εξ̃/ξ+λ(ξ̃)−1+oε(1).

Consequently, λ(ξ)ξ̃/ξ ≥ ξ̃/ξ+λ(ξ̃)−1. Re-arranging gives (1−λ(ξ))/ξ ≤ (1−λ(ξ̃))/ξ̃.

Remark 4.2. The paper [GHPR19] introduces another natural discretization of LQG
which works for all c < 25 (equivalently, Q > 0), based on a dyadic tiling SQ,εh of the
plane consisting of squares which all have “LQG size ε” with respect to h. We expect that
this model is related to LFPP as follows: if ξ(Q) > 0 is chosen so that the graph distance
in SQ,εh between ∂LS and ∂RS grows like ε−ξ(Q) as ε→ 0, then λ(ξ(Q)) = 1− ξ(Q)Q; i.e.,
Q(ξ(Q)) = Q. This relation for Q > 2 and ξ ∈ (0, 2/d2) follows from [DG18, Theorem 1.5].
We expect that the proof of that theorem could be adapted to treat the case when Q < 2

and ξ > 2/d2 as well.

Remark 4.3. We expect that the function ξ 7→ Q(ξ) is injective, at least up until some
“critical point” ξ∗ at which it becomes constant. By Remark 4.2, each value of Q ∈ (0, 2)

should correspond to some value of ξ > 0, so if such a critical point ξ∗ exists then ξ∗
should be the smallest ξ > 0 for which λ(ξ) = 1, equivalently Q(ξ) = 0. However, we
do not know whether there exists ξ > 0 for which Q(ξ) = 0, so it could be the case that
ξ 7→ Q(ξ) is strictly decreasing on all of (0,∞). Note that both the extended Watabiki
prediction (1.1) and the extended alternative guess (2.10) would say that Q(ξ) = 0 for
some finite ξ, but we know that the former is not correct (Corollary 2.4) and, as noted
above, we have no theoretical justification for the latter.
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