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Abstract. Consider a renewal–reward process SN(t) = ∑N(t)
k=1 Xk and let

{τn} be the interarrival times. It is well known that, under regularity con-
ditions, SN(t) is asymptotically Gaussian provided Xn and τn have finite sec-
ond moment. However, in modelling risk processes or heavy traffic networks,
the assumption of the finiteness of the second moment may not be compat-
ible. Also, the independency of the processes {Sn} and {N(t)} might be not
realistic. In this situation, heavy-tailed distributions arise as a proper alterna-
tive and dependency between τn and the reward Xn should be allowed. By
making use of the Mallows–Wasserstein distance we derive CLT type results
for heavy-tailed renewal–reward dependent processes. Applications to risk
processes and heavy traffic networks are exhibited.

1 Introduction

Consider a renewal–reward process SN(t) = ∑N(t)
k=1 Xk with the renewal process {N(t)} given

by N(t) = sup{n : ∑n
k=1 τk ≤ t}. We assume that the rewards {Xn} and inter-renewal times

{τn} are sequences of independent and identically distributed (i.i.d.) random variables (r.v.’s).
It is well known that if 0 < E{τ 2

n } < ∞ and 0 < E{X2
n} < ∞ then the independence of the

processes {N(t)} and {Xn} assures that SN(t) is asymptotic Gaussian distribution.
However, in modelling risk processes or heavy traffic networks the assumption of the

finiteness of the second moment or the independence of {N(t)} and {Xn} may not be compat-
ible. In this case, heavy-tailed distributions arise as a suitable alternative and the dependency
structures should be allowed. This leads us to consider the most important class of heavy-
tailed distributions, namely, the α-stable laws (see Definition 2) that possess finite mean and
infinite variance (Gα , 1 < α < 2). Due to their infinite divisibility property, the stable laws
play a central role in the study of asymptotic behavior of normalized partial sums, a similar
role normal distribution (α = 2) plays among distributions with finite second moment.

A useful tool to handle stable laws is provided by the Mallows–Wasserstein metric on the
space of distributions.

Definition 1. The r-Mallows–Wasserstein metric between distributions F and G is

dr(F,G) = inf
(X,Y )

{
E

(|X − Y |r)}1/r
, r ≥ 1, (1.1)

where the infimum is taken over all random vectors (X,Y ) with marginal distributions F and

G, that is, X
d= F and Y

d= G (X d= F : equality in distribution, in the sense that X possesses
distribution F ).
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Its close connection with the weak convergence was established by Bickel and Freedman
(1981). For r ≥ 1 and for distribution functions (d.f.) G ∈ Lr and {Fn}n≥1 ⊂ Lr we have

dr(Fn,G) →
n

0 ⇔ Fn
d→ G and

∫
|x|r dFn(x) →

n

∫
|x|r dG(x), (1.2)

where

Lr =
{
F :

∫
|x|r dF (x) < ∞

}
(1.3)

and
d→ stands for convergence in distribution of random variables with distributions Fn

and G.
By exploring this connection interesting results establishing Central Limit type asymptotic

for stable laws can be found in Johnson and Samworth (2005) and Barbosa and Dorea (2009).
In this note, we derive CLT type results by showing that SN(t) is asymptotically stable in the
sense that

SN(t) − bN(t)

aN(t)

d→ Gα, 1 < α < 2,

{aN(t)} and {bN(t)} are random constants sequences with aN(t) > 0 almost surely.
In the context of renewal–reward processes and under heavy-tailed setting there is a vast

bibliography on the matter. Regarding the CLT type results, Levy and Taqqu (2000) stud-
ied the case where both the inter-renewal times {τn} and rewards {Xn} were heavy-tailed
with stability index α′ and α, respectively. By assuming 1 < α < α′ < 2 and the indepen-
dence between {τn} and {Xn} they proved that the process, suitably normalized, converges
in distribution to a symmetric β-stable process which possesses stationary increments and
is self-similar. More recently, Owada and Samorodnitsky (2015), established a new class of
functional CLT type theorems for partial sums of symmetric stationary infinitely divisible
processes with regularly varying Levy measures. For results on randomly indexed partial
sums under independence of {τn} and {Xn} we may cite Klesov (1995), Ng et al. (2004) and
Pipiras, Taqqu and Levy (2004).

Dependence structures among heavy-tailed rewards Xn’s have been considered in a large
amount of works. For related results on asymptotics for risk processes and traffic networks we
can mention Nyrhinen (2001), Tang and Tsitsiashvili (2003), Goovaerts et al. (2005), Laeven,
Goovaerts and Hoedemakers (2005), Tang and Vernic (2007), Chen and Ng (2007), Zhang,
Shen and Weng (2009), Yang and Wang (2013) and Sun and Wei (2014). Somehow related to
our work Cheng (2015) discussed the situation when τn has heavier tail than Xn and {Xn}’s
are widely orthant dependent.

Theorem 1 shows that if there is independence between {τn} and {Xn}, CLT type results
can be derived for stable laws. In fact, we obtain convergence in Mallows–Wasserstein dis-
tance and as a consequence convergence in distribution, without the hypothesis 1 < α <

α′ < 2. And this extends Levy and Taqqu’s (2000) result. Theorem 2 shows that these results
still hold when the independence between {Xn} and {τn} is dropped. Applications for surplus
process associated to risk processes and for cumulative heavy-traffic load in the context of
data traffic are included.

2 Preliminary results

Definition 2. For 0 < α ≤ 2, we say that Sα(σ,β,μ) is an α-stable distribution with scale
parameter σ > 0, skewness parameter |β| ≤ 1 and shift parameter μ ∈ R, if for any n ≥ 2,
there are real numbers dn = dn(σ,β,μ) such that

Y1 + Y2 + · · · + Yn
d= n1/αY + dn, Y has distribution function Sα(σ,β,μ), (2.1)
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where Y1, Y2, . . . , Yn are independent copies of Y . The normal distribution corresponds to
N (μ,2σ 2) = S2(σ,0,μ).

Proposition 1. Assume that Y is Sα(σ,β,μ) then

(a) If 0 < α′ < α < 2, then E(|Y |α′
) < ∞ and E(|Y |α) = ∞.

(b) If α > 1, then for μ = E(Y ) we have dn = μ(n − n1/α).
(c) If α 
= 1, then aY + b is Sα(|a|σ, sign(a)β, aμ + b) for all a ∈ R∗ and b ∈ R.

As for the Mallows–Wasserstein distance (1.1), it satisfies the metric relation

dr(F,G) ≤ dr(F,H) + dr(H,G), r ≥ 1 (2.2)

(see, for example, Samorodnitsky and Taqqu, 1994).
The following representation theorem will be helpful for its evaluation. Noting that the

finiteness of the r-moment of F and G can be dropped which differentiates it from previous
results as Bickel and Freedman (1981) or Dorea and Ferreira (2011).

Lemma 1 (Dorea and Ferreira, 2011). For r ≥ 1 we have

dr
r (F,G) = E

{∣∣X∗ − Y ∗∣∣r} =
∫

|x − y|r d
(
F(x) ∧ G(y)

)
, (2.3)

where X∗ and Y ∗ has distribution F and G, respectively, and (X∗, Y ∗) has distribution
F ∧ G, that is,

P
(
X∗ ≤ x,Y ∗ ≤ y

) = F(x) ∧ G(y) = min
{
F(x),G(y)

}
.

A key point to our proofs is the use of moment bounds. In Proposition 2, we gather some
moment inequalities that include von Bahr-Esseen inequality for independent random vari-
ables and martingale inequalities (cf. Hall and Heyde, 1980).

Proposition 2. Let ξ1, ξ2, . . . be a sequence of independent r.v.’s with zero-mean and let Vn =
ξ1 + · · · + ξn. Then for 1 < r < 2 we have

E
{|Vn|r} ≤ 2

n∑
k=1

E
{|ξk|r} (2.4)

and

λrP
(
max
k≤n

|Vk| > λ
)

≤ E
{|Vn|r}, ∀λ > 0. (2.5)

Moreover, if {|ξn|r}n≥1 is uniformly integrable then 1
n
E{|Vn|r} →

n
0.

Note that our partial sum SN(t) is a sequence of randomly indexed sums. Let νn be random

indexes, questions arise whether ξνn will preserve the convergence in distribution of ξn
d→ ξ .

To overcome this difficulty, we shall make use of the following.

Anscombe’s Condition. Let {νn}n≥1 be a sequence of random indexes diverging to infinity.

Assume that νn

n

p→ γ > 0 and that given ε > 0 there exists δ = δ(ε) > 0 such that for n ≥
N(ε) we have

P
(

max|k−n|≤δn
|ξk − ξn| ≥ ε

)
≤ ε.
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Then

ξn
d→ ξ ⇒ ξνn

d→ ξ

(
p→: convergence in probability, see more in Anscombe, 1952).

First, we show the following variant.

Lemma 2. Let {ξn}n≥1 be a sequence of i.i.d. r.v.’s with zero-mean and let Vn = ∑n
k=1 ξk .

Assume that 1 < r < 2 then given ε > 0 we have for 1 < r ′ < r and 0 < δ < 1/3,

P

(
max|k−n|≤δn

∣∣∣∣Vk

k
1
r

− Vn

n
1
r

∣∣∣∣ ≥ ε

)

≤ 4δ
r′
r

εr ′ max
{

1

[2δn] r′
r

E
(|V[2δn]|r ′)

,
1

[n(1 + δ)] r′
r

E
(|V[n(1+δ)]|r ′)}

, (2.6)

where [·] stands for the largest integer.

Proof. Let ε1 = ε/2. We have

P

(
max|k−n|≤δn

∣∣∣∣Vk

k
1
r

− Vn

n
1
r

∣∣∣∣ ≥ ε

)
≤ P(An ≥ ε1) + P(Bn ≥ ε1),

where

An = max|k−n|≤δn

∣∣∣∣Vk − Vn

n
1
r

∣∣∣∣ and Bn = max|k−n|≤δn

∣∣∣∣Vk

(
1

k
1
r

− 1

n
1
r

)∣∣∣∣.
Clearly, {Vn,σ (ξ1, . . . , ξn)}n≥1 forms a martingale. By stationarity and using (2.5), we have
for 1 < r ′ < r

P (An ≥ ε1) ≤ P
(

max|k−n|≤2δn
|Vk| ≥ ε1n

1
r

)

≤ 1

εr ′
1 n

r′
r

E
{|V[2δn]|r ′} ≤ 2δ

r′
r

εr ′
1

1

[2δn] r′
r

E
{|V[2δn]|r ′}

.

For the term Bn, first we show that

∣∣∣∣ 1

k
1
r

− 1

n
1
r

∣∣∣∣ ≤ 2δ
1
r

[n(1 + δ)] r′
r

, |k − n| ≤ δn,0 < δ <
1

3
. (2.7)

Since (1 + δ)
1
r − 1 ≤ δ

1
r for δ > 0, we have for k ≥ n

0 ≤ 1

n
1
r

− 1

k
1
r

≤ 1

[n(1 + δ)] 1
r

(
(1 + δ)

1
r − 1

) ≤ δ
1
r

[n(1 + δ)] 1
r

.

If k ≤ n, then

1

k
1
r

− 1

n
1
r

≤ 1

(n(1 − δ))
1
r

− 1

n
1
r

≤ 1

[n(1 + δ)] 1
r

(
1 + δ

1 − δ

) 1
r (

1 − (1 − δ)
1
r
) ≤ 2δ

1
r

[n(1 + δ)] 1
r

.



862 C. Y. Dorea, D. B. Ferreira and M. A. Oliveira

By assumption 0 < δ < 1/3, so that the last inequality follows from

(
1 + δ

1 − δ

) 1
r ≤ 2 and 1 − (1 − δ)

1
r ≤ δ

1
r .

Note that max|k−n|≤δn |Vk| ≤ maxk≤n(1+δ) |Vk|. Now, using (2.7) and the inequality (2.5) we
get for 1 < r ′ < r

P (Bn ≥ ε1) ≤ P

(
max

k≤n(1+δ)
|Vk| ≥ ε1

[n(1 + δ)] 1
r

2δ
1
r

)

≤ 2δ
r′
r

εr ′
1

1

[n(1 + δ)] r′
r

E
{|V[n(1+δ)]|r ′}

.

And (2.6) follows. �

Condition 1. (a) Let {(Xn, τn)}n≥1 be a sequence of i.i.d. r.v.’s with Xn has distribution FX

and τn has Fτ . Assume that τn ≥ 0 and that 0 < μτ = E(τn) < ∞.
(b) Assume that for some 1 < α < 2 there exists Y with distribution Gα = Sα(σ,β,μY )

such that dα(FX,Gα) < ∞.

Consider the renewal process associated with {τn}. From the classical renewal theory, we
have under Condition 1 as t → ∞,

N(t)

t

a.s.→ 1

μτ

, N(t) = sup

{
n :

n∑
k=1

τk ≤ t

}
(2.8)

(a.s.: almost sure convergence). The results from Lemma 2 can now be applied.

Lemma 3. Assume that Condition 1 holds. Then for independent copies Y1, Y2, . . . of Y we
have ∑N(t)

k=1 Yk − (N(t) − N
1
α (t))μY

N
1
α (t)

d→ Y. (2.9)

If, in addition, {τn} and {Yn} are independent then
∑N(t)

k=1 Yk − (N(t) − N
1
α (t))μY

N
1
α (t)

d= Y. (2.10)

Proof. Let 1 < α′ < α, by Proposition 1 we have E{|Y |α′ } < ∞. In particular μY < ∞. First,
we show that (2.10) holds or equivalently

1

N
1
α (t)

N(t)∑
k=1

Y ′
k

d= Y ′, Y ′
k = Yk − μY ,Y ′ = Y − μY . (2.11)

Since {Y ′
n} are i.i.d. we have from (2.1) and Proposition 1 that for any u

E

{
exp

(
iu

N
1
α (t)

N(t)∑
k=1

Y ′
k

)}
= ∑

n≥1

E

{
1
(
N(t) = n

)
exp

{(
iu

n
1
α

n∑
k=1

Y ′
k

)}}

= ∑
n≥1

P
(
N(t) = n

)
E

{
exp

(
iu

(
Y ′))} = E

{
exp

(
iu

(
Y ′))}.
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Using the notation from Lemma 2, write Vn = ∑n
k=1 Y ′

k and let α′ > 1. From (2.1), we

have E{|Vn|α′ } = n
α′
α E{|Y ′|α′ }. It follows that

1

[2δn] α′
α

E
{|V[2δn]|α′} = 1

[n(1 + δ)] α′
α

E
{|V[n(1+δ)]|α′} = E

{∣∣Y ′∣∣α′}
.

Given ε > 0, Lemma 2 gives for 0 < δ < 1/3

P

(
max|k−n|≤δn

∣∣∣∣Vk

k
1
r

− Vn

n
1
r

∣∣∣∣ ≥ ε

)
≤ 4δ

α′
α

εα′ E
{∣∣Y ′∣∣α′}

.

Note that from Proposition 1 (b) and (2.11), we have Vn

n
1
α

d→ Y ′. Thus, Anscombe’s Condition

is satisfied by the sequence { Vn

n
1
α

} provided δ < min{1
3 , ( εα′+1

4E{|Y ′|α′ })
α
α′ }. On the other hand,

from (2.8) we have N(tn)
tn

a.s.→ 1
μτ

> 0 for any sequence tn → ∞. Hence, VN(t)

N
1
α (t)

d→ Y ′ and (2.9)

follows. �

3 CLT and applications

Let α > 1 and Y with distribution Gα = Sα(σ,β,μY ). Assume that Y1, Y2, . . . are indepen-
dent copies of Y and such that (Xk,Yk) has distribution FX ∧ Gα as defined by (2.3). Note
that, under Condition 1, we have both μY and μX = E(Xk) finite.

Let Y ′
k = Yk −μY and X′

k = Xk −μX then we also have (X′
k, Y

′
k) with distribution F ′

X ∧G′
α

where Y ′
k is G′

α = Sα(σ,β,0) and X′
k is F ′

X . By Lemma 1, it follows that dα
α (F ′

X,G′
α) =

E{|X′
k − Y ′

k|α} < ∞.
The following notation will be used

FN(t)
d= SN(t) − bN(t)

N
1
α (t)

, bN(t) = N(t)μX − N
1
α (t)μY

and

GN(t)
d=

∑N(t)
k=1 Yk − (N(t) − N

1
α (t))μY

N
1
α (t)

.

Theorem 1 below can be viewed as an extension of Levy and Taqqu’s (2000) results as a
stronger Mallows convergence is established.

Theorem 1. Assume that Condition 1 holds and that {Xn}n≥1 and {τn}n≥1 are independent
processes. Then as t → ∞,

dα(FN(t),Gα) →
t

0 and
SN(t) − bN(t)

N
1
α (t)

d→ Y.

Moreover, for 1 < α′ < α we have

E

{∣∣∣∣SN(t) − bN(t)

N
1
α (t)

∣∣∣∣α
′}

→
t

E
{|Y |α′}

.

Proof. (i) First, we show that

E

{∣∣∣∣
∑N(t)

k=1 (X′
k − Y ′

k)

N
1
α (t)

∣∣∣∣α
}

→
t

0.
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Note that {(X′
n − Y ′

n)}n≥1 is a sequence of i.i.d. r.v.’s with zero-mean. It follows that
{∑n

k=1(X
′
k − Y ′

k), σ ((X′
1, Y

′
1), . . . , (X

′
n, Y

′
n))}n≥1 forms a martingale. Since E{|X′

k − Y ′
k|α}

has distribution αα(F ′
X,G′

α) < ∞ the sequence {|X′
n − Y ′

n|α}n≥1 is uniformly integrable. By
Proposition 2, we have

Ln = 1

n
E

{∣∣∣∣∣
n∑

k=1

(
X′

k − Y ′
k

)∣∣∣∣∣
α}

→
n

0. (3.1)

Thus, given ε > 0 there exists K(ε) such that for n ≥ K(ε) we have Ln ≤ ε. Now let T (ε)

such that for t ≥ T (ε) we have P(N(t) ≤ K(ε)) < ε. Since we may take {Y ′
n}n≥1 independent

of {τn}n≥1, it follows that

E

{∣∣∣∣
∑N(t)

k=1 (X′
k − Y ′

k)

N
1
α (t)

∣∣∣∣α
}

= ∑
n≥1

E

{
1

n

∣∣∣∣∣
n∑

k=1

(
X′

k − Y ′
k

)∣∣∣∣∣
α}

P
(
N(t) = n

) ≤ 2ε.

(ii) By Lemma 3, we have GN(t) = Gα and by (1.1),

dα
α (FN(t),Gα) = dα

α (FN(t),GN(t))

≤ E

{∣∣∣∣
∑N(t)

k=1 (X′
k − Y ′

k)

N
1
α (t)

∣∣∣∣α
}

→
t

0. (3.2)

(iii) The proof will be completed by making use of (1.2). Let 1 < α′ < α,

FN(t) = SN(t) − bN(t)

N
1
α (t)

and GN(t) =
∑N(t)

k=1 Yk − (N(t) − N
1
α (t))μY

N
1
α (t)

.

Thus, E{|GN(t)|α′ } < ∞ and GN(t) ∈ Lα′ . Writing FN(t) = FN(t) − GN(t) + GN(t), using
(3.2) and Minkowski’s inequality we get FN(t) ∈ Lα′ . Convergence of the moments and in
distribution follow. �

Next, we drop the assumption of independence between {Xn} and {τn} in the sense that for
each n ≥ 1 the random variables Xn and τn may be dependent.

Theorem 2. Assume that Condition 1 holds. Then

SN(t) − bN(t)

N
1
α (t)

d→ Y, bN(t) = N(t)μX − N
1
α (t)μY .

Proof. (i) Proceeding as in Theorem 1 and without loss of generality, we may assume

μX = μY = 0. Let Zk = Xk − Yk . From (3.1), we have
∑n

k=1 Zk

n
1
α

d→ 0. Since Z1,Z2, . . . is

a sequence of i.i.d. r.v.’s with zero-mean, we may apply Lemma 2 with Vn = ∑n
k=1 Zk ,

r ′ = α and r = α + 1/n. Since (Xk,Yk) has distribution FX ∧ Gα , by (2.3), we have
E{|Zk|α} = dα

α (FX,Gα) < ∞. From von Bahr-Esseen inequality (2.4), we have

E
{|V[2δn]|α} ≤ 2[2δn]dα

α (FX,Gα)

and

E
{|V[n(1+δ)]|α} ≤ 2

[
n(1 + δ)

]
dα
α (FX,Gα).

It follows that

P

(
max|k−n|≤δn

∣∣∣∣Vk

k
1
α

− Vn

n
1
α

∣∣∣∣ ≥ ε

)
≤ 4δ

α
r

εα
dα
α (FX,Gα)max

{
2[2δn]

[2δn]α/r
,

2[n(1 + δ)]
[n(1 + δ)]α/r

}
.
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Clearly [2δn]
[2δn]α/r and [n(1+δ)]

[n(1+δ)]α/r converges to 1. Then for n ≥ n0(ε)

P

(
max|k−n|≤δn

∣∣∣∣Vk

k
1
α

− Vn

n
1
α

∣∣∣∣ ≥ ε

)
≤ 8δ

α
α+1/n0

εα
(1 + ε)dα

α (FX,Gα).

Anscombe’s Condition and the fact that N(t)
t

→
t

1
μτ

> 0 give us
∑N(t)

k=1 Zk

N(t)
1
α

d→ 0.

(ii) From (2.9), we have
∑N(t)

k=1 Yk

N(t)
1
α

d→ Y . Using the fact: ξn
d→ ξ and ηn

d→ 0 assure ξn +
ηn

d→ ξ , we complete the proof. �

These results can be directly applied to risk processes and heavy-traffic load.

3.1 Risk process

It is usually modeled by a reserve process with initial capital R0,

Rt = R0 + ct −
N(t)∑
k=1

Zk,

where the premiums flow in at a rate c > 0 and {Zn} is the sequence of i.i.d. claims that
could reach very high values resulting in EZ2

n not finite. If Tn is the occurrence time
of the n-th claim, that is, N(t) = sup{n : Tn ≤ t}, the surplus process can be expressed
as STn = ∑n

k=1 Zk − cTn. By considering the inter-arrival times τ1, τ2, . . . we can write

Tn = ∑n
k=1 τk and SN(t) = ∑N(t)

k=1 (Zk −cτk). Clearly the processes {τn}n≥1 and {Zn −cτn}n≥1

are dependent. From Theorem 2, if Condition 1 is satisfied for Xn = Zn − cτn and τn then
we have the desired convergence.

Corollary 1. If {(Zn − cτn, τn)}n≥1 satisfies Condition 1, then for μZ = E(Zn) we have

lim
t→∞P

(
SN(t) − N(t)(μZ − cμτ ) − N

1
α (t)μY

N
1
α (t)

≤ x

)
= Gα(x), ∀x. (3.3)

Corollary 2. Assume that {(Zn, τn)}n≥1 satisfies Condition 1 and that for some α1 > α there

exists an α1-stable distribution Gα1
d= Sα1(σ1,0,μ1) such that dα1(Fτ ,Gα1) < ∞ then (3.3)

holds.

Proof. By Corollary 1 enough to show that {(Zn − cτn, τn)}n≥1 satisfies Condition 1. Let the
common d.f. of Zn − cτn be denoted by FZ−cτ and let Zn has distribution FZ . Since α > 1,
by (2.2), we have

dα(FZ−cτ ,Gα) ≤ dα(FZ−cτ ,FZ) + dα(FZ,Gα).

By Condition 1, we have dα(FZ,Gα) < ∞. Being α < α1 and dα1(Fτ ,Gα1) < ∞, we have
Ee{τα

n } < ∞. Now

dα
α (FZ−cτ ,FZ) ≤ E

{|Zn − cτn − Zn|α} = cαE
(
τα
n

)
< ∞.

Thus, Condition 1 is satisfied. �
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3.2 Heavy-traffic load

In the context of data traffic in communication networks, consider the model of an “on/off”
source sending random loads of traffic to a network node, where there is a buffer with large
capacity memory that stores the information until it is transmitted. The “on periods” are
represented by the sequence of i.i.d. nonnegative random variables τ on

1 , τon
2 , . . . and the “off

periods” by τ off
1 , τ off

2 , . . . . The inter-traffic periods τk are given by

τk = τ on
k + τ off

k , Tn =
n∑

k=1

τk

and for heavy-traffic situations one expects E(τon
n )2 = ∞. The cumulative traffic load at time

t can be approximated by

SN(t) =
N(t)∑
k=1

τ on
k , N(t) = sup{n : Tn ≤ t}. (3.4)

Clearly, the processes {τon
n }n≥1 and {τn}n≥1 are dependent.

Corollary 3. Assume that {(τ on
n , τn)}n≥1 satisfies Condition 1. Then for μτon = E(τon

n ) we
have

lim
t→∞P

(∑N(t)
k=1 τon

k − N(t)μτon − N
1
α (t)μY

N
1
α (t)

≤ x

)
= Gα(x).
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