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Abstract. In this work, we consider the problem of finding the moments of
a doubly truncated member of the class of scale mixtures of skew-normal
(TSMSN) distributions. We obtain a general result and then use it to derive
the moments in the case of doubly truncated versions of skew-normal, skew-
t, skew-slash and skew-contaminated normal distributions. Many properties
of the TSMSN family are studied, inference procedures are developed and a
simulation study is performed to assess the procedures. Two applications are
also provided, one of them in the context of censored regression models and
another in the field of actuarial sciences.

1 Introduction

The scale mixtures of skew-normal (SMSN) family of distributions, introduced by Branco
and Dey (2001), is a very flexible class of distributions which takes into account at the same
time skewness and heavy tails. Besides this, it has a stochastic representation that facilitates
the study of many properties. The skew-t, skew-slash, skew-contaminated normal and all the
symmetric class of scale mixtures of normal (SMN) distributions defined by Andrews and
Mallows (1974) belong to the SMSN family. However, applications (through simulation or
experimentation) often generate a large number of datasets that can be skewed-heavy-tailed
with values restricted to a fixed interval. For example, variables such as pH, grades, viral load
in HIV studies and humidity in environmental studies have upper and lower bounds, and the
support of their distributions is restricted to some interval.

Some broadly related proposals and results have appeared in the literature under the con-
cept of the truncated distribution. Kim (2008) presented the moments of a doubly truncated
generalized Student-t distribution and showed its utility for solving statistical problems. Genç
(2013) considered the problem of finding the moments of a doubly truncated member of the
symmetrical class of SMN distributions. He obtained a general result and then used it to de-
rive the moments in the case of doubly truncated versions of the Pearson type VII, slash,
contaminated normal, double exponential and variance gamma distributions. He applied the
results to some actuarial data. In the context of truncated skew distributions, Jamalizadeh,
Pourmousa and Balakrishnan (2009) obtained the first two moments of the the truncated
skew-normal and truncated skew-t distributions and Flecher, Allard and Naveau (2010) ob-
tained a general recursive formula for the moments of the truncated skew-normal distribution
and applied the results to model the relative humidity data. In this work, our objective is
to combine the results of Flecher, Allard and Naveau (2010) and Genç (2013) to derive the
moments of the truncated SMSN (TSMSN) distributions. We then particularize the general
result for some common SMSN distributions mentioned above. Since the first four moments
are most useful, we give expressions for them. Our proposal generalizes the results obtained
by Kim (2008), Flecher, Allard and Naveau (2010), Genç (2013) and Garay et al. (2017).
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The rest of the paper is organized as follows. In Section 2, we give a brief introduction of
the SMSN and TSMSN distributions. In Section 3, we outline the main results related to the
moments of the TSMSN distributions. Section 4 deals with particular cases of the TSMSN
distributions. Section 5 discusses two applications, one of them in the context of censored
regression models and another using real data in the field of actuarial sciences. Section 6
presents a simulation study to verify the performance of our proposed method and Section 7
concludes with some discussion and possible directions for future research.

2 Scale mixtures of skew-normal (SMSN) distributions

Throughout this paper, Np(μ,�) denotes the p-variate normal distribution with mean vector
μ and covariance matrix �, φp(·|μ,�) and �p(·|μ,�) denote its probability density func-
tion (pdf) and cumulative distribution function (cdf), respectively. When p = 1 we drop the
index p. In this case, if μ = 0 and σ 2 = 1 (the standard case), we write φ(·) for the pdf and
�(·) for the cdf.

We start by defining the skew-normal (SN) distribution and then we introduce some useful
properties. As defined by Azzalini (1985), a random variable Z has a skew-normal distribu-
tion with location parameter μ, scale parameter σ 2 and skewness parameter λ, denoted by
Z ∼ SN(μ,σ 2, λ), if its pdf is given by φSN(z|μ,σ 2, λ) = 2φ(z|μ,σ 2)�(λ(z − μ)/σ). We
denote the cdf of Z by �SN(·|μ,σ 2, λ). In the standard case we use φSN(·|λ) and �SN(·|λ)

for the pdf and cdf, respectively. As proved by Azzalini and Dalla Valle (1996, eqn. 2.11), we
have

�SN
(
z|μ,σ 2, λ

) = 2�2

(
z − μ

σ
e1

∣∣∣0,�

)
, (2.1)

where e1 = (1,0)� and

� =
(

1 −δ

−δ 1

)
, with δ = λ/

√
1 + λ2. (2.2)

If Z ∼ SN(μ,σ 2, λ), then a convenient stochastic representation is given by Z = μ +
�|T0| + �1/2T1, where � = σδ, � = (1 − δ2)σ 2, T0 and T1 are independent standard normal
random variables and | · | denotes the absolute value. This stochastic representation is useful
to generate random samples and to obtain moments and other related properties.

Definition 1. Let Z ∼ SN(0, σ 2, λ) and U a positive random variable with cdf H(·|ν).
Suppose that Z and U are independent. We say that the distribution of Y = μ + U−1/2Z is
a scale mixture of skew-normal distributions with location parameter μ, scale parameter σ 2,
shape parameter λ, and mixture distribution H(·|ν).

In this case, we use the notation Y ∼ SMSN(μ,σ 2, λ, ν). The random variable U is known
as the scale factor and the parameter ν can be a vector. The form of a SMSN distribution is de-
termined by the distribution of U . For example if P(U = 1) = 1, we have Y ∼ SN(μ,σ 2, λ).
If U ∼ Gamma(ν/2, ν/2), ν > 0, where Gamma(a, b) denotes the gamma distribution with
mean a/b, we have the skew-t distribution, denoted by Y ∼ ST(μ,σ 2, λ, ν). Other examples
will be given in Section 4. Note that when λ = 0, the family reduces to the class of scale
mixtures of normal (SMN) distributions.

Using Definition 1, we observe that

Y |U = u ∼ SN
(
μ,u−1σ 2, λ

)
(2.3)
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and integrating out U from the joint density of Y and U leads to the following marginal pdf
of Y :

φSMSN
(
y|μ,σ 2, λ, ν

) = 2
∫ ∞

0
φ

(
y|μ,u−1σ 2)

�

(
u1/2 λ(y − μ)

σ

)
dH(u|ν).

Let �SMSN(y|μ,σ 2, λ, ν) be the cdf of Y . Using (2.3) and (2.1) we obtain the following
expression for this cdf in the standard case:

�SMSN(y|λ, ν) = E
[
�SN

(
U1/2y|λ)] = 2E

[
�2

(
U1/2ye1|0,�

)]
. (2.4)

Now, we introduce a key concept to our theory, namely the truncated SMSN distribution.

Definition 2. Let Y ∼ SMSN(μ,σ 2, λ, ν), with P(a < Y < b) > 0 for some fixed a < b.
A random variable X has a truncated SMSN distribution in the interval �a, b�, denoted by
X ∼ TSMSN�a,b�(μ,σ 2, λ, ν), if it has the same distribution as Y |Y ∈ �a, b�. Here �a, b�
means that each extreme of the interval can be either open or closed.

The truncated normal distribution is obtained when Y ∼ N(μ,σ 2). In this case, we use the
notation X ∼ TN�a,b�(μ,σ 2). Analogously, we define the truncated SMN (TSMN�a,b�(μ,σ 2,

ν)), the truncated skew-normal (TSN�a,b�(μ,σ 2, λ)) and the truncated skew-t (TST�a,b�(μ,

σ 2, λ, ν)) distributions. As an obvious consequence of the definition, we have that the pdf of
X ∼ TSMSN�a,b�(μ,σ 2, λ, ν) is given by:

φTSMSN
(
x|μ,σ 2, λ, ν; �a, b�) = φSMSN(x|μ,σ 2, λ, ν)

�SMSN(b|μ,σ 2, λ, ν) − �SMSN(a|μ,σ 2, λ, ν)

× I�a,b�(x),

where IB(y) denotes the indicator function, that is, IB(y) = 1 if y ∈ B and IB(y) = 0 other-
wise.

Let X ∼ TSMSN�α,β�(0,1, λ;ν). Then it is straightforward to prove that Y = μ+ σX has
a TSMSN�a,b�(μ,σ 2, λ;ν) distribution, where a = μ + σα and b = μ + σβ . So, to compute
the moments of Y , it is enough to compute the moments of X. Thus, the n-th moment of Y

is given by

E
[
Yn] =

n∑
k=0

n!
(n − k)!k!σ

kμn−kE
[
Xk], for n = 1,2,3 . . .

3 Main results

The derivation of formulas for the moments of the TSMSN distributions can require lengthy
calculations. Instead, we propose a general recursive formula and then we get closed form
expressions for the moments. Kim (2008, Lemma 2.3) obtained the moments of the TN dis-
tribution, a result that was used by Genç (2013) to derive the moments of the truncated scale
mixtures of normal (TSMN) distributions. In deriving the moments of the TSMSN, we follow
the same strategy used by these authors.

In the following lemma, we present a recursive expression for the moments of the truncated
skew-normal distribution. Although, this result was obtained before by Flecher, Allard and
Naveau (2010, Proposition 1), here we provide a new proof.
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Lemma 1. If X ∼ TSN�a,b�(0,1, λ), then

(k + 1)E
[
Xk] − E

[
Xk+2] = 1

B(λ)

{
bk+1φSN(b|λ) − ak+1φSN(a|λ)

−
(

2

π

)1/2 λA(λ)

(1 + λ2)
k+2

2

E
[
Zk+1]}

for k = −1,0,1,2, . . ., where Z ∼ TN�aλ,bλ�(0,1), aλ = a(1 + λ2)1/2, bλ = b(1 + λ2)1/2,
A(λ) = �(bλ) − �(aλ) and B(λ) = �SN(b|λ) − �SN(a|λ).

Proof. First note that for k = −1,0,1,2, . . .

d(xk+1φSN(x|λ))

dx
= (k + 1)xkφSN(x|λ) − xk+2φSN(x|λ)

+ xk+1λ

(
2

π

)1/2
φ

(
x
(
1 + λ2)1/2)

.

Then,

B(λ)
{
E

[
(k + 1)Xk] − E

[
Xk+2]}

=
∫ b

a

{
(k + 1)xk − xk+2}

φSN(x|λ)dx

+
∫ b

a
xk+1λ

(
2

π

)1/2
φ

(
x
(
1 + λ2)1/2)

dx

−
∫ b

a
xk+1λ

(
2

π

)1/2
φ

(
x
(
1 + λ2)1/2)

dx

= bk+1φSN(b|λ) − ak+1φSN(a|λ)

− λ

(
2

π

)1/2 ∫ b

a
xk+1φ

(
x
(
1 + λ2)1/2)

dx

= bk+1φSN(b|λ) − ak+1φSN(a|λ)

−
(

2

π

)1/2 λA(λ)

(1 + λ2)
k+2

2

∫ bλ

aλ

1

A(λ)
zk+1φ(z) dz.

�

Now we establish the following theorem, which is crucial to the deve-lopment of our pro-
posed theory. This theorem states that the moments of a TSMSN distribution can be computed
recursively. It generalizes the results obtained by Kim (2008), Flecher, Allard and Naveau
(2010), Genç (2013) and Garay et al. (2017).

Theorem 1. Let Y ∼ SMSN(0,1, λ, ν). Then, for a < b, we have

E
[
Y k+2|Y ∈ �a, b�] = τ(a, b) × E

[
U− k+2

2 Rk+2
]
,

where

τ(a, b) = {
�SMSN(b|λ, ν) − �SMSN(a|λ, ν)

}−1
,

Rk+2 = {
�SN

(
bU1/2|λ) − �SN

(
aU1/2|λ)}

E
[
Xk+2|U ]

,

for k = −1,0,1,2, . . . ,

X|U = u ∼ TSN�au1/2,bu1/2�(0,1, λ), U ∼ H(·|ν).

(3.1)
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Proof. We have that Y |Y ∈ �a, b� ∼ TSMSN�a,b�(0,1, λ, ν). Also, from Definition 1, we
have that Y |U = u ∼ SN(0, u−1, λ), which implies Y |U = u, Y ∈ �a, b� ∼ TSN�a,b�(0, u−1,

λ). Using the same notation of Definition 1, that is, Y = U−1/2Z with U ∼ H(·|ν) and Z ∼
SN(0,1, λ) independent, we have:

E
[
Y k+2|Y ∈ �a, b�]
= E

[
U− k+2

2 Zk+2|Y ∈ �a, b�]
= E

{
E

[
U− k+2

2 Zk+2|U,
(
Y ∈ �a, b�)]|Y ∈ �a, b�} (3.2)

= E
{
U− k+2

2 E
[
Zk+2|Z ∈ ⌊

aU1/2, bU1/2⌋]|Y ∈ �a, b�} (3.3)

=
∫ ∞

0
u− k+2

2 E
[
Zk+2|Z ∈ ⌊

au1/2, bu1/2⌋]
f

(
u|Y ∈ �a, b�)du, (3.4)

where (3.2) is due to basic properties of conditional expectation and in (3.3) we used the inde-
pendence between U and Z. The pdf f (u|Y ∈ �a, b�) in the integral sign takes the following
form:

f
(
u|Y ∈ �a, b�) =

∫
f

(
u|Y = y,Y ∈ �a, b�)f (

y|Y ∈ �a, b�)dy

= τ(a, b)

∫
f

(
u|Y = y,Y ∈ �a, b�)f (y)I�a,b�(y) dy (3.5)

= τ(a, b)

∫
f (u, y)I�a,b�(y) dy (3.6)

= τ(a, b)

∫ b

a
f (u)φSN

(
x|0, u−1, λ

)
dx (3.7)

= τ(a, b)f (u)
{
�SN

(
bu1/2|λ) − �SN

(
au1/2|λ)}

. (3.8)

Equation (3.6) is consequence of the fact that, if y ∈ �a, b�, then {Y ∈ �a, b�, Y = y} = {Y =
y}, implying that f (u, y) = f (u|Y = y)f (y) = f (u|Y = y,Y ∈ �a, b�)f (y). If y /∈ �a, b�
then I�a,b�(y) = 0 and the integrals in (3.5) and (3.6) are equal to zero. Equation (3.7) is
consequence of Y |U = u ∼ SN(0, u−1, λ). Thus, by (3.4) and (3.8), we have:

E
[
Y k+2|Y ∈ �a, b�] =

∫ ∞
0

u− k+2
2 E

[
Zk+2|Z ∈ ⌊

au1/2, bu1/2⌋]
× τ(a, b)f (u)

{
�SN

(
bu1/2|λ) − �SN

(
au1/2|λ)}

du

= τ(a, b) × E
[
U− k+2

2 Rk+2
]
. �

Observe that the conditional expectation E[Xk+2|U ], where X|U = u ∼
TSN�au1/2,bu1/2�(0,1, λ), can be computed using Lemma 1. These computations involve con-
ditional expectations of the TN�aλu1/2,bλu1/2�(0,1) distribution, which can be computed using
Lemma 2.3 in Kim (2008).

As an important remark, observe that the case λ = 0 in Theorem 1 corresponds to the
moments of the TSMN�a,b�(0,1, ν) distribution, which were obtained before by Genç (2013,
Theorem 1).

In general, the first four moments are most useful. Thus, we have the following corollary.

Corollary 1. Let X ∼ SMSN(0,1, λ, ν) and μi ≡ E[Xi |X ∈ �a, b�], with a < b. Then,

μ1 = τ(a, b)
[
L(1)

{
E�(−0.5, bλ) − E�(−0.5, aλ)

}
− {

EφSN(−0.5, b) − EφSN(−0.5, a)
}]

,
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μ2 = τ(a, b)
[{
E�SN(−1, b) − E�SN(−1, a)

}
− L(2)

{
Eφ(−1, bλ) − Eφ(−1, aλ)

}
− {

bEφSN(−0.5, b) − aEφSN(−0.5, a)
}]

,

μ3 = τ(a, b)
[
2L(1)

{
E�(−1.5, bλ) − E�(−1.5, aλ)

}
− 2

{
EφSN(−1.5, b) − EφSN(−1.5, a)

}
− {

b2EφSN(−0.5, b) − a2EφSN(−0.5, a)
}

+ L(3)
{
E�(−1.5, bλ) − E�(−1.5, aλ)

}
− L(2)

{
bEφ(−1, bλ) − aEφ(−1, aλ)

}]
,

μ4 = τ(a, b)
[
3
{
E�SN(−2, b) − E�SN(−2, a)

}
− 3L(2)

{
Eφ(−2, bλ) − Eφ(−2, aλ)

}
− 3

{
bEφSN(−1.5, b) − aEφSN(−1.5, a)

}
− {

b3EφSN(−0.5, b) − a3EφSN(−0.5, a)
}]

− τ(a, b)L(4)
[
2
{
Eφ(−2, bλ) − Eφ(−2, aλ)

}
+ {

(bλ)
2Eφ(−1, bλ) − (aλ)

2Eφ(−1, aλ)
}]

,

where aλ, bλ and τ(a, b) are defined in Lemma 1 and (3.1), L(s) = (2/π)
1
2 λ/(1 + λ2)

s
2 ,

EφSN(r, q) = E[UrφSN(qU1/2|λ)], E�SN(r, q) = E[Ur�SN(qU1/2|λ)], Eφ(r, q) and E�(r, q)

are defined like EφSN(r, q) and E�SN(r, q), with φ(·) and �(·) replacing φSN(·) and �SN(·),
respectively. These expected values can be computed by direct integration when the distribu-
tion of U is available.

The expressions in Corollary 1 are useful, for example, to compute some distribution
measures, like the skewness (S), kurtosis (K) and coefficient of variation (CV), given by
S = (μ3 − 3μ1μ2 + 2μ3

1)/(μ2 − μ2
1)

3/2, K = (μ4 − 4μ1μ3 + 6μ2μ
2
1 − 3μ4

1)/(μ2 − μ2
1)

2

and CV = (μ2 − μ2
1)

1/2/μ1.

4 Particular cases of SMSN distributions

The class of SMSN distributions includes the skew-t, skew-slash and skew-contaminated
normal. All these distributions have heavier tails than the skew-normal and can be used for
robust inference. Some of these distributions are described subsequently. For each one, we
compute the expected values EφSN(r, q), E�SN(r, q), Eφ(r, q) and E�(r, q). For the sake of
completeness, detailed proofs of these results are given in the Appendix.

4.1 The skew-t distribution

In this case, we consider U ∼ Gamma(ν/2, ν/2), ν > 0, in Definition 1. The density of Y

takes the form (Azzalini and Capitanio, 2003)

φST
(
y|μ,σ 2, λ, ν

) = 2�(ν+1
2 )

�(ν
2 )(πν)1/2σ

(
1 + d

ν

)− ν+1
2

T
((

v + 1

d + ν

)1/2
A

∣∣∣ν + 1
)
,

where A = λ(y − μ)/σ , d = (y−μ)2/σ 2 and T(·|ν) denotes the cdf of the standard Student–
t distribution, with location zero, scale one and ν degrees of freedom (t (0,1, ν)). We use the
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notation Y ∼ ST(μ,σ 2, λ, ν). A particular case of the skew-t distribution is the skew–Cauchy
distribution, when ν = 1. Also, when ν → ∞, we get the skew-normal distribution as the
limiting case.

From (2.4), we obtain the following expression for the cdf of a standard skew-t random
variable:

�ST(y|λ, ν) = 2E
[
�2

(
U1/2ye1

)|0,�
] = 2E

[
P

(
X ≤ U1/2ye1|U )]

= 2P

(
X

U1/2 ≤ ye1

)
= 2T2(ye1|0,�, ν),

where e1 = (1,0)�, X ∼ N2(0,�), � is given in (2.2) and T2(·|μ,�, ν) denotes the cdf
of the bivariate Student-t distribution with mean vector μ, scale matrix � and ν degrees of
freedom. For X = (X1,X2)

� and x = (x1, x2)
�, X ≤ x is interpreted element wise, that is,

Xi ≤ xi , i = 1,2. This expression can also be obtained as a special case of the one given for
the multivariate skew-t distribution in Azzalini and Capitanio (2003, Section 4.2.1).

For the truncated skew-t distribution, we have the following result for the expected values
involved in the calculation of the moments.

Corollary 2. Let X ∼ TST�a,b�(0,1, λ, ν). Then

EφSN
(r, q) = 2r+1νν/2�(ν+2r

2 )√
2π�(ν

2 )(q2 + ν)
ν+2r

2

T
((

2r + ν

q2 + ν

)1/2
λq

∣∣∣2r + ν

)
;

E�SN
(r, q) = 2r+1�(ν+2r

2 )

�(ν
2 )νr

T2

((
2r + ν

ν

)1/2
qe1

∣∣∣0,�,2r + ν

)
;

E�(r, q) = �(ν+2r
2 )

�(ν
2 )

(
2

ν

)r

T
((

2r + ν

ν

)1/2
q
∣∣∣2r + ν

)
;

Eφ(r, q) = �(ν+2r
2 )

�(ν
2 )

√
2π

(
ν

2

) ν
2
(

q2 + ν

2

)− (ν+2r)
2

,

where �(a) is the gamma function, and � is given in (2.2).

4.2 The skew-slash distribution

In this case, we have U ∼ Beta(ν,1)—where Beta(a, b) denotes the beta distribution with
parameters a and b—with ν > 0, and we use the notation Y ∼ SSL(μ,σ 2, λ, ν). The density
of Y is given by:

φSSL
(
y|μ,σ 2, λ, ν

) = 2ν

∫ 1

0
uν−1φ

(
y|μ,u−1σ 2)

�
(
u1/2A

)
du.

The cdf of the standard skew-slash distribution does not have a closed form expression. How-
ever, using (2.4), we can write it in terms of the following integral, which can be obtained by
numerical methods:

�SSL(y|λ, ν) =
∫ ∞

0
2ν�2

(
u1/2ye1|0,�

)
uν−1 du, (4.1)

where � is given in (2.2). The truncated skew-slash distribution will be denoted by
TSSL�a,b�(μ,σ 2, λ, ν).
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Corollary 3. Let X ∼ TSSL�a,b�(0,1, λ, ν). Then

EφSN(r, q) = 2ν+r+1ν�(r + ν)

(2π)1/2q2r+2ν
G

(
1
∣∣∣r + ν,

q2

2

)
E

[
�

(
λq

(
U ′)1/2)];

E�SN(r, q) = 2ν

r + ν
E

[
�2

((
U ′′)1/2

qe1|0,�
)];

E�(r, q) =
(

ν

ν + r

)
�SL(q|ν + r);

Eφ(r, q) = ν√
2π

(
q2

2

)−(ν+r)

�

(
ν + r,

q2

2

)
,

where �(a, b) = ∫ b
0 e−t ta−1 dt is the incomplete gamma function, G(·|α,β) represents the

cdf of the Gamma distribution with parameters α and β , U ′ ∼ TGamma�0,1�(r + ν, q2/2) (a
truncated Gamma distribution), U ′′ ∼ Beta(r + ν,1), � is given in (2.2) and �SL(·|ν + r) is
the cdf of the standard slash distribution—that is, when λ = 0 in (4.1).

Observe that EφSN(r, q) and E�SN(r, q) do not have closed form expressions, but the inte-
grals E[�(λq(U ′)1/2)] and E[�2((U

′′)1/2qe1|0,�)] can be easily approximated using the R
function integrate.

4.3 The skew-contaminated normal distribution

This distribution is denoted by Y ∼ SCN(μ,σ 2, λ, (γ, ξ)). Here U = ξ with probability γ

and U = 1 with probability 1 − γ . It follows immediately that its pdf is given by

φSCN
(
y|μ,σ 2, λ, (γ, ξ)

)
= 2

{
γφ

(
y|μ, ξ−1σ 2)

�
(
ξ1/2A

) + (1 − γ )φ
(
y|μ,σ 2)

�(A)
}
,

and the cdf in the standard case is

�SCN
(
y|λ, (γ, ξ)

) = 2
{
γ�2

(
ξ1/2ye1|0,�

) + (1 − γ )�2(ye1|0,�)
}
. (4.2)

Denoting the truncated SCN distribution by TSCN�a,b�(μ,σ 2, λ, (γ, ξ)), we get the follow-
ing expected values.

Corollary 4. Let X ∼ TSCN�a,b�(0,1, λ, (γ, ξ)) Then

EφSN(r, q) = γ ξrφSN
(
qξ

1
2 |λ) + (1 − γ )φSN(q|λ);

E�SN(r, q) = ξ r�SCN
(
q|λ, (γ, ξ)

) + 2(1 − γ )
(
1 − ξ r)�2(qe1|0,�);

E�(r, q) = ξ r�CN
(
q|(γ, ξ)

) + (1 − γ )
(
1 − ξ r)�(q);

Eφ(r, q) = γ ξrφ(
√

ξq) + (1 − γ )φ(q),

where �CN(·|(γ, ξ)) represents the cdf of the standard contaminated normal distribution—
that is, when λ = 0 in (4.2).

5 Statistical applications

5.1 The SMSN censored linear regression model

In recent years, there has been wide concern to find more flexible parametric families of non-
normal distributions for robust statistical modeling of linear regression models, when the
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data collected are subject to some upper and lower detection limits, that is, the responses are
either left or right censored. For instance, Garay et al. (2017) recently established a new link
between the censored regression model and the symmetric class of SMN distributions, which
extends the normal one by the inclusion of kurtosis. An interesting extension is to consider
the asymmetrical class of SMSN distributions, which allows capturing skewness and kurtosis
in data simultaneously. Thus, in the following we define the censored linear regression model
under scale mixtures of skew-normal distributions, denoted the SMSN-CR model, and some
properties of this proposed model are derived by using the results presented in this work.
Inferential procedures can be also easily implemented.

Description of the model. Consider a linear regression model where the responses are ob-
served with errors which are independent and identically distributed (i.i.d.) according to some
SMSN distribution, as follows:

Yi = x�
i β + σεi, εi

iid∼ SMSN(0,1, λ, ν), i = 1, . . . , n, (5.1)

where the Yi are responses, β = (β1, . . . , βp)� is a vector of regression parameters and x�
i =

(xi1, . . . , xip) is a vector such that xij is the value of the j -th explanatory variable for subject
i. With this structure, we have that Yi ∼ SMSN(x�

i β, σ 2, λ, ν). In this application, we are
interested in the case where left-censored observations can occur. That is, the observations
are of the form:

Yobsi =
{
κi if Yi ≤ κi;
Yi if Yi > κi,

(5.2)

i = 1, . . . , n, for some threshold point κi . The model defined in (5.1) and (5.2) is called the
SMSN-CR model. See Massuia et al. (2017) for further details.

The mean and variance of the SMSN–CR model. Let us define the binary random variable
Di = 1 if Yi > κi and Di = 0 otherwise. Then the mean and variance of the SMSN–CR model
for the i-th observed response are given by:

E[Yobsi ] = E
[
κi(1 − Di) + YiDi

]
= κi�SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)
+ E[YiDi],

Var[Yobsi ] = Var
[
κi(1 − Di) + YiDi

]
= κ2

i �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

){
1 − �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)}
+ Var[YiDi].

(5.3)

Defining κ∗
i = (κi − x�

i β)/σ , we get

E[YiDi] = E
[
E(YiDi |Di)

] = E[Yi |Yi > κi]P(Yi > κi)

= {
x�
i β + σE

[
εi |εi > κ∗

i

]}{
1 − �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)}
. (5.4)

Observe that the conditional expectation E[εi |εi > κ∗
i ] is the first moment of the standard

TSMSN distribution, which can be easily obtained using Theorem 1 along with Corollary 1.
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The variance in (5.3) can be obtained as follows:

Var[YiDi] = E
[
Var(YiDi |Di)

] + Var
[
E(YiDi |Di)

]
= Var[Yi |Yi > κi]

{
1 − �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)}

+ (
E[Yi |Yi > κi])2

{
1 − �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)}

× �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)
= σ 2{

E
[
ε2
i |εi > κ∗

i

] − (
E

[
εi |εi > κ∗

i

])2}
×

{
1 − �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)}

+ (
x�
i β + σE

[
εi |εi > κ∗

i

])2
{

1 − �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)}

× �SMSN

(
κi − x�

i β

σ

∣∣∣λ, ν

)
, (5.5)

where the conditional expectation E[ε2
i |εi > κ∗

i ] is the second moment of the TSMSN distri-
bution, which can be obtained using Theorem 1 along with Corollary 1.

It is important to note that, the results obtained in (5.4) and (5.5) will help to implement
the recursive methods to obtain the maximum likelihood estimation of the SMSN-CR model,
as for example, the EM algorithm (Dempster, Laird and Rubin, 1977) or some extension
like the ECM or the ECME algorithm (Liu and Rubin, 1994). An in-depth investigation of
these algorithms and their extensions is beyond the scope of the present paper, but it is an
interesting topic for further research.

5.2 Tail conditional expectation (TCE)

Significant changes in the financial markets are giving increasing attention to the need for
developing a standard framework for risk measurement. Thus, in the actuarial science, there
has been a growing interest among investment experts to focus on the use of a Tail Conditional
Expectation (TCE), because it shares properties that are considered desirable and applicable
in a variety of situations, see Artzner et al. (1999) and Landsman and Valdez (2003) for more
details. The TCE is defined by

TCEX(xq) = E[X|X > xq], (5.6)

where xq denotes the quantile of order q of the distribution of X. This measure is interpreted
as the expected worst possible loss, given the loss will exceed a particular value xq . In partic-
ular, this threshold value is called value-at-risk, or simply VaR, which properties were studied
and developed by Artzner et al. (1999).

Some authors computed the TCE using different distributions for X, like Landsman and
Valdez (2003) who derived explicit formulas assuming that the distribution of X is elliptical
and Genç (2013), who developed a recursive formula to estimate the TCE considering the
Student-t distribution. Here we estimate the TCE assuming that X has a skew-t distribution,
using the recursive formulas developed in Section 3. We consider a dataset consisting of
the total damage done by 35 hurricanes (hurricanes data) between the years 1949 and 1980,
which was considered before by Hogg and Klugman (1984) and Genç (2013).
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Table 1 Hurricanes data. Estimates of TCEX(xq) for
various quantiles

q xq T̂CEX(xq)

0.500 143,610.3 321,988.1
0.750 267,691.1 441,102.6
0.900 402,772.3 615,083.6
0.950 514,784.2 779,157.4
0.975 648,743.1 986,485.2
0.990 879,055.3 1,355,296.3
0.999 1,958,192.6 3,130,346.0

As mentioned by Genç (2013), the last loss value is far away from the rest of the data
and so it is a possible discording data. Thus, in order to estimate the TCE measure under the
skew-t distribution for the hurricanes data, we propose the following procedure:

Step 1: Fit the skew-t distribution using the maximum likelihood method to obtain the esti-
mates of μ, σ 2, λ, and ν. In this case, we used direct maximization of the log-likelihood
through the bult-in function optim of R software (R Core Team, 2018), obtaining the
following estimates: μ̂ = 204,900.4, σ̂ = 174,287.6, λ̂ = −0.4399 and ν̂ = 2.511131.

Step 2: Find the xq values using the function qst of the R package sn (Azzalini, 2018).
Step 3: Estimate the TCE measure using the results presented in Corollary 1 and 2. These

values, for several values of q , are presented in Table 1.

6 Simulation study

In this section, we present a simulation study to compare the theoretical moments of
the TSMSN distributions along with the empirical moments computed via a Monte
Carlo approximation. Thus, we generated 300 artificial samples of size 1000 from Y ∼
TSMSN�a,b�(μ,σ 2, λ, ν), using the sampling/importance resampling method proposed by
Rubin (1987) and Rubin et al. (1988), as well as the stochastic representation of a SMSN
random variable given in Definition 1. We adopted the bilateral truncation, with truncation
limits �a, b� = �3,10�. The true parameter values were taken as μ = 2 for the the location
parameter, σ 2 = 10 for the scale parameter and five values were adopted for the shape pa-
rameter λ = {±3,±1,0}, corresponding to high and low (negative and positive) levels of
skewness and also the symmetric case. For the degrees of freedom, we considered ν = 5 for
the TST and TSSL models and ν� = (0.5,0.5)� for the TSCN model.

Table 2, shows the comparison between the first four theoretical moments E[Y k] = μk ,
(k = 1,2,3,4), computed using Theorem 1 and the values of the average empirical moments,
across 300 replicates (in parentheses), of the TSMSN distributions, considering different val-
ues of the skewness parameter λ. We observe that, in general, the values of the first four
(theoretical and empirical) moments are very close, in all the models at all levels of skew-
ness, indicating that the proposed recursive formula to obtain the moments of the TSMSN
distributions is reliable.

7 Concluding remarks and discussion

In this paper, we have developed exact expressions for the moments of the family of trun-
cated scale mixtures of skew-normal (TSMSN) distributions, generalizing results obtained
by Kim (2008), Flecher, Allard and Naveau (2010), Genç (2013) and Garay et al. (2017). For
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Table 2 Simulation study. Comparison between the theoretical and empirical moments of the TSMSN distributions, considering different values of the skewness parameter λ

Theoretical (empirical) momentsSkewness
Parameter
λ

Models μ1 μ2 μ3 μ4

−3

TSN 3.45374 (3.45340) 12.08993 (12.08742) 42.96560 (42.95163) 155.29388 (155.22626)
TST 3.71294 (3.71247) 14.37196 (14.36854) 58.79881 (58.78245) 258.66044 (258.63532)

TSSL 3.55715 (3.52059) 12.85195 (12.61450) 48.06670 (46.12137) 182.62574 (172.58123)
TSCN 3.61100 (3.57975) 13.35080 (13.10054) 50.73327 (49.19340) 198.95424 (190.31305)

−1

TSN 4.25011 (4.25088) 19.17883 (19.18708) 92.49161 (92.56216) 478.51429 (479.10284)
TST 4.52275 (4.52223) 22.33490 (22.33061) 121.53582 (121.51143) 729.25127 (729.19451)

TSSL 4.41090 (4.40489) 20.89430 (20.81780) 106.90463 (106.28329) 592.49416 (587.70365)
TSCN 4.55260 (4.52648) 22.47088 (22.18035) 121.01840 (118.45615) 711.21899 (690.04365)

0

TSN 5.10261 (5.10326) 28.54072 (28.54647) 174.41678 (174.45214) 1153.67033 (1153.88341)
TST 5.24018 (5.23949) 30.38067 (30.37541) 193.73722 (193.71099) 1341.23141 (1341.22234)

TSSL 5.27986 (5.27514) 30.70013 (30.63898) 195.26771 (194.69099) 1342.11148 (1337.03559)
TSCN 5.39429 (5.39269) 32.13358 (32.10981) 209.58456 (209.31021) 1475.64220 (1472.82651)

1

TSN 5.30363 (5.30444) 30.74829 (30.75607) 193.73509 (193.78855) 1312.87505 (1313.22234)
TST 5.42378 (5.42573) 32.43965 (32.46705) 212.21422 (212.49948) 1497.84276 (1500.56343)

TSSL 5.49669 (5.49749) 33.13645 (33.15480) 217.22821 (217.40864) 1528.66830 (1530.26625)
TSCN 5.61479 (5.61648) 34.66502 (34.68217) 232.78708 (232.91258) 1675.90499 (1676.69721)

3

TSN 5.15246 (5.15217) 29.03805 (29.03393) 178.39074 (178.34207) 1183.85266 (1183.36983)
TST 5.29975 (5.30043) 31.00508 (31.01469) 199.00043 (199.09597) 1383.45657 (1384.33049)

TSSL 5.34182 (5.34392) 31.34259 (31.35065) 200.58899 (200.58274) 1384.02834 (1383.26223)
TSCN 5.46705 (5.46743) 32.90002 (32.90361) 216.06651 (216.09109) 1527.73772 (1527.93369)
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a reader interested in real-world applications, we show the practicability of our results with
a simulation study as well as two applications, the first one is the computation of the mean
and variance of a censored regression model based on SMSN distributions and the other one
using a real data in the field of actuarial sciences.

We conjecture that our method can be extended to the context of multivariate truncated
SMSN distributions, as discussed in Ho et al. (2012). An in-depth investigation of such ex-
tension is beyond the scope of the present paper, but it is an interesting topic for further
research. Finally, the proposed method has been coded and implemented in the R software
(R Core Team, 2018), which is available from us upon request.

Appendix. Computation of EφSN(r, q), E�SN(r, q), Eφ(r, q) and E�(r,q) for
some TSMSN distributions

In this appendix, we obtain expressions for the expected values EφSN(r, q), E�SN(r, q),
Eφ(r, q) and E�(r, q) given in Section 4, for specific SMSN distributions.

Skew-t distribution

In this case, in Definition 1, we have that U ∼ Gamma(ν/2, ν/2), with ν > 0. To facilitate
notation, let us make α1 = (ν + 2r)/2, α2 = ν/2 and α3 = (q2 + ν)/2. Then,

E�SN(r, q) = E
[
Ur�SN

(
qU1/2|λ)]

=
∫ ∞

0

u
2r+ν

2 −1�SN(qu
1
2 |λ)ν

ν
2

2
ν
2 �(ν

2 )
exp

{
−uν

2

}
du

= �(ν+2r
2 )

�(ν
2 )

(
2

ν

)r ∫ ∞
0

�SN
(
qu

1
2 |λ) 1

�(α1)
α

α1
2 uα1−1 exp{−uα2}du

= �(ν+2r
2 )

�(ν
2 )

(
2

ν

)r

E
[
�SN

(
qU ′ 1

2 |λ)]
= �(ν+2r

2 )

�(ν
2 )

(
2

ν

)r

E
[
2�2

(
U ′ 1

2 y∗|0,�
)]

= 2r+1 �(ν+2r
2 )

�(ν
2 )

ν−rT2

(√
2r + ν

ν
qe1

∣∣∣0,�,2r + ν

)
,

where U ′ ∼ Gamma(α1, α2), e1 = (1,0)� and � = ( 1 −δ
−δ 1

)
.

E�(r, q) = E
[
Ur�

(
qU1/2)]

=
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1
2 )ν

ν
2

2
ν
2 �(ν

2 )
exp

{
−uν

2

}
du

= �(ν+2r
2 )

�(ν
2 )

(
2

ν

)r ∫ ∞
0

�
(
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. (A.1)
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Equation (A.1) was obtained using Lemma 3 of Genç (2013).

EφSN(r, q) = E
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UrφSN
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, (A.2)

where U ′′ ∼ Gamma(α1, α3). Equation (A.2) was obtained using Lemma 3 of Genç (2013).

Eφ(r, q) = E
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, (A.3)

where the integrand in (A.3) is the pdf of a random variable with Gamma(α1, α2) distribution.

Skew-slash distribution

In this case, U ∼ Beta(ν,1), with positive shape parameter ν. Thus
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=
(

ν

ν + r

)
�SL(q|ν + r), (A.4)

with U ′′ ∼ Beta(r + ν,1). Using Lemma 3 of Genç (2013) we obtain Equation (A.4).
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where α1 = ν + r , α2 = q2/2 and U ′ ∼ TGamma�0,1�(α1, α2).
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where �(a, x) = ∫ x
0 e−t ta−1 dt .

Skew-contaminated normal distribution

In this case, U is a discrete random variable with probability function given by:

U =
{
ξ with probability γ ;
1 with probability 1 − γ.

Thus, we have that
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