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Adaptive Bayesian Nonparametric Regression
Using a Kernel Mixture of Polynomials with

Application to Partial Linear Models

Fangzheng Xie∗ and Yanxun Xu†

Abstract. We propose a kernel mixture of polynomials prior for Bayesian non-
parametric regression. The regression function is modeled by local averages of
polynomials with kernel mixture weights. We obtain the minimax-optimal con-
traction rate of the full posterior distribution up to a logarithmic factor by es-
timating metric entropies of certain function classes. Under the assumption that
the degree of the polynomials is larger than the unknown smoothness level of
the true function, the posterior contraction behavior can adapt to this smooth-
ness level provided an upper bound is known. We also provide a frequentist sieve
maximum likelihood estimator with a near-optimal convergence rate. We further
investigate the application of the kernel mixture of polynomials to partial linear
models and obtain both the near-optimal rate of contraction for the nonparamet-
ric component and the Bernstein-von Mises limit (i.e., asymptotic normality) of
the parametric component. The proposed method is illustrated with numerical
examples and shows superior performance in terms of computational efficiency,
accuracy, and uncertainty quantification compared to the local polynomial regres-
sion, DiceKriging, and the robust Gaussian stochastic process.

Keywords: Bayesian nonparametric regression, Bernstein-von Mises limit, metric
entropies, partial linear model, rate of contraction.

1 Introduction

The standard nonparametric regression model is of the form yi = f(xi) + ei, where
yi’s are observations at given design points, xi’s are in the design space X ⊂ R

p, and
ei’s are independently N(0, σ2) distributed residuals, i = 1, . . . , n. The inference task
is to estimate the unknown function f : X → R. Nonparametric regression methods
have been widely used in a variety of applications, such as pattern recognition (Györfi
et al., 2006; Devroye et al., 2013), image processing and reconstruction (Takeda et al.,
2007), electronic healthcare records (Xu et al., 2016b), and semiparametric econometrics
(Robinson, 1988; Klein and Spady, 1993).

Frequentist methods for nonparametric regression typically compute a fixed esti-
mated function through the given data (xi, yi)

n
i=1. In contrast, Bayesian nonparametric

techniques first impose a carefully-selected prior distribution on the unknown function f
and then find the posterior distribution of f given the observed data (xi, yi)

n
i=1, provid-

ing a natural way for uncertainty quantification through the full posterior distributions
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instead of a point estimate given by frequentist approaches. One of the most popular
Bayesian nonparametric regression methods is the Gaussian process (Rasmussen and
Williams, 2006) due to its tractability. Nevertheless the computational burden of the
Gaussian process in likelihood function evaluation resulting from the inversion of the
covariance matrix prevents its scalability to big data.

In this paper, we propose a novel prior model for nonparametric regression, called
the kernel mixture of polynomials, that features attractive theoretical properties, effi-
cient computation, and flexibility for extension. Theoretically, we show that by using
the kernel mixture of polynomials for Bayesian nonparametric regression, the rate of
contraction with respect to the L2-topology is minimax-optimal (Stone, 1982; Györfi
et al., 2006) (up to a logarithmic factor) and, under the assumption that the degree of
the polynomials is large enough, is adaptive to the smoothness level in the sense that
the prior does not depend on the smoothness level of the true function. It is worth men-
tioning that most papers concerning posterior convergence for Bayesian nonparametric
regression only discuss the rate of contraction with respect to the weaker empirical L2-
norm (van der Vaart and van Zanten, 2008, 2009; De Jonge et al., 2010; Bhattacharya
et al., 2014), i.e., the convergence of the function at the given design points. There is
little discussion about the rate of contraction with respect to the exact L2-norm for gen-
eral Bayesian nonparametric regression methods. van der Vaart and Zanten (2011), Yoo
et al. (2016), and Yang et al. (2017) address this issue only in the context of Gaussian
process regression. In particular, the rate of contraction for Gaussian processes with
respect to the exact L2-norm requires prior knowledge of the smoothness level of the
true regression function. We also obtain a sieve maximum likelihood estimator with the
near-optimal convergence rate as a frequentist point estimator, which could potentially
be useful for designing scalable optimization algorithms.

From the computational perspective, the proposed kernel mixture of polynomials
model avoids the cumbersome O(n3) inversion of large covariance matrices, greatly fa-
cilitating computational efficiency for posterior inference compared to Gaussian process
priors, while maintaining the same level of accuracy (see Section 5.2 for detailed com-
parisons). Such a nice computational advantage makes it attractive to the big-data
regime. The code for implementation is publicly available at https://github.com/

fangzhengxie/Kernel-Mixture-of-Polynomials.git.

In addition, the kernel mixture of polynomials is flexible for extension due to its
nonparametric nature. As a specific example, we study the application of this prior
model to the partial linear model. The partial linear model is a classical semiparametric
regression model of the form yi = zTi β + η(xi) + ei, where zi,xi’s are design points, β
is the linear coefficient, η is some unknown function, and ei’s are independent N(0, 1)
residuals, i = 1, . . . , n. The literatures of partial linear models from both the frequentist
perspective (Engle et al., 1986; Chen et al., 1988; Speckman, 1988; Hastie and Tib-
shirani, 1990; Fan and Li, 1999) and Bayesian approaches (Lenk, 1999; Bickel et al.,
2012; Tang et al., 2015; Yang et al., 2015) are rich. However, there is little discussion
regarding the theoretical properties of the Bayesian partial linear model. To the best of
our knowledge, only Bickel et al. (2012) and Yang et al. (2015) discuss the asymptotic
behavior of the marginal posterior distribution of β with Gaussian process priors on η.

https://github.com/fangzhengxie/Kernel-Mixture-of-Polynomials.git
https://github.com/fangzhengxie/Kernel-Mixture-of-Polynomials.git
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We impose the kernel mixture of polynomials prior on η and obtain both a near-optimal
rate of contraction for η and the Bernstein-von Mises limit (i.e., asymptotic normality)
of the marginal posterior of β.

The layout of this paper is as follows. Section 2 presents the setup for the kernel
mixture of polynomials prior for nonparametric regression. Section 3 elaborates on the
convergence properties of the kernel mixture of polynomials for nonparametric regres-
sion. Section 4 presents the application of the kernel mixture of polynomials to the
partial linear model. Section 5 illustrates the proposed methodology using numerical
examples. We conclude the paper with several discussions in Section 6.

2 Preliminaries

2.1 Setup

Recall that the Gaussian nonparametric regression is of the form

yi = f(xi) + ei,

xi ∼ px independently,

ei ∼ N(0, σ2) independently, i = 1, . . . , n,

where px is the marginal density of the design points (xi)
n
i=1 supported on the p-

dimensional unit hypercube X = [0, 1]p. We assume that px is bounded away from 0
and ∞, and is known and fixed. The true but unknown regression function f0 is assumed
to be in the α-Hölder function class Cα,B(X ) with envelope B, the class of functions f
that are �α− 1�-times continuously differentiable with

max
|s|≤�α−1�

‖Dsf‖∞ + max
|s|=�α−1�

sup
x1 �=x2

|Dsf(x1)−Dsf(x2)|
‖x1 − x2‖α−|s| ≤ B

for all x1,x2 ∈ X , where �α − 1� denotes the minimum integer no less than α − 1,
Ds = ∂|s|/∂xs1

1 . . . ∂x
sp
p is the mixed partial derivative operator, and |s| =

∑p
j=1 sj .

When |s| = 0, by convention we define D0f(x) = f(x). We use P0 and E0 to denote
the probability and expected value under p0, respectively. For readers’ convenience,
descriptions of additional notations are provided in Section A in the Supplementary
Material (Xie and Xu, 2019).

The goal is to estimate the unknown function f0. Leaving the Bayesian framework
for a moment, let us consider the frequentist Nadaraya-Watson estimator (Nadaraya,
1964; Watson, 1964) of the form

f̂(x) =

n∑
i=1

[
ϕh(x− xi)∑n
i=1 ϕh(x− xi)

]
yi, (1)

where ϕh : Rp → [0,+∞) is the kernel function parametrized by the bandwidth param-
eter h ∈ (0,+∞) and is assumed to decrease when ‖x‖ increases. It is a local averaging
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estimator (Györfi et al., 2006), since the summand ϕh(x− xi)/
∑

i ϕh(x− xi) can be
treated as the weight received from yi. As such a simple local averaging estimator does
not yield an optimal rate of convergence when the true regression function is α-Hölder
for α ≥ 2 (Devroye et al., 2013), Fan and Gijbels (1996) considers a more general local
polynomial regression to capture higher-order curvature information of the unknown re-
gression function and gain an optimal rate of convergence. Inspired by these two classical
approaches for nonparametric regression, we develop the kernel mixture of polynomials
model.

Firstly, for a given integer K, we partition the design space X into Kp disjoint
hypercubes: X =

⋃
k∈[K]p XK(k), where XK(k) =

∏p
j=1 ((kj − 1)/K, kj/K], μ�

k =

[(2k1 − 1)/(2K), · · · , (2kp − 1)/(2K)]
T
, k = [k1, . . . , kp]

T ∈ [K]p, and μ�
k is the cen-

ter of XK(k). The idea of the partition is to breakdown the problem of estimating
the regression function over the entire domain X into sub-problems of estimating the
regression function within each block.

Next, we introduce the notion of (boxed) kernel functions in order to detect the local
behavior of the underlying regression function f0 around the block XK(k). Formally,
a continuous function ϕ : Rp → [0, 1] is a boxed kernel function if it is supported on
{x : ‖x‖∞ ≤ 1}, does not increase when ‖x‖∞ increases, and ϕ(x) ≤ 1(‖x‖∞ ≤ 1).
We consider the univariate bump kernel ϕ(x) = exp[−(1 − x2)−1]1(|x| < 1) in this
paper. Other examples of boxed kernels include the triangle kernel, the Epanechnikov
kernel, etc. For convenience we denote ϕh(x) = ϕ(x/h), where h > 0 is the bandwidth
parameter. For each K ∈ N+ and each k ∈ [K]p, define the kernel mixture weight as

wk(x) =
ϕh(x− μk)∑

l∈[K]p ϕh(x− μl)
, (2)

where μk ∈ XK(k), and h > 0. The kernel mixture weight wk(x) is motivated by the
form of Nadaraya-Watson estimator (1) and is designed to average the signal from f0
locally around μk. It can also be shown that the denominator D(x) :=

∑
l ϕh(x − μl)

is strictly non-zero by considering the structure of the disjoint blocks XK(k)’s. See
Figure 1 for some examples of the kernel mixture weights wk(x) in the univariate case.

Thirdly, in order to enhance the estimation accuracy, we need additional tools to
capture the higher-order curvature information (e.g., gradient, Hessian, etc.) of the
underlying regression function surface, motivated by the local polynomial regression.
GivenK and the kernel mixture weights (2), we define the kernel mixture of polynomials
system to be the set of functions of the form

ψks(x) = wk(x)(x− μ�
k)

s, k ∈ [K]p, s ∈ {s ∈ [m]p : |s| = 0, 1, . . . ,m}, (3)

where (x − μ�
k)

s denotes the monomial
∏p

j=1[xj − (2kj − 1)/2K]sj , x = [x1, · · · , xp]
T,

and s = [s1, · · · , sp]T. In this work we require that the degree m of the kernel mixture
of polynomials system to be no less than α, i.e., m ≥ α. A similar assumption was
also adopted in De Jonge et al. (2012) in the context of conditional Gaussian tensor-
product spline models, where the degree of polynomials in the B-splines was required
to be no less than the smoothness level of the underlying true function. Note that for
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Figure 1: Examples of wk(x) for k = 2, 3, 4, 5, 6 with K = 8 and equidistant μk =
(2k − 1)/(2K), k ∈ [K].

any m < α, f0 being an α-Hölder function implies that f0 is also an m-Hölder function.
Therefore, the analysis in this work can be easily adapted to the case where the relation
between m and α is unknown by simply replacing α with min{m,α}. When s = 0, ψks

closely resembles the term ϕh(x− xi)/
∑

i ϕh(x− xi) appearing in the summation of
the Nadaraya-Watson estimator (1). When s �= 0, ψks is able to capture higher-order
curvature information from the underlying regression function due to its polynomial
structure.

Finally, with the above ingredients, we define the kernel mixture of polynomials
model by M = {pf,σ(x, y) : f ∈

⋃∞
K=1 FK , σ ∈ [σ, σ]}, a class of distributions indexed

by the regression function f and the standard deviation of the noise σ, where pf,σ(x, y) =
φσ (y − f(x)) px(x), f lies in the union of the function classes FK =

⋃
Kh∈[h,h] FK(h)

for some constants h, h with 1 < h < h < ∞, and

FK(h) =

⎧⎨⎩ ∑
k∈[K]p

m∑
s:|s|=0

ξksψks(x) : μk ∈ XK(k), max
|s|=0,...,m

|ξks| ≤ B,k ∈ [K]p

⎫⎬⎭. (4)

The parameters σ, K, (μk : k ∈ [K]p), and (ξks : k ∈ [K]p, |s| = 0, 1, . . . ,m) are to
be assigned a hierarchical prior in Section 2.2. In other words, the kernel mixture of
polynomials model parametrizes the regression function f through

f(x) =
∑

k∈[K]p

m∑
s:|s|=0

ξksψks(x), (5)

where {ψks(x)}ks serves as certain basis functions that mimic the behavior of f locally
around μk ∈ XK(k), and ξks is the coefficient or the amplitude of the corresponding
basis function ψks(x).
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Remark 1. In order that the centers μk’s in the kernel mixture weights are helpful
to detecting both the local and global behavior of f , they need to be relatively spread.
This also explains why in the first step above, we require that μk’s lie in the disjoint
blocks ∈ XK(k)’s. In addition, such a partition restriction avoids the label-switching
phenomenon in the Markov chain Monte Carlo sampler for posterior inference, which
could potentially affect the mixing of the Markov chain (Celeux et al., 2000; Jasra et al.,
2005). Alternatively, repulsive priors (Affandi et al., 2013; Xu et al., 2016a; Xie and Xu,
2017) can be incorporated to gain well-spread kernel centers, but this could still cause
the label-switching issue.

Remark 2. The kernel bandwidth parameter h, which is typically endowed with a prior
in the literature of Bayesian kernel methods (Ghosal et al., 2007a; Shen et al., 2013),
also plays a key role in establishing the convergence properties of the kernel mixture of
polynomials. In the current context, h can be arbitrarily close to zero asymptotically,
since we require that K ranges over all positive integers and that Kh stays bounded
as K → ∞. Therefore,

⋃∞
K=1 FK is rich enough to provide good approximation to

arbitrary f0 ∈ Cα,B(X ).

Remark 3. In a related work of Rockova and van der Pas (2017), the authors con-
sider the posterior contraction of Bayesian regression trees and their ensembles, which
are essentially piece-wise constant functions supported on hypercube partitions. Due to
the non-smoothness nature of these classes of functions, their contraction results are
restricted to functions with smoothness level α ≤ 1. In contrast, the proposed kernel
mixture of polynomials model can be regarded as a smoother version of the Bayesian re-
gression trees, and, as will be seen in Section 3, the contraction result holds for smoother
functions as well (α ≤ m).

2.2 Prior specification

We define a prior distribution Π for (f, σ) through (5) by imposing the hierarchical
priors on the parameters (μk : k ∈ [K]p), (ξks : k ∈ [K]p, |s| = 0, 1, . . . ,m), σ, h, and
K as follows:

• The standard deviation σ of the residuals (ei)
n
i=1 follows πσ that is continuous

and non-vanishing on [σ, σ], independent of the remaining parameters.

• The prior for K satisfies the following condition:

exp [−b0x
p (log xp)

r0 ] � Π(K ≥ x) � exp [−b1x
p (log xp)

r0 ] (6)

for some constants b0, b1 > 0, b1 ≤ b0, and r0 ≥ 0.

Given K, the conditional prior for the rest of the parameters are given as follows:

• The kernel centers μk’s are sampled as μk = μ�
k + μ̃k/(2K), where μ̃k indepen-

dently follows πμ for each k ∈ [K]p for some continuous non-vanishing density πμ

on the hypercube [−1, 1]p. For example, πμ can be taken as the uniform distribu-
tion on [−1, 1]p.
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• The coefficient ξks for ψks(x) follow πξ independently for each s ∈ [m]p with
|s| = 0, 1, . . . ,m given K, where πξ is a continuous non-vanishing density on
[−B,B]. For example, one can take πξ to be the normal distribution truncated on
[−B,B], or the uniform distribution on [−B,B].

• The bandwidth h follows a non-vanishing density π(h | K) supported on [h/K,
h/K] given K, where 1 < h < h. The uniform distribution on [h/K, h/K] satisfies
the condition.

Remark 4. Kruijer et al. (2010) adopts the same tail probability condition (6) for the
number of support points in the context of nonparametric density estimation. Special
cases of (6) include the geometric distribution when r0 = 0, and the Poisson distribution
when r0 = 1. In Section 3, we show that both r0 = 0 and r0 = 1 yield the same rate of
contraction, but any r0 > 1 (i.e., thinner tail) leads to a slower rate of contraction.

3 Convergence properties of the kernel mixture of
polynomials regression

In this section, we establish the convergence results of the kernel mixture of polyno-
mials for nonparametric regression, and obtain a frequentist sieve maximum likelihood
estimator with the corresponding convergence rate. For nonparametric regression prob-
lems, when the true regression function f0 is in Cα,B(X ), px(x) = 1, and ei ∼ N(0, 1),
i = 1, . . . , n, it has been shown that the minimax rate of convergence for any estima-
tor with respect to the L2-norm is n−α/(2α+p) (Stone, 1982; Györfi et al., 2006). The
optimal rate of contraction cannot be faster than the minimax rate of convergence.
Theorem 1 below, which is one of the main results of this section, asserts that the rate
of contraction with respect to the L2(Px)-topology is minimax-optimal up to a logarith-
mic factor. Furthermore, under the assumption that the degree m of the kernel mixture
of polynomials system is no less than the smoothness level α, rate of contraction is
adaptive to the smoothness level α of the underlying true f0.

Theorem 1 (Rate of contraction). Assume that f0 is in the α-Hölder function class
Cα,B(X ) with envelope B. Suppose Π is the prior constructed in Section 2.2 with m ≥ α.
Then for some large constant M > 0, it holds that

Π(‖f − f0‖2L2(Px)
> Mε2n | Dn) → 0 (7)

in P0-probability, where Dn denotes the data (xi, yi)
n
i=1, εn = n−α/(2α+p)(logn)t/2, and

t > 2αmax(r0, 1)/(2α+ p) + max (0, 1− r0).

We sketch the proof below and defer the details to the Supplementary Material (Xie
and Xu, 2019). Write the posterior distribution Π(· | Dn) as follows:

Π(A | Dn) =

∫
A exp[�n(f, σ)− �n(f0, σ0)]Π(dfdσ)∫
exp[�n(f, σ)− �n(f0, σ0)]Π(dfdσ)

:=
Nn(A)

Dn
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for any measurable set A, where �n(f, σ) is the log-likelihood function �n(f, σ) =∑n
i=1 log pf,σ(xi, yi). To prove the rates of contraction results in Theorem 1, it suffices to

verify a set of sufficient conditions, one variation of the prior-concentration-and-testing
framework originally presented by Ghosal et al. (2000). This framework, along with
other variations, have been widely applied not only to nonparametric regression, but
also to density estimation (Ghosal and van der Vaart, 2001; Ghosal et al., 2007b; Krui-
jer et al., 2010; Shen et al., 2013) and high-dimensional statistics (Castillo and van der
Vaart, 2012; Bhattacharya et al., 2015; Ročková, 2018; Pati et al., 2014; Gao and Zhou,
2015).

For the purpose of illustrating the proof framework, we introduce the notions of cov-
ering number and metric entropy. For a metric space (F , d), for any ε > 0, the ε-covering
number of (F , d), denoted by N (ε,F , d), is defined to be the minimum number of ε-balls
of the form {g ∈ F : d(f, g) < ε} that are needed to cover F . The ε-bracketing number
of (F , d), denoted by N[·](ε,F , d), is defined to be the minimum number of brackets of
the form [li, ui] that are needed to cover F such that li, ui ∈ F and d(li, ui) < ε. We refer
to logN (ε,F , d) as the metric entropy, and logN[·](ε,F , d) as the bracketing (metric)

entropy. The bracketing integral
∫ ε

0

√
logN[·](u,F , d)du is denoted by J[·](ε,F , d).

We now specify the prior-concentration-and-testing framework, which are two suffi-
cient conditions for (7). The first one is a prior concentration condition. Namely, there
exists another sequence (εn)

∞
n=1 with εn ≤ εn, such that

Π(p ∈ BKL(p0, εn)) ≥ exp(−nε2n),

where BKL(p0, ε) is the Kullback-Leibler ball of radius ε centered at p0 defined as follows:

BKL(p0, ε) =

{
pf,σ : DKL(p0||pf,σ) < ε2,E0

[
log

p0(x, y)

pf,σ(x, y)

]2
< ε2

}
.

Secondly, we require a summability condition: For the sequence (εn)
∞
n=1 above, there

exists a sequence of sub-classes of densities (Mn)
∞
n=1, Mn ⊂ M (recall the definition of

M in Section 2.1), and for each Mn a partition (Mnm)∞m=1 with Mn =
⋃∞

m=1 Mnm,
such that Π(p ∈ Mc

n) ≤ exp(−4nε2n) and

exp(−nε2n)

∞∑
m=1

√
N (εn,Mnm, H)

√
Π(p ∈ Mnm) → 0.

The sequence of sub-classes of densities (Mn)
∞
n=1 is referred to as sieves in the literature

(Shen and Wong, 1994).

The prior concentration condition plays a fundamental role in proving convergence
of posterior distributions, as it guarantees that with probability tending to one, the
denominator Dn appearing in the posterior distribution Π(· | Dn) does not decay super-
exponentially (see, for example, Lemma 8.10 in Ghosal and van der Vaart, 2017):

P0

(
Dn ≥ Π(p ∈ BKL(p0, εn)) exp[−(1 + c)nε2n]

)
→ 1
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for any positive c > 0. Under the current setup, the prior concentration condition largely
depends on how well the kernel mixture of polynomials is able to approximate any α-
Hölder function. To this end, we introduce the following lemma to demonstrate the
approximation power of the kernel mixture of polynomials.

Lemma 1 (Approximation lemma). Assume that f0 is in the α-Hölder function class
Cα,B(X ) with envelope B. Let f be of the form (5) and μk ∈ XK(k). Then under the
assumption m ≥ α, there exists some constant C1 such that for sufficiently small ε the
following holds whenever K ≥ ε−1/α,

B�
K :=

{
f : max

k∈[K]p,|s|=0,1,...,�α−1�

∣∣∣∣ξks − Dsf0(μ
�
k)

s1! . . . sp!

∣∣∣∣ ≤ ε,k ∈ [K]p
}

⊂
{
f : ‖f − f0‖2L2(Px)

< C1ε
2
}
.

The intuition of Lemma 1 is that for each μ�
k, the function f0 can be well approxi-

mated by the Taylor polynomials of degree m locally around μ�
k. In fact, the coefficients

ξks are selected to be sufficiently close to the Taylor polynomial coefficients. Then the
local approximation effect around μ�

k for each k ∈ [K]p is accumulated through the
kernel mixture weights (wk(x) : k ∈ [K]p). Lemma 1 may be of independent interest
for numerical function approximation as well.

Moving forward to the summability condition, it states that there exists a subset
Mn of the entire model M that occupies most of the prior probability, and at the
same time can be covered by the union of a collection of blocks (Mnm)m≥1 with low
model complexity (metric entropies). Therefore, it is desired that useful metric entropy
bounds can be obtained for the kernel mixture of polynomials model. The following
proposition, which is one of the major technical contributions of this paper, directly
tackles this issue.

Proposition 1 (Metric entropy bound). Under the assumption that m ≥ α, there exists
some constant c2 > 0, such that for sufficiently small ε > 0 and any r ∈ [1,∞),

logN[·](2ε,FK , ‖ · ‖Lr(Px)) ≤ logN (ε,FK , ‖ · ‖∞) ≤ c2K
p

(
log

1

ε

)
.

Besides the rate of contraction, which is a frequentist large sample evaluation of
the full posterior distribution, we also obtain a frequentist sieve maximum likelihood
estimator with a convergence rate as a result of the metric entropy bounds. This con-
vergence rate is also minimax optimal up to a logarithmic factor. Interestingly, this rate
is tighter than the rate of contraction of the full posterior, but the price we pay for the
rate improvement is that the construction of the sieve depends on the smoothness level
α and the rate is non-adaptive.

Theorem 2. Assume that f0 is in the α-Hölder function class Cα,B(X ) with envelope

B. Consider the sieve maximum likelihood estimator f̂K(x) defined by

f̂K(x) = argmax
f∈GK

n∑
i=1

log φσ0(yi − f(xi)),
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where

GK =

⎧⎨⎩ ∑
k∈[K]p

m∑
s:|s|=0

ξksψks(x) : Kh ∈
[
h, h

]
,μk ∈ XK(k), max

k∈[K]p,|s|=0,...,m
|ξks| ≤ B

⎫⎬⎭ ,

and m ≥ α. If Kn = �(n/logn)1/(2α+p)�, then

lim
n→∞

P0

(∥∥∥f0 − f̂Kn

∥∥∥
L2(Px)

≥ M(logn/n)α/(2α+p)

)
= 0

for some large constant M > 0.

4 Application to partial linear models

The kernel mixture of polynomials model can be extended to other contexts thanks to
its flexible nonparametric nature. In this section we present a semiparametric applica-
tion: we use the kernel mixture of polynomials to model the nonparametric component
in partial linear models. The partial linear model is of the form yi = zTi β + η(xi) + ei,
where zi,xi’s are design points, β is the linear coefficient, η : X → R is an unknown non-
parametric function, and ei’s are independent N(0, 1) residuals. In many applications,
the estimation of the nonparametric component η is of great interest. For example, in
Xu et al. (2016b), the parametric term zTi β models the baseline disease progression and
the nonparametric term η(xi) models the individual-specific treatment effect deviations
over time. When the regression coefficient β is of more interest, the estimation of η can
still be critical since it could affect the inference of β. As will be seen later, we prove
the convergence results for both the nonparametric component η (Theorem 3) and the
parametric component β (Theorem 4). Furthermore, as a consequence of the metric
entropy result (Proposition 1), we obtain the Bernstein-von Mises limit of the marginal
posterior distribution of β.

4.1 Setup and prior specification

Let X = [0, 1]p ⊂ R
p be the design space of the nonparametric component, Z ⊂ R

q

be the design space of the parametric component, and p(x,z) : X × Z → (0,∞) be
a continuous density function supported on X × Z. We incorporate the partial linear
model with the kernel mixture of polynomials prior for the nonparametric component
η through P = {pβ,η(x, z, y) : β ∈ R

q, η ∈
⋃∞

K=1 FK}, a class of distributions indexed
by the linear coefficient β and the nonparametric component η, where pβ,η(x, z, y) =
φ(y − zTβ − η(x))px,z(x, z) and FK =

⋃
Kh∈[h,h] FK(h) with FK(h) given by (4). We

assume that the data Dn = (xi, zi, yi)
n
i=1 are independently sampled from p0(x, z, y) =

φ(y − zTβ0 − η0(x))px,z(x, z) for some β0 ∈ R
q and some function η0 ∈ Cα,L(X ).

Several additional assumptions regarding the parametric component zTβ are needed:
The design space Z ⊂ R

q for z is compact with supz∈Z ‖z‖1 ≤ B for some B > 0; The
sampling distribution for z satisfies Ez = 0 and EzzT being non-singular; The density
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of the design points (xi, zi)
n
i=1 factorizes as p(x,z)(x, z) = px(x)pz(z), i.e., x and z are

independent.

For the prior specification, we assume η follows the kernel mixture of polynomials
prior Πη constructed in Section 2.2 with σ = 1. For the parametric component β, we
impose a standard Gaussian prior Πβ = N(0, Iq), independent of Πη. The joint prior is
denoted by Π = Πη ×Πβ.

4.2 Convergence results

We first tackle the convergence of the nonparametric component η. The following the-
orem not only addresses the rate of contraction of the marginal posterior of η, but also
serves as one of the building blocks for proving the Bernstein-von Mises limit of the
marginal posterior of β. The proofs of Theorem 3 and Theorem 4 are deferred to the
Supplementary Material (Xie and Xu, 2019).

Theorem 3 (Nonparametric rate). Assume that η0 is in the α-Hölder function class
Cα,B(X ) with envelope B. Under the setup and prior specification in Section 4.1, with
m ≥ α,

Π(‖η − η0‖L2(Px) > Mεn | Dn) → 0

in P0-probability for some large constant M > 0, where εn = n−α/(2α+p)(logn)t/2, and
t > 2αmax(r0, 1)/(2α+ p) + max (0, 1− r0).

Now we turn to the convergence results for the parametric component. The focus is
the asymptotic normality of the marginal posterior distribution of β, i.e., the Bernstein-
von Mises limit (Doob, 1949). To achieve this, we need the notion of the least favorable
submodel for semiparametric models (Bickel et al., 1998). For each fixed β ∈ R

q, the least
favorable curve η∗β is defined by the minimizer of the Kullback-Leibler divergence over all
η: η∗β(x) = arg infη∈F DKL(p0||pβ,η). Under the assumptions Ez = 0 and p(x,z)(x, z) =
px(x)pz(z), for each β, it can be shown that η∗β(x) coincides with η0(x). The least
favorable submodel is defined to be {pβ,η∗

β
: β ∈ R

q}, which in turn coincides with

{pβ,η0 : β ∈ R
q} in our context.

Theorem 4. Assume that η0 is in the α-Hölder function class Cα,B(X ) with envelope
B. Under the setup and prior specification in Section 4.1, if α > p/2 and m ≥ α, then

sup
F

∣∣Π (√
n(β − β0) ∈ F | Dn

)
− Φ(F | Δn, (EzzT)−1)

∣∣ → 0

in P0-probability, where Φ(· | Δn, (Ezz
T)−1) is the N(Δn, (Ezz

T)−1) probability mea-
sure and

Δn =
1

n

n∑
i=1

(EzzT)−1z
[
yi − η0(xi)− zTi β0

]
.

The proof of Theorem 4 is based on verifying a set of sufficient conditions in Yang
et al. (2015), which are provided in the Supplementary Material (Xie and Xu, 2019).
However, we remark that the metric entropy results (Proposition 1) in Section 3 and the
rate of contraction for η (Theorem 3) are also of fundamental interest in the verification
process.
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5 Numerical studies

We perform numerical studies to evaluate the kernel mixture of polynomials for non-

parametric regression and the partial linear model. The posterior inference for all ex-

amples is carried out by a Markov chain Monte Carlo (MCMC) sampler with the num-

ber of burn-in iterations being 1000. Then we collect 1000 post-burn-in MCMC sam-

ples for posterior analysis. To determine K, we collect posterior samples for each fixed

K ∈ {Kmin, . . . ,Kmax} and find the optimal K by minimizing the deviance informa-

tion criterion (Gelman et al., 2014) over K. Numerical evidence shows that all Markov

chains converge within 1000 iterations. The kernel we use throughout is the bump kernel

ϕ(x) = exp[−1/(1− x2)]1(|x| < 1).

5.1 A synthetic example for nonparametric regression

We first consider a synthetic example for nonparametric regression. Following Knapik

et al. (2011) and Yoo et al. (2016), we consider the true function to be f0(x) =√
2
∑∞

s=1 s
−3/2 sin(s) cos[(s − 1/2)πx], which has smoothness level α = 1. We gener-

ate n = 1000 observations (xi, yi)
n
i=1 given by yi = f0(xi) + ei, where the design points

(xi)
n
i=1 are independently and uniformly sampled over X = [0, 1], and (ei)

n
i=1 are in-

dependent N(0, 0.22) residuals. For the prior specification, we let πμ = Unif(−1, 1),

πβ = N(0, 102), πξ = N(0, 102)1(|ξ| ≤ 50), and Kh ∼ Unif(h, h). The hyperparameters

are set as h = 1.2, h = 2, B = 50, K = 15, and m = 2. The range of K is set to be

{6, 7, . . . , 15}.

For comparison we consider 3 competitors for estimating f0: the local polynomial

regression (Fan and Gijbels, 1996), implemented in the locpol package (Cabrera, 2012),

DiceKriging method (Roustant et al., 2012), and the robust Gaussian stochastic process

emulation (RobustGaSP, Gu et al., 2017), implemented in the RobustGaSP package (Gu

et al., 2016). The point-wise posterior means and 95%-credible/confidence intervals for

f(x) using the 4 nonparametric regression methods are plotted in Figure 2, respectively.

We also compute the mean-squared errors of the posterior means of the four methods,

where the ground true f0 is evaluated at 1000 equidistant design points. In terms of

accuracy measured by the mean-squared errors (marked in the bottom-left corner of

each panel), the kernel mixture of polynomials performs better than DiceKriging and

similarly to the local polynomials and RobustGaSP.

We further investigate the uncertainty quantification of the kernel mixture of poly-

nomials and the 3 competitors by performing 1000 repeated experiments. Namely, we

simulate 1000 synthetic datasets using the same setup as above, perform the corre-

sponding inference for each dataset, and then compute the average coverage and aver-

age lengths of the point-wise credible/confidence band. We are particularly interested in

the behavior of coverage of the point-wise credible/confidence band for x ∈ [0.30, 0.35],

where the true regression function f0 exhibits a bump. As shown in the left panel of

Figure 3, DiceKriging and the local polynomial regression provide the best coverage,

but the widths of the point-wise confidence band are much larger (see the right panel of
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Figure 2: Synthetic example for nonparametric regression. Shaded regions are the
point-wise 95%-credible/confidence intervals. The solid lines are point-wise posterior
means/point estimators of f and the dot-dashed lines are the ground true f0. Scatter
points are the observations.

Figure 3). RobustGaSP provides the worst coverage among the 4 approaches, and the
corresponding confidence band is still wider than that of the kernel mixture of poly-
nomials. In contrast, the proposed kernel mixture of polynomial regression provides
better credible band coverage for x ∈ [0.30, 0.35] than RobustGaSP. In addition, the
average length of the point-wise credible band of the kernel mixture of polynomials is
narrower than those of the other 3 competitors. However, we also notice that this feature
is at the cost of worse coverage than the local polynomial regression and DiceKriging.
Namely, the narrower point-wise confidence band is over-confident near the bump of
f0 than DiceKriging and the local polynomial regression. One potential reason for this
phenomenon could be that the model over-smooths the true regression function f0 near
the bump based on a random sample of limited size, but f0 is much smoother elsewhere
(Yoo et al., 2016).

As pointed out by one of the referees, for the kernel mixture of polynomials, the
bad coverage behavior of the point-wise credible band near the bump of f0 may be
alleviated by using the credible set for the entire function. Following Szabó et al. (2015),
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we consider the following L2-credible set for f :

Ĉn(γn) = {f : ‖f − f0‖L2(Px) ≤ γn},

where γn > 0 is the credible radius such that Π(f ∈ Ĉn(γn) | Dn) = 95%. Numerically,
the credible set Cn(γn) can be computed as follows: let (fmc

t )nmc
t=1 be nmc posterior

samples of f drawn from the MCMC. Let γn be the 95%-quantile of (‖fmc
t −f̂‖L2(Px))

nmc
t=1 ,

where f̂ is the point-wise posterior mean function. Then the L2-credible set Ĉn(γn) can
be constructed by{

f : min
t:‖fmc

t −f̂‖L2(Px)≤γn

fmc
t (x) ≤ f(x) ≤ max

t:‖fmc
t −f̂‖L2(Px)≤γn

fmc
t (x) for all x ∈ X

}
.

Using the aforementioned 1000 replicates of synthetic datasets, we examine the cor-
responding point-wise coverage behavior of the L2-credible sets of the entire function
locally around the bump (x ∈ [0.25, 0.4]), compute the average lengths of these credible
sets, and plot them in Figure 3. The L2-credible sets exhibit better point-wise coverage
behavior than the point-wise credible bands at the cost of slightly wider lengths. This
is also in accordance with the observations in Szabó et al. (2015): the overall coverage
is satisfactory, but the coverage near the bump is slightly lower. We also observe that
the lengths of these L2-credible sets are close to those obtained from RobustGaSP, but
the coverage is better.

Figure 3: Coverage of the credible band/confidence band/credible set and the average
lengths of the credible band/confidence band/credible set for nonparametric regression
under 1000 repeated experiments.
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5.2 Computation comparison with Gaussian processes

One motivation of developing the kernel mixture of polynomials for Bayesian non-
parametric regression is to tackle the computational bottleneck of classical Gaussian
processes. In this section we compare the computational costs of the kernel mixture
of polynomials against Gaussian processes with 3 different covariance functions: the
squared-exponential covariance function:

K(x, x′;ψ) = exp
[
−(x− x′)2/ψ2

]
,

the Matérn covariance function with roughness parameter 3/2:

K(x, x′;ψ) =
(
1 +

√
3|x− x′|/ψ

)
exp

(
−
√
3|x− x′|/ψ

)
,

and the Matérn covariance function with roughness parameter 5/2:

K(x, x′;ψ) =
(
1 +

√
5|x− x′|/ψ + 5|x− x′|2/(3ψ2)

)
exp

(
−
√
5|x− x′|/ψ

)
.

The parameter ψ appearing in these covariance functions is referred to as the range
parameter. Here we follow the suggestion by van der Vaart and van Zanten (2009) and
impose an inverse-Gamma hyperprior on ψ, i.e., π(ψ) ∝ ψ−aψ−1 exp(−bψ/ψ) for some
aψ, bψ ≥ 2. Such a hierarchical formulation for Gaussian processes with a hyperprior on
the range parameter is also referred to as rescaled Gaussian processes in the literature
(van der Vaart and van Zanten, 2007).

We adopt the same setup as in Subsection 5.1 except that ei ∼ N(0, 0.12), and for
each rescaled Gaussian process described above, posterior inference is carried out using
classical Markov chain Monte Carlo, with 1000 posterior samples collected after burn-
in. The hyperparameter for πψ is set to be aψ = bψ = 2. The posterior means and
point-wise 95% credible intervals for the kernel mixture of polynomials and 3 rescaled
Gaussian processes are visualized in Figure 4 (a), (b), (c), and (d), respectively. Fur-
thermore, we examine the mean-squared errors of the posterior means as well as the
computational costs of the 4 approaches. As shown in Table 1, the proposed kernel mix-
ture of polynomials not only yields a point estimate with smaller mean-squared error,
but is also much more efficient than the rescaled Gaussian processes in terms of runtime
expenses. The main reason is that when updating the range parameter ψ in a single
iteration of MCMC using Gaussian processes, the inverse of the covariance matrix needs
to be re-computed, whereas the kernel mixture of polynomials does not suffer from such
a computational bottleneck.

5.3 A synthetic example for the partial linear model

We consider a synthetic example to evaluate the performance of the kernel mixture of
polynomials for the partial linear model. We simulate n = 500 observations accord-
ing to the model yi = zTi β0 + η0(xi) + ei, where β0 is provided in Table 2, (ei)

n
i=1

are independent N(0, 1) residuals that are independent of (xi, zi)
n
i=1, and η0(x) =
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Figure 4: Comparison with rescaled Gaussian processes: Shaded regions are point-wise
95%-credible/confidence intervals. The solid lines are point-wise posterior means/point
estimators of f and the dot-dashed lines are the ground true f0. Scatter points are the
observations.

Table 1: Comparison with Gaussian processes: Mean-squared errors and computational
costs.

Method mean-squared error computational cost
Kernel mixture of polynomials 3.447× 10−4 562s

Squared-exponential Gaussian process 1.266× 10−3 198806s
Matérn 3/2 Gaussian process 5.736× 10−4 24219s
Matérn 5/2 Gaussian process 6.918× 10−4 20300s

2.5 exp(−x) sin(10πx). The nonparametric function η0 is highly nonlinear and hence
brings natural challenge to estimation. The design points (zi)

n
i=1 for the linear compo-

nent follow Unif([−1, 1]8) independently, and the design points (xi)
n
i=1 for η are inde-

pendently sampled from Unif(0, 1). The hyperparameters for the kernel mixture of poly-
nomials prior are set as follows: h = 1.2, h = 2, B = 100, and m = 3. For the prior spec-
ification, we assume πμ = Unif(−1, 1), πβ = N(0, 102I8), πξ = N(0, 102)1(|ξ| ≤ 100),
and Kh ∼ Unif(h, h). We set the range of K to be {6, 7, . . . , 15}.

For the parametric component, we compute the posterior means and the posterior
95% credible intervals for β. For comparison, we calculate the least-squared estimate of
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β: β̂LS = argminβ∈Rq

∑n
i=1(yi − zTi β)

2. The comparison is provided in Table 2, where
the column “KMP” stands for the posterior means of β under the kernel mixture of
polynomials prior. From the posterior summary of β we see that the underlying true
β0 lie in the posterior 95%-credible intervals of the kernel mixture of polynomials prior,
and the corresponding posterior means outperform the least-squared estimate in terms
of accuracy. For the nonparametric component, we plot the point-wise posterior means

Table 2: Simulation example: Inference of β with η0(x) = 2.4 exp(−x) sin(10πx).

β β0 KMP 95%-credible intervals β̂LS

β1 1.0338 1.0579 (0.8949, 1.2150) 1.1976
β2 0.1346 0.1003 (-0.0560, 0.2516) 0.1733
β3 0.2854 0.3481 (0.1832, 0.5090) 0.4427
β4 0.6675 0.6449 (0.5007, 0.7887) 0.8386
β5 0.6732 0.7212 (0.5630, 0.8838) 0.7427
β6 0.5293 0.5433 (0.3971, 0.6866) 0.6274
β7 -0.5073 -0.4759 (-0.6337, -0.3158) -0.3464
β8 -3.3942 -3.3031 (-3.4492, -3.1450) -3.5253

of η along with the point-wise 95% credible intervals in Figure 5 (a). The mean-squared
error of the posterior means at 500 equidistant points on (0, 1) is 0.0351. Based on the
least-squared estimate of β, we also consider the local polynomial regression, DiceK-
riging method, and RobustGaSP as three alternatives to estimate the nonparametric
component. The numerical comparisons are illustrated in Panels (b), (c), and (d) in
Figure 5, respectively. The kernel mixture of polynomials outperforms the local polyno-
mial in terms of both the mean-squared error. Both DiceKriging and RobustGaSP fail
to detect the nonlinearity of η0, giving rise to significantly larger mean-squared error of
the point-wise posterior means.

To examine the uncertainty quantification of the 4 approaches, we perform 1000
repeated experiments. The coverage and average lengths of the point-wise credible/
confidence band are presented in Figure 6. The averages of the regression function
estimates and their point-wise credible/confidence bands based on 1000 repeated exper-
iments are computed and visualized in Figure 7. It can be seen that the kernel mixture
of polynomials provides decent coverage to η0 and the corresponding average lengths of
the point-wise credible band are smaller than those using the other three approaches.
In contrast, all the three competitors fail to detect the signal of η0 after averaging from
repeated experiments, producing inappropriate point-wise confidence band (either too
narrow or too wide). In particular, DiceKriging provides poor coverage of the point-wise
confidence band, and the average widths of the point-wise confidence bands using the
local polynomials and RobustGaSP are much wider than the magnitude of η0.

5.4 The partial linear model for the wage data

We further analyze the cross-sectional data on wages (Wooldridge, 2015), a benchmark
dataset for the partial linear model. This dataset is also available in the np package
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Figure 5: Synthetic example for the partial linear model. Shaded regions are point-wise
95% credible/confidence intervals. The solid lines are point-wise posterior means/point
estimators of η and the dot-dashed lines are η0. Scatter points are the observations.
Panels (b), (c), and (d) are computed using the discrepancy data (xi, yi − zTi β̂LS)

n
i=1,

where β̂LS is the least-squared estimate of β.

(Hayfield et al., 2008). It consists of 526 observations with 24 variables and are taken
from U.S. Current Population Survey for the year 1976. In particular, we are interested
in modeling the hourly wage on the logarithm scale as the response with respect to 5
variables: years of education (educ), years of potential experience (exper), years with
current employer, gender, and marital status. Choi and Woo (2015) and Hayfield et al.
(2008) suggest the following form of the model:

yi = β1z
female
i + β2z

married
i + β3z

educ
i + β4z

tenure
i + η(xexper

i ) + ei,

where ei’s are independent N(0, σ2) residuals. The zfemale
i are ±1-valued, where zfemale

i =
1 indicates that the ith observation is a female, and −1 otherwise. We set zmarried

i = 1 if
the ith observation is married, and −1 otherwise. We centralize zeduci and ztenurei before
applying the partial linear model, i.e.,

∑n
i=1 z

educ
i =

∑n
i=1 z

tenure
i = 0. The xexper

i ’s are
re-scaled so that they lie in (0, 1). To evaluate the performance of the proposed method,
we use 300 observations as the training data, with the rest of the 226 observations left as
the testing data to compute the prediction mean-squared error. The prior specification
and hyperparameters for the MCMC sampler are set as follows: h = 1.2, h = 2, m = 3,
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Figure 6: Coverage of point-wise credible/confidence band and average lengths of point-
wise credible/confidence band for partial linear model under 1000 repeated experiments.

Figure 7: Averages of regression function estimates (blue solid lines) and the correspond-
ing point-wise credible/confidence band (shaded regions) for partial linear model using
1000 repeated experiments.

π(σ2) ∝ [σ2]−2 exp(−1/σ2) (i.e., the inverse-Gamma density), πβ = N(0, 102I4), and
πξ = N(0, 102)1(|ξ| ≤ 100). The range of K is set to be {11, 12, . . . , 20}.

We calculate the posterior means and the posterior 95%-credible intervals for β. For
comparison, we also provide the least-squared estimate of β and the estimate computed
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by the np package (Hayfield et al., 2008). The results are summarized in Table 3 (the
“KMP” column represents the posterior means of β), showing that the kernel mixture
of polynomials estimate is closer to the np package estimate than the least-squared
estimate, and all 3 point estimates of β lie in the posterior 95%-credible intervals. For

Table 3: Wage data example: Inference of β.

KMP 95% credible intervals np package β̂LS

female -0.1214 (-0.2534, -0.0071) -0.1287 -0.0921
married 0.0249 (-0.0943, 0.1629) 0.0279 0.3209
educ 0.0903 (0.0373, 0.1404) 0.0891 0.1257
tenure 0.0175 (-0.0032, 0.0372) 0.0167 0.0152

the nonparametric component, we compute the kernel mixture of polynomials prediction
on the testing dataset. The comparison with the true testing responses is demonstrated
in Panel (a) of Figure 8. The 3 alternatives based on the np estimate of β for estimating
the nonparametric component η are: the local polynomial regression, DiceKriging, and
RobustGaSP. The performance of these 3 competitors are visualized in Panels (b), (c),
and (d) in Figure 8, respectively. The local polynomial regression estimate does not
outperform the kernel mixture of polynomials in terms of the prediction mean-squared
error, and the prediction curve is highly non-smooth. DiceKriging does not work in
this scenario: the prediction mean-squared error is large, the prediction curve is highly
non-smooth, and the point-wise confidence intervals show singularity in estimating the
covariance matrix. RobustGaSP, though gives similar prediction mean-squared error
compared to the kernel mixture of polynomials, does not capture the local nonlinearity
of the nonparametric component. In addition, the point-wise 95% confidence/credible
intervals for the local polynomial regression and RobustGaSP are wider than those
given by the kernel mixture of polynomials when x ∈ (0, 0.6). Since the data are dense
in the region (0, 0.6), the point-wise credible intervals estimated by the kernel mixture
of polynomials are thinner in this region; In contrast, the design points are sparser in
the region x ≥ 0.6, and correspondingly there exists larger uncertainty in estimating
η. Namely, the uncertainty of the kernel mixture of polynomials is adaptive to the
distribution of the design points.

6 Discussion

In this work we assume that an upper bound B for the supremum norm of the derivatives
of the true regression function f0 is known and is used to construct the prior for the
coefficients (ξks : k ∈ [K]p, |s| = 0, · · · ,m). In addition, the prior for the standard
deviation σ of the residuals is supported on a compact interval [σ, σ] containing σ0. These
two restrictions can be potentially inconvenient, as B, σ, and σ are typically unknown
in practice. Here we provide the following non-adaptive alternative solution. The prior
specification is slightly modified as follows: FirstK is fixed atKn = �(n/ log n)1/(2α+p)�,
h is fixed at 2/K, and μk is fixed at μ�

k for all k ∈ [Kn]
p. Namely, we consider a simplified
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Figure 8: Wage data example. Shaded regions are point-wise 95%-credible/confidence in-
tervals. The solid lines are point-wise posterior means/point estimators of η. Circle scat-
ter points are the training observations, and triangle scatter points are testing responses.
Panels (b), (c), and (d) are computed using the discrepancy data (xi, yi − zTi β̂np)

n
i=1,

where β̂np is the estimate of β computed using the np package.

kernel mixture of polynomials:

f(x) =
∑

k∈[Kn]p

m∑
s:|s|=0

ξksψks(x), with ψks(x) =
ϕh(x− μ�

k)(x− μ�
k)

s∑
l∈[Kn]p

ϕh(x− μ�
l )

. (8)

Then the prior Πn on (f, σ) is imposed as follows: ξks | σ ∼ N(0, n2σ2) independently
for all k ∈ [Kn]

p and 0 ≤ |s| ≤ m given σ. Note here we relax the assumption that
ξks is supported on [−B,B]. Denote the corresponding induced conditional prior on f
given σ by Πn

f (· | σ). We impose σ2 with an inverse-Gamma prior Πσ = IG(aσ, bσ), with

πσ2(σ2) ∝ (σ2)−aσ/2−1 exp[−bσ/(2σ
2)] for some aσ, bσ ≥ 2. In particular, we impose the

prior on ξks with a scaling factor n so that for large n the prior is weakly informative.
Then under the above setup and prior specification Πn(·, ·) = Πn

f (· | σ) × Πσ(·), the
posterior contraction with respect to L2(Pn) can be shown to be minimax-optimal up to
a logarithmic factor (see Section F in the Supplementary Material, Xie and Xu, 2019).

In general, in developing contraction rates for nonparametric regression with respect
to the ‖ · ‖L2(Px) distance, it requires significant work to drop the boundedness assump-
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tion on the space of regression functions. The underlying reason is that when the space
of functions are not uniformly bounded, existence of certain test functions satisfying the
so-called Ghosal & van der Vaart conditions originally presented in Ghosal et al. (2000)
may not exist. To the best of our knowledge, Xie et al. (2017) is the only literature
addressing the posterior contraction of Bayesian nonparametric regression with respect
to ‖·‖L2(Px) in a systematic framework without imposing uniform boundedness on func-
tion spaces. It will be interesting to extend the techniques there to study the posterior
contraction of the kernel mixture of polynomials without requiring the boundedness
assumption.

Another feasible extension is variable selection in high dimensions. To be more spe-
cific, suppose that the design space X = [0, 1]p is with high dimensionality in the
sense that p � n, and the true regression function f0 only depends on a subset of
the covariates {xj1 , . . . , xjq} ⊂ {x1, . . . , xp}, where q < n is the intrinsic dimension.
To tackle such a high-dimensional variable selection problem in nonparametric regres-
sion, we modify the kernel mixture of polynomials as follows: Let the kernel function
ϕ(x1, · · · , xp) : R

p → [0, 1] be of the product form ϕ(x) = ϕ(x1, · · · , xp) =
∏p

j=1 ϕ
1(xj),

where ϕ1 : R → [0, 1] is a univariate kernel function. We introduce the auxiliary binary
variables (zj)

p
j=1 to indicate whether the jth covariate is active or not, and modify the

kernel mixture of polynomial system as follows:

ψks(x1, · · · , xp | z1, · · · , zp) =
∏p

j=1[ϕ
1
h(xj − μkj)]

zj∑
l∈[K]p

∏p
j=1[ϕ

1
h(xj − μlj)]zj

p∏
j=1

(xj − μ�
kj)

sjzj .

Then by letting

f(x1, · · · , xp | z1, · · · , zp) =
∑

k∈[K]p

m∑
s:|s|=0

ξksψks(x1, · · · , xp | z1, · · · , zp),

we can see that if zj = 0, f does not depend on xj . In fact, the basis function ψks only
depends on covariates that are active, i.e., (xj : zj = 1, j = 1, · · · , p). One can further
impose independent Bernoulli(p) prior on (z1, · · · , zp) and complete the hierarchical
Bayesian model by adopting the prior specification in Subsection 2.2 for the rest of
the parameters. We believe that it will be interesting to investigate the convergence
properties of such a modification of the kernel mixture of polynomials.

There are also several other potential extensions of the current work. Firstly, we de-
velop the theoretical results under the assumption that the residuals (ei)

n
i=1 are Gaus-

sian. In cases where the residuals are only assumed to be sub-Gaussian, further explo-
ration of the convergence properties can be investigated. Secondly, the design points are
assumed to be random in the present paper. In cases where the design points are fixed,
which is also a common phenomenon in many physical experiments (Tuo and Wu, 2015),
theoretical results for the kernel mixture of polynomials can be further extended using
the techniques developed for non-independent nor-identically distributed observations
by Ghosal et al. (2007a) or fixed-design nonparametric regression by Xie et al. (2017).
Secondly, we have only considered the case where the true regression function f0 is in
the α-Hölder function class. It is also interesting to extend the current framework to the
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case where f0 is in the α-Sobolev function space. Roughly speaking, when α is an integer,
a function f is called α-Sobolev if the corresponding (α − 1)th derivatives are squared
integrable. The almost-sure existence of derivatives of α-Sobolev functions guarantees
that the approximation lemma (Lemma 1) is still applicable, and hence it is reasonable
to expect that our theory also applies to an α-Sobolev f0. In addition, when applying
the kernel mixture of polynomials to the partial linear model, we only consider the case
where Ez = 0 and x is independent of z, indicating that the linear component and
the nonparametric component are orthogonal. On one hand, the idea of orthogonality
has been explored in the literature of calibration of inexact computer models (Plumlee
and Joseph, 2016; Plumlee, 2017), and therefore exploring the application of the kernel
mixture of polynomials to calibration of orthogonal computer models is a promising ex-
tension. On the other hand, it is also interesting to investigate the convergence theory
when the two components are not orthogonal to each other. We also expect that the
kernel mixture of polynomials can be applied to other semiparametric models besides
the partial linear model, such as the single-index model (Ichimura, 1993), the projec-
tion pursuit regression (Friedman and Stuetzle, 1981), etc. Finally, we have developed a
theoretical support for a sieve maximum likelihood estimator with compact restrictions
on the parameter spaces. In particular, the loss function is of the least-squared form.
From the computational perspective, an efficient optimization technique that is also
scalable to big data can be designed to obtain the frequentist estimator in light of the
rich literature of solving nonlinear least-squared problems (Nocedal and Wright, 2006).

Supplementary Material

Supplementary Material for “Adaptive Bayesian Nonparametric Regression Using a
Kernel Mixture of Polynomials with Application to Partial Linear Models”
(DOI: 10.1214/19-BA1148SUPP; .pdf). The supplementary material contains additional
notations, proofs for Section 3, Section 4, posterior contraction for unknown σ2 discussed
in Section 6 and its proof, and cited theorems and results.
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