Bayesian Analysis (2020) 15, Number 1, pp. 241-262

High-Dimensional Posterior Consistency for
Hierarchical Non-Local Priors in Regression

Xuan Cao*, Kshitij Khare!, and Malay Ghosh?

Abstract. The choice of tuning parameters in Bayesian variable selection is a
critical problem in modern statistics. In particular, for Bayesian linear regression
with non-local priors, the scale parameter in the non-local prior density is an
important tuning parameter which reflects the dispersion of the non-local prior
density around zero, and implicitly determines the size of the regression coeffi-
cients that will be shrunk to zero. Current approaches treat the scale parameter
as given, and suggest choices based on prior coverage/asymptotic considerations.
In this paper, we consider the fully Bayesian approach introduced in (Wu, 2016)
with the pMOM non-local prior and an appropriate Inverse-Gamma prior on the
tuning parameter to analyze the underlying theoretical property. Under standard
regularity assumptions, we establish strong model selection consistency in a high-
dimensional setting, where p is allowed to increase at a polynomial rate with n
or even at a sub-exponential rate with n. Through simulation studies, we demon-
strate that our model selection procedure can outperform other Bayesian methods
which treat the scale parameter as given, and commonly used penalized likelihood
methods, in a range of simulation settings.

Keywords: posterior consistency, high-dimensional data, non-local prior, model
selection, multivariate regression.

1 Introduction

The literature on Bayesian variable selection in linear regression is vast and rich. Many
priors and methods have been proposed. George and McCulloch (1993) propose the
stochastic search variable selection which uses the Gaussian distribution with a zero
mean and a small but fixed variance as the spike prior, and another Gaussian distribution
with a large variance as the slab prior. Ishwaran, Kogalur, and Rao (2005) also use
Gaussian spike and slab priors, but with continuous bimodal priors for the variance of
the regression coefficient to alleviate the difficulty of choosing specific prior parameters.
Narisetty and He (2014) introduce shrinking and diffusing priors as spike and slab priors,
and establish model selection consistency of the approach in a high-dimensional setting.
g-prior is introduced in (Zellner, 1986), and Liang et al. (2008) further propose the
mixture of g priors based variable selection method and establish selection consistency.
In recent years, the use of non-local priors in this context has generated a lot of interest.

Non-local priors were first introduced by Johnson and Rossell (2010) as densities that
are identically zero whenever a model parameter is equal to its null value in the context
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of hypothesis testing. Compared to local priors, which still preserve positive values at
null parameter values, non-local prior distributions have relatively appealing properties
for Bayesian model selection. In particular, non-local priors discard spurious covariates
faster as the sample size n grows, while preserving exponential learning rates to detect
non-zero coefficients as indicated in (Johnson and Rossell, 2010). These priors were
further extended to Bayesian model selection problems in (Johnson and Rossell, 2012)
by imposing non-local prior densities on a vector of regression coefficients. Posterior
distributions on the model space based on non-local priors were found to be more tightly
concentrated around the maximum a posteriori (MAP) model than the posterior based
on for example, g-priors, which tend to be more dispersed, implying that these non-local
priors yield a faster rate of posterior concentration, as indicated in (Shin et al., 2018).

In particular, let y,, denote a random vector of responses, X,, an n X p design matrix
of covariates, and 8 = (1, 52,...,0p) a p x 1 vector of regression coefficients. Under
the linear regression model,

Yn ~ N (XnﬁaO'QIn) .

In (Johnson and Rossell, 2012), the authors introduce the product moment (pMOM)
non-local prior with density

» » 1 VAL u
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Here A, is a p X p nonsingular matrix, r is a positive integer referred to as the order of
the density and d, is the normalizing constant independent of 7 and ¢. Variations of
the density in (1.1), called the piMOM and peMOM density, have also been developed
in (Johnson and Rossell, 2012; Rossell et al., 2013). Clearly, the density in (1.1) is zero
when any component of 3 is zero. Under appropriate regularity conditions, the authors
in (Johnson and Rossell, 2012; Shin et al., 2018) demonstrate that in high-dimensional
settings, model selection procedures based on the pMOM and piMOM non-local prior
densities can achieve strong model selection consistency, i.e., the posterior probability
of the true model converges to 1 as the sample size n increases.

As noted in (Johnson and Rossell, 2012), the scale parameter 7 is of particular
importance, as it reflects the dispersion of the non-local prior density around zero, and
implicitly determines the size of the regression coefficients that will be shrunk to zero.
Johnson and Rossell (2010, 2012) treat 7 as given and suggest a choice of 7 which leads
to a high prior probability for significant values of the regression coefficients. Shin et al.
(2018) again treat 7 as given, and consider a setting where p and 7 vary with the sample
size n. They show that high-dimensional model selection consistency is achieved under
the peMOM prior (another variation of the priors above introduced in (Rossell et al.,
2013)), as long as 7 is of a larger order than logp and smaller order than n.

In the context of generalized linear model, similar to the development from g prior
in (Zellner, 1986) to the mixture of g prior in (Liang et al., 2008), Wu (2016) further
extends the work in (Johnson and Rossell, 2012; Shin et al., 2018) by proposing a
fully Bayesian approach with the pMOM non-local prior and an appropriate Inverse-
Gamma prior on the parameter 7 referred to as the hyper-pMOM prior, following the
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nomenclature in (Wu, 2016). In particular, Wu (2016) discusses the potential advantages
of using hyper-pMOM priors and establish Bayes factor rates.

The primary goal and innovation of this paper is to investigate the underlying model
selection consistency for the hyper-pMOM priors in linear regression setting. The extra
prior layer of prior, however, creates technical challenges for a high-dimensional theo-
retical consistency analysis. Under standard regularity assumptions, which include the
prior over all models is restricted to ones with model size less than an appropriate func-
tion of the sample size n, we establish posterior ratio consistency (Theorem 3.1), i.e., the
ratio of the maximum marginal posterior probability assigned to a “non-true” model
to the posterior probability assigned to the “true” model converges to zero in proba-
bility. In particular, this implies that the true model will be the mode of the posterior
distribution with probability tending to 1 as n — cc.

Next, under the additional assumption that p increases at a polynomial rate with n,
we show strong model selection consistency (Theorem 3.2). Strong model selection con-
sistency implies that the posterior probability of the true model converges in probability
to 1 as n — oco. The assumption of restricting the prior over models with appropriately
bounded parameter size, i.e., putting zero prior mass on unrealistically large models)
has been used in both (Narisetty and He, 2014) and (Shin et al., 2018) for regression
models. Based on reviewers’ comments, we relax the polynomial rate restriction on p
to a sub-exponential rate by replacing the uniform type prior with a complexity prior
on the model space to penalize larger models and establish model selection consistency
under the complexity prior in Theorem 5.2.

For the hyper-piMOM priors, Bian and Wu (2017) establish model selection consis-
tency in the framework of generalized linear model. While there are some connections
between our model and the one in (Bian and Wu, 2017), there are fundamental differ-
ences between the two models and the corresponding analyses. A detailed explanation
of this is provided in Remark 1.

The rest of the paper is structured as follows. In Section 2 we provide our hierarchical
fully Bayesian model. Model selection consistency results are stated in Section 3, and the
proofs are provided in Section 4. Section 5 establishes the model selection consistency
under the complexity prior. Details about how to approximate the posterior density
for model selection are demonstrated in Section 6. In Section 7 and Section 8, via
simulation studies and real data analysis, we illustrate the model selection consistency
result, and demonstrate the benefits of model selection using the fully Bayesian approach
as compared to approaches which treat 7 as given, and existing penalized likelihood
approaches. We end our paper with a discussion in Section 9.

2 Model specification

We start by considering the standard Gaussian linear regression model with p coefficients
and by introducing some required notation. Let y,, denote a random vector of responses,
X, an nxp design matrix of covariates, and B a px 1 vector of regression coefficients. Our
goal is variable selection, i.e., to correctly identify all the non-zero regression coefficients.



244 Posterior Consistency for Non-Local Priors in Regression

In light of that, we denote a model by k = {k1, k2, ..., kn } if and only if all the non-zero

elements of 3 are Bk, , Bkys - - - » Bk, and denote B = (Br,, Bray- - - » /Bkm)T . For any pxp
matrix A, let Ay represent the submatrix formed from the columns of A corresponding
to model k. In particular, Let X} denote the design matrix formed from the columns
of X,, corresponding to model k. For the rest of the paper, simply let k& = |k| represent
the cardinality of model k for notational convenience.

The class of pMOM densities (1.1) can be used for model selection through the
following hierarchical model.

Y, | Bk, 0% k ~ N(XiBk, 0*1,), (2.1)
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Note that in the currently presented hierarchical model, no specific form/condition
has yet been assigned to the prior over the space of models. Some standard regularity
assumptions for this prior will be provided later in Section 3. Following the nomenclature
in (Wu, 2016), we refer to the mixture of priors in (2.2) and (2.3) as the hyper-pMOM
prior. In particular, one can show the implied marginal density of 3 after integrating
out 7 have the following expression
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Note that compared to the pMOM density in (1.1) with given 7, = (ﬂk | aQ,k) now
possesses thicker tails, which induces prior dependence. See Figure 1 and Figure 2,
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Figure 1: Comparison: Hyper-pMOM and pMOM when p = 1. 7 = 0.072,0.348 for
r = 1,2 respectively for pMOM.
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Figure 2: Comparison: Hyper-pMOM and pMOM when p = 2. 7 = 0.072,0.348 for
r = 1,2 respectively for pMOM.

where we plot the marginal density 7 (ﬁk | oz,kz) when A, = 1, o?=1landn =1
for the univariate and bivariate case, respectively. In addition, the hyper-pMOM prior
could achieve better model selection performance especially for small samples. See for
example (Liang et al., 2008) that investigates the finite sample performance for hyper-g
priors.

By (2.1) and Bayes’ rule, the resulting posterior probability for model k is denoted
by,

k)
’/T(k‘yn) = W(yn) k(yn)a (26)

where 7(y,,) is the marginal density of y,, and mg(y,) is the marginal density of y,
under model k given by,
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(2.7)

where Cy = X' X}, + %,Rk = yI'(I, — XkC’k_leT)yn, and Ey(.) delzotes the expec-
tation with respect to a multivariate normal distribution with mean 8, = C}; x Ty,
and covariance matrix V = O'QC]; !, In particular, these posterior probabilities can be

used to select a model by computing the posterior mode defined by

k = argmax w(k|y,). (2.8)
k

3 Model selection consistency: main results

In this section we will explore the high-dimensional asymptotic properties of the Bayesian
model selection approach specified in Section 2. In particular, we consider a setting
where the number of regression coefficients p = p,, increases with the sample size n.
The true data generating mechanism is given by Y,, = X,,8¢ + €,. Here Gy is the true
prn dimensional vector of regression coefficients, whose dependence on n is suppressed
for notational convenience, and the entries of €, are i.i.d Gaussian with mean zero and
variance 0. As in (Johnson and Rossell, 2012), we assume that the true vector of regres-
sion coefficients is sparse, i.e., all the entries of By are zero except those corresponding
to a subset t C {1,2,...,p,}, and ¢, B0+, 0% do not vary with n. Our results can be
easily extended to the case where [t|, and entries of By and o} vary with n but stay
bounded. However, we assume these quantities stay fixed for ease of exposition.

For any p x p symmetric matrix A, let eigi(A) < eiga(A)... < eig,(A) be the or-
dered eigenvalues of A and denote the j-th largest nonzero eigenvalue as v;(A). Let

T
i Xk

xFx, M X .
- ) and Ay = maxi<j<min(n,k) ¥j | —5— ), respectively.

AR = MiNy < <min(n,k) (
In order to establish our asymptotic results, we need the following mild regularity as-
sumptions.

Assumption 1. There exist €, < 1, such that 0 < ¢, < AJ* < )\Q/[ < e;l, where
e,l=0 ((logn)é).

Assumption 2. p =0 (nY), where v < r.

Assumption 3. w(k) = 0 for all |k| > gy, where g, = O (n®) and & < 1.

Assumption 4. There exists a constant w > 0, such that % > w for every k with

(k) > 0.

Assumption 5. For every n > 1, the hyper-parameter for the non-local pMOM prior in
2.1 satisfy 0 < a1 < eig1(Ap) < eiga(4,) < ... < eigy(Ay) < az < co. Here aq,ay are
constants not depending on n.

Johnson and Rossell (2012) assume all the eigenvalues of X ZX to be bounded by a

constant, which is unrealistic to achieve in the high-dimensional setting. In our work,
Assumption 1 assumes that non-zero eigenvalues of any sub-matrices of the design
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matrix not to be bounded by a constant, but to be uniformly bounded over a function
of n. Assumption 5 is standard which assumes the prior covariance matrix are uniformly
bounded in n. Note that for the default value of A, = I,, Assumption 5 is immediately
satisfied. Assumption 3 states that the prior on the space of the 2P~ possible models,
places zero mass on unrealistically large models (identical to Assumption in (Shin et al.,
2018)). Assumption 4 states that the ratio of the prior probabilities assigned to the true
model and any non-true model stays bounded below in n (identical to Assumption in
(Johnson and Rossell, 2012)). This type of priors have also been considered in (Song
and Liang, 2015) and (Shin et al., 2018). Assumption 2 states that p can grow at an
appropriate polynomial rate with n. In Section 5, we also give the consistency results
under the complexity priors on the model space, which penalize larger models, and
consequently relax the assumption on the rate at which p can be growing.

We now state and prove the main model selection consistency results. Our first result
establishes what we refer to as posterior ratio consistency. This notion of consistency
implies that the true model will be the mode of the posterior distribution among all the
models with probability tending to 1 as n — oo.

Theorem 3.1 (Posterior ratio consistency for hyper-pMOM priors). Under Assumptions
1, 3, 4 and 5, for the hierarchical model in (2.1) to (2.4) with hyper-pMOM priors, the
following holds:

k
InauxM — 0, asn— oo.
kAt m(t|yn)
In particular, it implies that the probability that the posterior mode k defined in (2.8)
is equal to the true model ¢ will converge to 1, i.e.,

P(t = argmaxn(kly,)) — 1, asn — oco.
k

We would like to point out that posterior ratio consistency (Theorems 3.1) does not
require any restriction on the number of predictors. This requirement is only needed for
strong selection consistency (Theorem 3.2). Next, we establish a stronger result which
implies that the posterior mass assigned to the true model ¢ converges to 1 in probability.
We refer to this notion of consistency as strong selection consistency.

Theorem 3.2 (Strong selection consistency for hyper-pMOM priors). Under Assump-
tions 1-5, with £ <1 — g—: in Assumption 3, for the hierarchical model in (2.1) to (2.4)
with hyper-pMOM priors, the following holds:

w(tlyn) = 1, asn — oo.
The above results have been established under the pMOM priors. Another class of
non-local priors introduced in (Johnson and Rossell, 2012) are the piMOM priors on

the regression coefficients, for which the density of the regression coefficients under the
model k = {k1, ko, ..., ky} is given by

(702)% d 702
W H |Bki|_(r+1) exp <—§> , (3.1)
2 i=1 i
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where r is a positive integer and is refereed to as the order of the density. The corollary
below establishes strong model selection consistency under the hyer-piMOM priors with
piMOM priors on each linear regression coefficient (conditional on the hyper parameter
7) and an Inverse-Gamma prior on 7. The consistency can be obtained immediately
by combining Theorem 3.2 with Eq. (59) and (60) in the supplementary material for
(Johnson and Rossell, 2012).

Corollary 3.1 (Strong selection consistency for hyper-piMOM priors). Under the same
conditions as in Theorem 3.2, when piMOM priors are imposed on G in model (2.2),
the following holds:

w(tly,) — 1, as n — oo.

Remark 1. In the context of generalized linear regression, Bian and Wu (2017) consider
the hierarchical Bayesian model with the following hyer-piMOM priors on regression
coefficients.

Br | 7i —(TUQ)LQM lf[lﬂ —(r D) ex ——TZUQ
k i F(%)‘k‘ 1 ki P ﬂ]%l
(r+1)
2

7; ~ Inverse-Gamma (

).

In particular, the authors put an independent piMOM prior on each linear regression
coefficient (conditional on the hyper parameter 7;), and an Inverse-Gamma prior on
7;. In this setting, Bian and Wu (2017) establish strong selection consistency for the
regression coefficients (assuming the prior is constrained to leave out unrealistically
large models). There are similarities between the models and the consistency analysis
in (Bian and Wu, 2017) and our work as in the usage of non-local priors and Inverse-
Gamma distribution. However, despite these similarities, there are some fundamental
differences in the two models and the corresponding analysis. Firstly, unlike the piMOM
prior, the pMOM prior in our model does not in general correspond to assigning an
independent prior to each entry of Bj. In particular, pMOM distributions introduce
correlations among the entries in 85 and creates more theoretical challenges. Because
of the correlation introduced, some properties like detecting small coefficients are not
apparent in our case. Also, the pMOM prior imposes exact sparsity in G, which is
not the case in (Bian and Wu, 2017). Hence it is structurally different than the prior
in (Bian and Wu, 2017). Secondly, in order to prove consistency results, Bian and Wu
(2017) assume the product of the response variables and the entries of design matrix
are bounded by a constant. The former assumption is rarely seen in the literatures and
the latter assumption can be problematic in practice. See Assumption C1 in (Bian and
Wu, 2017). In addition, Assumption C2 in (Bian and Wu, 2017) states the lower bound
for the true regression coefficients, which is not required in our analysis. Thirdly, in
terms of proving posterior consistency, we bound the ratio of posterior probabilities for
a non-true model and the true model by a ‘prior term’ which results from the Inverse-
Gamma prior on 7, and a ‘data term’. The consistency proof is then a careful exercise
in balancing these two terms against each other on a case-by-case basis, while Bian
and Wu (2017) directly follow the proof in (Shin et al., 2018) and requires additional
assumptions on the Hessian matrix.
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4 Proof of Theorems 3.1 and 3.2

The proof of Theorems 3.1 and 3.2 will be broken up into several steps. First we denote

for any model k, R} =yl (I — Xk(X,?Xk)_lX,z) Yn, and P, = Xk(Xng)_lX,?. Our

method of proving consistency involves approximating R; and Ry (in (2.7)) with R}

and Rj respectively. Fix a model k # t arbitrarily, and let w = kUt and u = |u]| be
* * T

the cardinality of u. Note that % ~xX2_,, B X2 Riqie ~ X2_,, and YnPutn
0

I9 )
2 By Xi XiBo
Xu 0'(2)

). Next, we establish two tail probability bounds for the x? distribution
and the non-central x? distribution respectively, which will be useful in our analysis.

Lemma 4.1. For any a > 0, we have the following two inequalities,
2 a?
P (Ix; —pl > a) < 2exp (—@) (4.1)

P(2(A) = (p+2) >a) <exp (—g {}% —log (1 + Z%) }) L (42

The proof for Lemma 4.1 is provided in the supplemental document (Cao et al.,
2019). The following result is immediate from Lemma 4.1.

P[R—g—(n—t)‘>m10gn] <PH%-@-@‘>4W}
0

90 (4.3)
<ot 0,
as n — oco. Similarly, we have
R
Pll—= —(n—u) >\/n—ulogn} <2t =0, (4.4)
LI 90
and
P[R"—gtc—(u—t)‘>\/u—tlogn} <2n7t =0, (4.5)
%0
as n — 0o. Next, by Lemma 4.1, since u D t, we have
TPy, 1 1
P [M - (u + —QﬁgXtTXtﬂo> > nlogn — u — —QﬁOTXtTXtﬁO]
99 90 90
U nlogn nlogn
<expq—5 —log |1+
{ 2 {“ 5306 X{ XuBo ( vt oiéﬂgXtTXtﬁJ }} (4.6)

<e U logn
Xp —— ————————— .
S I =61 Bo

’
=n"°% =0,
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as n — 0o, for some constant ¢’ > 0. Define the event C,, as

Cp z{‘% —(n—t)‘ > \/n—tlogn} U{
0
T
U{ (ut)‘>\/utlogn}u{—ynpgyn >nlogn},
)

Ringe
2
It follows from (4.3), (4.4), (4.5), and (4.6), that P(C,,) — 0 as n — oo.

Ry
0_8 - (n_u)

> vn—ulogn}

(4.7)

)

We now analyze the behavior of the posterior ratio under different scenarios in a
sequence of lemmas. Recall that our goal is to find an upper bound for the posterior
ratio, such that the upper bound converges to 0 as n — co. For the following lemmas,
we will restrict ourselves to the event (. The following lemma establishes the
upper bound of the marginal posterior ratio for any “non-true” model compared to the
true model.

Lemma 4.2. Under Assumption 1 and Assumption 5, for all k # ¢, there exists N (not
depending on k), such that when n > N,

rk " n 1
M (Yn) <BAF \4 1k (k1) {r; + 2042}:+rt+a
mt(yn) 62 {RZ + 2a2}5+rk+a1

n
J(h—t)—Srh—rt LR + 200} T 1704
(R + 2055101

(4.8)
+ BAkk(rqtl)knf(rJrl

where A, B are constants and V = €;4373,, in which AT = (XTX,)"'X,y, with
u=~kUt.

The proof for Lemma 4.2 is provided in supplemental document. The next two
lemmas provide the upper bound of the marginal posterior ratio for y, under different
cases of the “non-true” model k with proof provided in the supplemental document.

Lemma 4.3. Under Assumptions 1, 3 and 5, for all k 2 ¢, there exists N, such that
when n > N’ (not depending on k),

mk<yn) < K/(L/)kn—%rk’ (49)
mt('yn)
where K’ and L’ are constants.

Lemma 4.4. Under Assumptions 1, 3 and 5, for all k D ¢, there exists N” (not depending
on k), such that when n > N”|

M (Yn) 1 (pryk—t, —min{$,1-¢}r(k—1)
< SYT n 4 , 4.10
e (5] (1) (4.10)

where S’ and 7" are constants.

Proof of Theorem 3.1 and 3.2. The proof of Theorem 3.1 will follow immediately from
these two lemmas. By Lemma 4.3, if we restrict to C¢, for any k # ¢, if k 2 ¢,

3
< K'(L'Y*n=1"™% =0, as n — oco.
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Otherwise, when k D ¢,

mk(yn) < S/(T/)kftn——min{%,1—§}r(k—t) — 0, as n — 0.
me(Yn)

Note that P (CS) — 1 as n — oco. Following from (2.6) and Assumption 4, when k # ¢,
we have

7 (K|yn)
(tlyn)

m (yn)

< — 0, as n — oo. (4.11)

ISR

We now move on to the proof of Theorem 3.2. First note that when & < 1 — é—;’, we
have

3 3
min{z,l—f}r>z(1—§)r>v. (4.12)
It follows from (4.11) and Assumption 2 that if we restrict to C¢, then

1 rltlyn) _ g nlk)ma(un)

7(t[yn) k2t 7(t)me(yn)

Si Z mk(yn) + l Z mk(yn)

Kt mt(yn) w P mt(yn)

Adn

<2 (R

qn—t mind 3 1-¢Lr
O Sl i L

w k—t
k—t=1

T

oo

k

2|

Using (}) < p* and (4.12), we get

1 — 7(tyn)

— 0, ie. w(tly,) — 1,
~(tlyn) (tyn)

as n — 0o. O

5 Results for complexity priors

Note that under our model prior specified in Assumption 4, to achieve strong selection
consistency, we are restricting p to grow at a polynomial rate of n (see Assumption 2).
To address this limitation, based on reviewers’ comments, we investigate the theoretical
property under the complexity priors introduced in (Castillo et al., 2015). The hierar-
chical model with complexity priors placed on the model space, adapted to our notation
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and framework, can be described as follows:

Y, | Bk, 0% k ~ N(Xi.Bk,0%I,)

‘ B A T
(B | T, 0'2,’{3) = dk(2ﬂ)7§(702)7rk7%\Ak|% exp {W} HB,%:"
i=1

2702

(
7T(0'2) _ (a2) (02)*(a1+1) e o3

where ¢1,¢o > 0 are fixed constants. As indicated in (Castillo et al., 2015), the rate
of decrease for m(k) reflects the number of models (}) of given size k. Compared to
the previous uniform-like prior, these complexity priors are explicitly penalizing larger
models to accommodate larger dimensions. In particular, to achieve model selection
consistency in this setup, the dimension p can be allowed to grow at a sub-exponential
rate of n given in the following condition:

Condition A. There exists a constant 0 < k < 1, such that logp = O(n").

The next result establishes the posterior ratio consistency for the complexity prior
based approach in (5.1).

Theorem 5.1 (Posterior ratio consistency for complexity priors). Consider the complex-
ity prior based model described in (5.1). Under Assumptions 1, 3, 5 and Condition A,
the following holds:
k
maxM — 0, asn— oo.
k#t m(t|yn)

Next, we establish the strong selection consistency result which implies that the
posterior mass assigned to the true model ¢ converges to 1 in probability.

Theorem 5.2 (Strong selection consistency for complexity priors). Consider the com-
plexity prior based model described in (5.1). Under Assumptions 1, 3, 5 and Condition
A, if we future assume cp > 1, the following holds:

w(tly,) — 1, asn — oo.

The proof for Theorem 5.1 and 5.2 will also be broken into several steps. The follow-
ing three lemmas establish the upper bound for the marginal posterior ratio between
any “non-true” model and the true model.

Lemma 5.3. Under Assumptions 1, 3, 5 and Condition A, when k C ¢, for large enough
n > Ny (not depending on k), the following holds:

kly,
M < 2M1p7252t, (5.2)

7 (t[yn)

for some constants M; > 0.
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Lemma 5.4. Under Assumptions 1, 3, 5 and Condition A, When k D ¢, for large enough
n > N" (not depending on k), the following holds:

T(K[Yn) _ (b= catit) (5.3)

m(tlyn) ~

Lemma 5.5. Under Assumptions 1, 3, 5 and Condition A, when k € ¢, k 2 t and k # ¢,
denote u = k U t. for large enough n > NY (not depending on k), the following holds:

7-‘-(k|:';/’rl) —(k—t) —cok
——=<c P2 5.4
w(tlyn) = (54)

for some constant cz > 0.

Proof of Theorem 5.1 and 5.2. Theorem 5.1 immediately follows after Lemma 5.3 to
5.5. We now move on to the proof of Theorem 5.2. It follows from Lemma 5.3 to 5.5
that if we restrict to C, then

1- ﬂ-(tlyn) _ Z ﬂ-(k|yn

)
7T(ﬂyn) ket (t|yn)
kly, k kly,
Tt o et 2 )
k<t n k>t kOt " k>t kpt "
~(p Pt —en
—2cat - —(k=1t) —co(k—t)
< (k)Mgp SEIY (k_t)cl P
k=1 k—t=1
N AN
i (k e
=1

By (7) < p" and ¢; > 1, we get

1 — m(t|yn)

— 0, ie. m(t|ly,) =1, asn — oo,
~(tly) (ton)

which completes our proof for Theorem 5.2. U

Remark 2. Note that though under the complexity priors, the restriction on p is relaxed
in terms of proving strong selection consistency, we find that in our simulation studies,
the model selection performance under uniform-like prior is much better than that under
the complexity priors, hence from a practical point of view, one would still prefer the
hyper-pMOM with uniform-like prior over the model space. As indicated in (Shin et al.,
2018), since the pMOM priors already induce a strong penalty on the model size, it is
no longer necessary to penalize larger models through priors on the model space.
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6 Computation

The integral formulation in (2.6) is quite complicated, and hence the posterior prob-
abilities can not be obtained in closed form. Hence, we use Laplace approximation to
compute mg(y,) and w(k|y,). A similar approach to compute posterior probabilities
has been used in (Johnson and Rossell, 2012) and (Shin et al., 2018).

Note that for any model k, when Aj, = Ij, the normalization constant dj, in (2.1) is
given by dp = ((2r — DINF. Let

f(B,7,0%) =log(m(yn))
=log (W(yn|02)7r(,8k|r, 02)77(7')71'(02))

k k
=—klog ((2r — D)!) — % log(27) — (rk + % + a1+ 1> log(c?)
k — X.8.)7T _
ey B3 log 7 — (Yn — XiBr)” (Yn — XiBr)
2 202
k
BiBr  az  n
— — + — 2r1 .
<2702 + o2 + 2T +i=21 rlog(Br.)
(6.1)
For any model k, the Laplace approximation of mg(y,) is given by
(2m)5  exp { F(Br, 7,02 } IV (Br, 7, 02) L, (6.2)

where (,BAk,f',Ub) = argmaxg ;.2 f(8,, 0?) obtained via the optimization function

nlm in R using a Newton-type algorithm and V(Bk, 7, 0:2) isa (k+2) x (k+2) symmetric
matrix with the following blocks:

1 1 . 2r 2r Br

Vii = —1 —XI'x d iy =5, V12 = ———=

=5k + 52k Ak + diag {,6’%1 Yo 5£k } » V12 352
v :_Bk_Xngﬂk_ngnV :_Tk+§+%+ﬁ{ﬁk+ﬁv _ BiB

13 Tot ot $ v 72 g2 | 3 BT orasD
Voo TEHS St tl BB (Y — XkB) (yn — XiBr) | 205

33 = — 1 + 5 T 5 +—=

o TO 40 o
(6.3)

The above Laplace approximation can be used to compute the log of the posterior prob-
ability ratio between any given model k and true model ¢, and select a model k with
the highest probability. Based on a reviewer’s comment, we would like to point out that
Laplace approximation could have potential drawbacks. Firstly, as indicated in Rossell
and Telesca (2017), for non-local priors, Laplace approximations fail to consistently
estimate the marginal likelihood for overfitted models. Secondly, the Newton-type al-
gorithm used for optimizing (6.1) could be quite time consuming, especially when the
size of the model and the dimension p are large. For example, in Figure 5, the runtime
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for the hyper-pMOM approach increases as p grows. However, the computation cost
could potentially be significantly improved by using other optimization algorithms in
high dimensions. For example, the coordinate descent algorithm in (Friedman, Hastie,
and Tibshirani, 2010), or other first-order based algorithms including gradient descent
may reduce computational cost.

Despite these potential drawbacks of the Laplace approximation, we would like to
point out that in these high-dimensional settings, full posterior sampling using Markov
chain Monte Carlo algorithms is highly inefficient and often not feasible from a practical
perspective. Hence, the usage of Laplace approximation is still much better than MCMC.

We then adopt the scalable stochastic search algorithm proposed by Shin et al.
(2018) called Simplified Shotgun Stochastic Search with Screening (S5). Utilizing the
Laplace approximations of the marginal probabilities in (6.2), the S5 method aims at
rapidly identifying regions of high posterior probability and finding the maximum a
posteriori (MAP) model. Detailed algorithm steps can be found in Shin et al. (2018)
and the implementation can be found in the R package “BayesS5”.

7 Experiments

7.1 Simulation I: illustration of posterior ratio consistency

In this section, we illustrate the model selection consistency results in Theorems 3.1 and
3.2 using a simulation experiment. The similar simulation setting was also considered in
the literature (Cao et al., 2019) by Cao, Khare and Ghosh, in which the authors showed
posterior consistency in graphical model setting. We generate our data according to a
Gaussian linear model based on the following mechanism. First, we vary p from 500 to
3000 and let n = p/5. Then, for each fixed p, ten covariates are taken as active in the
true model with coefficients By = (1.1,1.2,1.3,...,1.9, 2)T and set 0 = 1. Also, the signs
of the true regression coefficients were randomly changed with probability 0.5. Next, we
generate n i.i.d. observations from the N(0,,X%) distribution as rows of the covariate
matrix X. We then examine posterior ratio consistency under three different cases of ¥
by computing the log posterior ratio of a “non-true” model k and t as follows.

1. Case 1: Isotropic design, where ¥ = I,,.

2. Case 2: Compound symmetry design, where ¥;; = 0.5, if ¢ # j and ¥;; = 1, for
all1<i<j<p.

3. Case 3: Autoregressive correlated design; where ¥;; = 0.5/ forall1 <i<j<
p.

Throughout this simulation study, we set the hyperparameters r = 2 and a; = as =
0.01. The log of the posterior probability ratio for various cases of ¥ is provided in
Figure 3. Note that for each of these cases, we compute the log ratio under four different
scenarios of “non-true” model k.
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Figure 3: Log of posterior probability ratio for k and ¢ for various choices of the “non-
true” model k. Left: case 1; middle: case 2; right: case 3.

1. Scenario 1: k is a subset of ¢ and |k| = $|t|.
2. Scenario 2: k is a superset of ¢ and |k| = 2|¢|.
3. Scenario 3: k is not necessarily a subset of ¢, but |k| = 3|t|.

4. Scenario 4: k is not necessarily a superset of t, but |k| = 2|¢|.

As expected the log of the posterior probability ratio for any “non-true” model k com-
pared to the true model t are all decreasing to large negative values as p increases,
thereby providing a numerical illustration of Theorems 3.1 and 3.2.

7.2 Simulation ll: illustration of model selection

In this section, we perform a simulation experiment to illustrate the potential advantages
of using our Bayesian approach. Several different values of p ranging from 500 to 3000
are considered, while n = p/5. For each fixed p, we construct two sets of By. The first
set is generated by the same mechanism as in Section 7.1. The other set also considered
is (0.3,0.35,0.4,0.45,0.5,1.1,1.2,1.3,1.4, 1.5)T. Next, we generate n i.i.d. observations
from the N(0,,X) distribution as rows of covariate matrix X under the following three
cases similar to Section 7.1.

1. Case 1: Isotropic design, where ¥ = I,,.

2. Case 2: Compound symmetry design, where ¥;; = 0.5, if ¢ # j and ¥;; = 1, for
all 1 <i<j<p.

3. Case 3: Autoregressive correlated design; where ¥;; = 057l forall1 <i<j<
p.

Then, we perform model selection using our hierarchical Bayesian approach. This is
done by computing the posterior probabilities using the Laplace approximation in (6.2),
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Lasso SCAD BayesSh r=1,7=0.348 r=27=0.072 Hyper-pMOM
P PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR
200  0.29 1 0.14  0.93 1 0.01 1 1 0 0.84 1 0.01  0.96 1 0 1 1 0
500  0.19 1 0.09 0.90 1 0 1 1 0 0.64 1 0.01  0.88 1 0 1 1 0
1000 0.18 1 0.04 0.87 1 0 0.98 1 0 0.51 1 0.01  0.69 1 0 1 1 0
1500  0.18 1 0.03  0.84 1 0 0.98 1 0 0.45 1 0.01  0.74 1 0 1 1 0
2000 0.17 1 0.02 0.82 1 0 0.98 1 0 0.30 1 0.01  0.59 1 0 1 1 0
2500 0.13 1 0.02  0.90 1 0 0.97 1 0 0.23 1 0.01  0.49 1 0 1 1 0
Lasso SCAD BayesSh r=1,7=0.348 r=2,7=0.072 Hyper-pMOM
P PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR
200 0.27 1 0.15  0.96 1 0 0.94 1 0 0.83 1 0.01  0.81 1 0.01 1 1 0
500  0.21 1 0.09 0.94 1 0 0.95 1 0 0.57 1 0.03  0.59 1 0.02 1 1 0
1000 0.17 1 0.05 0.92 1 0 0.95 1 0 0.45 1 0.02  0.46 1 0.01  0.99 1 0
1500 0.19 1 0.03  0.90 1 0 0.94 1 0 0.27 1 0.01  0.42 1 0.01 1 1 0
2000 0.13 1 0.04 0.84 1 0 0.87 1 0 0.20 1 0.02 041 1 0.01  0.99 1 0
2500 0.12 1 0.03  0.92 1 0 0.88 1 0 0.18 1 0.02  0.36 1 0.01  0.99 1 0
Lasso SCAD BayesSh r=1,7=0.348 r=2,7=0.072 Hyper-pMOM
P PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR
200 0.25 1 0.17 091 1 0 1 1 0 1 1 0 0.96 1 0 1 1 0
500  0.20 1 0.10 0.91 1 0 0.98 1 0 0.77 1 0.01  0.83 1 0 1 1 0
1000 0.18 1 0.05 0.85 1 0 0.97 1 0 0.59 1 0.01  0.73 1 0 1 1 0
1500 0.16 1 0.04 0.83 1 0 0.96 1 0 0.41 1 0.01 0.71 1 0 1 1 0
2000 0.17 1 0.04 0.83 1 0 0.96 1 0 0.36 1 0.01  0.57 1 0 0.99 1 0
2500 0.14 1 0.03 0.85 1 0 0.96 1 0 0.28 1 0.01  0.56 1 0 1 1 0
Table 1: Model selection performance comparison table when |[Bg] =

(1.1,1.2,1.3,...,1.9,2)". Top: case 1; middle:

case 2; bottom: case 3.

Lasso SCAD BayesSh r=171=0.348 r=27=0.072 Hyper-pMOM
P PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR
200 0.32 1 0.22 1 1 0 0.97 095 0 0.83 1 0.01 0.95 0.96 0 1 0.86 0
500  0.27 1 0.06 0.48 1 0.02 097 0.93 0 0.71 1 0.01 0.89 0.93 0 1 0.84 0
1000 0.13 1 0.07  0.59 1 0.01 095 0.95 0 0.41 1 0.01 0.88 0.89 0 1 0.88 0
1500 0.23 1 0.02 0.61 0.89 0 0.97  0.90 0 0.33 1 0.01 084 0.90 0 1 0.88 0
2000 0.19 1 0.03  0.63 1 0 0.97  0.89 0 0.25 1 0.01  0.74 0.89 0 1 0.84 0
2500  0.16 1 0.03  0.59 1 0.01 099 0.87 0 022 090 0.01 077 0.88 0 1 0.83 0
Lasso SCAD BayesSh r=17=0.348 r=2,7=0.072 Hyper-pMOM
P PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR
200  0.32 1 0.12  0.88 0.7 0.01 099 0.77 0 0.82 090 0.01 079 084 0.01 1 0.81 0
500  0.26 1 0.06 1 0.83 0 1 0.72 0 047 091 0.02 074 0.82 0.01 1 0.83 0
1000 0.19 0.89 0.02 057 081 0.01 1 0.69 0 046 090 0.01 0.60 0.84 0.01 1 0.79 0
1500 0.19 091 0.03 057 080 005 099 0.65 0 026 085 0.02 0.70 0.80 0 1 0.79 0
2000 0.17 1 0.15 066 0.79 0.03 095 0.67 0 023 083 0.02 0.62 0.80 0 094 0.74 0
2500 0.18 1 0.19 051 072 0.03 095 0.64 0 021 082 001 057 0.78 0 0.95 0.70 0
Lasso SCAD BayesSh r=1,7=0.348 r=2,7=0.072 Hyper-pMOM
P PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR
200 0.37 1 009 0.7 1 0.02 099 092 0 0.82 1 0.01 094 093 0 1 0.90 0
500  0.23 1 0.07  0.89 0.79 0 0.96  0.90 0 0.77 1 0.01 089 0.87 0 1 0.88 0
1000 0.13 1 0.07 048 095 0.01 096 0.88 0 0.67 1 0.01 0.77 0.86 0 1 0.84 0
1500 0.21 1 0.03 036 0.80 0.01 097 087 0 036 091 0.01 0.75 0.86 0 1 0.89 0
2000 0.16 0.9 0.03 035 071 001 095 0.88 0 0.25 1 0.01 0.84 0.82 0 1 0.86 0
2500 0.13 1 0.03 045 0.68 0 0.95 0.81 0 0.22 1 0.01 0.80 0.82 0 1 0.78 0
Table 2: Model selection performance comparison table when 3y =

(0.3,0.35,0.4,0.45,0.5,1.1,1.2,1.3,1.4,1.5)7. Top: case 1; middle:

case 3.

case 2; bottom:

and exploring the model space using the simplified stochastic shotgun stochastic search

algorithm in (Shin et al., 2018).

We would like to remind the readers that in our model, we don’t need to specify a
fixed value for 7, but rather put a prior on the parameter 7 (as opposed to (Johnson and
Rossell, 2012) and (Shin et al., 2018) when 7 is treated as a fixed parameter). In Table
1 and Table 2, we also provide model selection performance results with fixed 7 at r =
2,7 =0.072 and r = 1,7 = 0.348 (the default value for the first and second-order pMOM
prior suggested in Johnson and Rossell (2012)), and numerical values in R package
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BayesS5 (a choice for fixed 7 from the results in (Shin et al., 2018)). Additionally, we
also provide model selection performance results for the Lasso (Tibshirani, 1996) and
SCAD (Fan and Li, 2001) penalized likelihood methods.

The model selection performance of these five methods is then compared using sev-
eral different measures of structure such as positive predictive value, true positive rate
and false positive rate (average over 20 independent repetitions). Positive Predictive
Value (PPV) represents the proportion of true model indexes among all the indexes
detected by the given procedure. True Positive Rate (TPR) measures the proportion of
true indexes detected by the given procedure among all the true indexes from the true
model. False Positive Rate (FPR) represents the proportion of falsely identified indexes
among all the non-true indexes from the true model. PPV, TPR and FPR are defined

as
TP TP FP
PPWV=—"" _ TPR=-—"___ FPR=—
v TP + FP’ R TP + FN’ R FP + TN’

where TP, TN, FP and FN correspond to true positive, true negative, false positive and
false negative, respectively. One would like the PPV and TPR values to be as close to

1 as possible, while FPR to be as close to 0 as possible. The results are summarized in
Table 1 and Table 2.

To better visualized the results, in Figure 4, we provide the ROC curves when
|Bo|l = (1.1,1.2,1.3,...,1.9, 2)T and ¥ for generating X yields a compound symmetry
design. We also include the complexity prior based approach illustrated in Section 5. As
we can see, the complexity prior based approach captures fewer true indexes compared
to other approaches.
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Figure 4: ROC curves when p = 1500 (left), p = 2000 (middle), p = 2500 (right).

Based on Table 1 and 2, it is clear that our Bayesian approach outperforms both the
penalized likelihood approaches and the fixed 7 settings based on almost all measures
and under all cases. The PPV values for our hyper-pMOM approach are all higher than
the other five methods, which means our method can identify the true model more
precisely. In addition, The FPR values for the Bayesian approach are all significantly
smaller than the FPR, values for the penalized approaches. It is also worth noting that
especially in lower dimensions, the numerical procedure for choosing 7 implemented in
BayesS5 needs additional run time as shown in Figure 5, while in our simulation stud-
ies, not only this step is omitted, we are still able to better simulation results. Overall,
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Figure 5: Run time comparison in seconds.

this experiment illustrates the fact that the Bayesian approach can lead to a signifi-
cant improvement in model selection performance as compared to penalized likelihood
methods. Also, the hierarchical Bayesian approach introduced in this paper can lead to
a significant improvement in performance as compared to the fixed 7 Bayesian approach
when sample size is much smaller than the number of predictors.

8 Real data analysis

In this section, we carry out the real data analysis to examine the performance of pro-
posed method based on the Boston housing dataset. The dataset contains the median
value of owner-occupied homes in the Boston region as the response variable, together
with several other possible predictor variables including the geographical characteris-
tics. The total number of observations is n = 506 and 10 continuous variables: crim,
indus, nox, rm, age, dis, tax, ptratio, b, and Istat are considered as the predictor vari-
ables. Several approaches for variable selection have been demonstrated via this housing
dataset. See for example (Yuan and Lin, 2005; Shin et al., 2018).

We added 900 noise variables generated independently from a standard normal dis-
tribution, and additional 100 noise variables that obey the multivariate normal distri-
bution with a autoregressive correlated X, where ¥;; = 0.5”‘ﬂ7 forall 1 <i<j <100,
to perform the model selection in a p > n regression setting. The design matrix is stan-
dardized and the dataset is divided into a training set of size 406 and a test set of size
100. We first obtain the model estimate based on the training set and then compare
the proposed hyper-pMOM approach with the following four methods on the test set:
pMOM with fixed 7 = 0.072, peMOM with simplified shotgun stochastic search, and
two frequentist approaches, Lasso and SCAD.

The results are summarized in Table 3 averaged over 100 repetitions based on the
following five measures also adopted in (Shin et al., 2018). MSPE represents the out-of-
sample square prediction error calculated by

1 T Atrain 2

1€test
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MSPE MS-O MS-N FS-O TS-O

Hyper-pMOM  25.41 3 0 3 3
pMOM 34.43 5.10 4 5 6
peMOM 27.05 5 1 5 5
Lasso 30.19 526  35.79 4 6
SCAD 26.11 5 11.87 5 5

Table 3: Model selection comparison based on the Boston housing data.

where Bgmm is the least squared estimator based on the model estimate obtained from
the test set. MS-O and MS-N refer to the average original variables and falsely selected
noise variables over 100 repetitions, respectively. FS-O is the number of original variables
that are selected at least 95 out of 100 repetitions. T'S-O refers to the number of original
variables that are selected at least once from 100 repetitions.

As we see in Table 3, our hyper-pMOM approach consistently identifies the same
model and had the lowest prediction error among all the five methods. In particular,
the average number of the original variables that are selected at least 95 times is 3.
Across all the 100 repetitions, our hyper-pMOM method successfully avoids selecting
any noise variable, while all the other four methods falsely identify at least one noise
variable. Overall, the real data application illustrates our hyper-pMOM approach yields
the most stable and accurate model selection among all the five methods.

O Discussion

This article describes and examines theoretical properties of hyper-pMOM priors pro-
posed in (Wu, 2016) for variable selection in high-dimensional linear model settings.
Under standard regularity assumptions, which include the prior over all models is re-
stricted to ones with model size less than an appropriate function of the sample size n,
we establish posterior ratio consistency (Theorem 3.1), i.e., the ratio of the maximum
marginal posterior probability assigned to a “non-true” model to the posterior prob-
ability assigned to the “true” model converges to zero in probability. Next, under the
additional assumption that p increases at a polynomial rate with n, we show strong
model selection consistency (Theorem 3.2). Strong model selection consistency implies
that the posterior probability of the true model converges in probability to 1 as n — oo.

Based on the reviewers’ comments, we realize the polynomial rate restriction on
p could be rather limited. By carefully examining our theoretical analysis, in Section
5, we add another result where we replace the uniform-like prior with the complexity
prior on the model space to penalize larger models, and establish strong model selection
consistency (Theorem 5.2) when p is allowed to grow at a sub-exponential rate of n.
However, through simulation studies, we find out that the model selection performance
under the uniform-like prior is much better than that under the complexity prior, hence
from a practical point of view, one would still prefer the hyper-pMOM with uniform-like
prior on the model space.

In Section 6, we provide details about the application of Laplace approximation to
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approximate the posterior density and illustrate the potential benefits for our hyper-
pMOM based model selection procedure compared with other methods via simulation
studies and real data analysis in Section 7 and Section 8, respectively.

Acknowledgment

The authors are grateful to the Editor and three anonymous referees for their encour-
aging and helpful comments which substantially improved the paper.

Supplementary Material

Supplementary Material for “High-Dimensional Posterior Consistency for Hierarchical
Non-Local Priors in Regression”
(DOTI: 10.1214/19-BA1154SUPP; .pdf).

References

Bian, Y. and Wu, H.-H. (2017). “A Note on Nonlocal Prior Method.” arXiv:1702.07778.
943, 248

Cao, X., Khare, K., and Ghosh, M. (2019). “Posterior graph selection and estimation
consistency for high-dimensional Bayesian DAG models.” Annals of Statistics, 47(1):
319-348. MR3909935. doi: https://doi.org/10.1214/18-A0S1689. 255

Cao, X., Khare, K., and Ghosh, M. (2019). “Supplementary Material for “High-

Dimensional Posterior Consistency for Hierarchical Non-Local Priors in Regression”.
Bayesian Analysis. doi: https://doi.org/10.1214/19-BA1154. 249

Castillo, I., Schmidt-Hieber, J., and van der Vaart, A. (2015). “Bayesian linear regression
with sparse priors.” Annals of Statistics, 43: 1986-2018. MR3375874. doi: https://
doi.org/10.1214/15-A0S1334. 251, 252

Fan, J. and Li, R. (2001). “Variable Selection via Nonconcave Penalized Likelihood and
its Oracle Properties.” Journal of the American Statistical Association, 96: 1348—
1360. MR1946581. doi: https://doi.org/10.1198/0162145017563382273. 258

Friedman, J., Hastie, T., and Tibshirani, R. (2010). “Regularization Paths for General-
ized Linear Models via Coordinate Descent.” Journal of Statistical Software, Articles,
33(1): 1-22. MR1082147. 255

George, E. I. and McCulloch, R. E. (1993). “Variable Selection via Gibbs Sampling.”
Journal of the American Statistical Association, 88: 881-889. 241

Ishwaran, H., Kogalur, U. B., and Rao, J. S. (2005). “Spike and slab variable selection:
Frequentist and Bayesian strategies.” Annals of Statistics, 33: 730-773. MR2163158.
doi: https://doi.org/10.1214/009053604000001147. 241

Johnson, V. and Rossell, D. (2010). “On the Use of Non-Local Prior Densities in


https://doi.org/10.1214/19-BA1154SUPP
http://www.ams.org/mathscinet-getitem?mr=3909935
https://doi.org/10.1214/18-AOS1689
https://doi.org/10.1214/19-BA1154
http://www.ams.org/mathscinet-getitem?mr=3375874
https://doi.org/10.1214/15-AOS1334
https://doi.org/10.1214/15-AOS1334
http://www.ams.org/mathscinet-getitem?mr=1946581
https://doi.org/10.1198/016214501753382273
http://www.ams.org/mathscinet-getitem?mr=1082147
http://www.ams.org/mathscinet-getitem?mr=2163158
https://doi.org/10.1214/009053604000001147

262 Posterior Consistency for Non-Local Priors in Regression

Bayesian Hypothesis Tests Hypothesis.” Journal of the Royal Statistical Society.
Series B, 72: 143-170. MR2830762. doi: https://doi.org/10.1111/3j.1467-9868.
2009.00730.x. 241, 242

Johnson, V. and Rossell, D. (2012). “Bayesian Model Selection in High-Dimensional
Settings.” Journal of the American Statistical Association, 107: 649-660. MR2980074.
doi: https://doi.org/10.1080/01621459.2012.682536. 242, 246, 247, 248, 254,
257

Liang, F., Paulo, R., Molina, G., Clyde, A. M., and Berger, O. J. (2008). “Mix-
tures of g Priors for Bayesian Variable Selection.” Journal of the American Sta-
tistical Association, 103: 410-423. MR2420243. doi: https://doi.org/10.1198/
016214507000001337. 241, 242, 245

Narisetty, N. and He, X. (2014). “Bayesian variable selection with shrinking and diffus-
ing priors.” Annals of Statistics, 42: 789-817. MR3210987. doi: https://doi.org/
10.1214/14-A0S1207. 241, 243

Rossell, D. and Telesca, D. (2017). “Nonlocal Priors for High-Dimensional Estimation.”
Journal of the American Statistical Association, 112(517): 254-265. MR3646569.
doi: https://doi.org/10.1080/01621459.2015.1130634. 254

Rossell, D., Telesca, D., and Johnson, V. E. (2013). “High-Dimensional Bayesian Clas-
sifiers Using Non-Local Priors.” In Statistical Models for Data Analysis. Heidelberg:
Springer International Publishing. 242

Shin, M., Bhattacharya, A., and Johnson, V. (2018). “Scalable Bayesian Variable Se-
lection Using Nonlocal Prior Densities in Ultrahigh-Dimensional Settings.” Statist.
Sinica, 28: 10563-1078. MR3791100. 242, 243, 247, 248, 253, 254, 255, 257, 258, 259

Song, Q. and Liang, F. (2015). “High-Dimensional Variable Selection With Reciprocal
Li-Regularization.” Journal of the American Statistical Association, 110: 1607-1620.
MR3449058. doi: https://doi.org/10.1080/01621459.2014.984812. 247

Tibshirani, R. (1996). “Regression Shrinkage and Selection Via the Lasso.” Journal of
the Royal Statistical Society. Series B, 58: 267-288. MR1379242. 258

Wu, H.-H. (2016). “Nonlocal Priors for Bayesian Variable Selection in Generalized Lin-
ear Models and Generalized Linear Mixed Models and Their Applications in Biology
Data.” Ph.D. thesis, University of Missouri. MR3698950. 241, 242, 243, 244, 260

Yuan, M. and Lin, Y. (2005). “Efficient Empirical Bayes Variable Selec-
tion and Estimation in Linear Models.”  Journal of the American Statistical
Association, 100(472): 1215-1225. MR2236436. doi: https://doi.org/10.1198/
016214505000000367. 259

Zellner, A. (1986). “On assessing prior distributions and Bayesian regression analy-
sis with g-prior distributions.” Bayesian Inference and Decision Techniques, Stud.
Bayesian Econometrics Statist., 6: 233-243. MRO881437. 241, 242


http://www.ams.org/mathscinet-getitem?mr=2830762
https://doi.org/10.1111/j.1467-9868.2009.00730.x
https://doi.org/10.1111/j.1467-9868.2009.00730.x
http://www.ams.org/mathscinet-getitem?mr=2980074
https://doi.org/10.1080/01621459.2012.682536
http://www.ams.org/mathscinet-getitem?mr=2420243
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1198/016214507000001337
http://www.ams.org/mathscinet-getitem?mr=3210987
https://doi.org/10.1214/14-AOS1207
https://doi.org/10.1214/14-AOS1207
http://www.ams.org/mathscinet-getitem?mr=3646569
https://doi.org/10.1080/01621459.2015.1130634
http://www.ams.org/mathscinet-getitem?mr=3791100
http://www.ams.org/mathscinet-getitem?mr=3449058
https://doi.org/10.1080/01621459.2014.984812
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=3698950
http://www.ams.org/mathscinet-getitem?mr=2236436
https://doi.org/10.1198/016214505000000367
https://doi.org/10.1198/016214505000000367
http://www.ams.org/mathscinet-getitem?mr=0881437

	Introduction
	Model specification
	Model selection consistency: main results
	Proof of Theorems 3.1 and 3.2
	Results for complexity priors
	Computation
	Experiments
	Simulation I: illustration of posterior ratio consistency
	Simulation II: illustration of model selection

	Real data analysis
	Discussion
	Acknowledgment
	Supplementary Material
	References

