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Abstract

We consider a class of fractional stochastic volatility models (including the so-called
rough Bergomi model), where the volatility is a superlinear function of a fractional
Gaussian process. We show that the stock price is a true martingale if and only if the
correlation ρ between the driving Brownian motions of the stock and the volatility is
nonpositive. We also show that for each ρ < 0 and m > 1

1−ρ2
, the m-th moment of the

stock price is infinite at each positive time.
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1 Introduction and main results

We are interested in fractional stochastic volatility models where the dynamics of
(discounted) stock price under a risk-neutral measure take the form

dSt/St = σ(t, Yt)dWt (1.1)

Yt =

∫ t

0

K(t, s)dZs (1.2)

where Zt = ρWt + ρ̄W̄t, W, W̄ are two independent Brownian motions on a filtered
probability space (Ω, (Ft)t≥0,P), and ρ2 + ρ̄2 = 1.

A specific example we have in mind is the so-called Rough Bergomi model introduced
in [2]. In that model Y is a Riemann-Liouville fractional Brownian motion of Hurst
parameter H ∈ (0, 1), i.e.

K(t, s) = CH(t− s)H− 1
2

and the volatility function takes the form

σ(t, y) = ζ(t) exp (ηy)

where η > 0 and ζ is a continuous function of t. The rough Bergomi model with H ∈ (0, 12 )

is part of a larger class of fractional stochastic volatility models (so-called “rough volatility
models”) which has been recently observed to reproduce several features of historical
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[11] and pricing [1, 9, 2] data, and has been the subject of intense recent academic
activity1.

The first question we consider in this note is whether the price process S, which
is obviously a local martingale (and a supermartingale) is a true martingale. The true
martingale property is very important in practice, since using a strict local martingale
measure for pricing has some obvious drawbacks. For instance: if S is a strict local
martingale then E[ST ] < S0 for some T > 0, so that already the price given by the
model for holding one unit of stock until time T does not coincide with market data (this
suggests that the asset price is greater than its actual “fundamental” value and for this
reason strict local martingale models have been used in the modelisation of bubbles, see
[17] and references therein).

Note that in the rough Bergomi model, due to the superlinear growth of σ, Novikov’s
criterion for martingality is never satisfied. Nevertheless we show that if the correlation
is nonpositive (which is typically the case in actual applications), the price process is
indeed a true martingale. Actually our result does not rely on the specific form of σ in
the rough Bergomi model, and only requires a (rather weak) assumption on K and σ. We
also show the converse implication in the case of a Riemann-Liouville type kernel, under
a more specific assumption of superlinear growth of σ.

Theorem 1.1. (1) Assume that the kernel K is such that (2.3) defines a Gaussian
process with continuous sample paths, σ : [0,∞)×R→ R+ is continuous and bounded
on [0, T ]× (−∞, a] for each T , a > 0. Then if ρ ≤ 0, (St)t≥0 defined by (1.1)-(1.2) is a true
martingale.

(2) Assume in addition that there exists T0 > 0 such that for some α > 1
2 ,

∀0 ≤ s ≤ t ≤ T0, K(t, s)= K(t− s, 0) ≥ α(t− s)α−1

and σ ≥ σ0 on [0, T0]×R, where σ0 : [0, T0]×R→ R+ is continuous, nondecreasing in x,
locally Lipschitz in x (uniformly in t ∈ [0, T0]) and such that for some A > 0,∫ +∞

A

(
w

inft∈[0,T0] σ0(t, w)

) 1
α dw

w
< +∞, (1.3)

Then if ρ > 0, for each t > 0, one has E[St] < S0.

The second result of this note deals with the moments of the stock price. We show
that, under a similar assumption (satisfied by the rough Bergomi model), for each value
of ρ ∈ (−1, 0], some of the higher order moments are infinite.

Theorem 1.2. Assume that there exists T0 > 0 s.t. for some α > 1
2 , K(s, t) = α(t− s)α−1

for all 0 ≤ s ≤ t ≤ T0 and σ = σ0 on [0, T0] × R with σ0 as in Theorem 1.1 (2). Then if
ρ ≤ 0, m > 1 are such that ρ2 < m−1

m , it holds that for all t > 0, E[Smt ] = +∞.

The finiteness of moments is important for instance in Monte Carlo simulation (to
know that the Monte Carlo error is ruled by CLT estimates, finite variance is needed) and
in asymptotic formulae (to go from stock price large deviations to call price asymptotics,
see for instance [8, section 4.2]). It would therefore be very useful to obtain a converse
(positive) result.

We remark that in the Brownian case (K ≡ 1), both of the above results are well
known, cf. [19, 15, 16], and in that case the condition ρ2 > m−1

m is also a sufficient
condition for the moments to be finite. In the case of the rough Heston model, [12]
have recently obtained some results on moments of the stock price (which are similar in
spirit to those for classical Heston, and therefore quite different from ours). Finally, we

1See for instance the website https://sites.google.com/site/roughvol/home for an up to date listing of the
relevant literature.
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would like to point out that a more general version of Theorem 1.2 has been obtained
independently and by a different method in [14].

The remainder of this note is devoted to the proofs of Theorems 1.1 and 1.2, which
we now outline. The proof of Theorem 1.1 follows the classical argument (found already
in the aforementioned [19, 15, 16], see also [3, 18] for additional references) relating the
martingale property of stochastic exponentials with explosions of a SDE (in our case, this
will be a Volterra SDE). The martingale property (1) is then essentially immediate, while
the proof of (2) follows from the fact that the Volterra SDE may blow up in arbitrarily
short time with positive probability.

The proof of Theorem 1.2 relies on the Boué-Dupuis formula, which expresses the
expectation of exponentials of Brownian functionals as values of (here: Volterra) stochas-
tic control problems. We then show that for the considered values of the parameters,
we may choose a feedback control such that, as in the previous proof, the process (and
the value) blow up in arbitrarily small time. This proof is new even in the classical
(Markovian) case.

2 Proofs

2.1 Preliminaries

2.1.1 Volterra integral equations

In this subsection, we fix

Kα(r) = αrα−1 for some α > 0,

z : [0,∞)→ R continuous

b : [0,∞)×R→ R+ continuous

and consider the Volterra equation

y(t) = z(t) +

∫ t

0

Kα(t− s)b(s, y(s))ds, t ≥ 0, (2.1)

of unknown y.
We will use the following results.

Proposition 2.1. Assume that b is Lipschitz continuous in x, uniformly in t ∈ [0, T ], for
each T > 0. Then (2.1) admits a unique continuous solution y on [0,∞).

Proof. Uniqueness is easy to check directly, and existence follows from [13, Theorem
12.2.8].

Proposition 2.2. Assume that b is nondecreasing in x and locally Lipschitz in x (uni-
formly in t ∈ [0, T ] for each T > 0).

Then:

1. there exists a unique pair (y, T∞) such that y is a continuous solution of (2.1) on
[0, T∞), and limt→T∞ y(t) = +∞.

2. Let T < T∞, u : [0, T ]→ R continuous such that

u(t) ≤ (resp. ≥ ) z(t) +

∫ t

0

Kα(t− s)b(s, u(s))ds, ∀0 ≤ t ≤ T.

Then u ≤ y (resp. u ≥ y) on [0, T ].

3. Assume that t 7→ z(t) and t 7→ b(t, x) are nondecreasing (for each x ∈ R). Then so is
t 7→ y(t).
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Proof. cf. [13, Theorems 13.5.1 and 13.4.7] and [6, Theorem 2.6].

We will also use the following lemma which gives an explicit upper bound on blow-up
time for solutions to (2.1).

Lemma 2.3. In the setting of Proposition 2.2, assume that t 7→ z(t) is nondecreasing.
Then with T∞ as in (1), it holds that for each T > 0

T∞ ∧ T ≤ inf
x≥0

(
h(x) +

1

α

∫ ∞
x

(
w

inft∈[0,T ] b(t, w)

) 1
α dw

w

)
, (2.2)

where h(x) = sup{t : z(t) ≤ x}.

Proof. We follow arguments from [6]. By Proposition 2.2 (2), it suffices to consider the
solution to (2.1) when b is replaced by b0 := inft∈[0,T ] b(t, ·).

We fix x ≥ 0 such that h(x) and
∫∞
x

(
w

b0(w)

) 1
α dw

w are finite, R > 1, and for each n ≥ 0

we let

Tn = sup{t : y(t) ≤ xRn} ∈ (0,+∞].

Note that T0 ≤ h(x). We then have for n ≥ 1, for each t > Tn−1

y(Tn ∧ t) = xRn = z(Tn ∧ t) +

∫ Tn∧t

0

α((Tn ∧ t)− s)α−1b0(y(s))ds

≥ z(Tn ∧ t) +

∫ Tn∧t

Tn−1

α((Tn ∧ t)− s)α−1b0(y(s))ds

≥ xRn−1 + (Tn ∧ t− Tn−1)
α
b0(xRn−1)

where we have used the monotonicity of y (Proposition 2.2 (3)). This implies that if Tn−1
is finite, so is Tn, with

Tn ≤ Tn−1 +

(
x(Rn −Rn−1)

b(xRn−1)

) 1
α

.

Hence

T∞ = T0 +
∑
n≥1

(Tn − Tn−1)

≤ h(x) +
∑
n≥1

(
xRn − xRn−1

b0(xRn−1)

) 1
α

= h(x) +
∑
n≥1

1

α

∫ xRn

xRn−1

w
1
α−1

b0(xRn−1)
dw.

We obtain the result by letting R ↓ 1.

2.1.2 Stochastic convolutions

We consider the following stochastic convolution

Yt =

∫ t

0

K(t, s)dZs (2.3)

(recall that (Zt)t≥0 is a P-Brownian motion).

We recall the well-known condition for Y to be continuous (cf. e.g. [10, Theorem
2.1]).
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Proposition 2.4. Assume that

∀t > 0, CK(t, t) :=

∫ t

0

K(t, s)2ds <∞,

and for t, t′ ≥ 0 let CK(t, t′) =
∫ t∧t′
0

K(t, s)K(t′, s)ds. Assume that for each T ≥ 0, letting

θT (h) := sup
0≤t,t′≤T,|t−t′|≤h

{CK(t, t) + CK(t′, t′)− 2CK(t, t′)}1/2

it holds that θT (0+) = 0 and ∫
0+

√
ln(1/u)dθT (u) <∞.

Then Y admits a version with continuous sample paths.

Note that the assumption above is satisfied for K(t, s) = α(t− s)α−1, any α > 1
2 .

We will also need a result on the support of the law of Y when K is translation
invariant.

Proposition 2.5. In addition to the assumptions of Proposition 2.4, assume thatK(t, s) =

K̂(t − s) for all 0 ≤ s ≤ t, where K̂ is a function s.t.
∫ ε
0
|K̂| > 0 for all ε > 0. Then for

each T ≥ 0, the law of Y has full support in CT0 := {y ∈ C([0, T ],R); y(0) = 0} (equipped
with the topology of uniform convergence).

Proof. Note that the law of Y is a Gaussian measure on CT0 , with Cameron-Martin space

HK =
{
yf , f ∈ L2([0, T ])

}
⊂ CT0

where for f ∈ L2([0, T ] we define

yf : t 7→
∫ t

0

K̂(t− s)f(s)ds.

By a classical application of the Cameron-Martin theorem (see e.g. [4, Theorem 3.6.1]),
the support of the law of Y in CT0 is the closure of HK in CT0 . We then conclude with [7,
Lemma 2.1].

2.2 Proof of Theorem 1.1

Since (St) is a nonnegative local martingale (hence supermartingale), it will be a
martingale on [0, T ] if and only if E[ST ] = S0.

Letting τn = inf{t > 0, Yt = n}, then since σ is bounded on [0, T ]× (−∞, n] it holds
that

S0 = E [ST∧τn ] = E
[
ST 1{T<τn}

]
+ E

[
Sτn1{τn≤T}

]
.

The first term converges to E[ST ] when n goes to infinity, so that

S0 − E [ST ] = lim
n→∞

E
[
Sτn1{τn≤T}

]
. (2.4)

On the other hand, we can apply Girsanov’s theorem to write

E
[
Sτn1{τn≤T}

]
= S0P̂n (τn ≤ T )

where P̂n is such that

Ŵ
(n)
t = Wt −

∫ t∧τn

0

σ(s, Ys)ds

ECP 24 (2019), paper 33.
Page 5/9

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP239
http://www.imstat.org/ecp/


On the martingale property in the rough Bergomi model

is a Brownian motion under P̂n. Note that for t ≤ τn one has

Yt =

∫ t

0

K(t, s)
(
dẐ(n)

s + ρσ(s, Ys)ds
)

= Ŷt +

∫ t

0

K(t, s)ρσ(s, Ys)ds

where Ẑ(n) is a P̂n-Brownian motion, and

Ŷt :=

∫ t

0

K(t, s)dẐ(n)
s .

We first treat the case ρ ≤ 0. Since Yt ≤ Ŷt (for t ≤ τn) one then has τn ≥ τ0n :=

inf{t > 0, Ŷt = n}. In addition, since Ẑ(n) is a P̂n-Brownian motion, one has

lim
n→∞

P̂n(τ0n ≤ T ) = lim
n→∞

P( sup
t∈[0,T ]

Yt ≥ n) = 0,

and it follows that
S0 − E[ST ] = S0 lim

n→∞
P̂n(τn ≤ T ) = 0

i.e. S is a martingale.
We now treat the case ρ > 0. We then have for t < τn

Yt ≥ Ŷt +

∫ t

0

α (t− s)α−1 ρσ0(s, Ys)ds. (2.5)

In particular, by Proposition 2.2 (2) and the fact that Ẑ(n) is a Brownian motion under
P̂n, one has

lim
n→∞

P̂n(τn ≤ T ) ≥ P(T∞ < T )

where T∞ is the explosion time of the solution Ỹ to

Ỹt = Yt +

∫ t

0

α (t− s)α−1 ρσ0(s, Ys)ds

(which exists and is unique P-a.s. by Proposition 2.2).
Let x, λ > 0 be chosen such that

x+ 1

λ
+

∫ ∞
x

(
w

ρ · inft∈[0,T ] σ0(t, w)

) 1
α dw

w
< T.

Let zλ(t) = λt− 1 and yλ be the solution to (2.1) with z = zλ and b(t, ·) = σ0. By Lemma
2.3, yλ blows up on [0, T ].

By Proposition 2.5, the event {Y ≥ zλ on [0, T ]} has positive probability under P. But
on this event, one has Ỹ ≥ yλ on [0, T ], and T∞ < T . This proves that E[ST ] < S0.

2.3 Proof of Theorem 1.2

We again apply a Girsanov transformation: one has

E [SmT ] = Sm0 E

[
exp

(∫ T

0

mσ(s, Ys)dWs −
∫ T

0

m

2
σ2(s, Ys)ds

)]

= Sm0 Ê

[
exp

(∫ T

0

m2 −m
2

σ2(s, Ys)ds

)]
,
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with
dP̂

dP
= exp

(∫ T

0

mσ(s, Ys)dWs −
∫ T

0

m2

2
σ2(s, Ys)ds

)
(this defines a probability measure by Theorem 1.1 (1) since ρ ≤ 0), and we have that

Yt = Y0 +

∫ t

0

Kα(t− s)(dŴs + ρmσ(s, Ys)ds)

for a P̂-Brownian motion Ŵ . Letting Y 0
t = Y0 +

∫ t
0
Kα(t− s)dŴs, this is rewritten as

Yt = Y 0
t +

∫ t

0

Kα(t− s)ρmσ(s, Ys)ds. (2.6)

Note that since Y 0 is P̂-a.s. continuous, combining Proposition 2.1 with the a priori
bounds

Y 0
t + ρm

(∫ t

0

Kα

)
sup
s∈[0,t]

σ(s, sup
s≤t

Y 0
s ) ≤ Yt ≤ Y 0

t

one can show that (2.6) admits P̂-a.s. a unique continuous solution.
By the Boué-Dupuis formula [5, Theorem 5.1], this yields

lnE [SmT /S
m
0 ] = sup

(vt)t≥0∈V
Ê

[∫ T

0

(
m2 −m

2
σ2(s, Y vs )− v2s

2
ds

)]
where

V =

{
(vt)t≥0 progressively measurable with Ê

[∫ T

0

v2t dt

]
< +∞

}
and for v ∈ V, Y v is the unique continuous solution to

Y vt = Y0 +

∫ t

0

Kα(t− s)(dŴs + (ρmσ(s, Ys) + vs)ds).

On the other hand, if ρ2 < m−1
m one can find γ such that

ρm+ γ > 0, m2 −m− γ2 > 0.

The idea is then that taking the feedback control vs = γσ(Ys), using the first inequality,
it holds that for each T > 0 Y v has positive probability of blowing up before T . On the
other hand, the second inequality ensures that the gain is +∞ in this case, so that the
value (and the moment) is infinite.

We now give a rigorous proof. We fix A > 0, n > 0, let θA = inf{t;Y 0
t ≥ A} and define

vn,As =


γσ(s, Y n,As ) if (ρm+ γ)σ(s, Y n,As ) ≤ n and s ≤ θA,
n− ρmσ(s, Y n,As ) if (ρm+ γ)σ(s, Y n,As ) > n and s ≤ θA
0 if s > θA

where Y n,A is the unique (by Proposition 2.1) solution to

Y n,At = Y 0
t +

∫ t∧θA

0

Kα(t− s)
[
(ρm+ γ)σ(s, Y n,As ) ∧ n

]
ds+

∫ t

t∧θA
Kα(t− s)ρmσ(s, Y n,As )ds

Note that for all t ∈ [0, T ] one has Y n,At ≤ Y 0
t + ntα and also

0 ≤ vn,At ≤ γσ(t, Y n,At )1t≤θA ≤ γ sup
t∈ [0,T ]

σ(t, A+ ntα), (2.7)
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so that in particular vn,A ∈ V. We therefore have

lnE [SmT /S
m
0 ] ≥ Ê

[∫ T

0

(
m2 −m

2
σ2(s, Y n,As )− (vn,As )2

2
ds

)]

≥ Ê

[
1θA>T

∫ T

0

m2 −m− γ2

2
σ2(s, Y n,As )ds

]
. (2.8)

where we have used the second inequality in (2.7). Now as in the proof of Theorem 1.1,
we fix x, λ such that

x+ 1

λ
+

∫ ∞
x

(
w

(ρm+ γ) inft∈[0,T ] σ(t, w)

) 1
α dw

w
< T,

let zλ(t) = λt − 1 and for n ∈ N ∪ {∞} let ynλ be the solution to (2.1) with z = zλ
and b(t, ·) = (ρm + γ)σ0 ∧ n. Note that y∞λ blows up in time T∞ < T by Lemma 2.3.
By Proposition 2.2 (2), ynλ is nondecreasing in n, and therefore for each T∞ < t < T ,
ynλ(t)→n↑∞ +∞.

Fix A = λT + 1. On the event {zλ ≤ Y 0 ≤ zλ + 1}, it holds that θA > T , and by
Proposition 2.2 (2), Y n,At ≥ ynλ(t)→ +∞ on [T∞, T ]. Letting n ↑ ∞ in (2.8) we obtain

lnE [SmT /S
m
0 ] ≥ ∞ · P̂

(
zλ < Y 0 < zλ + 1 on [0, T ]

)
,

and we can conclude since the above probability is nonzero by Proposition 2.5.
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