On the tails of the limiting QuickSort density*

James Allen Fill ${ }^{\dagger} \quad$ Wei-Chun Hung ${ }^{\dagger}$

Abstract

We give upper and lower asymptotic bounds for the left tail and for the right tail of the continuous limiting QuickSort density f that are nearly matching in each tail. The bounds strengthen results from a paper of Svante Janson (2015) concerning the corresponding distribution function F. Furthermore, we obtain similar bounds on absolute values of derivatives of f of each order.

Keywords: QuickSort; density tails; asymptotic bounds; Landau-Kolmogorov inequality.
AMS MSC 2010: Primary 68P10, Secondary 60E05; 60C05.
Submitted to ECP on August 2, 2018, final version accepted on January 19, 2019.
Supersedes arXiv:1808.00643.

1 Introduction

Let X_{n} denote the (random) number of comparisons when sorting n distinct numbers using the algorithm QuickSort. Clearly $X_{0}=0$, and for $n \geq 1$ we have the recurrence relation

$$
X_{n} \stackrel{\mathcal{L}}{=} X_{U_{n}-1}+X_{n-U_{n}}^{*}+n-1
$$

where $\stackrel{\mathcal{L}}{=}$ denotes equality in law (i.e., in distribution); $X_{k} \stackrel{\mathcal{L}}{=} X_{k}^{*}$; the random variable U_{n} is uniformly distributed on $\{1, \ldots, n\}$; and $U_{n}, X_{0}, \ldots, X_{n-1}, X_{0}^{*}, \ldots, X_{n-1}^{*}$ are all independent. It is well known that

$$
\mathbb{E} X_{n}=2(n+1) H_{n}-4 n,
$$

where H_{n} is the nth harmonic number $H_{n}:=\sum_{k=1}^{n} k^{-1}$ and (from a simple exact expression) that $\operatorname{Var} X_{n}=(1+o(1))\left(7-\frac{2 \pi^{2}}{3}\right) n^{2}$. To study distributional asymptotics, we first center and scale X_{n} as follows:

$$
Z_{n}=\frac{X_{n}-\mathbb{E} X_{n}}{n}
$$

Using the Wasserstein d_{2}-metric, Rösler [8] proved that Z_{n} converges to Z weakly as $n \rightarrow \infty$. Using a martingale argument, Régnier [7] proved that the slightly renormalized $\frac{n}{n+1} Z_{n}$ converges to Z in L^{p} for every finite p, and thus in distribution; equivalently, the same conclusions hold for Z_{n}. The random variable Z has everywhere finite moment

[^0]generating function with $\mathbb{E} Z=0$ and $\operatorname{Var} Z=7-\left(2 \pi^{2} / 3\right)$. Moreover, Z satisfies the distributional identity
$$
Z \stackrel{\mathcal{L}}{=} U Z+(1-U) Z^{*}+g(U)
$$

On the right, $Z^{*} \stackrel{\mathcal{L}}{=} Z ; U$ is uniformly distributed on $(0,1) ; U, Z, Z^{*}$ are independent; and

$$
g(u):=2 u \ln u+2(1-u) \ln (1-u)+1
$$

Further, the distributional identity together with the condition that $\mathbb{E} Z$ (exists and) vanishes characterizes the limiting Quicksort distribution; this was first shown by Rösler [8] under the additional condition that $\operatorname{Var} Z<\infty$, and later in full by Fill and Janson [1].

Fill and Janson [2] derived basic properties of the limiting QuickSort distribution $\mathcal{L}(Z)$. In particular, they proved that $\mathcal{L}(Z)$ has a (unique) continuous density f which is everywhere positive and infinitely differentiable, and for every $k \geq 0$ that $f^{(k)}$ is bounded and enjoys superpolynomial decay in both tails, that is, for each $p \geq 0$ and $k \geq 0$ there exists a finite constant $C_{p, k}$ such that $\left|f^{(k)}(x)\right| \leq C_{p, k}|x|^{-p}$ for all $x \in \mathbb{R}$.

In this paper, we study asymptotics of $f(-x)$ and $f(x)$ as $x \rightarrow \infty$. Janson [3] concerned himself with the corresponding asymptotics for the distribution function F and wrote this: "Using non-rigorous methods from applied mathematics (assuming an as yet unverified regularity hypothesis), Knessl and Szpankowski [4] found very precise asymptotics of both the left tail and the right tail." Janson specifies these Knessl-Szpankowski asymptotics for F in his equations (1.6)-(1.7). But Knessl and Szpankowski actually did more, producing asymptotics for f, which were integrated by Janson to get corresponding asymptotics for F. We utilize the same abbreviation $\gamma:=\left(2-\frac{1}{\ln 2}\right)^{-1}$ as Janson [3]. With the same constant c_{3} as in (1.6) of [3], the density analogues of (1.6) (omitting the middle expression) and (1.7) of [3] are that, as $x \rightarrow \infty$, Knessl and Szpankowski [4] find

$$
\begin{equation*}
f(-x)=\exp \left[-e^{\gamma x+c_{3}+o(1)}\right] \tag{1.1}
\end{equation*}
$$

for the left tail and

$$
\begin{equation*}
f(x)=\exp [-x \ln x-x \ln \ln x+(1+\ln 2) x+o(x)] \tag{1.2}
\end{equation*}
$$

for the right tail.
We will come as close to these non-rigorous results for the density as Janson [3] does for the distribution function, and we also obtain similar asymptotic bounds for tail suprema of absolute values of derivatives of the density. Although our asymptotics for f imply the asymptotics for F in Janson's main Theorem 1.1, it is important to note that in the case of upper bounds (but not lower bounds) on f we use his results in the proofs of ours.

The next two theorems are our main results.
Theorem 1.1. Let $\gamma:=\left(2-\frac{1}{\ln 2}\right)^{-1}$. As $x \rightarrow \infty$, the limiting QuickSort density function f satisfies

$$
\begin{align*}
\exp \left[-e^{\gamma x+\ln \ln x+O(1)}\right] & \leq f(-x) \leq \exp \left[-e^{\gamma x+O(1)}\right] \tag{1.3}\\
\exp [-x \ln x-x \ln \ln x+O(x)] & \leq f(x) \leq \exp [-x \ln x+O(x)] \tag{1.4}
\end{align*}
$$

To state our second main theorem we let $\underline{F}(x):=F(-x)$ and $\bar{F}(x):=1-F(x)$, and for a function $h: \mathbb{R} \rightarrow \mathbb{R}$ we write

$$
\begin{equation*}
\|h\|_{x}:=\sup _{t \geq x}|h(t)| . \tag{1.5}
\end{equation*}
$$

Theorem 1.2. Given an integer $k \geq 0$, as $x \rightarrow \infty$ the $k^{\text {th }}$ derivative of the limiting QuickSort distribution function F satisfies

$$
\begin{align*}
\exp \left[-e^{\gamma x+\ln \ln x+O(1)}\right] & \leq\left\|\underline{F}^{(k)}\right\|_{x} \leq \exp \left[-e^{\gamma x+O(1)}\right] \tag{1.6}\\
\exp [-x \ln x-(k \vee 1) x \ln \ln x+O(x)] & \leq\left\|\bar{F}^{(k)}\right\|_{x} \leq \exp [-x \ln x+O(x)] \tag{1.7}
\end{align*}
$$

Remark 1.3. (a) Using the monotonicity of F, it is easy to see that the assertions of Theorem 1.2 for $k=0$ are equivalent to the main Theorem 1.1 of Janson [3], which agrees with the formulation of our Theorem 1.2 in that case except that the four bounds are on $|\underline{F}(x)|$ and $|\bar{F}(x)|$ instead of the tail suprema $\|\underline{F}\|_{x}$ and $\|\bar{F}\|_{x}$. Further, our Theorem 1.1 implies the assertions of Theorem 1.2 for $k=1$. So we need only prove Theorem 1.1 and Theorem 1.2 for $k \geq 2$.
(b) The non-rigorous arguments of Knessl and Szpankowski [4] suggest that the following asymptotics as $x \rightarrow \infty$ obtained by repeated formal differentiation of (1.1)(1.2) are correct for every $k \geq 0$:

$$
\begin{align*}
f^{(k)}(-x) & =\exp \left[-e^{\gamma x+c_{3}+o(1)}\right] \tag{1.8}\\
f^{(k)}(x) & =(-1)^{k} \exp [-x \ln x-x \ln \ln x+(1+\ln 2) x+o(x)] \tag{1.9}
\end{align*}
$$

But these remain conjectures for now. Unfortunately, for $k \geq 1$ we don't even know how to identify rigorously the asymptotic signs of $f^{(k)}(\mp x)$! Concerning $k=1$, it has long been conjectured that f is unimodal. This would of course imply that $f^{\prime}(-x)>0$ and $f^{\prime}(x)<0$ for sufficiently large x.

As already mentioned, Fill and Janson [2] proved that or each $p \geq 0$ and $k \geq 0$ there exists a finite constant $C_{p, k}$ such that $\left|f^{(k)}(x)\right| \leq C_{p, k}|x|^{-p}$ for all $x \in \mathbb{R}$. Our technique for proving the upper bounds in Theorems 1.1 and 1.2 is to use explicit bounds on the constants $C_{k}:=C_{0, k}$ together with the Landau-Kolmogorov inequality (see, for example, [9]).

Our paper is organized as follows. In Section 2 we deal with preliminaries: We recall an integral equation for f that is the starting point for our lower-bound results in Theorem 1.1, review the Landau-Kolmogorov inequality, and bound C_{k} explicitly in terms of k. Sections 3 and 4 derive the stated lower bounds on the left and right tails, respectively, of f using an iterative approach similar to that of Janson [3] for the distribution function. In Section 5 we establish the left-tail results claimed in (1.3) and (1.6). In Section 6, we establish the right-tail results claimed in (1.4) and (1.7).

2 Preliminaries

2.1 An integral equation for f

Fill and Janson [2, Theorem 4.1 and (4.2)] produced an integral equation satisfied by f, namely,

$$
\begin{equation*}
f(x)=\int_{u=0}^{1} \int_{z \in \mathbb{R}} f(z) f\left(\frac{x-g(u)-(1-u) z}{u}\right) \frac{1}{u} d z d u \tag{2.1}
\end{equation*}
$$

This integral equation will be used in the proofs of our lower-bound results for f.

2.2 Landau-Kolmogorov inequality

For an overview of the Landau-Kolmogorov inequality, see [6, Chapter 1]. Here we state a version of the inequality well-suited to our purposes; see [5] and [9, display (21) and the display following (17)].

Lemma 2.1. Let $n \geq 2$, and suppose $h: \mathbb{R} \rightarrow \mathbb{R}$ has n derivatives. If h and $h^{(n)}$ are both bounded, then for $1 \leq k<n$ so is $h^{(k)}$. Moreover, there exist constants $c_{n, k}$ (not depending on h) such that, for every $x \in \mathbb{R}$, the supremum norm $\|\cdot\|_{x}$ defined at (1.5) satisfies

$$
\left\|h^{(k)}\right\|_{x} \leq c_{n, k}\|h\|_{x}^{1-(k / n)}\left\|h^{(n)}\right\|_{x}^{k / n}, \quad 1 \leq k<n
$$

Further, for $1 \leq k \leq n / 2$ the best constants $c_{n, k}$ satisfy

$$
c_{n, k} \leq n^{(1 / 2)[1-(k / n)]}(n-k)^{-1 / 2}\left(\frac{e^{2} n}{4 k}\right)^{k} \leq\left(\frac{e^{2} n}{4 k}\right)^{k}
$$

2.3 Explicit constant upper bounds for absolute derivatives

We also make use of the following two results extracted from [2, Theorem 2.1 and (3.3)].

Lemma 2.2. Let ϕ denote the characteristic function corresponding to f. Then for every real $p \geq 0$ we have

$$
|\phi(t)| \leq 2^{p^{2}+6 p}|t|^{-p} \quad \text { for all } t \in \mathbb{R}
$$

Lemma 2.3. For every integer $k \geq 0$ we have

$$
\sup _{x \in \mathbb{R}}\left|f^{(k)}(x)\right| \leq \frac{1}{2 \pi} \int_{t=-\infty}^{\infty}|t|^{k}|\phi(t)| d t .
$$

Using these two results, it is now easy to bound $f^{(k)}$.
Proposition 2.4. For every integer $k \geq 0$ we have

$$
\sup _{x \in \mathbb{R}}\left|f^{(k)}(x)\right| \leq 2^{k^{2}+10 k+17}
$$

Proof. For every integer $k \geq 0$ we have

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|f^{(k)}(x)\right| & \leq \frac{1}{2 \pi} \int_{t=-\infty}^{\infty}|t|^{k}|\phi(t)| d t \\
& \leq \frac{1}{2 \pi}\left[\int_{|t|>1}|t|^{k}|\phi(t)| d t+\int_{|t| \leq 1}|t|^{k}|\phi(t)| d t\right] \\
& \leq \frac{1}{2 \pi}\left[\int_{|t|>1} 2^{(k+2)^{2}+6(k+2)} t^{-2} d t+\int_{|t| \leq 1}|t|^{k} d t\right] \\
& \leq \frac{1}{\pi}\left[2^{k^{2}+10 k+16}+\frac{1}{k+1}\right] \leq 2^{k^{2}+10 k+17},
\end{aligned}
$$

as desired.

3 Left tail lower bound on f

Our iterative approach to finding the left tail lower bound on f in Theorem 1.1 is similar to the method used by Janson [3] for F. The following lemma gives us an inequality that is essential in this section; as we shall see, it is established from a recurrence inequality. For $z \geq 0$ define

$$
m_{z}:=\left(\min _{x \in[-z, 0]} f(x)\right) \wedge 1
$$

Lemma 3.1. Given $\epsilon \in(0,1 / 10)$, let $a \equiv a(\epsilon):=-g\left(\frac{1}{2}-\epsilon\right)>0$. Then for any integer $k \geq 2$ we have

$$
m_{k a} \geq\left(2 \epsilon^{3} m_{2 a}\right)^{2^{k-2}}
$$

We delay the proof of Lemma 3.1 in order to show next how the lemma leads us to the desired lower bound in (1.3) on the left tail of f by using the same technique as in [3] for F.
Proposition 3.2. As $x \rightarrow \infty$ we have

$$
\ln f(-x) \geq-e^{\gamma x+\ln \ln x+O(1)}
$$

Proof. By Lemma 3.1, for $x>a$ we have

$$
f(-x) \geq m_{x} \geq m\left(\left\lceil\frac{x}{a}\right\rceil a\right) \geq\left(2 \epsilon^{3} m_{2 a}\right)^{2^{\lceil x / a\rceil-2}} \geq\left(2 \epsilon^{3} m_{2 a}\right)^{2^{x / a}}
$$

provided ϵ is sufficiently small that $2 \epsilon^{3} m_{2 a}<1$. The same as Janson [3], we pick $\epsilon=x^{-1 / 2}$ and, setting $\gamma=\left(2-\frac{1}{\ln 2}\right)^{-1}$, get $\frac{1}{a}=\frac{\gamma}{\ln 2}+O\left(x^{-1}\right)$ and

$$
\begin{aligned}
\ln f(-x) & \geq 2^{\frac{\gamma}{\ln 2} x+O(1)} \cdot \ln \left(2 \epsilon^{3} m_{2 a}\right) \\
& =e^{\gamma x+O(1)} \cdot\left(-\frac{3}{2} \ln x+\ln m_{2 a}+\ln 2\right) \\
& \geq-e^{\gamma x+\ln \ln x+O(1)}
\end{aligned}
$$

Now we go back to prove Lemma 3.1:
Proof of Lemma 3.1. By the integral equation (2.1) satisfied by f (and symmetry in u about $u=1 / 2$), for arbitrary z and a we have

$$
\begin{equation*}
f(-z-a)=2 \int_{u=0}^{1 / 2} \int_{y \in \mathbb{R}} f(y) f\left(\frac{-z-a-g(u)-(1-u) y}{u}\right) \frac{1}{u} d y d u \tag{3.1}
\end{equation*}
$$

Since f is everywhere positive, we can get a lower bound on $f(-z-a)$ by restricting the range of integration in (3.1). Therefore,

$$
\begin{equation*}
f(-z-a) \geq 2 \int_{u=\frac{1}{2}-\frac{\epsilon}{2}}^{1 / 2} \int_{y=-z}^{-z+\epsilon^{2}} f(y) f\left(\frac{-z-a-g(u)-(1-u) y}{u}\right) \frac{1}{u} d y d u \tag{3.2}
\end{equation*}
$$

We claim that in this integral region, we have $\frac{-z-a-g(u)-(1-u) y}{u} \geq-z$, which is equivalent to $y+z \leq \frac{-a-g(u)}{1-u}$. Here is a proof. Observe that when ϵ is small enough and $u \in\left[\frac{1}{2}-\frac{\epsilon}{2}, \frac{1}{2}\right]$, we have

$$
\begin{aligned}
\frac{-a-g(u)}{1-u} & \geq \frac{g\left(\frac{1}{2}-\epsilon\right)-g\left(\frac{1}{2}-\frac{\epsilon}{2}\right)}{\frac{1}{2}+\frac{\epsilon}{2}} \\
& \geq \frac{\frac{\epsilon}{2}\left|g^{\prime}\left(\frac{1}{2}-\frac{\epsilon}{2}\right)\right|}{\frac{1}{2}+\frac{\epsilon}{2}}=\frac{\epsilon}{1+\epsilon}\left|2 \ln \left(1-\frac{2 \epsilon}{1+\epsilon}\right)\right| \\
& \geq \frac{4 \epsilon^{2}}{(1+\epsilon)^{2}} \geq \epsilon^{2}
\end{aligned}
$$

Also, in this integral region we have $y+z \leq \epsilon^{2}$. So we conclude that $y+z \leq \frac{-a-g(u)}{1-u}$.
Next, we claim that $\frac{-z-a-g(u)-(1-u) y}{u} \leq 0$ in this integral region if z is large enough. Here is a proof. Let $\frac{-z-a-g(u)-(1-u) y}{u}=-z+\delta$ with $\delta \geq 0$. Then in the integral region we have $0 \leq y+z=\frac{-a-g(u)-u \delta}{1-u}$. Therefore

$$
\begin{aligned}
\delta \leq \frac{-a-g(u)}{u} & \leq \frac{-a-g\left(\frac{1}{2}\right)}{\frac{1}{2}-\frac{\epsilon}{2}}=\frac{2}{1-\epsilon}\left[g\left(\frac{1}{2}-\epsilon\right)-g\left(\frac{1}{2}\right)\right] \\
& \leq \frac{2 \epsilon}{1-\epsilon}\left|2 \ln \left(1-\frac{4 \epsilon}{1+2 \epsilon}\right)\right| \\
& \leq 19 \epsilon^{2}
\end{aligned}
$$

where the last inequality can be verified to hold for $\epsilon<1 / 10$. That means if we pick z large enough, for example, $z \geq 20 \epsilon^{2}$, then $\frac{-z-a-g(u)-(1-u) y}{u}=-z+\delta$ will be negative. It can also be verified that $a \geq 30 \epsilon^{2}$ for $\epsilon<1 / 10$.

Now consider $\epsilon<1 / 10$, an integer $k \geq 3, z \in[(k-2) a,(k-1) a]$, and $x=z+a \in$ [($k-1$) a, ka]. Noting $z \geq a \geq 30 \epsilon^{2}>20 \epsilon^{2}$, by (3.2) we have

$$
f(-x) \geq 2 \cdot \frac{\epsilon}{2} \cdot m_{z}^{2} \cdot \epsilon^{2} \cdot 2 \geq 2 \epsilon^{3} m_{(k-1) a}^{2}
$$

Further, for $x \in[0,(k-1) a]$ we have

$$
f(-x) \geq m_{(k-1) a}>2 \epsilon^{3} m_{(k-1) a}^{2}
$$

since $2 \epsilon^{3}<1$ and $m_{(k-1) a} \leq 1$ by definition. Combine these two facts, we can conclude that for $x \in[0, k a]$ we have $f(-x) \geq 2 \epsilon^{3} m_{(k-1) a}^{2}$. This implies the recurrence inequality

$$
m_{k a} \geq 2 \epsilon^{3} m_{(k-1) a}^{2}
$$

The desired inequality follows by iterating:

$$
m_{k a} \geq\left(2 \epsilon^{3}\right)^{2^{k-2}-1} m_{2 a}^{2^{k-2}} \geq\left(2 \epsilon^{3} \cdot m_{2 a}\right)^{2^{k-2}}
$$

4 Right tail lower bound on f

Once again we use an iterative approach to derive our right-tail lower bound on f in Theorem 1.1. The following key lemma is established from a recurrence inequality. Define

$$
c:=2[F(1)-F(0)] \in(0,2)
$$

and

$$
m_{z}:=\min _{x \in[0, z]} f(x), \quad z \geq 0
$$

Lemma 4.1. Suppose $b \in[0,1)$ and that $\delta \in(0,1 / 2)$ is sufficiently small that $g(\delta) \geq b$. Then for any integer $k \geq 1$ satisfying

$$
2+(k-1) b \leq[g(\delta)-b] / \delta
$$

we have

$$
m_{2+k b} \geq(c \delta)^{k-1} m_{3}
$$

We delay the proof of Lemma 4.1 in order to show next how the lemma leads us to the desired lower bound in (1.4) on the right tail of f.
Proposition 4.2. As $x \rightarrow \infty$ we have

$$
f(x) \geq \exp [-x \ln x-x \ln \ln x+O(x)]
$$

Proof. Given $x \geq 3$ suitably large, we will show next that we can apply Lemma 4.1 for suitably chosen $b>0$ and δ and $k=\lceil(x-2) / b\rceil \geq 2$. Then, by the lemma,

$$
\begin{equation*}
f(x) \geq m_{2+k b} \geq(c \delta)^{k-1} m_{3} \geq(c \delta)^{(x-2) / b} m_{3} \tag{4.1}
\end{equation*}
$$

and we will use (4.1) to establish the proposition.
We make the same choices of δ and b as in [3, Sec. 4], namely, $\delta=1 /(x \ln x)$ and $b=1-(2 / \ln x)$. To apply Lemma 4.1, we need to check that $g(\delta) \geq b$ and $2+(k-1) b \leq$ $[g(\delta)-b] / \delta$, for the latter of which it is sufficient that $x \leq[g(\delta)-b] / \delta$. Indeed, if x is sufficiently large, then

$$
g(\delta) \geq 1+3 \delta \ln \delta=1-\frac{3}{x \ln x}(\ln x+\ln \ln x) \geq 1-\frac{4}{x}
$$

where the elementary first inequality is (4.1) in [3], and so

$$
g(\delta)-b \geq \frac{2}{\ln x}-\frac{4}{x} \geq \frac{1}{\ln x}>0
$$

and

$$
\frac{g(\delta)-b}{\delta} \geq \frac{1 / \ln x}{1 /(x \ln x)}=x
$$

Finally, we use (4.1) to establish the proposition. Indeed,

$$
\begin{aligned}
-\ln f(x) & \leq \frac{x-2}{b} \ln \left(\frac{1}{c \delta}\right)-\ln m_{3} \\
& \leq \frac{x}{1-(2 / \ln x)}\left[\ln (x \ln x)+\ln \left(\frac{1}{c}\right)\right]-\ln m_{3} \\
& =\frac{x}{1-(2 / \ln x)} \ln (x \ln x)+O(x) .
\end{aligned}
$$

But

$$
\begin{aligned}
\frac{x}{1-(2 / \ln x)} & \ln (x \ln x) \\
\quad= & x\left[1+\frac{2}{\ln x}+O\left(\frac{1}{(\log x)^{2}}\right)\right](\ln x+\ln \ln x) \\
\quad= & (x \ln x)\left[1+\frac{2}{\ln x}+O\left(\frac{1}{(\log x)^{2}}\right)\right]\left(1+\frac{\ln \ln x}{\ln x}\right) \\
\quad= & (x \ln x)\left[1+\frac{\ln \ln x}{\ln x}+\frac{2}{\ln x}+\frac{2 \ln \ln x}{(\ln x)^{2}}+O\left(\frac{1}{(\log x)^{2}}\right)\right] \\
\quad= & x \ln x+x \ln \ln x+2 x+\frac{2 x \ln \ln x}{\ln x}+O\left(\frac{x}{\log x}\right) \\
\quad= & x \ln x+x \ln \ln x+O(x)
\end{aligned}
$$

So

$$
-\ln f(x) \leq x \ln x+x \ln \ln x+O(x)
$$

as claimed.
Now we go back to prove Lemma 4.1, but first we need two preparatory results.
Lemma 4.3. Suppose $z \geq 2, b \geq 0$, and $\delta \in(0,1 / 2)$ satisfy $g(\delta) \geq b$ and $z \leq[g(\delta)-b] / \delta$. Then

$$
f(z+b) \geq c \delta m_{z}
$$

Proof. By the integral equation (2.1) satisfied by f (and symmetry in u about $u=1 / 2$), for arbitrary z and b we have

$$
f(z+b)=2 \int_{u=0}^{1 / 2} \int_{y \in \mathbb{R}} f(y) f\left(\frac{z+b-g(u)-(1-u) y}{u}\right) \frac{1}{u} d y d u
$$

Since f is positive everywhere, a lower bound on $f(z+b)$ can be achieved by shrinking the region of integration:

$$
\begin{align*}
f(z+b) & \geq 2 \int_{u=0}^{\delta} \int_{y=0}^{z} f(y) f\left(\frac{z+b-g(u)-(1-u) y}{u}\right) \frac{1}{u} d y d u \\
& \geq 2 m_{z} \int_{u=0}^{\delta} \int_{y=0}^{z} f\left(\frac{z+b-g(u)-(1-u) y}{u}\right) \frac{1}{u} d y d u \\
& =2 m_{z} \int_{u=0}^{\delta} \int_{\xi=z+\frac{b-g(u)}{u}}^{\frac{z+b-g(u)}{u}} f(\xi) \frac{1}{1-u} d \xi d u . \tag{4.2}
\end{align*}
$$

The equality comes from a change of variables. We next claim that the integral of integration for ξ contains $(0, z-1)$, and then the desired result follows. Indeed, if $u \in(0, \delta)$ and $\xi \in(0, z-1)$ then

$$
\xi<z-1<\frac{z-1}{u} \leq \frac{z+b-g(u)}{u}
$$

where the last inequality holds because $b \geq 0$ and $g(u) \leq 1$; and, because $g(u) \geq g(\delta)$ and $g(\delta) \geq b$ and $z \leq[g(\delta)-b] / \delta$, we have

$$
\begin{aligned}
\xi & >0=z+\frac{b-g(u)}{u}-\left[z+\frac{b-g(u)}{u}\right] \geq z+\frac{b-g(u)}{u}-\left[z+\frac{b-g(\delta)}{u}\right] \\
& \geq z+\frac{b-g(u)}{u}-\left[z+\frac{b-g(\delta)}{\delta}\right] \geq z+\frac{b-g(u)}{u}
\end{aligned}
$$

Lemma 4.4. Suppose $b \geq 0$ and that $\delta \in(0,1 / 2)$ is sufficiently small that $g(\delta) \geq b$. Then for any integer $k \geq 2$ satisfying

$$
2+(k-1) b \leq[g(\delta)-b] / \delta
$$

we have

$$
m_{2+k b} \geq c \delta m_{2+(k-1) b}
$$

Proof. For $y \in[2+(k-1) b, 2+k b]$, application of Lemma 4.3 with $z=y-b$ yields

$$
f(y) \geq c \delta m_{y-b} \geq c \delta m_{2+(k-1) b}
$$

Also, for $y \in[0,2+(k-1) b]$ we certainly have

$$
f(y) \geq m_{2+(k-1) b}>c \delta m_{2+(k-1) b}
$$

The result follows.
We are now ready to complete this section by proving Lemma 4.1.
Proof of Lemma 4.1. By iterating the recurrence inequality of Lemma 4.4, it follows that

$$
m_{2+k b} \geq(c \delta)^{k-1} m_{2+b}
$$

Lemma 4.1 then follows since $b<1$.

5 Left tail bounds for tail suprema of absolute derivatives

From Section 3 (respectively, Section 4) we know the left-tail lower bound of (1.3) [resp., the right-tail lower bound of (1.4)]. In this section we establish the left-tail bounds of (1.3) and (1.6), and in the next section we do the same for right tails.

5.1 Lower bounds

As discussed in Remark 1.3(a), in light of the main theorem of Janson [3] and our Section 3, to finish our treatment of left-tail lower bounds we need only prove the lower bound in (1.6) for fixed $k \geq 2$. For that, choose any x and apply the Landau-Kolmogorov Lemma 2.1, bounding the function $\underline{F}^{\prime}(\cdot)=-f(-\cdot)$ in terms of the functions \underline{F} and $\underline{F}^{(k)}$. This gives

$$
f(-x) \leq\left\|\underline{F}^{\prime}\right\|_{x} \leq c_{k, 1}\|\underline{F}\|_{x}^{(k-1) / k}\left\|\underline{F}^{(k)}\right\|_{x}^{1 / k}
$$

i.e.,

$$
\left\|\underline{F}^{(k)}\right\|_{x} \geq c_{k, 1}^{-k} \| \underline{F}_{x}^{-(k-1)}[f(-x)]^{k}
$$

But recall

$$
c_{k, 1} \leq e^{2} k / 4, \quad\|\underline{F}\|_{x} \leq \exp \left[-e^{\gamma x+O(1)}\right], \quad f(-x) \geq \exp \left[-e^{\gamma x+\ln \ln x+O(1)}\right]
$$

Plugging in these bounds, we obtain the desired result.

5.2 Upper bounds

The left-tail upper bounds in (1.6) of Theorem 1.2 can be written in the equivalent form

$$
\begin{equation*}
\lambda_{k}:=\limsup _{x \rightarrow \infty}\left[\gamma x-\ln \left(-\ln \left\|\underline{F}^{(k)}\right\|_{x}\right)\right]<\infty ; \tag{5.1}
\end{equation*}
$$

note also that the left-tail upper bound in (1.3) of Theorem 1.1 follows from $\lambda_{1}<\infty$. As discussed in Remark 1.3(a), (5.1) is known for $k=0$ from Janson [3]. So to finish our treatment of left-tail upper bounds in Theorems 1.1-1.2 we need only prove (5.1) for $k \geq 1$.

In this subsection we prove the following stronger Proposition 5.1, which implies that λ_{k} is non-increasing in $k \geq 0$ and therefore that $\lambda_{k}<\infty$ for every k. In preparation for the proof, see the definition of μ_{j} in (5.2) and note that if $\mu_{j} \leq 0$ for $j=0, \ldots, k-1$, then λ_{j} is non-increasing for $j=0, \ldots, k$; in particular, (5.1) then holds.
Proposition 5.1. For each fixed $k \geq 0$ we have

$$
\begin{equation*}
\mu_{k}:=\limsup _{x \rightarrow \infty}\left[-\ln \left(-\ln \left\|\underline{F}^{(k+1)}\right\|_{x}\right)+\ln \left(-\ln \left\|\underline{F}^{(k)}\right\|_{x}\right)\right] \leq 0 \tag{5.2}
\end{equation*}
$$

Proof. We proceed by induction on k. Choosing any x and applying the LandauKolmogorov inequality Lemma 2.1 to the function $h=\underline{F}^{(k)}$, we find for $n \geq 2$ that

$$
\left\|\underline{F}^{(k+1)}\right\|_{x} \leq \frac{1}{4} e^{2} n\left\|\underline{F}^{(k)}\right\|_{x}^{1-(1 / n)}\left\|\underline{F}^{(k+n)}\right\|_{x}^{1 / n}
$$

We can bound the norm $\left\|\underline{F}^{(k+n)}\right\|_{x}$ using Proposition 2.4 simply by

$$
\begin{equation*}
a_{n, k}:=2^{(k+n-1)^{2}+10(k+n-1)+17} \tag{5.3}
\end{equation*}
$$

Thus the argument of the limsup in (5.2) can be bounded above by

$$
-\ln \left[1-\frac{1}{n}-\frac{2-\ln 4+\ln n+n^{-1} \ln a_{n, k}}{-\ln \left\|\underline{F}^{(k)}\right\|_{x}}\right]
$$

By Janson's bound giving $\lambda_{0}<\infty$ if $k=0$ and by induction on k if $k \geq 1$, we know that (5.1) holds. Thus, letting $n \equiv n(x) \rightarrow \infty$ with $n(x)=o\left(e^{\gamma x}\right)$, the claimed inequality follows.

Remark 5.2. According to Remark 1.3, it is natural to conjecture that for every k the limsup in (5.1) is a limit and equals $-c_{3}$ and hence the limsup in (5.2) is a vanishing limit.

6 Right tail bounds for tail suprema of absolute derivatives

In this section we establish the right-tail bounds of (1.4) and (1.7).

6.1 Lower bounds

As discussed in Remark 1.3(a), in light of the main theorem of [3] and our Section 4, to finish our treatment of right-tail lower bounds we need only prove the lower bound in (1.7) for fixed $k \geq 2$. For that, proceed using the Landau-Kolmogorov Lemma 2.1 as in Section 5.1 to obtain

$$
\left\|\bar{F}^{(k)}\right\|_{x} \geq c_{k, 1}^{-k}\|\bar{F}\|_{x}^{-(k-1)}[f(x)]^{k}
$$

But recall

$$
\begin{aligned}
c_{k, 1} & \leq e^{2} k / 4, \quad\|\bar{F}\|_{x} \leq \exp [-x \ln x+O(x)] \\
f(x) & \geq \exp [-x \ln x-x \ln \ln x+O(x)]
\end{aligned}
$$

Plugging in these bounds, we obtain the desired result.

QuickSort density tails

6.2 Upper bounds

The right-tail upper bounds in (1.7) of Theorem 1.2 can be written in the equivalent form

$$
\begin{equation*}
\rho_{k}:=\limsup _{x \rightarrow \infty} x^{-1}\left(x \ln x+\ln \left\|\bar{F}^{(k)}\right\|_{x}\right)<\infty \tag{6.1}
\end{equation*}
$$

note also that the right-tail upper bound in (1.4) of Theorem 1.1 follows from $\rho_{1}<\infty$. As discussed in Remark 1.3(a), (6.1) is known for $k=0$ from Janson [3]. So to finish our treatment of right-tail upper bounds in Theorems 1.1-1.2 we need only prove (6.1) for $k \geq 1$.

In this subsection we prove the next stronger Proposition 6.1, a right-tail analogue of Proposition 5.1, and it then follows by choosing $r(x) \equiv x$ that ρ_{k} is non-increasing in $k \geq 0$ and therefore that $\rho_{k}<\infty$ for every k.
Proposition 6.1. Let r be a function satisfying $r(x)=\omega(\sqrt{x \log x})$ as $x \rightarrow \infty$. Then for each fixed $k \geq 0$ we have

$$
\begin{equation*}
\sigma_{k}:=\limsup _{x \rightarrow \infty} r(x)^{-1}\left(\ln \left\|\bar{F}^{(k+1)}\right\|_{x}-\ln \left\|\bar{F}^{(k)}\right\|_{x}\right) \leq 0 \tag{6.2}
\end{equation*}
$$

Proof. Proceeding as in the proof of Proposition 5.1, for any x and any $n \geq 2$ we have

$$
\left\|\bar{F}^{(k+1)}\right\|_{x} \leq \frac{1}{4} e^{2} n\left\|\bar{F}^{(k)}\right\|_{x}^{1-(1 / n)}\left\|\bar{F}^{(k+n)}\right\|_{x}^{1 / n}
$$

we again bound the norm $\left\|\bar{F}^{(k+n)}\right\|_{x}$ by (5.3). Thus the argument of the limsup in (6.2) can be bounded above by

$$
r(x)^{-1}\left[\frac{1}{n}\left(-\ln \left\|\bar{F}^{(k)}\right\|_{x}\right)+2-\ln 4+\ln n+\frac{1}{n} \ln a_{n, k}\right] .
$$

By the right-tail lower bound for $\left\|\bar{F}^{(k)}\right\|_{x}$ in (1.7) (established in the preceding subsection), we know that

$$
-\ln \left\|\bar{F}^{(k)}\right\|_{x} \leq x \ln x+(k \vee 1) x \ln \ln x+O(x)=(1+o(1)) x \ln x
$$

Thus, letting $n \equiv n(x)$ satisfy $n(x)=\omega((x \log x) / r(x))$ and $n(x)=o(r(x))$, the claimed inequality follows.

Remark 6.2. According to Remark 1.3, it is natural to conjecture that for every k we have $\rho_{k}=-\infty$ and the limsup in (6.2) with $r(x) \equiv x$ is a vanishing limit.
Acknowledgments. We are grateful to an anonymous referee of an earlier extended abstract version of this paper for alerting us to the Landau-Kolmogorov inequality, which for upper bounds greatly simplified our proofs and improved our results. We also thank Svante Janson and another anonymous referee for helpful comments.

References

[1] James Allen Fill and Svante Janson, A characterization of the set of fixed points of the Quicksort transformation, Electronic Communications in Probability 5 (2000), 77-84. MR-1781841
[2] James Allen Fill and Svante Janson, Smoothness and decay properties of the limiting Quicksort density function, Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, Trends in Mathematics (2000), 53-64. MR-1798287
[3] Svante Janson, On the tails of the limiting Quicksort distribution, Electronic Communications in Probability 20 (2015), paper no. 81, 1-7. MR-3434198
[4] Charles Knessl and Wojciech Szpankowski, Quicksort algorithm again revisited, Discrete Mathematics \& Theoretical Computer Science. DMTCS. An Electronic Journal 3 (1999), no. 2, 43-64. MR-1695194
[5] A. P. Matorin, On inequalities between the maxima of the absolute values of a function and its derivatives on a half-line, Ukrain. Mat. Ž. 7 (1955), 262-266. MR-0075991
[6] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Mathematics and its Applications (East European Series), vol. 53, Kluwer Academic Publishers Group, Dordrecht, 1991. MR-1190927
[7] Mireille Régnier, A limiting distribution for quicksort, RAIRO-Theoretical Informatics and Applications 23 (1989), no. 3, 335-343. MR-1020478
[8] Uwe Rösler, A limit theorem for "Quicksort", RAIRO-Theoretical Informatics and Applications 25 (1991), no. 1, 85-100. MR-1104413
[9] Sergei Borisovich Stechkin, Inequalities between the upper bounds of the derivatives of an arbitrary function on the half-line, Mathematical notes of the Academy of Sciences of the USSR 1 (1967), no. 6, 442-447. MR-0214716

Electronic Journal of Probability Electronic Communications in Probability

Advantages of publishing in EJP-ECP

- Very high standards
- Free for authors, free for readers
- Quick publication (no backlog)
- Secure publication (LOCKSS ${ }^{1}$)
- Easy interface (EJMS²)

Economical model of EJP-ECP

- Non profit, sponsored by $\mathrm{IMS}^{3}, \mathrm{BS}^{4}$, ProjectEuclid ${ }^{5}$
- Purely electronic

Help keep the journal free and vigorous

- Donate to the IMS open access fund ${ }^{6}$ (click here to donate!)
- Submit your best articles to EJP-ECP
- Choose EJP-ECP over for-profit journals

[^1]
[^0]: *Research of both authors supported by the Acheson J. Duncan Fund for the Advancement of Research in Statistics.
 ${ }^{\dagger}$ The Johns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, MD, USA. E-mail: jimfill@jhu.edu, whung6@jhu.edu

[^1]: ${ }^{1}$ LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
 ${ }^{2}$ EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
 ${ }^{3}$ IMS: Institute of Mathematical Statistics http://www.imstat.org/
 ${ }^{4}$ BS: Bernoulli Society http://www.bernoulli-society .org/
 ${ }^{5}$ Project Euclid: https://projecteuclid.org/
 ${ }^{6}$ IMS Open Access Fund: http://www.imstat.org/publications/open.htm

