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Abstract

We give upper and lower asymptotic bounds for the left tail and for the right tail
of the continuous limiting QuickSort density f that are nearly matching in each tail.
The bounds strengthen results from a paper of Svante Janson (2015) concerning the
corresponding distribution function F . Furthermore, we obtain similar bounds on
absolute values of derivatives of f of each order.
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1 Introduction

Let Xn denote the (random) number of comparisons when sorting n distinct numbers
using the algorithm QuickSort. Clearly X0 = 0, and for n ≥ 1 we have the recurrence
relation

Xn
L
= XUn−1 +X∗n−Un + n− 1,

where
L
= denotes equality in law (i.e., in distribution); Xk

L
= X∗k ; the random variable

Un is uniformly distributed on {1, . . . , n}; and Un, X0, . . . , Xn−1, X∗0 , . . . , X
∗
n−1 are all

independent. It is well known that

EXn = 2(n+ 1)Hn − 4n,

where Hn is the nth harmonic number Hn :=
∑n
k=1 k

−1 and (from a simple exact

expression) that VarXn = (1 + o(1))(7− 2π2

3 )n2. To study distributional asymptotics, we
first center and scale Xn as follows:

Zn =
Xn − EXn

n
.

Using the Wasserstein d2-metric, Rösler [8] proved that Zn converges to Z weakly as
n→∞. Using a martingale argument, Régnier [7] proved that the slightly renormalized
n
n+1Zn converges to Z in Lp for every finite p, and thus in distribution; equivalently, the
same conclusions hold for Zn. The random variable Z has everywhere finite moment

*Research of both authors supported by the Acheson J. Duncan Fund for the Advancement of Research in
Statistics.

†The Johns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, MD, USA.
E-mail: jimfill@jhu.edu,whung6@jhu.edu

https://doi.org/10.1214/19-ECP213
http://www.imstat.org/ecp/
http://arXiv.org/abs/1808.00643
mailto:jimfill@jhu.edu, whung6@jhu.edu


QuickSort density tails

generating function with EZ = 0 and VarZ = 7 −
(
2π2/3

)
. Moreover, Z satisfies the

distributional identity

Z
L
= UZ + (1− U)Z∗ + g(U).

On the right, Z∗
L
= Z; U is uniformly distributed on (0, 1); U,Z,Z∗ are independent; and

g(u) := 2u lnu+ 2(1− u) ln(1− u) + 1.

Further, the distributional identity together with the condition that EZ (exists and)
vanishes characterizes the limiting Quicksort distribution; this was first shown by
Rösler [8] under the additional condition that VarZ < ∞, and later in full by Fill and
Janson [1].

Fill and Janson [2] derived basic properties of the limiting QuickSort distribution
L(Z). In particular, they proved that L(Z) has a (unique) continuous density f which is
everywhere positive and infinitely differentiable, and for every k ≥ 0 that f (k) is bounded
and enjoys superpolynomial decay in both tails, that is, for each p ≥ 0 and k ≥ 0 there
exists a finite constant Cp,k such that

∣∣f (k)(x)∣∣ ≤ Cp,k|x|−p for all x ∈ R.
In this paper, we study asymptotics of f(−x) and f(x) as x→∞. Janson [3] concerned

himself with the corresponding asymptotics for the distribution function F and wrote this:
“Using non-rigorous methods from applied mathematics (assuming an as yet unverified
regularity hypothesis), Knessl and Szpankowski [4] found very precise asymptotics
of both the left tail and the right tail.” Janson specifies these Knessl–Szpankowski
asymptotics for F in his equations (1.6)–(1.7). But Knessl and Szpankowski actually did
more, producing asymptotics for f , which were integrated by Janson to get corresponding
asymptotics for F . We utilize the same abbreviation γ := (2− 1

ln 2 )
−1 as Janson [3]. With

the same constant c3 as in (1.6) of [3], the density analogues of (1.6) (omitting the middle
expression) and (1.7) of [3] are that, as x→∞, Knessl and Szpankowski [4] find

f(−x) = exp
[
−eγx+c3+o(1)

]
(1.1)

for the left tail and

f(x) = exp[−x lnx− x ln lnx+ (1 + ln 2)x+ o(x)] (1.2)

for the right tail.
We will come as close to these non-rigorous results for the density as Janson [3]

does for the distribution function, and we also obtain similar asymptotic bounds for tail
suprema of absolute values of derivatives of the density. Although our asymptotics for f
imply the asymptotics for F in Janson’s main Theorem 1.1, it is important to note that in
the case of upper bounds (but not lower bounds) on f we use his results in the proofs of
ours.

The next two theorems are our main results.

Theorem 1.1. Let γ := (2− 1
ln 2 )

−1. As x→∞, the limiting QuickSort density function f
satisfies

exp
[
−eγx+ln ln x+O(1)

]
≤ f(−x) ≤ exp

[
−eγx+O(1)

]
, (1.3)

exp[−x lnx− x ln lnx+O(x)] ≤ f(x) ≤ exp[−x lnx+O(x)]. (1.4)

To state our second main theorem we let F (x) := F (−x) and F (x) := 1− F (x), and
for a function h : R→ R we write

‖h‖x := sup
t≥x
|h(t)|. (1.5)
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QuickSort density tails

Theorem 1.2. Given an integer k ≥ 0, as x → ∞ the kth derivative of the limiting
QuickSort distribution function F satisfies

exp
[
−eγx+ln ln x+O(1)

]
≤ ‖F (k)‖x ≤ exp

[
−eγx+O(1)

]
, (1.6)

exp[−x lnx− (k ∨ 1)x ln lnx+O(x)] ≤ ‖F (k)‖x ≤ exp[−x lnx+O(x)]. (1.7)

Remark 1.3. (a) Using the monotonicity of F , it is easy to see that the assertions of
Theorem 1.2 for k = 0 are equivalent to the main Theorem 1.1 of Janson [3], which agrees
with the formulation of our Theorem 1.2 in that case except that the four bounds are on
|F (x)| and |F (x)| instead of the tail suprema ‖F‖x and ‖F‖x. Further, our Theorem 1.1
implies the assertions of Theorem 1.2 for k = 1. So we need only prove Theorem 1.1 and
Theorem 1.2 for k ≥ 2.

(b) The non-rigorous arguments of Knessl and Szpankowski [4] suggest that the
following asymptotics as x → ∞ obtained by repeated formal differentiation of (1.1)–
(1.2) are correct for every k ≥ 0:

f (k)(−x) = exp
[
−eγx+c3+o(1)

]
, (1.8)

f (k)(x) = (−1)k exp[−x lnx− x ln lnx+ (1 + ln 2)x+ o(x)]. (1.9)

But these remain conjectures for now. Unfortunately, for k ≥ 1 we don’t even know how
to identify rigorously the asymptotic signs of f (k)(∓x)! Concerning k = 1, it has long
been conjectured that f is unimodal. This would of course imply that f ′(−x) > 0 and
f ′(x) < 0 for sufficiently large x.

As already mentioned, Fill and Janson [2] proved that or each p ≥ 0 and k ≥ 0 there
exists a finite constant Cp,k such that

∣∣f (k)(x)∣∣ ≤ Cp,k|x|−p for all x ∈ R. Our technique
for proving the upper bounds in Theorems 1.1 and 1.2 is to use explicit bounds on the
constants Ck := C0,k together with the Landau–Kolmogorov inequality (see, for example,
[9]).

Our paper is organized as follows. In Section 2 we deal with preliminaries: We
recall an integral equation for f that is the starting point for our lower-bound results
in Theorem 1.1, review the Landau–Kolmogorov inequality, and bound Ck explicitly
in terms of k. Sections 3 and 4 derive the stated lower bounds on the left and right
tails, respectively, of f using an iterative approach similar to that of Janson [3] for the
distribution function. In Section 5 we establish the left-tail results claimed in (1.3)
and (1.6). In Section 6, we establish the right-tail results claimed in (1.4) and (1.7).

2 Preliminaries

2.1 An integral equation for f

Fill and Janson [2, Theorem 4.1 and (4.2)] produced an integral equation satisfied
by f , namely,

f(x) =

∫ 1

u=0

∫
z∈R

f(z) f

(
x− g(u)− (1− u)z

u

)
1

u
dz du. (2.1)

This integral equation will be used in the proofs of our lower-bound results for f .

2.2 Landau–Kolmogorov inequality

For an overview of the Landau–Kolmogorov inequality, see [6, Chapter 1]. Here we
state a version of the inequality well-suited to our purposes; see [5] and [9, display (21)
and the display following (17)].
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Lemma 2.1. Let n ≥ 2, and suppose h : R → R has n derivatives. If h and h(n) are
both bounded, then for 1 ≤ k < n so is h(k). Moreover, there exist constants cn,k (not
depending on h) such that, for every x ∈ R, the supremum norm ‖ · ‖x defined at (1.5)
satisfies

‖h(k)‖x ≤ cn,k ‖h‖1−(k/n)x ‖h(n)‖k/nx , 1 ≤ k < n.

Further, for 1 ≤ k ≤ n/2 the best constants cn,k satisfy

cn,k ≤ n(1/2)[1−(k/n)](n− k)−1/2
(
e2n

4k

)k
≤
(
e2n

4k

)k
.

2.3 Explicit constant upper bounds for absolute derivatives

We also make use of the following two results extracted from [2, Theorem 2.1 and
(3.3)].

Lemma 2.2. Let φ denote the characteristic function corresponding to f . Then for every
real p ≥ 0 we have

|φ(t)| ≤ 2p
2+6p|t|−p for all t ∈ R.

Lemma 2.3. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 1

2π

∫ ∞
t=−∞

|t|k |φ(t)| dt.

Using these two results, it is now easy to bound f (k).

Proposition 2.4. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 2k

2+10k+17.

Proof. For every integer k ≥ 0 we have

sup
x∈R
|f (k)(x)| ≤ 1

2π

∫ ∞
t=−∞

|t|k |φ(t)| dt

≤ 1

2π

[∫
|t|>1

|t|k |φ(t)| dt+
∫
|t|≤1
|t|k |φ(t)| dt

]

≤ 1

2π

[∫
|t|>1

2(k+2)2+6(k+2)t−2 dt+

∫
|t|≤1
|t|k dt

]

≤ 1

π

[
2k

2+10k+16 +
1

k + 1

]
≤ 2k

2+10k+17,

as desired.

3 Left tail lower bound on f

Our iterative approach to finding the left tail lower bound on f in Theorem 1.1
is similar to the method used by Janson [3] for F . The following lemma gives us an
inequality that is essential in this section; as we shall see, it is established from a
recurrence inequality. For z ≥ 0 define

mz :=

(
min

x∈[−z,0]
f(x)

)
∧ 1.

Lemma 3.1. Given ε ∈ (0, 1/10), let a ≡ a(ε) := −g
(
1
2 − ε

)
> 0. Then for any integer

k ≥ 2 we have
mka ≥

(
2ε3m2a

)2k−2

.
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We delay the proof of Lemma 3.1 in order to show next how the lemma leads us to
the desired lower bound in (1.3) on the left tail of f by using the same technique as in
[3] for F .

Proposition 3.2. As x→∞ we have

ln f(−x) ≥ −eγx+ln ln x+O(1).

Proof. By Lemma 3.1, for x > a we have

f(−x) ≥ mx ≥ m
(⌈x
a

⌉
a
)
≥
(
2ε3m2a

)2dx/ae−2

≥
(
2ε3m2a

)2x/a
,

provided ε is sufficiently small that 2ε3m2a < 1. The same as Janson [3], we pick ε = x−1/2

and, setting γ = (2− 1
ln 2 )

−1, get 1
a = γ

ln 2 +O(x−1) and

ln f(−x) ≥ 2
γ

ln 2x+O(1) · ln
(
2ε3m2a

)
= eγx+O(1) ·

(
− 3

2 lnx+ lnm2a + ln 2
)

≥ −eγx+ln ln x+O(1).

Now we go back to prove Lemma 3.1:

Proof of Lemma 3.1. By the integral equation (2.1) satisfied by f (and symmetry in u

about u = 1/2), for arbitrary z and a we have

f(−z − a) = 2

∫ 1/2

u=0

∫
y∈R

f(y)f

(
−z − a− g(u)− (1− u)y

u

)
1

u
dy du. (3.1)

Since f is everywhere positive, we can get a lower bound on f(−z − a) by restricting the
range of integration in (3.1). Therefore,

f(−z − a) ≥ 2

∫ 1/2

u= 1
2−

ε
2

∫ −z+ε2
y=−z

f(y)f

(
−z − a− g(u)− (1− u)y

u

)
1

u
dy du. (3.2)

We claim that in this integral region, we have −z−a−g(u)−(1−u)y
u ≥ −z, which is

equivalent to y + z ≤ −a−g(u)1−u . Here is a proof. Observe that when ε is small enough and

u ∈ [ 12 −
ε
2 ,

1
2 ], we have

−a− g(u)
1− u

≥
g
(
1
2 − ε

)
− g

(
1
2 −

ε
2

)
1
2 + ε

2

≥
ε
2

∣∣g′( 12 − ε
2

)∣∣
1
2 + ε

2

=
ε

1 + ε

∣∣∣∣2 ln(1− 2ε

1 + ε

)∣∣∣∣
≥ 4ε2

(1 + ε)2
≥ ε2.

Also, in this integral region we have y + z ≤ ε2. So we conclude that y + z ≤ −a−g(u)1−u .

Next, we claim that −z−a−g(u)−(1−u)yu ≤ 0 in this integral region if z is large enough.

Here is a proof. Let −z−a−g(u)−(1−u)yu = −z + δ with δ ≥ 0. Then in the integral region

we have 0 ≤ y + z = −a−g(u)−uδ
1−u . Therefore

δ ≤ −a− g(u)
u

≤
−a− g

(
1
2

)
1
2 −

ε
2

=
2

1− ε

[
g

(
1

2
− ε
)
− g

(
1

2

)]
≤ 2ε

1− ε

∣∣∣∣2 ln(1− 4ε

1 + 2ε

)∣∣∣∣
≤ 19ε2,
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where the last inequality can be verified to hold for ε < 1/10. That means if we pick z
large enough, for example, z ≥ 20ε2, then −z−a−g(u)−(1−u)yu = −z + δ will be negative. It
can also be verified that a ≥ 30ε2 for ε < 1/10.

Now consider ε < 1/10, an integer k ≥ 3, z ∈ [(k − 2)a, (k − 1)a], and x = z + a ∈
[(k − 1)a, ka]. Noting z ≥ a ≥ 30ε2 > 20ε2, by (3.2) we have

f(−x) ≥ 2 · ε
2
·m2

z · ε2 · 2 ≥ 2ε3m2
(k−1)a.

Further, for x ∈ [0, (k − 1)a] we have

f(−x) ≥ m(k−1)a > 2ε3m2
(k−1)a

since 2ε3 < 1 and m(k−1)a ≤ 1 by definition. Combine these two facts, we can conclude
that for x ∈ [0, ka] we have f(−x) ≥ 2ε3m2

(k−1)a. This implies the recurrence inequality

mka ≥ 2ε3m2
(k−1)a.

The desired inequality follows by iterating:

mka ≥
(
2ε3
)2k−2−1

m2k−2

2a ≥
(
2ε3 ·m2a

)2k−2

.

4 Right tail lower bound on f

Once again we use an iterative approach to derive our right-tail lower bound on f

in Theorem 1.1. The following key lemma is established from a recurrence inequality.
Define

c := 2[F (1)− F (0)] ∈ (0, 2)

and
mz := min

x∈[0,z]
f(x), z ≥ 0.

Lemma 4.1. Suppose b ∈ [0, 1) and that δ ∈ (0, 1/2) is sufficiently small that g(δ) ≥ b.
Then for any integer k ≥ 1 satisfying

2 + (k − 1)b ≤ [g(δ)− b]/δ

we have
m2+kb ≥ (cδ)k−1m3.

We delay the proof of Lemma 4.1 in order to show next how the lemma leads us to
the desired lower bound in (1.4) on the right tail of f .

Proposition 4.2. As x→∞ we have

f(x) ≥ exp[−x lnx− x ln lnx+O(x)].

Proof. Given x ≥ 3 suitably large, we will show next that we can apply Lemma 4.1 for
suitably chosen b > 0 and δ and k = d(x− 2)/be ≥ 2. Then, by the lemma,

f(x) ≥ m2+kb ≥ (cδ)k−1m3 ≥ (cδ)(x−2)/bm3, (4.1)

and we will use (4.1) to establish the proposition.
We make the same choices of δ and b as in [3, Sec. 4], namely, δ = 1/(x lnx) and

b = 1− (2/ lnx). To apply Lemma 4.1, we need to check that g(δ) ≥ b and 2 + (k − 1)b ≤
[g(δ) − b]/δ, for the latter of which it is sufficient that x ≤ [g(δ) − b]/δ. Indeed, if x is
sufficiently large, then

g(δ) ≥ 1 + 3δ ln δ = 1− 3
x ln x (lnx+ ln lnx) ≥ 1− 4

x ,
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where the elementary first inequality is (4.1) in [3], and so

g(δ)− b ≥ 2
ln x −

4
x ≥

1
ln x > 0

and
g(δ)− b

δ
≥ 1/ lnx

1/(x lnx)
= x.

Finally, we use (4.1) to establish the proposition. Indeed,

− ln f(x) ≤ x−2
b ln( 1

cδ )− lnm3

≤ x
1−(2/ ln x) [ln(x lnx) + ln( 1c )]− lnm3

= x
1−(2/ ln x) ln(x lnx) +O(x).

But

x

1− (2/ lnx)
ln(x lnx)

= x

[
1 +

2

lnx
+O

(
1

(log x)2

)]
(lnx+ ln lnx)

= (x lnx)

[
1 +

2

lnx
+O

(
1

(log x)2

)](
1 +

ln lnx

lnx

)
= (x lnx)

[
1 +

ln lnx

lnx
+

2

lnx
+

2 ln lnx

(lnx)2
+O

(
1

(log x)2

)]
= x lnx+ x ln lnx+ 2x+

2x ln lnx

lnx
+O

(
x

log x

)
= x lnx+ x ln lnx+O(x).

So
− ln f(x) ≤ x lnx+ x ln lnx+O(x),

as claimed.

Now we go back to prove Lemma 4.1, but first we need two preparatory results.

Lemma 4.3. Suppose z ≥ 2, b ≥ 0, and δ ∈ (0, 1/2) satisfy g(δ) ≥ b and z ≤ [g(δ)− b]/δ.
Then

f(z + b) ≥ c δ mz.

Proof. By the integral equation (2.1) satisfied by f (and symmetry in u about u = 1/2),
for arbitrary z and b we have

f(z + b) = 2

∫ 1/2

u=0

∫
y∈R

f(y)f

(
z + b− g(u)− (1− u)y

u

)
1

u
dy du.

Since f is positive everywhere, a lower bound on f(z + b) can be achieved by shrinking
the region of integration:

f(z + b) ≥ 2

∫ δ

u=0

∫ z

y=0

f(y)f

(
z + b− g(u)− (1− u)y

u

)
1

u
dy du

≥ 2mz

∫ δ

u=0

∫ z

y=0

f

(
z + b− g(u)− (1− u)y

u

)
1

u
dy du

= 2mz

∫ δ

u=0

∫ z+b−g(u)
u

ξ=z+
b−g(u)
u

f(ξ)
1

1− u
dξ du. (4.2)
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The equality comes from a change of variables. We next claim that the integral
of integration for ξ contains (0, z − 1), and then the desired result follows. Indeed, if
u ∈ (0, δ) and ξ ∈ (0, z − 1) then

ξ < z − 1 < z−1
u ≤

z+b−g(u)
u ,

where the last inequality holds because b ≥ 0 and g(u) ≤ 1; and, because g(u) ≥ g(δ) and
g(δ) ≥ b and z ≤ [g(δ)− b]/δ, we have

ξ > 0 = z + b−g(u)
u − [z + b−g(u)

u ] ≥ z + b−g(u)
u − [z + b−g(δ)

u ]

≥ z + b−g(u)
u − [z + b−g(δ)

δ ] ≥ z + b−g(u)
u .

Lemma 4.4. Suppose b ≥ 0 and that δ ∈ (0, 1/2) is sufficiently small that g(δ) ≥ b. Then
for any integer k ≥ 2 satisfying

2 + (k − 1)b ≤ [g(δ)− b]/δ

we have
m2+kb ≥ c δ m2+(k−1)b.

Proof. For y ∈ [2 + (k − 1)b, 2 + kb], application of Lemma 4.3 with z = y − b yields

f(y) ≥ c δ my−b ≥ c δ m2+(k−1)b.

Also, for y ∈ [0, 2 + (k − 1)b] we certainly have

f(y) ≥ m2+(k−1)b > c δm2+(k−1)b.

The result follows.

We are now ready to complete this section by proving Lemma 4.1.

Proof of Lemma 4.1. By iterating the recurrence inequality of Lemma 4.4, it follows that

m2+kb ≥ (c δ)k−1m2+b.

Lemma 4.1 then follows since b < 1.

5 Left tail bounds for tail suprema of absolute derivatives

From Section 3 (respectively, Section 4) we know the left-tail lower bound of (1.3)
[resp., the right-tail lower bound of (1.4)]. In this section we establish the left-tail bounds
of (1.3) and (1.6), and in the next section we do the same for right tails.

5.1 Lower bounds

As discussed in Remark 1.3(a), in light of the main theorem of Janson [3] and our
Section 3, to finish our treatment of left-tail lower bounds we need only prove the lower
bound in (1.6) for fixed k ≥ 2. For that, choose any x and apply the Landau–Kolmogorov
Lemma 2.1, bounding the function F ′(·) = −f(−·) in terms of the functions F and F (k).
This gives

f(−x) ≤ ‖F ′‖x ≤ ck,1 ‖F‖(k−1)/kx ‖F (k)‖1/kx ,

i.e.,
‖F (k)‖x ≥ c−kk,1 ‖F‖

−(k−1)
x [f(−x)]k.

But recall

ck,1 ≤ e2k/4, ‖F‖x ≤ exp
[
−eγx+O(1)

]
, f(−x) ≥ exp

[
−eγx+ln ln x+O(1)

]
.

Plugging in these bounds, we obtain the desired result.
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5.2 Upper bounds

The left-tail upper bounds in (1.6) of Theorem 1.2 can be written in the equivalent
form

λk := lim sup
x→∞

[
γx− ln

(
− ln ‖F (k)‖x

)]
<∞; (5.1)

note also that the left-tail upper bound in (1.3) of Theorem 1.1 follows from λ1 <∞. As
discussed in Remark 1.3(a), (5.1) is known for k = 0 from Janson [3]. So to finish our
treatment of left-tail upper bounds in Theorems 1.1–1.2 we need only prove (5.1) for
k ≥ 1.

In this subsection we prove the following stronger Proposition 5.1, which implies that
λk is non-increasing in k ≥ 0 and therefore that λk <∞ for every k. In preparation for
the proof, see the definition of µj in (5.2) and note that if µj ≤ 0 for j = 0, . . . , k− 1, then
λj is non-increasing for j = 0, . . . , k; in particular, (5.1) then holds.

Proposition 5.1. For each fixed k ≥ 0 we have

µk := lim sup
x→∞

[
− ln

(
− ln ‖F (k+1)‖x

)
+ ln

(
− ln ‖F (k)‖x

)]
≤ 0. (5.2)

Proof. We proceed by induction on k. Choosing any x and applying the Landau–
Kolmogorov inequality Lemma 2.1 to the function h = F (k), we find for n ≥ 2 that

‖F (k+1)‖x ≤ 1
4e

2n ‖F (k)‖1−(1/n)x ‖F (k+n)‖1/nx .

We can bound the norm ‖F (k+n)‖x using Proposition 2.4 simply by

an,k := 2(k+n−1)
2+10(k+n−1)+17. (5.3)

Thus the argument of the lim sup in (5.2) can be bounded above by

− ln

[
1− 1

n
− 2− ln 4 + lnn+ n−1 ln an,k

− ln ‖F (k)‖x

]
.

By Janson’s bound giving λ0 < ∞ if k = 0 and by induction on k if k ≥ 1, we know
that (5.1) holds. Thus, letting n ≡ n(x)→∞ with n(x) = o(eγx), the claimed inequality
follows.

Remark 5.2. According to Remark 1.3, it is natural to conjecture that for every k the
lim sup in (5.1) is a limit and equals −c3 and hence the lim sup in (5.2) is a vanishing
limit.

6 Right tail bounds for tail suprema of absolute derivatives

In this section we establish the right-tail bounds of (1.4) and (1.7).

6.1 Lower bounds

As discussed in Remark 1.3(a), in light of the main theorem of [3] and our Section 4,
to finish our treatment of right-tail lower bounds we need only prove the lower bound
in (1.7) for fixed k ≥ 2. For that, proceed using the Landau–Kolmogorov Lemma 2.1 as in
Section 5.1 to obtain

‖F (k)‖x ≥ c−kk,1 ‖F‖
−(k−1)
x [f(x)]k.

But recall

ck,1 ≤ e2k/4, ‖F‖x ≤ exp[−x lnx+O(x)],

f(x) ≥ exp [−x lnx− x ln lnx+O(x)] .

Plugging in these bounds, we obtain the desired result.
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6.2 Upper bounds

The right-tail upper bounds in (1.7) of Theorem 1.2 can be written in the equivalent
form

ρk := lim sup
x→∞

x−1
(
x lnx+ ln ‖F (k)‖x

)
<∞; (6.1)

note also that the right-tail upper bound in (1.4) of Theorem 1.1 follows from ρ1 <∞. As
discussed in Remark 1.3(a), (6.1) is known for k = 0 from Janson [3]. So to finish our
treatment of right-tail upper bounds in Theorems 1.1–1.2 we need only prove (6.1) for
k ≥ 1.

In this subsection we prove the next stronger Proposition 6.1, a right-tail analogue
of Proposition 5.1, and it then follows by choosing r(x) ≡ x that ρk is non-increasing in
k ≥ 0 and therefore that ρk <∞ for every k.

Proposition 6.1. Let r be a function satisfying r(x) = ω(
√
x log x) as x→∞. Then for

each fixed k ≥ 0 we have

σk := lim sup
x→∞

r(x)−1
(
ln ‖F (k+1)‖x − ln ‖F (k)‖x

)
≤ 0. (6.2)

Proof. Proceeding as in the proof of Proposition 5.1, for any x and any n ≥ 2 we have

‖F (k+1)‖x ≤ 1
4e

2n ‖F (k)‖1−(1/n)x ‖F (k+n)‖1/nx ;

we again bound the norm ‖F (k+n)‖x by (5.3). Thus the argument of the lim sup in (6.2)
can be bounded above by

r(x)−1
[
1
n (− ln ‖F (k)‖x) + 2− ln 4 + lnn+ 1

n ln an,k

]
.

By the right-tail lower bound for ‖F (k)‖x in (1.7) (established in the preceding subsec-
tion), we know that

− ln ‖F (k)‖x ≤ x lnx+ (k ∨ 1)x ln lnx+O(x) = (1 + o(1))x lnx.

Thus, letting n ≡ n(x) satisfy n(x) = ω((x log x)/r(x)) and n(x) = o(r(x)), the claimed
inequality follows.

Remark 6.2. According to Remark 1.3, it is natural to conjecture that for every k we
have ρk = −∞ and the lim sup in (6.2) with r(x) ≡ x is a vanishing limit.
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