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Abstract

We study the non-asymptotic behavior of a Coulomb gas on a compact Riemannian
manifold. This gas is a symmetric n-particle Gibbs measure associated to the two-body
interaction energy given by the Green function. We encode such a particle system
by using an empirical measure. Our main result is a concentration inequality in
Kantorovich-Wasserstein distance inspired from the work of Chafaï, Hardy and Maïda
on the Euclidean space. Their proof involves large deviation techniques together
with an energy-distance comparison and a regularization procedure based on the
superharmonicity of the Green function. This last ingredient is not available on a
manifold. We solve this problem by using the heat kernel and its short-time asymptotic
behavior.
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1 Introduction

We shall consider the model of a Coulomb gas on a Riemannian manifold introduced
in [6, Subsection 4.1] and study its non-asymptotic behavior by obtaining a concentration
inequality for the empirical measure around its limit. Let us describe the model and the
main theorem of this article.

Let (M, g) be a compact Riemannian manifold of volume form π. We suppose, for
simplicity, that π(M) = 1 so that π ∈ P(M) where P(M) denotes the space of probability
measures on M . We endow P(M) with the topology of weak convergence, i.e. the
smallest topology such that µ →

∫
M
f dµ is continuous for every continuous function

f : M → R. Denote by ∆ : C∞(M)→ C∞(M) the Laplace-Beltrami operator on (M, g).
We shall say that

G : M ×M → (−∞,∞]

is a Green function for ∆ if it is a symmetric continuous function such that for every
x ∈M the function Gx : M → (−∞,∞] defined by Gx(y) = G(x, y) is integrable and

∆Gx = −δx + 1 (1.1)
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Concentration for Coulomb gases

in the distributional sense. It can be proven that such a G is integrable with respect to
π ⊗ π and that if f ∈ C∞(M) then ψ : M → R, defined by

ψ(x) =

∫
M

G(x, y)f(y)dπ(y),

satisfies that

ψ ∈ C∞(M) and ∆ψ = −f +

∫
M

f(y)dπ(y). (1.2)

In particular,
∫
M
Gxdπ does not depend on x ∈M and the Green function is unique up to

an additive constant. See [1, Chapter 4] for a proof of these results. We will denote by G
the Green function for ∆ such that ∫

M

Gxdπ = 0 (1.3)

for every x ∈M .
For x ∈ M the function Gx may be thought of as the potential generated by the

distribution of charge δx − 1. This would represent a unit charged particle located at
x ∈M and a negatively charged background of unit density. The total energy of a system
of n particles of charge 1/n (each particle coming with a negatively charged background)
would be Hn : Mn → (−∞,∞] defined by

Hn(x1, . . . , xn) =
1

n2

∑
i<j

G(xi, xj).

Take a sequence {βn}n≥2 of non-negative numbers and consider the sequence of Gibbs
probability measures

dPn(x1, . . . , xn) =
1

Zn
e−βnHn(x1,...,xn)dπ⊗n(x1, . . . , xn) (1.4)

where Zn is such that Pn(Mn) = 1. This can be thought of as the Riemannian generaliza-
tion of the usual Coulomb gas model described in [15] or [4]. In the particular case of
the round two-dimensional sphere, it is known (see [9]) that if βn = 4πn2 the probability
measure Pn describes the eigenvalues of the quotient of two independent n× n matrices
with independent Gaussian entries. Define H : P(M)→ (−∞,∞] by

H(µ) =
1

2

∫
M×M

G(x, y)dµ(x)dµ(y).

This is a convex lower semicontinuous function. We can see [6, Subsection 4.1] for
a proof of these properties and [12, Chapter 9] for a short introduction and further
information in the Euclidean setting. Let in : Mn → P(M) be defined by

in(x1, . . . , xn) =
1

n

n∑
i=1

δxi .

If βn/n → ∞, the author in [6] tells us that {in∗(Pn)}n≥2, the sequence of image
measures of Pn by in, satisfies a large deviation principle with speed βn and rate
function H − inf H.

In particular, if F is a closed set of P(M) we have

lim sup
n→∞

1

βn
logPn(i−1

n (F )) ≤ − inf
µ∈F

(H(µ)− inf H)
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Concentration for Coulomb gases

or, equivalently,

Pn(i−1
n (F )) ≤ exp

(
−βn inf

µ∈F
(H(µ)− inf H) + o(βn)

)
. (1.5)

The aim of this article is to understand the o(βn) term for some family of closed sets
F . Suppose we choose some metric d in P(M) that induces the topology of weak
convergence. As the unique minimizer of H is µeq = π (see Theorem 3.1) a nice family of
closed sets are the sets

Fr = {µ ∈ P(M) : d(µ, µeq) ≥ r}
for r > 0. Instead of writing Pn(i−1

n (Fr)) we shall write Pn(d(in, µeq) ≥ r), in other words,
when we write {d(in, µeq) ≥ r} we mean the set i−1

n (Fr) = {~x ∈ Mn : d(in(~x), µeq) ≥ r}.
As H is lower semicontinuous we have that infµ∈Fr (H(µ)− inf H) is strictly positive and
the large deviation inequality is not vacuous. We would like a simple expression in terms
of r for the leading term, so instead of using infµ∈Fr (H(µ)− inf H) we will use a simple
function of r.

Let dg denote the Riemannian distance. The metric we shall use on P(M) is the
function W1 : P(M)× P(M)→ [0,∞) defined by

W1(µ, ν) = inf

{∫
M×M

dg(x, y)dΠ(x, y) : Π is a coupling between µ and ν

}
(1.6)

which is known as the Wasserstein or Kantorovich metric. See [16, Theorem 7.12] for a
proof that it metrizes the topology of weak convergence. The main result of this article
is the following.

Theorem 1.1 (Concentration inequality for Coulomb gases). Let m be the dimension of
M . If m = 2 there exists a constant C > 0 that does not depend on the sequence {βn}n≥2

such that for every n ≥ 2 and r ≥ 0

Pn (W1(in, π) ≥ r) ≤ exp

(
−βn

r2

4
+
βn
8π

log(n)

n
+ C

βn
n

)
.

If m ≥ 3 there exists a constant C > 0 that does not depend on the sequence {βn}n≥2

such that for every n ≥ 2 and r ≥ 0

Pn (W1(in, π) ≥ r) ≤ exp

(
−βn

r2

4
+ C

βn
n2/m

)
.

In fact, by a slight modification we will also prove the following generalization. Denote
by D(·‖π) : P(M)→ (−∞,∞] the relative entropy of µ with respect to π, also known as
the Kullback–Leibler divergence, i.e. D(µ‖π) =

∫
M
ρ log ρ dπ if dµ = ρdπ and D(·‖π) is

infinity when µ is not absolutely continuous with respect to π.

Theorem 1.2 (Concentration inequality for Coulomb gases in a potential). Take a twice
continuously differentiable function V : M → R and define

Hn(x1, . . . , xn) =
1

n2

∑
i<j

G(xi, xj) +
1

n

n∑
i=1

V (xi) and

H(µ) =
1

2

∫
M×M

G(x, y)dµ(x)dµ(y) +

∫
M

V (x)dµ(x).

Then H has a unique minimizer that will be called µeq. Suppose Pn is defined by (1.4)
and let m be the dimension of M . If m = 2 there exists a constant C > 0 that does not
depend on the sequence {βn}n≥2 such that for every n ≥ 2 and r ≥ 0

Pn (W1(in, µeq) ≥ r) ≤ exp

(
−βn

r2

4
+
βn
8π

log(n)

n
+ nD(µeq‖π) + C

βn
n

)
.
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If m ≥ 3 there exists a constant C > 0 that does not depend on the sequence {βn}n≥2

such that for every n ≥ 2 and r ≥ 0

Pn (W1(in, µeq) ≥ r) ≤ exp

(
−βn

r2

4
+ nD(µeq‖π) + C

βn
n2/m

)
.

Remark 1.3 (About the sharpness). As we will see below it can be proven that

Pn (W1(in, π) ≥ r) ≤ exp

(
−βn

r2

2
+ o(βn)

)
and the natural question would be to find an explicit next order o(βn). In the two
theorems above we have relaxed this inequality to

Pn (W1(in, π) ≥ r) ≤ exp

(
−βn

r2

4
+ o(βn)

)
and obtained a bound to o(βn) that does not depend on r. In this relaxed inequality and
at a fixed r > 0 the next order terms cannot be exact. Indeed, strictly speaking we have

Pn (W1(in, π) ≥ r) ≤ exp

(
−βn

r2

4
+ η(βn)

)
where η(β)/β → −r2/2 as β goes to infinity. Nevertheless, the importance of our result
lies on the lack of dependence on r and the explicitness of the terms.

To prove Theorem 1.1 we follow [4] in turn inspired by [13] (see also [14]). We
proceed in three steps. The first part, described in Section 2, may be used in any
measurable space but it demands an energy-distance comparison and a regularization
procedure. The energy-distance comparison will be explained in Section 3 and it may be
extended to include Green functions of some Laplace-type operators. The regularization
by the heat kernel, in Section 4, will use a short time asymptotic expansion. It may apply
to more general kind of energies where a short-time asymptotic expansion of their heat
kernel is known. Having acquired all the tools, Section 5 will complete the proof of
Theorem 1.1 and, by a slight modification, Theorem 1.2.

2 Link to an energy-distance comparison and a regularization
procedure

In this section M may be any measurable space, π any probability measure on M and
Hn : Mn → (−∞,∞] any measurable function bounded from below. Given βn > 0 we
define the Gibbs probability measure by (1.4). Let H : P(M)→ (−∞,∞] be any function
that has a unique minimizer µeq ∈ P(M). This shall be thought of as a rate function of
some Laplace principle as in [6]. Consider a metric

d : P(M)× P(M)→ [0,∞)

on P(M) that induces the topology of weak convergence and define

Fr = {µ ∈ P(M) : d(µ, µeq) ≥ r}

for r > 0. We want to understand a non-asymptotic inequality similar to (1.5) with an
explicit o(βn) term. For this, we consider the following assumption.

Assumption 2.1. We will say that an increasing convex function f : [0,∞) → [0,∞)

satisfies Assumption A if, for all µ ∈ P(M),

f (d(µ, µeq)) ≤ H(µ)−H(µeq). (A)
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Under Assumption A, (1.5) implies

Pn(i−1
n (Fr)) ≤ exp (−βnf(r) + o(βn)) . (2.1)

This o(βn) term may depend on r. We will prove that if we relax the inequality (2.1) to

Pn(i−1
n (Fr)) ≤ exp (−βn2f(r/2) + o(βn))

we can find bounds of the o(βn) term that do not depend on r. To properly use Assumption
A when µ is an empirical measure 1

n

∑n
i=1 δxi we will have to regularize µ. The reason

behind this is that when µ is an empirical measure we usually obtainH(µ) =∞ by the self-
interactions of the particles with themselves. In the Euclidean setting this regularization
is obtained by a convolution with a radial distribution while in the Riemannian setting
this will be obtained by a diffusion using the heat kernel of the Laplacian which in the
Euclidean case may be seen as a convolution by a Gaussian function. The following
result is the general concentration inequality we get and it is the first part of the method
mentioned in Section 1.

Theorem 2.2 (General concentration inequality). Suppose we have two real numbers an
and bn such that there exists a measurable function R : Mn → P(M) with the following
property
• for every ~x = (x1, . . . , xn) ∈Mn we have

Hn(x1, . . . , xn) ≥ H(R(~x))− an, and d(R(~x), in(~x)) ≤ bn.

Let us denote en =
∫
Mn Hndµ⊗neq and e = H(µeq). If f : [0,∞) → [0,∞) is an increasing

convex function that satisfies Assumption A then

Pn (d(in, µeq) ≥ r) ≤ exp
(
−βn2f

(r
2

)
+ nD(µeq‖π) + βn (en − e) + βnan + βnf(bn)

)
.

Proof. We first prove the two following results. The first lemma we state is the analogue
of [4, Lemma 4.1].

Lemma 2.3 (Lower bound of the partition function). We have the following lower bound.

Zn ≥ exp (−βnen − nD(µeq‖π)) .

Proof. If dµeq = ρeqdπ we have

Zn =

∫
Mn

e−βnHn(x1,...,xn)dπ⊗n(x1, . . . , xn)

≥
∫
Mn

e−βnHn(x1,...,xn)e−
∑n
i=1 1ρeq>0(xi) log ρeq(xi)dµ⊗neq (x1, . . . , xn)

≥
∫
Mn

e−βnHn(x1,...,xn)−
∑n
i=1 1ρeq>0(xi) log ρeq(xi)dµ⊗neq (x1, . . . , xn)

≥ e−
∫
Mn(βnHn(x1,...,xn)+

∑n
i=1 1ρeq>0(xi) log ρeq(xi))dµ⊗n

eq (x1,...,xn)

= e−βnen−nD(µeq‖π)

where we have used Jensen’s inequality to get the last inequality.

The second lemma will help us in the step of regularization.

Lemma 2.4 (Comparison). Take ~x = (x1, . . . , xn) ∈Mn. If d(R(~x), in(~x)) ≤ bn then

f(d(R(~x), µeq)) ≥ 2 f

(
d(in(~x), µeq)

2

)
− f(bn).
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Proof. As

d(in(~x), µeq)) ≤ d(in(~x), R(~x)) + d(R(~x), µeq)

we have that

f

(
d(in(~x), µeq))

2

)
≤ f

(
1

2
d(in(~x), R(~x)) +

1

2
d(R(~x), µeq)

)
≤ 1

2
f (d(in(~x), R(~x))) +

1

2
f (d(R(~x), µeq))

≤ 1

2
f (bn) +

1

2
f (d(R(~x), µeq))

where we have used that f is increasing and convex.

Now, define

Ar = i−1
n (Fr) = {~x ∈Mn : d(in(~x), µeq) ≥ r}.

Then

Pn(Ar) =
1

Zn

∫
Ar

e−βnHn(x1,...,xn)dπ⊗n(x1, . . . , xn)

≤ eβnen+nD(µeq‖π)

∫
Ar

e−βnH(R(~x))+βnandπ⊗n(x1, . . . , xn)

≤ eβnen+βnan+nD(µeq‖π)

∫
Ar

e−βnH(R(~x))dπ⊗n(x1, . . . , xn)

(∗)
≤ eβn(en−e)+βnan+nD(µeq‖π)

∫
Ar

e−βnf(d(R(~x),µeq))dπ⊗n(x1, . . . , xn)

(∗∗)
≤ eβn(en−e)+βnan+nD(µeq‖π)

∫
Ar

e
−βn2f

(
d(in(~x,µeq))

2

)
+ βnf(bn)

dπ⊗n(x1, . . . , xn)

(∗∗∗)
≤ eβn(en−e)+βnan+nD(µeq‖π)e−βn2f( r2 )+βnf(bn)

≤ e−βn2f( r2 )+nD(µeq‖π)+βn(en−e)+βnan+βnf(bn)

where in (∗) we have used Assumption A, in (∗ ∗) we have used Lemma 2.4 and in (∗ ∗ ∗)
we have used the monotonicity of f .

In the next section we return to the case of a compact Riemannian manifold and
study a energy-distance comparison that will imply Assumption A.

3 Energy-distance comparison in compact Riemannian manifolds

We take the notation used in Section 1. The Kantorovich metric W1 defined in (1.6)
can be written as

W1(µ, ν) = sup

{∫
M

fdµ−
∫
M

fdν : ‖f‖Lip ≤ 1

}
where

‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
dg(x, y)

.
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This result is known as the Kantorovich-Rubinstein theorem (see [16, Theorem 1.14]). In
the case of a Riemannian manifold, by a smooth approximation argument such as the
one in [2], we can prove that

W1(µ, ν) = sup

{∫
M

f dµ−
∫
M

f dν : f ∈ C∞(M) and ‖∇f‖∞ ≤ 1

}
.

The next theorem gives the energy-distance comparison required to satisfy Assumption
A. This is the analogue of [13, Theorem 1.3] and [4, Lemma 3.1].

Theorem 3.1 (Comparison between distance and energy). Suppose that µeq ∈ P(M) is a
probability measure on M such that H(µeq) ≤ H(µ) for every µ ∈ P(M). Then

1

2
W1(µ, µeq)2 ≤ H(µ)−H(µeq) (3.1)

for every µ ∈ P(M). This implies, in particular, that H has a unique minimizer and that

Assumption A is satisfied by f(r) = r2

2 . Furthermore, µeq = π.

Let F be the space of finite signed measures µ on M such that
∫
M×M Gd|µ|⊗2 <∞.

For convenience we shall define E : F → (−∞,∞] by

E(µ) =

∫
M×M

G(x, y)dµ(x)dµ(y)

so that E(µ) = 2H(µ) whenever µ ∈ P(M) ∩ F . We can also notice that if we take two
probability measures µ, ν ∈ P(M) such that H(µ) and H(ν) are finite then, due to the
convexity of H, we have

∫
M×M G(x, y)dµ(x)dν(y) <∞, the measure µ− ν belongs to F

and

E(µ− ν) = E(µ) + E(ν)− 2

∫
M×M

G(x, y)dµ(x)dν(y). (3.2)

We begin by proving the following result that may be seen as a comparison of
distances where the ‘energy distance’ between two probability measures µ, ν ∈ P(M) of
finite energy is defined as

√
E(µ− ν). This is the analogue of [4, Theorem 1.1].

Lemma 3.2 (Comparison of distances). Let µ, ν ∈ P(M) such that H(µ) and H(ν) are
finite. Then E(µ− ν) ≥ 0 and

W1(µ, ν) ≤
√
E(µ− ν).

Proof. First suppose µ and ν differentiable, i.e. suppose they have a differentiable
density with respect to π. Define U : M → R by

U(x) =

∫
M

G(x, y) (dµ(y)− dν(y)) .

Then, as remarked in (1.2), we know that U is differentiable and

∆U = − (µ− ν) .

Take f ∈ C∞(M) such that ‖∇f‖∞ ≤ 1. We can see that∫
M

f (dµ− dν) = −
∫
M

f∆U =

∫
M

〈∇f,∇U〉dπ ≤ ‖∇f‖2‖∇U‖2 ≤ ‖∇f‖∞‖∇U‖2.

We also know that

(‖∇U‖2)2 =

∫
M

〈∇U,∇U〉dπ = −
∫
M

U∆U =

∫
M

U(dµ− dν) = E(µ− ν).
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Then, ∫
M

f (dµ− dν) ≤ ‖∇f‖∞‖∇U‖2 ≤ ‖∇f‖∞
√
E(µ− ν).

This implies that

W1(µ, ν) ≤
√
E(µ− ν).

In general, let µ, ν ∈ P(M) such that H(µ) and H(ν) are finite. Take two sequences
{µn}n∈N and {νn}n∈N of differentiable probability measures that converge to µ and ν

respectively and such that E(µn) → E(µ) and E(νn) → E(ν) (see [3] for a proof of their
existence) and proceed by a limit argument.

The next step to prove Theorem 3.1 is a fact that works for general two-body interac-
tions i.e. G is not necessarily a Green function.

Lemma 3.3 (Comparison of energies). Suppose that µeq is a probability measure such
that H(µeq) ≤ H(µ) for every µ ∈ P(M). Then, for every µ ∈ P(M) such that H(µ) <∞,
we have

E(µ− µeq) ≤ E(µ)− E(µeq).

Proof. As H(µ) and H(µeq) are finite we use (3.2) to notice that the affirmation

E(µ− µeq) ≤ E(µ)− E(µeq)

is equivalent to ∫
M×M

G(x, y)dµ(x)dµeq(y) ≥ E(µeq).

But, if ∫
M×M

G(x, y)dµ(x)dµeq(y) < E(µeq)

were true then, defining µt = (1−t)µeq+tµ = µeq+t(µ−µeq), we would see that the linear
term of E(µt) is

∫
M×M G(x, y)dµ(x)dµeq(y)− E(µeq) < 0. This means that E(µt) < E(µeq)

for t > 0 small which is a contradiction.

Now we may complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let µeq be a minimizer of H and let µ ∈ P(M) be a probability
measure on M . If H(µ) is infinite there is nothing to prove. If it is not, by Lemma 3.2
and 3.3 we conclude (3.1).

To prove that H has a unique minimizer suppose µ̃eq is another minimizer and use
Inequality (3.1) with µ = µ̃eq to get W1(µ̃eq, µeq) = 0 and, thus, µ̃eq = µeq.

Finally, to see that µeq = π we use (1.3). Then E(µ − π) = E(µ) − E(π) when µ has
finite energy. But by Lemma 3.2 we know that E(µ − π) ≥ 0 and then E(µ) ≥ E(π) for
every µ ∈ P(M) of finite energy.

In the next section we study a way to regularize the empirical measures in the sense
of the hypotheses of Theorem 2.2.

4 Heat kernel regularization of the energy

In this section the main tool is the heat kernel for ∆. A proof of the following
proposition may be found in [5, Chapter VI].
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Proposition 4.1 (Heat kernel). There exists a unique differentiable function

p : (0,∞)×M ×M → R

such that
∂

∂t
pt(x, y) = ∆y pt(x, y) and lim

t→0
pt(x, ·) = δx

for every x, y ∈M and t > 0. Such a function will be called the heat kernel for ∆. It is
non-negative, it is mass preserving, i.e.∫

M

pt(x, y)dπ(y) = 1

for every x ∈M and t > 0, it is symmetric, i.e.

pt(x, y) = pt(y, x)

for every x, y ∈M and t > 0 and it satisfies the semigroup property i.e.∫
M

pt(x, y)ps(y, z)dπ(y) = pt+s(x, z)

for every x, y ∈M and t, s > 0. Furthermore,

lim
t→∞

pt(x, y) = 1

uniformly on x and y.

Let p be the heat kernel associated to ∆. For each point x ∈M and t > 0 define the
probability measure µtx ∈ P(M) by

dµtx = pt(x, ·)dπ, (4.1)

or, more precisely, dµtx(y) = pt(x, y)dπ(y). Then we define Rt : Mn → P(M) by

Rt(x1, . . . , xn) =
1

n

n∑
i=1

µtxi

and we want to find an and bn of the hypotheses of Theorem 2.2 for R = Rt.
We begin by looking for bn.

4.1 Distance to the regularized measure

Proposition 4.2 (Distance to the regularized measure). There exists a constant C > 0

such that for all t > 0 and ~x ∈Mn

W1(Rt(~x), in(~x)) ≤ C
√
t.

Proof. The following arguments are very similar to those in [11] and they will be repeated
for convenience of the reader. As W1 : P(M)×P(M)→ [0,∞) is the supremum of linear
functions, it is convex. So

W1(Rt(~x), in(~x)) ≤ 1

n

n∑
i=1

W1(δxi , µ
t
xi).

Then, we will try to find a constant C > 0 such that W1(δx, µ
t
x) ≤ C

√
t for every x ∈M .

As the only coupling between δx and µtx is their product we see that

W1(δx, µ
t
x) =

∫
M

dg(x, y)dµtx(y).
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In fact we will study the 2-Kantorovich squared distance between δx and µtx

Dt(x) =

∫
M

dg(x, y)2dµtx(y)

=

∫
M

dg(x, y)2pt(x, y)dπ(y).

If we prove that there exists a constant C > 0 such that for every x ∈M

Dt(x) ≤ C2t (4.2)

we may conclude that W1(δx, µ
t
x) ≤ C

√
t for every x ∈ M by Jensen’s inequality. To

obtain (4.2) we use the following lemma which proof may be found in [8, Section 3.4]
and [8, Theorem 3.5.1].

Lemma 4.3 (Radial process representation). Take x ∈M . Let X be the Markov process
with generator ∆ starting at x (i.e. Xt = B2t where B is a Brownian motion on M

starting at x). Define r : M → [0,∞) by r(y) = dg(x, y). Then r is differentiable π-
almost everywhere and there exists a non-decreasing process L and a one-dimensional
Euclidean Brownian motion β such that

r(Xt) = β2t +

∫ t

0

∆r(Xs)ds− Lt

for every t ≥ 0 where ∆r is the π-almost everywhere defined Laplacian of r.

Applying Lemma 4.3 and Itô’s formula and then taking expected values we get

E[r(Xt)
2] = 2

∫ t

0

E[r(Xs)∆r(Xs)]ds−E
[
2

∫ t

0

r(Xs)dLs

]
+2t ≤

∫ t

0

2E[r(Xs)∆r(Xs)]ds+2t

where we are using the notation of Lemma 4.3. By [8, Corollary 3.4.5] we know that r∆r
is bounded in M and as Dt(x) = E[r(Xt)

2] we obtain (4.2) where the constant C does
not depend on x.

Now we will look for an of the hypotheses of Theorem 2.2.

4.2 Comparison between the regularized and the non-regularized energy

Theorem 4.4 (Comparison between the regularized and the non-regularized energy). Let
m be the dimension of M . If m = 2 there exists a constant C > 0 such that, for every
n ≥ 2, t ∈ (0, 1] and ~x ∈Mn,

Hn(~x) ≥ H(Rt(~x))− t+
1

8πn
log(t)− C

n
.

If m > 2 there exists a constant C > 0 such that, for every n ≥ 2, t ∈ (0, 1] and ~x ∈Mn,

Hn(~x) ≥ H(Rt(~x))− t− C

nt
m
2 −1

.

The terms 1
8π log(t)− C and −1/tm/2−1 come from the self-interaction of the regular-

ized punctual charges while the term −t comes from the negatively charged background.
In the Euclidean setting, as there is no charged background, the 1

8π log(t) − C and
−1/tm/2−1 terms arise from the self-interactions without potential and the −t term arise
from the regularization of the potential. The proof may be adapted to treat two-body
interactions by the Green function of different Markov processes where the short-time
asymptotic behavior is known.
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To compare H(Rt(~x)) and Hn(~x) we will write, for ~x = (x1, . . . , xn) ∈Mn,

H(Rt(~x)) =
1

n2

∑
i<j

∫
M×M

G(α, β)dµtxi(α)dµtxj (β) +
1

2n2

n∑
i=1

∫
M×M

G(α, β)dµtxi(α)dµtxi(β).

Let us define

Gt(x, y) =

∫
M×M

G(α, β)dµtx(α)dµty(β)

=

∫
M×M

G(α, β)pt(x, α)dπ(α)pt(y, β)dπ(β).

Then we may write

H(Rt(~x)) =
1

n2

∑
i<j

Gt(xi, xj) +
1

2n2

n∑
i=1

Gt(xi, xi).

So we want to compare Gt and G. The idea we shall use is that if G is the kernel of the
operator Ḡ and pt is the kernel of the operator P̄t then Gt is the kernel of the operator
P̄tḠP̄t. But using the eigenvector decomposition we can see that

Ḡ =

∫ ∞
0

(
P̄s − e0 ⊗ e∗0

)
ds (4.3)

where e0 is the eigenvector of eigenvalue 0, i.e. the constant function equal to one. Then

P̄tḠP̄t =

∫ ∞
0

(
P̄2t+s − e0 ⊗ e∗0

)
ds (4.4)

where we have used the semigroup property of t 7→ P̄t, the fact that P̄te0 = e0 and
P̄ ∗t = P̄t. Notice that this representation can also be obtained when G is the Green
function of different Markov processes.

We will prove the previous idea in a somehow different but very related way. We
begin by proving the analogue of (4.3).

Proposition 4.5 (Integral representation of the Green function). For every pair of dif-
ferent points x, y ∈ M the function t 7→ pt(x, y) − 1 is integrable. For every x ∈ M

the negative part of the function t 7→ pt(x, x)− 1 is integrable. Moreover, we have the
following integral representation of the Green function. For every x, y ∈M

G(x, y) =

∫ ∞
0

(pt(x, y)− 1) dt.

Proof. To prove the integrability of t 7→ pt(x, y)− 1 we will need to know the behavior of
pt for large and short t. For the large-time behavior we have the following result.

Lemma 4.6 (Large-time behavior). There exists λ > 0 such that for every T > 0, s ≥ 0

and x, y ∈M
|pT+s(x, y)− 1| ≤ e−λs

√
|pT (x, x)− 1||pT (y, y)− 1|. (4.5)

Proof. We follow the same arguments as in the proof of [7, Corollary 3.7]. By the
semigroup property, the symmetry of pt and the Cauchy-Schwarz inequality we get

|pT+s(x, y)− 1| =
∣∣∣∣∫
M

(
pT+s

2
(x, z)− 1

)(
pT+s

2
(z, y)− 1

)
dπ(z)

∣∣∣∣
≤
∥∥∥pT+s

2
(x, ·)− 1

∥∥∥
L2

∥∥∥pT+s
2

(y, ·)− 1
∥∥∥
L2
.

(4.6)
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If λ is the first strictly positive eigenvalue of −∆ and if f ∈ L2(M) we get∥∥∥∥∫
M

(
p s

2
(·, z)− 1

)
f(z)dπ(z)

∥∥∥∥
L2

≤ e−λ s2
∥∥∥∥ f − ∫

M

fdπ

∥∥∥∥
L2

.

If we choose f = pT
2

(x, ·)− 1 we obtain∥∥∥pT+s
2

(x, ·)− 1
∥∥∥
L2
≤ e−λ s2

∥∥∥pT
2

(x, ·)− 1
∥∥∥
L2

= e−λ
s
2

√
pT (x, x)− 1 (4.7)

where we have used the semigroup property for the last equality. Similarly, we get∥∥∥pT+s
2

(y, ·)− 1
∥∥∥
L2
≤ e−λ s2

√
pT (y, y)− 1. (4.8)

By (4.6), (4.7) and (4.8) we may conclude (4.5).

For the short-time behavior, [8, Theorem 5.3.4] implies the following lemma.

Lemma 4.7 (Short-time behavior). Let m be the dimension of M . Then there exist two
positive constants C1 and C2 such that for every t ∈ (0, 1) and x, y ∈M we have

C1

t
m
2
e−

dg(x,y)
2

4t ≤ pt(x, y) ≤ C2

tm−
1
2

e−
dg(x,y)

2

4t .

The integrability of t 7→ pt(x, y)−1 when x 6= y and the fact that
∫∞

0
(pt(x, x)−1)dt =∞

for every x ∈M can be obtained from Lemma 4.7 and Lemma 4.6.
Using Lemma 4.6 and the dominated convergence theorem we obtain the continuity

of the function (x, y) 7→
∫∞

1
(pt(x, y) − 1) dt at any (x, y) ∈ M ×M . By the dominated

convergence theorem and Lemma 4.7 we obtain the continuity of the function given
by (x, y) 7→

∫ 1

0
(pt(x, y)− 1) dt for x 6= y. Using Fatou’s lemma we obtain the continuity

of (x, y) 7→
∫ 1

0
(pt(x, y) − 1) dt at (x, y) such that x = y. So, we get that the function

K : M ×M → (−∞,∞] defined by

K(x, y) =

∫ ∞
0

(pt(x, y)− 1)dt

is continuous. The following lemma assures that K(x, ·) is integrable for every x ∈M .

Lemma 4.8 (Global integrability). For every x ∈M∫ ∞
0

∫
M

|pt(x, y)− 1|dπ(y)dt <∞.

Proof. Take T > 0. By Lemma 4.6 we obtain that∫ ∞
T

∫
M

|pt(x, y)− 1|dπ(y)dt <∞.

On the other hand we have∫ T

0

∫
M

|pt(x, y)− 1|dπ(y)dt ≤
∫ T

0

∫
M

(pt(x, y) + 1)dπ(y)dt = 2T <∞.

Let 0 = λ0 < λ1 ≤ λ2 ≤ . . . be the sequence of eigenvalues of −∆ and e0, e1, e2, . . .

the sequence of respective eigenfunctions. Then, for every ψ ∈ C∞(M)

∞∑
n=0

exp(−λnt)|〈en, ψ〉|2 = 〈ψ, et∆ψ〉 =

∫
M×M

ψ(x)pt(x, y)ψ(y)dπ(x)dπ(y).
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Equivalently, we have
∞∑
n=1

exp(−λnt)|〈en, ψ〉|2 =

∫
M×M

ψ(x)(pt(x, y)− 1)ψ(y)dπ(x)dπ(y)

and integrating in t from zero to infinity we obtain
∞∑
n=1

1

λn
|〈en, ψ〉|2 =

∫
M×M

ψ(x)K(x, y)ψ(y)dπ(x)dπ(y).

By a polarization identity we have that, for every φ, ψ ∈ C∞(M),
∞∑
n=1

1

λn
〈ψ, en〉〈en, φ〉 =

∫
M×M

ψ(x)K(x, y)φ(y)dπ(x)dπ(y).

Taking φ = ∆α we get

〈ψ, α〉 −
∫
M

ψdπ

∫
M

αdπ =

∞∑
n=1

〈ψ, en〉〈en, α〉 =

∫
M×M

ψ(x)K(x, y)∆α(y)dπ(x)dπ(y).

By definition of the Green function we know that
∫
M
G(x, y)∆α(y)dπ(y) = −α(x)+

∫
M
αdπ

and thus∫
M×M

ψ(x)G(x, y)∆α(y)dπ(x)dπ(y) =

∫
M×M

ψ(x)K(x, y)∆α(y)dπ(x)dπ(y).

As
∫
M
K(x, y)dπ(y) = 0 =

∫
M
G(x, y)dπ(y) and by the continuity of K and G we obtain

G(x, y) = K(x, y) for every x, y ∈M .

Now we will state and prove (4.4).

Proposition 4.9 (Integral representation of the regularized Green function). For every
t > 0 and x, y ∈M

Gt(x, y) =

∫ ∞
2t

(ps(x, y)− 1) ds.

Proof. Take the time (i.e. with respect to t) derivative (denoted by a dot above the
function)

Ġt(x, y) =

∫
M×M

ṗt(x, α)G(α, β)pt(y, β)dπ(α)dπ(β)

+

∫
M×M

ṗt(x, α)G(α, β)ṗt(y, β)dπ(α)dπ(β).

We will study the first term of the sum (the second being analogous).∫
M×M

ṗt(x, α)G(α, β)pt(y, β)dπ(α)dπ(β)

=

∫
M×M

∆αpt(x, α)G(α, β)pt(y, β)dπ(α)dπ(β)

=

∫
M

(∫
M

∆αpt(x, α)G(α, β)dπ(α)

)
pt(y, β)dπβ)

=

∫
M

(∫
M

pt(x, α)∆αG(α, β)dπ(α)

)
pt(y, β)dπ(β)

=

∫
M

(∫
M

pt(x, α) (−δβ(α) + 1) dπ(α)

)
pt(y, β)dπ(β)

=

∫
M

(−pt(x, β) + 1) pt(y, β)dπ(β)

= −p2t(x, y) + 1
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where in the last line we have used the symmetry and the semigroup property of p. Using
again the symmetry of p we get

Ġt(x, y) = −2p2t(x, y) + 2,

and by integrating we obtain

Gt(x, y)−Gs(x, y) =

∫ t

s

(−2p2u(x, y) + 2) du =

∫ 2t

2s

(−ps(x, y) + 1) ds

for every 0 < s < t <∞. As a consequence of the uniform convergence of Proposition
4.1 we can see that µtx and µty defined in (4.1) converge to π as t goes to infinity. Fix
any T > 0. As GT+s(x, y) =

∫
M×M GT (α, β)dµsx(α)dµsy(β) for any s > 0 and as GT is

continuous we obtain limt→∞Gt(x, y) =
∫
M×M GT (x, y)dπ(x)dπ(y) = 0 and then

Gt(x, y) =

∫ ∞
2t

(ps(x, y)− 1)ds.

Using Proposition 4.5 and 4.9 we conclude the following inequality. We can find an
analogous result in [10, Lemma 5.2].

Corollary 4.10 (Off-diagonal behavior). For every n ≥ 2, t > 0 and (x1, . . . , xn) ∈Mn∑
i<j

G(xi, xj) ≥
∑
i<j

Gt(xi, xj)− t n2.

Proof. As the heat kernel is non-negative, by Proposition 4.5 and 4.9 we have that, for
every x, y ∈M ,

G(x, y)−Gt(x, y) =

∫ 2t

0

(ps(x, y)− 1) ds ≥ −2t.

Then, if (x1, . . . , xn) ∈Mn,∑
i<j

G(xi, xj) ≥
∑
i<j

Gt(xi, xj)− t n(n− 1) ≥
∑
i<j

Gt(xi, xj)− t n2.

What is left to understand is
∑n
i=1Gt(xi, xi). This will be achieved using Proposition

4.9 and the short-time asymptotic expansion of the heat kernel. A particular case is
mentioned in [10, Lemma 5.3].

Proposition 4.11 (Diagonal behavior). Let m be the dimension of M . If m = 2 there
exists a constant C > 0 such that for every t ∈ (0, 1] and x ∈M

Gt(x, x) ≤ − 1

4π
log(t) + C.

If m > 2 there exists a constant C > 0 such that for every t ∈ (0, 1] and x ∈M

Gt(x, x) ≤ C

t
m
2 −1

.

Proof. By the asymptotic expansion of the heat kernel (see for instance [5, Chapter VI.4])
we have that there exists a constant C̃ > 0 (independent of x and t) such that, for t ≤ 1,∣∣∣∣pt(x, x)− 1

(4πt)
m
2

∣∣∣∣ ≤ C̃t−m2 +1.

Then,

pt(x, x) ≤ 1

(4πt)
m
2

+ C̃t−
m
2 +1. (4.9)
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We know by Proposition 4.9 that

Gt(x, x) =

∫ ∞
2t

(ps(x, x)− 1)ds

=

∫ 2

2t

(ps(x, x)− 1)ds+

∫ ∞
2

(ps(x, x)− 1)ds

≤
∫ 2

2t

[
1

(4πs)
m
2

+ C̃s−
m
2 +1 − 1

]
ds+

∫ ∞
2

(ps(x, x)− 1)ds

=

∫ 2

2t

[
1

(4πs)
m
2

+ C̃s−
m
2 +1

]
ds+G2(x, x).

In the case m = 2 we obtain that, for t ∈ (0, 1],

Gt(x, x) ≤ − 1

4π
log(t) + C

where C is 2C̃ plus a bound for G2(x, x) independent of x. In the case m > 2 we use
that s−m/2+1 ≤ 2s−m/2 for s ∈ (0, 1] and that G2(x, x) is bounded from above to obtain a
constant C such that, for t ∈ (0, 1],

Gt(x, x) ≤ C

t
m
2 −1

.

Knowing the diagonal and off-diagonal behavior of the regularized Green function we
can proceed to prove Theorem 4.4.

Proof of Theorem 4.4. Take ~x = (x1, . . . , xn) ∈Mn. Then if m = 2 we have

Hn(~x) ≥ 1

n2

∑
i<j

Gt(xi, xj)− t

≥ 1

n2

∑
i<j

Gt(xi, xj)− t+
1

2n2

n∑
i=1

Gt(xi, xi) +
1

8πn
log(t)− 1

2n
C

= H(Rt(~x))− t+
1

8πn
log(t)− 1

2n
C

where we have used Corollary 4.10 and Proposition 4.11. If m > 2 we proceed in the
same way to get

Hn(~x) ≥ 1

n2

∑
i<j

Gt(xi, xj)− t

≥ 1

n2

∑
i<j

Gt(xi, xj)− t+
1

2n2

n∑
i=1

Gt(xi, xi) +
C

2nt
m
2 −1

= H(Rt(~x))− t+
C

2nt
m
2 −1

.

Remark 4.12 (Euclidean setting). Let us give a quick explanation of the regularization
of the energy in the Euclidean case. Define the two-body interaction G by

G(x, y) =

{
− log |x− y| if m = 2

|x− y|2−m if m > 2
.

Suppose µ is a radial probability measure on Rm of finite energy, i.e. such that∫
Rm×Rm |G(x, y)|dµ(x)dµ(y) <∞. For ε > 0 define Sε : Rm → Rm by

Sε(x) = εx
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and for x ∈ Rm define Tx : Rm → Rm by

Tx(α) = α+ x.

The regularization of the punctual charge at x ∈ Rm will be µεx = (Tx ◦ Sε)∗µ where
the subindex ∗ is used to denote the image measure. Define the two-body regularized
interaction Gε by

Gε(x, y) =

∫
Rm×Rm

G(α, β)dµεx(α)dµεy(β).

The analogue of Corollary 4.10 would be∑
i<j

G(xi, xj) ≥
∑
i<j

Gε(xi, xj)

which is a consequence of the superharmonicity of G(x, ·). The analogue of Proposition
4.11 would be

Gε(x, x) = − log ε−
∫
Rm×Rm

log |α− β|dµ(α)dµ(β)

when m = 2 and

Gε(x, x) = ε2−m
∫
Rm×Rm

|α− β|2−mdµ(α)dµ(β)

when m > 2. This is a straightforward application of the change-of-variables formula.
Finally, if we define Rε(x1, . . . , xn) = 1

n

∑n
i=1 µ

ε
xi , the analogue of Proposition 4.2 would

be

W1(Rε(~x), in(~x)) ≤ ε
∫
Rm
|y|dµ(y).

Having acquired all the tools to apply Theorem 2.2 to the case of a Coulomb gas
on a compact Riemannian manifold, the next section will be devoted to prove the main
theorem and its almost immediate extension.

5 Proof of the concentration inequality for Coulomb gases

Proof of Theorem 1.1. First, we notice that en =
∫
M
Hndµeq = n−1

n e = 0. To use Theo-
rem 2.2 we define

f(r) =
r2

2
and R = Rt for t = n−

2
m .

In this case, Proposition 4.2 tells us that W1(R(~x), in(~x)) ≤ C/n1/m for some C > 0

independent of ~x and n. This may be considered as the natural choice since 1/n1/m is
the ‘closest’ a fixed probability measure absolutely continuous with respect to π can get
to an arbitrary empirical measure of n points.

If m = 2, by Theorem 4.4 and Proposition 4.2, we have that there exists a constant
C̃ > 0 such that

Hn(~x) ≥ H(R(~x))− 1

8πn
log(n)− C̃

n

W1(R(~x), in(~x)) ≤ C̃√
n

for every ~x ∈ Mn and n ≥ 2 so we can apply Theorem 2.2 to obtain the desired result
with C = C̃2

2 + C̃. Similarly, if m > 2, by Theorem 4.4 and Proposition 4.2, we have that

there exists a constant C̃ > 0 such that

Hn(~x) ≥ H(R(~x))− C̃

n
2
m
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W1(R(~x), in(~x)) ≤ C̃

n
1
m

for every ~x ∈Mn and n ≥ 2 so we we can apply Theorem 2.2 to obtain the desired result
with C = C̃2

2 + C̃.

Finally we present the proof of Theorem 1.2.

Proof of Theorem 1.2. To apply Theorem 2.2 we notice that Assumption A is satisfied by
f(r) = r2

2 . Indeed, Theorem 3.1 is still true for this new H except for the caracterization
of the minimizer. In particular, H has a unique minimizer. By a calculation we can see
that e− en = 1

2n

∫
M×M G(x, y)dµeq(x)dµeq(y) which is of order 1

n and will be absorbed by
the constant C. To meet the hypotheses of Theorem 2.2, we need to compare

1

n

n∑
i=1

V (xi) and
1

n

n∑
i=1

∫
M

V dµtxi .

By using the relation

E[V (Xt)] = V (x) +

∫ t

0

E[∆f(Xs)]ds

where Xt is the Markov process with generator ∆ starting at x we obtain

|E[V (Xt)]− V (x)| ≤ Ĉt

where Ĉ is some upper bound to ∆V and thus∣∣∣∣∣ 1n
n∑
i=1

∫
M

V dµtxi −
1

n

n∑
i=1

V (xi)

∣∣∣∣∣ ≤ Ĉt.
In conclusion, if we choose R = R

n− 2
m

, there still exists a constant C > 0 such that

Hn(~x) ≥ H(R(~x))− 1

8πn
log(n)− C

n

in dimension two and

Hn(~x) ≥ H(R(~x))− C

n
2
m

in dimension m > 2 so that we can apply Theorem 2.2.
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