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Personalized medicine is a medical procedure that receives considerable
scientific and commercial attention. The goal of personalized medicine is to
assign the optimal treatment regime for each individual patient, according
to his/her personal prognostic information. When there are a large number
of pretreatment variables, it is crucial to identify those important variables
that are necessary for treatment decision making. In this paper, we study
two information criteria: the concordance and value information criteria, for
variable selection in optimal treatment decision making. We consider both
fixed-p and high dimensional settings, and show our information criteria
are consistent in model/tuning parameter selection. We further apply our in-
formation criteria to four estimation approaches, including robust learning,
concordance-assisted learning, penalized A-learning and sparse concordance-
assisted learning, and demonstrate the empirical performance of our methods
by simulations.

1. Introduction. Personalized medicine is a medical procedure that receives consider-
able scientific and commercial attention. The goal of personalized medicine is to assign the
optimal treatment regime for each individual patient, according to his/her personal informa-
tion, such as a patient’s genetic content, clinical response and demographic characteristics,
etc. A treatment regime is a decision rule that assigns treatments to patients based on their
observed covariates. Among the set of all possible treatment regimes, the one that optimize
patients’ expected outcomes of interest is referred to as the optimal treatment regime. Classi-
cal methods for estimating optimal treatment regime include Q-learning (Watkins and Dayan
(1992), Chakraborty, Murphy and Strecher (2010)) and A-learning (Murphy (2003), Robins,
Hernan and Brumback (2000)). Recently, many authors proposed to estimate the optimal
treatment regime by directly maximizing the estimated expected outcome, that is, the value
function. References include Zhang et al. (2012, 2013), Zhao et al. (2012, 2015). In addition,
Fan et al. (2017) introduced a type of concordance function for prescribing treatment and
proposed a concordance-assisted learning for estimating the optimal treatment regime.

When there are many pretreatment variables, how to organize and use these variables for
treatment decision making becomes a big challenge. This makes it clinically important to im-
plement the variable selection technique in personalized medicine. There are a large amount
of works considering variable selection in linear and generalized linear models (GLMs) in
the literature (see discussions in Fan and Lv (2010)). Parameters in the model can be con-
sistently estimated even in the ultrahigh dimension where the number of covariates p grows
exponentially fast with respect to the sample size n. However, the literature on estimating
the optimal treatment regime in high dimension is scarce, especially when p is much larger
than n. For a single stage study, Qian and Murphy (2011) proposed to construct the optimal
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treatment regime by estimating the conditional mean of the response given treatment of pre-
dictors with l1 penalty function. Lu, Zhang and Zeng (2013) proposed a convenient loss-based
framework for variable selection. Liang et al. (2017) proposed a sparse concordance-assisted
learning algorithm. For multiple treatment decision points, Shi et al. (2018) proposed a high-
dimensional A-learning method which estimates the optimal treatment regime by solving
penalized A-learning estimating equations. All these regularization methods require appro-
priate choices of the tuning parameters.

Akaike information criterion (AIC, Akaike (1973)) and Bayes information criterion (BIC,
Schwarz (1978)) are widely applied to linear models and generalized linear models. In the ul-
trahigh dimension, Fan and Tang (2013) proposed a generalized information criterion (GIC)
and showed its model selection consistency. These information criteria are all constructed
based on the likelihood function. However, the optimal treatment regime is usually esti-
mated by some semiparametric or nonparametric methods. These methods are typically not
likelihood-based. An alternative approach is to consider information criterion constructed by
an empirical objective function, such as the information criterion proposed by Zhang et al.
(2016) for support vector machines (SVMICH ). However, how to derive meaningful and
suitable information criteria for selecting important covariates for optimal treatment decision
remains challenging. Shi et al. (2018) used a BIC-type criterion to select tuning parameters
for their estimation methods. However, there is no theoretical guarantees for the BIC proce-
dure.

In this paper, we consider model selection and tuning parameter selection for estimating
the optimal treatment regime. Specifically, we propose value information criterion (VIC) and
concordance information criterion (CIC) for model selection. VIC and CIC are constructed
based on the empirical estimators for the value (Zhang et al. (2012)) and the concordance
function (Fan et al. (2017)), respectively. The concordance function stands for the average
difference of the benefit in receiving a treatment for two patients, if one is more likely to be
assigned to this treatment compared to another under a given regime.

There are several technical challenges for establishing the asymptotic properties of the
proposed information criteria. Different from AIC, BIC, GIC and SVMICH that rely heav-
ily on the smoothness of the log-likelihood function and Lipschitz continuity of the loss
function, the empirical value and concordance functions involve indicator functions that are
neither continuous nor concave. In addition, the derivation of the asymptotic properties of
the proposed information criteria is further complicated due to the curse of dimensionality.
For example, the estimated concordance function is a U -process of order two. In the fixed-p
scenario, applying the maximal inequality for degenerate U -process (cf. Nolan and Pollard
(1987), Sherman (1994)), it can be uniformly approximated by a smooth function with the
approximation error O(1/n). Such results no longer hold when p � n.

The contributions of this paper are summarized as follows. First, a more general class of
models is considered. More specifically, in this paper, we assume a monotonic linear index
model for the contrast function. In contrast, previous work on variable selection for optimal
treatment regime mainly assume a linear interaction for the contrast (cf. Lu, Zhang and Zeng
(2013), Shi et al. (2018)). Other information criteria such as AIC, BIC and GIC focus on
linear models or GLMs where the link function needs to be specified.

Second, we not only establish the consistency of our proposed information criteria, but
also provide upper bounds for the probabilities that VIC or CIC chooses an underfitted model
and an overfitted model. To the best of our knowledge, such type of nonasymptotic bounds
are rarely established for other information criteria previously. Proofs of our major theo-
rems (Theorems 3.3 and 3.4) rely on some newly developed empirical process and U -process
techniques, which are important in their own rights. First, we provide a Bernstein-type con-
centration inequality (Theorem 7.1) for the unbounded degenerate U -process. Our theorem
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generalizes existing results and relaxes classical assumptions that require the underlying class
of functions to be bounded (Arcones (1995), Clémençon, Lugosi and Vayatis (2008), Li, Ren
and Li (2014)). In addition, we develop the tail inequalities and uniform consistencies of em-
pirical maximizers of the estimated value and concordance functions (Lemma 7.1) that are
useful to show selection consistencies of VIC and CIC. This is a very challenging task due to
the nonsmoothness of the objective function and curse of dimensionality.

Third, our proposed information criteria are generally applicable and are not specifically
tailored to certain estimating procedures. For any estimation procedure, as long as the true
model can be recovered and the estimator satisfies certain convergence rates, we show that
VIC and CIC are consistent, in both fixed-p and ultrahigh dimension cases. Specifically,
we apply our information criteria to four estimation approaches, including robust learning
(Zhang et al. (2012)), concordance-assisted learning (Fan et al. (2017)), penalized A-learning
(Shi et al. (2018)) and sparse concordance-assisted learning (Liang et al. (2017)), and demon-
strate that our information criteria are able to achieve consistent model/tunning parameter
selection in these examples.

We briefly summarize our key findings here. Comparatively speaking, CIC is more reliable
than VIC in model selection, although both criteria are consistent. In our numerical experi-
ments, CIC achieves smaller false negative and false positive when compared with VIC. In
our theoretical results, conditions to ensure model selection consistency for VIC are more
restrictive than those for CIC. Moreover, the probability that CIC chooses a wrong model de-
cays much faster than that of VIC, under certain cases. This is because the estimated concor-
dance function in CIC is a U -process of order two, and is more “smooth” than the estimated
value function in VIC, which is an empirical process that involves summation of indicator
functions.

The rest of the article is organized as follows. We introduce VIC and CIC in Section 2.
Consistencies of these criteria in selecting variables for optimal treatment decision are pre-
sented in Section 3. In Section 4, we introduce doubly-robust versions of VIC and CIC and
investigate their properties. In Section 5, we apply our information criteria to four approaches
for estimating the optimal treatment regime. Simulation studies are conducted in Section 6.
Some technical results are provided in Section 7, with the detailed derivations provided in
Section 9 and a Supplementary Material. Finally, we conclude our paper by a discussion
section.

2. Concordance and value-based information criteria.

2.1. Model setup and notation. We only consider a single stage study with two treat-
ments to illustrate the idea. Let Y0 be a patient’s response of interest, A0 ∈ {0,1} denote the
treatment a patient receives, and X0 ∈ Rp denote the patient’s baseline covariates. By con-
vention, a larger value of Y0 indicates a better clinical outcome. The number of covariates p

is allowed to increase with n and can be potentially much larger than n.
The optimal treatment regime is defined in the potential outcome framework. Denoted by

Y ∗
0 (0) and Y ∗

0 (1) the potential outcomes which represent the response that a patient would
get if treated by treatment 0 and 1, respectively. A treatment regime d is a function that maps
the covariate space to {0,1}. For such a function d , define the potential outcome

Y ∗
0
{
d(X0)

} = Y ∗
0 (0)

{
1 − d(X0)

} + Y ∗
0 (1) d(X0).

Let D denote the set of all possible treatment regimes. The optimal treatment regime (OTR)
dopt is the maximizer of the expected potential outcome E[Y ∗

0 {d(X0)}] among the set D, that
is,

dopt ∈ arg max
d∈D

E
[
Y ∗

0
{
d(X0)

}]
.
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The OTR may not be unique. Denote by Dopt the set of all OTRs. Let τ(x) = E{Y ∗
0 (1) −

Y ∗
0 (0)|X0 = x}. Under the following two assumptions:

(A1.) SUTVA: Y0 = A0Y
∗
0 (1) + (1 − A0)Y

∗
0 (0),

(A2.) No unmeasured confounders: Y ∗
0 (0), Y ∗

0 (1) ⊥⊥ A0|X0,

we can show that

(2.1) dopt,0(x) ≡ I
{
τ(x) > 0

} ∈ Dopt,

where I(·) denotes the indicator function.
We assume τ(x) = Q(xT β0) for some β0 ∈ Rp and some monotonically increasing

function Q. Function Q can either be specified as linear or remain completely unspeci-
fied. Assume there exists some unique c0 ∈ R such that Q(c0) = 0. It follows from (2.1)
that dopt(x) = I(xT β0 + c0 > 0). Hence, finding the optimal treatment regime is equiva-
lent to estimating the high dimensional parameter θ0 = (c0, β

T
0 )T . Assume β0 is sparse. Let

Mβ0 = supp(β0) be the support of β0 consisting of indices of all nonzero elements. The aim
of this paper is to identify the set Mβ0 .

2.2. Value and concordance function. For a given treatment regime d , the expected po-
tential outcome V (d) = E[Y ∗

0 {d(X0)}] is referred to as the value function of d . Recall that
dopt is the maximizer of V (d).

Assume data can be summarized as {Oi = (Yi,Ai,Xi), i = 1, . . . , n}, which are i.i.d.
copies of O0 = (Y0,A0,X0). In the high dimensional case, the distribution of O0 is allowed
to vary with n and it is more proper to write O0 = O

(n)
0 = (Y

(n)
0 ,A

(n)
0 ,X

(n)
0 ). However, we

will omit the superscript n for notational convenience. Let π0(x) = Pr(A0 = 1|X0 = x) be
the propensity score. In a randomized study, π0,i = π0(Xi) is known for each patient. To
estimate V (d), Zhang et al. (2012) proposed an inverse propensity-score weighted estimator
(IPWE),

V̂ (d) = 1

n

n∑
i=1

Ai d(Xi) + (1 − Ai){1 − d(Xi)}
Aiπ0,i + (1 − Ai)(1 − π0,i )

Yi.

In this paper, we focus on the class of linear decision rules. For any θ = (c, βT )T , we write
V (d), V̂ (d) as V (θ), V̂ (θ) if d takes the form d(x) = I(xT β +c > 0). Hence, it follows from
(2.1) that

θ0 ∈ arg max
θ∈Rp+1

V (θ).

Fan et al. (2017) proposed to obtain β0 by maximizing the estimated concordance function.
For any linear treatment regime I(xT β + c > 0), the concordance function C(β) is defined as

C(β) = E
[{

Y ∗
i (1) − Y ∗

i (0)
} − {

Y ∗
j (1) − Y ∗

j (0)
}]
I
(
XT

i β > XT
j β

)
,

for two subjects i �= j . The rationale behind their method is that if Y ∗
i (1) − Y ∗

i (0) > Y ∗
j (1) −

Y ∗
j (0), the optimal treatment regime should be more likely to assign treatment 1 to subject i

compared with subject j . In our setting where τ(x) = Q(xT β0), we have by Conditions (A1)
and (A2) that

C(β) = E
{
Q

(
XT

i β0
) − Q

(
XT

j β0
)}
I
(
XT

i β > XT
j β

)
.

It follows that

C(β0) − C(β) = E
{
Q

(
XT

i β0
) − Q

(
XT

j β0
)}{

I
(
XT

i β0 > XT
j β0

) − I
(
XT

i β > XT
j β

)}
.
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When XT
i β0 > XT

j β0, it follows from the monotonicity of Q that Q(XT
i β0) > Q(XT

j β0).
Therefore, we have for any β ∈Rp ,{

Q
(
XT

i β0
) − Q

(
XT

j β0
)}{

I
(
XT

i β0 > XT
j β0

) − I
(
XT

i β > XT
j β

)}
I
(
XT

i β0 > XT
j β0

) ≥ 0.

One can similarly show{
Q

(
XT

i β0
) − Q

(
XT

j β0
)}{

I
(
XT

i β0 > XT
j β0

) − I
(
XT

i β > XT
j β

)}
I
(
XT

i β0 ≤ XT
j β0

) ≥ 0.

It follows that C(β0) ≥ C(β), for any β ∈ Rp . Hence, we have

β0 ∈ arg max
β∈Rp

C(β).

When the propensity score is known, the estimated concordance function is given by

Ĉ(d) = 1

n(n − 1)

∑
i �=j

{
Yi(Ai − π0,i)

π0,i (1 − π0,i )
− Yj (Aj − π0,j )

π0,j (1 − π0,j )

}
I
{
d(Xi) > d(Xj )

}
.

Analogous to the likelihood-based information criteria, we define the following value infor-
mation criterion (VIC):

(2.2) VICκn(θ) = nV̂ (θ) − κn‖β‖0,

and concordance information criterion (CIC)

(2.3) CICκn(β) = nĈ(β) − κn‖β‖0,

for some sequence κn, where ‖β‖0 denotes the number of nonzero elements in the p-
dimensional vector β . To ease the presentation, we suppress the dependence of VIC and CIC
on κn whenever there is no confusion. In the next section, we show selection consistencies of
VIC and CIC.

3. Model selection consistency.

3.1. VIC and CIC in fixed-p case. For any q-dimensional vector ν ∈ Rq and any sets
J ∈ {1, . . . , q}, we denote by νJ the subvector of ν formed by elements in J . When J is
a single-element set, that is, J = {j0} for some 1 ≤ j0 ≤ q , we write νJ as νj0 . Let � =
{M : M ⊆ {1, . . . , p}} be the set of all possible candidate models. In the fixed-p scenario,
total number of elements in � is also fixed. For each M ∈ �, let (ĉM, β̄T

M)T ∈ R|M|+1 be
the estimator based on covariates XM

0 . Denote by β̂M the vector in Rp that has the same
coordinates as β̄M on M and zero components on the complement Mc of M.

For any triple o = (x, a, y), define function

g(o,β)

= 1

2
E

{ {A0 − π0(X0)}Y0

π0(X0){1 − π0(X0)} − {a − π0(x)}y
π0(x){1 − π0(x)}

}
I
(
XT

0 β > xT β
)

(3.1)

+ 1

2
E

{ {a − π0(x)}y
π0(x){1 − π0(x)} − {A0 − π0(X0)}Y0

π0(X0){1 − π0(X0)}
}
I
(
xT β > XT

0 β
)
.

Write 	m for the mth partial derivative operator with respect to β , and define

∂ig(o,β) = ∂g(o,β)

∂βi
and ∂ij g(o,β) = ∂2g(o,β)

∂βi ∂βj
.

Let δ be some positive constant such that δ < minj∈Mβ0
|βj

0 |. For any ε > 0, define the ε-
neighborhood of θ0,

Ñε = {
θ ∈ Rp+1 : ‖θ0 − θ‖2 ≤ ε

}
,
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and S̃(θ0) = {θ ∈ Rp+1 : ‖θ‖2 = ‖θ0‖2}. Similarly, define

Nε = {
β ∈ Rp+1 : ‖β0 − β‖2 ≤ ε

}
,

and S(β0) = {β ∈ Rp : ‖β‖2 = ‖β0‖2}. We first introduce some assumptions.
(A3.) There exist some constants c1, c2 that satisfy 0 < c1 ≤ infx π0(x) ≤ supx π0(x) ≤

c2 < 1.
(A4.) β̂Mβ0

= β0 + Op(R
(1)
n ), ĉMβ0

= c0 + Op(R
(2)
n ) for some sequences R

(1)
n and R

(2)
n

that satisfy n−1/2 ≤ R
(1)
n ,R

(2)
n � 1.

(A5.) (i) V (θ0) > V (0) and V (θ0) > sup
θ∈Ñc

ε0
∩S̃(θ0)

V (θ) for some constants 0 < ε0 ≤ δ.

(ii) The following holds for any sufficiently small ε > 0:

E sup
‖θ−θ0‖2≤ε

θ=(c,βT )T

∣∣I(XT
0 β > −c

) − I
(
XT

0 β0 > −c0
)∣∣ = O(ε).

(iii) There exist some constants c̄1, c̄2 > 0 such that

c̄1‖θ0 − θ‖2
2 ≤ V (θ0) − V (θ) ≤ c̄2‖θ0 − θ‖2

2 for all θ ∈ Ñε0 ∩ S̃(θ0).

(A6.) (i) C(β0) > C(0) and C(β0) > supβ∈Nc
ε0

∩S(β0)
C(β) for some constants 0 < ε0 ≤ δ.

(ii) There exist some constants c̄1, c̄2 > 0 such that

c̄1‖β0 − β‖2
2 ≤ C(β0) − C(β) ≤ c̄2‖β0 − β‖2

2 for all β ∈ Nε0 ∩ S(β0).

(iii) Function g(o,β) is twice continuously differentiable for all β ∈ Nε0 .
(iv) There is an integrable function K(o) such that for all o and β ∈ Nε0 ,∥∥	2g(o,β) − 	2g(o,β0)

∥∥
2 ≤ K(o)‖β − β0‖2.

(v) E|∂ig(O0, β0)|2 < ∞, E|∂ij g(O0, β0)| < ∞.

Assumption (A4) requires that β̂Mβ0
converges to β0. The sequences R

(1)
n and R

(2)
n depend

on the estimating procedure and are known to us. When β̂M is estimated by solving Q-
learning or A-learning estimating equations for any M, we can show R

(1)
n = n−1/2. This

requires Q-function to be correctly specified. When Q-function remains unspecified, we can
apply robust learning or concordance assisted-learning to estimate β0. The convergence rates
R

(1)
n for these two estimators are n−1/3 and n−1/2, respectively.
Assumptions (A5)(i) and (A6)(i) require functions V and C have unique maximizers on

the L2 sphere. These conditions guarantee that with probability tending to 1, VIC and CIC
will not pick underfitted models for κn = o(n). Assumption (A5)(ii) holds when the an-
gular component of X0 has a bounded and continuous density with respect to the surface
measure on the unit sphere (see Section 6.4 in Kim and Pollard (1990)). When the deriva-
tive dQ(x−c0)

dx
|x=0 �= 0, it implies the margin assumption Pr(0 < |τ(X0)| < t) = O(tα) (see

Luedtke and van der Laan (2016), Qian and Murphy (2011)) holds with α = 1 (see Sec-
tion B.1 in the Supplementary Material (Shi, Song and Lu (2020))).

Assumption (A5)(iii) is satisfied if V is twice continuously differentiable and possess a
unique maximizer on S(β0). This condition holds when X0 has a continuous density q which
has a compact support. The explicit form of the first- and second-order derivatives of V can
be derived by some standard arguments in classical differential geometry (see Sections 5 and
6.4 in Kim and Pollard (1990)). Assumptions (A6)(iii), (iv), (v) are standard to establish the
limiting distribution of concordance and maximum rank correlation estimators (cf. Sherman
(1993), Fan et al. (2017)). In Section B.2 of the Supplementary Material, we give detailed
discussion on Assumption (A6)(iii).
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Under the scenario of treatment effect homogeneity, that is, θ0 = 0, V (θ) and C(β) are
constants as functions of θ and β . (A5)(i) and (A6)(i) are violated under this scenario. As a
result, VIC and CIC are not consistent.

Denote by M̂V and M̂C the models chosen by VIC and CIC, respectively,

M̂V = arg max
M∈�

VIC(θ̂M), M̂C = arg max
M∈�

CIC(β̂M),

where θ̂M = (ĉM, β̂T
M)T . Define Rn = max(R

(1)
n ,R

(2)
n ). The following theorem states the

model selection consistencies of these criteria.

THEOREM 3.1. Suppose supx E(Y 2
0 |X0 = x) ≤ C̄ for some constant C̄ > 0. Set κn =

cn max(nR2
n,

√
nRn,n

1/3) for some cn → ∞, if κn = o(n), under Assumptions (A1)–(A5), we
have

Pr(M̂V = Mβ0) → 1.

Set κn = n(R
(1)
n )2 log(n), if κn = o(n), under Assumptions (A1)–(A4) and (A6), we have

Pr(M̂C =Mβ0) → 1.

REMARK 3.2. The choice of κn depends on R
(1)
n and R

(2)
n . Suppose Rn = n−1/2. Then

we have κn = log(n) for CIC and κn = cnn
1/3 for VIC. Unlike BIC, when setting κn = log(n),

VIC fails to select the correct model if Rn = n−1/2. The penalty term cnn
1/3 accounts for the

nonsmoothness of the indicator function in V̂ . On the contrary, CIC directly follows the
spirit of BIC. The estimated concordance function Ĉ is a U -statistic of order two. Due to
Hoeffding’s decomposition theorem and the maximal inequality for degenerate U -process
(Sherman (1994)), we have

(3.2) Ĉ(β) = 2

n

n∑
i=1

g(Oi, β) − C(β) + Op

(
1

n

)
,

uniformly for all β .

We now sketch a few lines to see why VIC can fail when κn = log(n) and Rn = n−1/2.
Recall that V is maximized at θ0. Under Assumptions (A4) and (A5)(iii), we have that

(3.3) nV (θ̂Mβ0
) = nV (θ0) + O

(
n‖θ̂Mβ0

− θ0‖2
2
) = nV (θ0) + O(1).

For any overfitted model M that satisfies Mβ0 ⊆ M, let θ̃M be the maximizer of V̂

with the constraint θ̃Mc

M = 0. Notice that V̂ is a nonsmooth function of θ . Under the given
conditions, each θ̃M exhibits cube root asymptotics, and we have

(3.4) θ̃M = θ0 + Op

(
n−1/3)

.

Consider the stochastic process V̂ (·) − V (·) − V̂ (θ0) + V (θ0) indexed by θ . Under Assump-
tion (A5)(ii), using some standard arguments in the empirical process theory (cf. van der
Vaart and Wellner (1996)), we can show

(3.5) sup
‖θ−θ0‖2≤ε

∣∣V̂ (θ) − V (θ) − V̂ (θ0) + V (θ0)
∣∣ = Op

(
n−1/2ε1/2)

,

for some sufficiently small ε > 0. This together with (3.4) yields that

n
[
V̂ (θ̃M) − V (θ̃M) − {

V̂ (θ0) − V (θ0)
}] = Op

(
n1/3)

.
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Notice that V (θ̃M) ≤ V (θ0). It follows that

n
{
V̂ (θ̃M) − V̂ (θ0)

} = Op

(
n1/3)

,

for any M that satisfies Mβ0 ⊆ M. Similarly, we can show n{V̂ (θ̃Mβ0
) − V̂ (θ0)} =

Op(n1/3). Hence,

max
M:Mβ0⊆M

n
{
V̂ (θ̃M) − V̂ (θ̂Mβ0

)
} = Op

(
n1/3)

.

Since V̂ (θ̂M) ≤ V̂ (θ̃M), we have

(3.6) max
M:Mβ0⊆M

n
{
V̂ (θ̂M) − V̂ (θ̂Mβ0

)
} ≤ Rn,

for some random variable Rn that satisfies Rn = Op(n1/3).
On the other hand,

max
M:Mβ0⊆M

VIC(θ̂M) − VIC(θ̂Mβ0
)

(3.7)
= max

M:Mβ0⊆M
n
{
V̂ (θ̂M) − V̂ (θ̂Mβ0

)
} − κn

(|M| − |Mβ0 |
)
.

The difference |M| − |Mβ0 | is always positive. When κn = log(n), it follows from (3.6) that
the sign of (3.8) can be positive in the limit. Equation (3.8) also implies VIC is not able to
pick overfitted models if κn = cnn

1/3 for some diverging sequence cn.

3.2. VIC and CIC in the ultrahigh dimension. The problem becomes far more challeng-
ing in the ultrahigh dimension when p is allowed to grow exponentially fast with respect to
n. Assume log(p) = O(na0) for some 0 < a0 < 1. For notational convenience, in this paper,

we assume the nonzero indices Mβ0 and β
Mβ0
0 are fixed. In the ultrahigh dimension, it is

computationally infeasible to estimate θM for all M ∈ �. Instead, we use some penalization
methods to simultaneously select and estimate θ0, with some tuning parameter λ.

For each λ ∈ [λmin, λmax] where λmin and λmax are allowed to vary with n, denote M̂(λ)

as the nonzero entries selected by our estimating procedure and θ̂M̂(λ) = (ĉM̂(λ), β̂
T
M̂(λ)

)T ∈
Rp+1 the corresponding estimator. We define

M̂V = arg max
|M̂(λ)|≤sn

λ∈[λmin,λmax]
VIC(θ̂M̂(λ)) and M̂C = arg max

|M̂(λ)|≤sn
λ∈[λmin,λmax]

CIC(β̂M̂(λ)).

The sequence sn is allowed to vary with n in the order sn = O(nl0) for some 0 ≤ l0 < 1. To
show the model selection consistency, we need Conditions (A4′)–(A6′). (A5′) and (A6′) are
high dimensional versions of (A5) and (A6), and are provided in Section A of the Supple-
mentary Material to save space.

(A4′.) There exists some λ0 ∈ [λmin, λmax] such that with probability tending to 1, we have
M̂(λ0) = Mβ and

‖β̂M̂(λ0)
− β0‖2 = O

(
R(1)

n

)
, ‖ĉM̂(λ0)

− c0‖2 = O
(
R(2)

n

)
for some sequence R

(1)
n ,R

(2)
n that R

(j)
n → 0 and R

(j)
n ≥ n−1/2 for j = 1,2. The tuning pa-

rameter λ0 is allowed to vary with n.
Assumption (A4′) requires the true model to be recovered by the regularization methods

and assumes the convergence rate of parameters for the true model. In the following, we
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establish consistencies of our information criteria. We use c̄ to denote some generic constant.
Let ‖Y‖ψp be the Orlicz norm of any random variable Y ,

‖Y‖ψp

	= inf
C>0

{
E exp

( |Y |p
Cp

)
≤ 2

}
.

THEOREM 3.3. Let Rn = max(R
(1)
n ,R

(2)
n ). Assume s2

n log(p) log(n) = o(n), (A1)–(A3)
and (A4′), (A5′) hold, ‖Y0‖ψ1 = O(1), and supx E(Y 2

0 |X0 = x) ≤ C̄ for some constant C̄ > 0.
If κn satisfies κn = o(n), and

(3.8) κn � nR2
n + √

nRn + n1/3 log2/3(p),

then VIC is consistent. In addition, conditional on the events ‖β̂M̂(λ0)
− β0‖2 = O(R

(1)
n ) and

‖ĉM̂(λ0)
− c0‖2 = O(R

(2)
n ), we have

(3.9) Pr(M̂V �= Mβ0) ≤ exp
(
− c̄κ2

n

nRn

)
+ exp

(−c̄ log(p)
)
.

THEOREM 3.4. Assume s2
n log(p) log(n) = o(n), (A1)–(A3) and (A4′), (A6′) hold,

‖Y0‖ψ1 = O(1) and supx E(Y 2
0 |X0 = x) ≤ C̄ for some constant C̄ > 0. If κn satisfies

κn = o(n), and

(3.10) κn � n
(
R(1)

n

)2 + log(p) log(n),

then CIC is consistent. In addition, conditional on the event ‖β̂M̂(λ0)
− β0‖2 = O(R

(1)
n ), we

have

(3.11) Pr(M̂C �=Mβ0) ≤ exp
(
− c̄κ2

n

n(R
(1)
n )2

)
+ exp

(−c̄ log(p)
)
.

REMARK 3.5. Equations (3.9) and (3.11) provide nonasymptotic bounds on the proba-
bilities that VIC and CIC do not select the correct model. Under the assumptions in (3.8) and
(3.10), these upper bounds go to 0. Consistencies of these two criteria thus follow. The sec-
ond term exp(−c̄ log(p)) on the RHS of (3.9) and (3.11) bounds the probability that VIC or
CIC selects an underfitted model. The first term on the RHS bounds the probability that VIC
or CIC picks an overfitted model. When κn � √

nRn log(p), the RHS in (3.9) is dominated
by

exp
(
− c̄κ2

n

nRn

)
,

which is much larger than those in the RHS of (3.11). This suggests that CIC is more likely
to choose the correct model compared with VIC.

REMARK 3.6. Conditions on κn in Theorem 3.3 are more restrictive than those in Theo-
rem 3.4. This means that the consistency of VIC is more sensitive to the choice of κn. Denote
kV and kC as the RHS of (3.8) and (3.10), respectively. Since Rn ≥ R

(1)
n and n � log(p),

it is immediate to see that kC = O(kV ). In addition, when Rn = O(
√

log(p)/n), we have
kV � kC . This is in line with results given in the fixed-p scenario (see Theorem 3.1), where
VIC can fail for Rn = n−1/2 if κn = log(n).
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Proofs of Theorems 3.3 and 3.4 are more involved than those of the fixed-p scenario.
Define

�+ = {
λ ∈ [λmin, λmax] : Mβ0 � M̂(λ),

∣∣M̂(λ)
∣∣ ≤ sn

}
.

The major technical challenge lies in bounding

Pr
(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈�+

VIC(θ̂M̂(λ))
)
,

and

Pr
(
CIC(β̂M̂(λ0)

) ≤ sup
λ∈�+

CIC(β̂M̂(λ))
)
,

where λ0 is the tuning parameter defined in (A4′). Unlike the fixed-p scenario, inequalities
(3.2) and (3.5) no longer hold in the ultrahigh dimension.

4. Doubly-robust information criteria. In an observational study, the propensity score
is unknown and needs to be estimated from data. Usually, a parametric model π(x,α) is
assumed for the propensity score. To calculate our doubly-robust information criteria, we
also fit a parametric model h(x, η) for the baseline function h0(x) = E(Y0|A0 = 0,X0 = x).
We assume estimators α̂ and η̂ converge to some α∗ ∈ Rq1 and η∗ ∈ Rq2 . When the models are
correct, α∗ and η∗ correspond to the true parameters in the model, that is, π0(x) = π(x,α∗),
h0(x) = h(x, η∗). Otherwise, these parameters stand for some population-level least false
parameters. Let θ = (c, βT )T . Define

V DR(θ) = E
{
A0I(X

T
0 β > −c)

π(X0, α∗)
+ (1 − A0)I(X

T
0 β ≤ −c)

1 − π(X0, α∗)

}
Y0

− E
{
A0I(X

T
0 β > −c)

π(X0, α∗)
+ (1 − A0)I(X

T
0 β ≤ −c)

1 − π(X0, α∗)
− 1

}
h
(
X0, η

∗)
and

CDR(β) = E
{{Ai − π(Xi,α

∗)}{Yi − h(Xi, η
∗)}Aj

π(Xi,α∗){1 − π(Xi,α∗)}π(Xj ,α∗)

− {Aj − π(Xj ,α
∗)}{Yj − h(Xj , η

∗)}Ai

π(Xj ,α∗){1 − π(Xj ,α∗)}π(Xi,α∗)

}
I
(
XT

i β > XT
j β

)
.

Under Assumptions (A1) and (A2), when either the propensity score model or the baseline
model is correct, we can show

V DR(θ) = E
{
h(X0) + π(X0)

π(X0, α∗)
Q

(
XT

0 β0
)
I
(
XT

0 β > −c
)}

,

CDR(β) = E
{

π(Xi)π(Xj )

π(Xi,α∗)π(Xj ,α∗)
{
Q

(
XT

i β0
) − Q

(
XT

j β0
)}
I
(
XT

i β > XT
j β

)}
.

Therefore, when the propensity score model is correct, we have V DR = V and CDR = C.
This result generally does not hold when the propensity score model is not correct. However,
θ0(β0) still maximizes V DR(CDR) as long as either of the models is correct. This suggests
V DR and CDR can be used to construct information criteria. Define

VICDR(θ) = nV̂ DR(θ) − κn‖β‖0,CICDR(β) = nV̂ DR(β) − κn‖β‖0,



INFORMATION CRITERIA FOR OPTIMAL TREATMENT DECISION 59

where V̂ DR and ĈDR are empirical estimators for V DR and CDR , namely,

V̂ DR(θ) = 1

n

∑
i

{
AiI(X

T
i β > −c)

π(Xi, α̂)
+ (1 − Ai)I(X

T
i β ≤ −c)

1 − π(Xi, α̂)

}
Yi

−
{
AiI(X

T
i β > −c)

π(Xi, α̂)
+ (1 − Ai)I(X

T
i β ≤ −c)

1 − π(Xi, α̂)
− 1

}
h(Xi, η̂),

ĈDR(β) = 1

n

∑
i �=j

{{Ai − π(Xi, α̂)}{Yi − h(Xi, η̂)}Aj

π(Xi, α̂){1 − π(Xi, α̂)}π(Xj , α̂)

− {Aj − π(Xj , α̂)}{Yj − h(Xj , η̂)}Ai

π(Xj , α̂){1 − π(Xj , α̂)}π(Xi, α̂)

}
I
(
XT

i β > XT
j β

)
.

In Section 10 of the Supplementary Material, we derive the consistencies of VICDR and
CICDR under the fixed-p scenario. When p is comparable or much larger than n, we can fit
the baseline or propensity score models via penalized regression with folded-concave penalty
functions (Fan and Lv (2011)). In practice, we recommend a linear regression model for the
baseline model and a logistic regression model for the propensity score model with SCAD
penalty function (Fan and Li (2001)). Under certain conditions on these estimators, consis-
tencies of VICDR and CICDR can be similarly proven. We omit the technical details to save
space.

5. Applications. In this section, we apply our information criteria to four applica-
tions estimating the optimal treatment regime, including robust learning, concordance-
assisted learning (CAL), penalized A-learning (PAL) and sparse concordance-assisted learn-
ing (SCAL). The first two consider a fixed-p setting while the last two can be applied in a
diverging-p setting. For each application, we introduce its estimating procedure and discuss
the choice of κn in our information criteria.

5.1. Robust learning.

5.1.1. Estimating procedure. Zhang et al. (2012) proposed a robust method for estimat-
ing the optimal treatment regime within the class of linear decision rules. For a given can-
didate model M, when the propensity score is known, the estimator θ̂M = (ĉM, β̂T

M)T is
obtained by solving

arg max
θ=(c,βT )T

V̂ (θ) subject to βMc = 0.

In an observational study, they first fit some parametric models π(x,α), h(x, η), �(x, ζ ) for
π0(x), h0(x) and E(Y0|A0 = 1,X0 = x), to obtain estimators α̂, η̂ and ζ̂ . Then they proposed
to compute θ̂M by maximizing the following augmented inverse propensity score weighted
estimator,

arg max
θ=(c,βT )T

1

n

n∑
i=1

[{
Ai

π̂i

Yi −
(

Ai

π̂i

− 1
)
ĥi

}
I
(
XT

i β > −c
)

(5.1)

+
{

1 − Ai

1 − π̂i

Yi −
(

1 − Ai

1 − π̂i

− 1
)
�̂i

}
I
(
XT

i β ≤ −c
)]

subject to βMc = 0,

where π̂i , ĥi and �̂i are plug-in estimators π(Xi, α̂), h(Xi, η̂) and �(Xi, ζ̂ ), respectively.
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5.1.2. Choice of κn. Using some standard arguments in the cube root asymptotics (cf.
Example 6.4, Kim and Pollard (1990)), we can show θ̂Mβ0

= θ0 + Op(n−1/3). Since the
dimension of covariates p is fixed, in order to implement variable selection, we can apply ro-
bust learning (by solving (5.1)) to all 2p models and choose the one that maximizes VICDR

or CICDR . Hence, we have Rn = n−1/3 in this application. Therefore, it follows from Theo-
rem 10.1 that CICDR and VICDR are both consistent when κn = cnn

1/3 for cn → ∞. Instead
of choosing a single κn, one can alternatively select a set {κn,j }j that satisfy κn,j � n1/3 and
κn,j = o(n) for each j , and apply cross-validation to determining which κn,j to use. More
details about the cross-validation procedure are given in Section J.

5.2. Concordance-assisted learning.

5.2.1. Estimating procedure. Fan et al. (2017) proposed concordance-assisted learning
to estimate β0 by maximizing the estimated concordance function. Specifically, for a given
candidate model M, β̂M is computed by solving

arg max
β

Ĉ(β)
(
or ĈDR(β)

)
subject to βMc = 0.

Assume the estimator β̂M is obtained, they proposed to compute ĉM by maximizing the
estimated value function among the class of regimes I(c + xT β̂M > 0), indexed by c.

5.2.2. Choice of κn. To implement variable selection, we can apply CAL to all 2p mod-
els. Similar to Theorem 1, 2 and 5 in Fan et al. (2017), we can show β̂Mβ0

= β0 +Op(n−1/2)

and ĉMβ0
= c0 + Op(n−1/3), under certain regularity conditions. Therefore, we have

R(1)
n = n−1/2 and R(2)

n = n−1/3.

By Theorem 10.1, CICDR is consistent when κn = log(n), and VICDR is consistent if n1/3 �
κn � n. In practice, we recommend to set κn = n1/3 log(log(n)). In our simulation studies,
we find out that VICDR works well under such choices of κn.

5.3. Penalized A-learning.

5.3.1. Estimating procedure. When the contrast function is linear, that is, τ(x) = xT β0 +
c0, Shi et al. (2018) proposed a penalized A-learning method for estimating the optimal treat-
ment regime. Specifically, they proposed to first estimate π0(x) and h0(x) by penalized re-
gression. Denoted by π̂i and ĥi the estimated propensity score and baseline function for the
ith patient. For a given tuning parameter λ, they estimated θ0 by

(5.2)
(
c̄M(λ), β̄

T
M(λ)

)T = arg min
(c,βT )T ∈�

‖β‖1,

where

� =
{
c ∈ R, β ∈ Rp :

∥∥∥∥1

n

∑
i

Xi(Ai − π̂i)
{
Yi − ĥi − Ai

(
XT

i β + c
)}∥∥∥∥∞

≤ λ

}
.

The estimating procedure is similar in rationale to the Dantzig selector (Candès and Tao
(2007)) in a linear regression setting. Let M̂(λ) be the support of β̄M(λ). We can compute
β̂M̂(λ), ĉM̂(λ) by solving the following A-learning estimating equations:∑

i

(Ai − π̂i)
(
Yi − ĥi − AiX

T
i β̂M̂(λ) − AiĉM̂(λ)

) = 0,

∑
i

X
M̂(λ)
i (Ai − π̂i)

(
Yi − ĥi − AiX

T
i β̂M̂(λ) − AiĉM̂(λ)

) = 0,

with β̂
M̂(λ)c

M̂(λ)
= 0.
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5.3.2. Choice of κn. Gai, Zhu and Lin (2013) proved the model selection consistency
of the Dantzig selector for linear regression, under the irrepresentable condition. Using their
arguments, β̄M(λ0) can achieve selection consistency with some tuning parameter λ0, and we
can show Assumption (A4′) holds with Rn = n−1/2.

It follows from Theorem 3.3 that VIC is consistent when κn = cnn
1/3 log2/3(p) for some

cn → ∞. By Theorem 3.4, CIC is consistent when κn = c′
n log(p) log10(n) for some c′

n →
∞. Similarly, we can show VICDR and CICDR are consistent under these choices of κn. In
practice, we recommend to choose c′

n = log(log10(n)), and cn = log(log(n)). We demonstrate
the performance of these information criteria via simulations.

5.4. Sparse concordance-assisted learning.

5.4.1. Estimating procedure. Liang et al. (2017) proposed a sparse concordance-assisted
learning algorithm that extends CAL to the setting allowing p to be much larger than n.
The concordance function ĈDR involves indicators, making it computationally difficult to
optimize. Instead of directly maximizing ĈDR , they considered a convex surrogate objective
function with L1 penalty term on the coefficients to facilitate the computation and ensure
sparsity of the estimator.

Using SCAL, for any tuning parameter λ, we can estimate β0 by

β̄M̂(λ) = arg max
β

{
2

n(n − 1)

∑
ωi,j>ωj,i

(ωj,i − ωi,j )
{
1 − βT (Xi − Xj)

}
+ − λ‖β‖1

}
,

where

ωi,j = {Ai − π(Xi, α̂)}{Yi − h(Xi, η̂)}Aj

π(Xi, α̂){1 − π(Xi, α̂)}π(Xj , α̂)
,

where α̂ and η̂ denote some penalized regression estimators in the propensity score and base-
line model. Let M̂(λ) be the support of β̄M̂(λ). We can calculate β̂M by maximizing ĈDR(β)

subject to the constraint that βM̂(λ)c = 0, and obtain ĉM by maximizing V̂ DR among the class
of treatment regimes I(β̂T

Mx > −c).

5.4.2. Choice of κn. Assume there exists some λ0 such that β̄M̂(λ0)
is selection consis-

tent, then Assumption (A4′) holds with R
(1)
n = n−1/2, R

(2)
n = n−1/3. By Theorem 3.3 and

Theorem 3.4, we can show VIC is consistent when κn = cnn
1/3 log2/3 p for some cn → ∞,

and CIC is consistent when κn = c′
n log(p) log10(n) for some c′

n → ∞. Similarly, we can
show VICDR and CICDR are consistent under these choices of κn.

6. Simulations. In this section, we conduct simulation studies to examine the numeri-
cal performance of our proposed information criteria. In Section 6.1, we consider a fixed-p
scenario where the optimal treatment regime is estimated via CAL. In Section 6.2, we design
a high dimensional setting and estimate the optimal treatment regime by PAL. Additional
simulations results can be found in Section I of the Supplementary Material.

6.1. Concordance-assisted learning. Data are generated from the following model:

Yi = h0
(
X1

i ,X
3
i

) + AiQ
(
X1

i + X2
i

) + εi,

where Ai
i.i.d∼ Bernoulli(0.5), Xi

i.i.d∼ Np(0, Ip), εi
i.i.d∼ N(0,0.52), where Np(μ,�) stands for

the p-dimensional multivariate normal distribution with mean μ, covariance matrix � and
Ip denotes the p × p identity matrix.
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TABLE 1
Simulation settings in Section 6.1

S1 S2 S3 S4

h0(x, y) 1 + x − y 1 + x − y 1 + xy 1 + xy

Q(x) x exp(x) − 1 x exp(x) − 1

We design four settings by considering two choices of h0 and two choices of Q. The
functional forms of h0 and Q in each setting are listed in Table 1. It can be verified that in all
four settings, the optimal treatment regime takes the form:

dopt(x) = I
(
x1 + x2 > 0

)
.

We set p = 8, and consider two choices of the sample size, n = 100 and n = 200, respec-
tively. This gives a total of 8 scenarios. For each scenario, we report the false positives (FP)
rate (the percentage of unimportant variables that are selected),

FP = 1

L

L∑
l=1

|Mc
β0

∩ M̂(l)|
|Mc

β0
| ,

the false negatives (FN) rate (the percentage of important variables that are missed),

FN = 1

L

L∑
l=1

|Mβ0 ∩ (M̂(l))c|
|Mβ0 |

,

the percentage of selecting the true models (TP),

TP = 1

L

L∑
l=1

I
(
Mβ0 = M̂(l)),

the average error rate (ER) and average ratio of value (VR) of the estimated optimal treatment
regime,

(6.1) ER = 1

L

L∑
l=1

E
∣∣d̂(l)(X0) − dopt(X0)

∣∣, VR = 1

L

L∑
l=1

EY ∗
0 (d̂(l))

EY ∗
0 (dopt)

,

where d̂(l)(x) = I(ĉM̂(l) + xT β̂M̂(l) > 0), M̂(l) is the set of important variables selected by
our information criteria in the lth simulation and L is the total number of simulations. In our
implementation, we set L = 100 and approximate the expectations in (6.1) by the use of 1000
Monte Carlo samples.

We use CAL to estimate the parameters. Specifically, we first fit a logistic regression model
with SCAD penalty function for the propensity score, and a linear model with SCAD penalty
for the baseline function. Next, we obtain β̂M by maximizing ĈDR for all 28 = 256 models.
The threshold ĉM is obtained by maximizing the estimated value function V̂ DR among the
class of regimes I(c + xT β̂M > 0). We use the genetic algorithm implemented in the R pack-
age rgenoud (Mebane et al. (2011)) to compute the maximizers of the value and concordance
functions. The package rgenoud combines evolutionary search algorithms with derivative-
based methods to solve difficult optimization problems. In our experiments, we find the maxi-
mizers are very close to the true parameters. However, there is no guarantee that the searching
algorithms will find the global maximizer in general, due to nonconvexity of the optimization
problem. We use CICDR and VICDR for model selection. The model complexity penalty κn

is chosen according to the discussion in Section 5.2. The propensity score model is always
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TABLE 2
Simulation results (%, standard deviations in parenthesis)

S1 S2

n 100 200 100 200

CICDR TP 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)

FN 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

FP 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

ER 7.58 (0.53) 5.71 (0.38) 7.54 (0.51) 5.42 (0.39)

VR 98.95 (0.15) 99.38 (0.08) 99.49 (0.06) 99.73 (0.03)

VICDR TP 77.00 (4.23) 99.00 (1.00) 71.00 (4.56) 97.00 (1.71)

FN 11.5 (2.11) 0.50 (0.50) 14.50 (2.28) 1.50 (0.86)

FP 0.17 (0.17) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

ER 11.49 (0.92) 5.78 (0.42) 12.84 (1.02) 5.93 (0.54)

VR 96.65 (0.48) 99.33 (0.12) 97.94 (0.27) 99.56 (0.11)

S3 S4

n 100 200 100 200

CICDR TP 69.00 (4.65) 78.00 (4.16) 82.00 (3.86) 93.00 (2.56)

FN 4.00 (1.36) 0.50 (0.50) 0.00 (0.00) 0.00 (0.00)

FP 6.50 (1.16) 4.17 (0.87) 3.5 (0.83) 1.33 (0.51)

ER 14.90 (0.89) 9.87 (0.53) 13.04 (0.87) 9.12 (0.71)

VR 95.50 (0.51) 98.09 (0.2) 98.41 (0.18) 99.22 (0.11)

VICDR TP 42.00 (4.96) 70.00 (4.61) 43.00 (4.98) 71.00 (4.56)

FN 23.50 (2.61) 8.50 (1.89) 32.00 (3.37) 12.50 (2.18)

FP 6.17 (1.02) 3.17 (0.77) 5.50 (0.95) 1.33 (0.51)

ER 19.69 (1.1) 11.85 (0.81) 22.49 (1.44) 13.2 (1.06)

VR 91.88 (0.74) 96.78 (0.41) 93.93 (0.79) 98.12 (0.24)

correct, hence our information criteria are consistent. We use 100 simulations replications.
Results were given in Table 2.

We make the following observations. First, CICDR perform much better than VICDR in all
scenarios. For example, in Settings 1 and 2, CICDR always chooses the correct model while
TPs of VICDR are below 80% when n = 100. In Settings 3 and 4, TPs of CICDR are still
much higher than those of VICDR . In addition, in all scenarios, CICDR achieves a smaller
ER and a higher VR compared to VICDR . Moreover, the model selection results improve
when sample size increases. This illustrates the selection consistencies of our information
criteria.

6.2. Penalized A-learning. Consider the high dimensional setting where p is set to be
1000. We generate the response from the following model:

Yi = h0
(
X1

i ,X
3
i

) + Ai

(
X1

i + X2
i

) + εi,

where Xi
i.i.d∼ Np(0, Ip), Ai

i.i.d∼ Bernoulli(π0(Xi)), εi
i.i.d∼ N(0,0.52). The contrast function

takes the linear form, τ(x) = x1 + x2 and the optimal treatment regime is

dopt(x) = I
(
x1 + x2 > 0

)
.

We design four settings by considering two choices of the baseline function, and two
choices of the propensity score function. Table 3 gives the propensity and baseline function
in each setting. We fit a penalized linear regression model for the baseline and a penalized
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TABLE 3
Simulation settings in Section 6.2

S1 S2 S3 S4

h0(x, y) 1 + x − y 1 + xy 1 + x − y 1 + xy

π0(x) 0.5 0.5 �(xp−1 − xp) �(xp−1 − xp)

�(·) stands for the cumulative distribution function of a standard normal variable.

logistic regression model for the propensity score, and choose SCAD as the penalty function.
Hence, both the propensity score and baseline models are correctly specified in Setting 1.
One of them is misspecified in Settings 2 and 3. In Setting 4, both models are misspecified.
In implementation, instead of directly optimizing (5.2), we solve its dual problem:

θ̄ = min
(c,βT )

∥∥∥∥∑
i

X̃i(Ai − π̂i)
(
Yi − ĥi − Aic − AiX

T
i β

)∥∥∥∥∞
,

subject to ‖β‖1 ≤ λ.

We compute β̄ for a series of log-spaced values exp(−3) = λ0, λ1, . . . , λ100 = exp(2), and
obtain θ by refitting the A-learning estimating equation. Tuning parameters are selected by
CICDR and VICDR . In CICDR , we set

κn = log(p) log10(n) log
(
log10(n)

)
,

as discussed in Section 5.3. In VICDR , we set

κn = n1/3 log2/3(p) log
(
log(n)

)
/κ,

where κ is a constant from a set {3,4,5}. For each κ , we denote the corresponding informa-
tion criterion as VICDR

κ .
We further compare our information criteria with the BIC-type criterion (Shi et al. (2018)),

which is used for tuning parameter selection for the PAL method. For any θ = (c, βT )T ,
define

BIC(θ) = n log
(
RSS(θ)/n

) + ‖β‖0
{
log(n) + log(p + 1)

}
,

where

RSS(θ) =
n∑

i=1

(Ai − π̂i)
2(

Yi − ĥi − Aic − AiX
T
i β

)2
.

It remains unknown whether this information criterion is consistent.
Tables 4 and 5 report the results with sample size n = 200/300 and 100 simulation repli-

cations. CICDR outperform VICDR and BIC in all settings, in terms of TP. For example, in
Setting 2 with n = 200, CICDR correctly recover 77% of the models, while TPs for other cri-
teria are smaller than 70%. In addition, except for Setting 2, VICDR outperforms BIC in all
other settings. Take Setting 3 with n = 300 as an example, TPs for VICDR

3 , VICDR
4 , VICDR

5
are all very close to 1 while BIC only correctly recovers 61% of the models. False positives
of BIC are much higher compared to our information criteria in Setting 3. Moreover, all the
information criteria work extremely well in Setting 1 where both the propensity score and
baseline models are correctly specified, and perform much worse in Setting 4 where both
models are misspecified. Except for BIC and VICDR

5 , all other criteria always select the true
model in Setting 1. In Setting 4 with n = 200, however, TPs of all criteria are below 50%.
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TABLE 4
Simulation results for Settings 1 and 2 (%, standard deviations in parenthesis)

S1 S2

n 200 300 200 300

CICDR TP 100.00 (0.00) 100.00 (0.00) 77.00 (4.23) 90.00 (3.02)

FN 0.00 (0.00) 0.00 (0.00) 7.00 (1.88) 0.50 (0.50)

FP 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.01 (0.00)

ER 1.18 (0.08) 1.17 (0.09) 8.34 (1.09) 4.08 (0.43)

VR 99.96 (0.00) 99.97 (0.00) 97.02 (0.66) 99.39 (0.15)

BIC TP 95.00 (2.19) 94.00 (2.39) 69.00 (4.65) 89.00 (3.14)

FN 0.00 (0.00) 0.00 (0.00) 4.50 (1.60) 0.00 (0.00)

FP 0.01 (0.00) 0.01 (0.00) 0.03 (0.01) 0.02 (0.00)

ER 1.44 (0.12) 1.34 (0.13) 7.98 (0.85) 4.00 (0.41)

VR 99.94 (0.01) 99.94 (0.02) 97.77 (0.47) 99.44 (0.11)

VICDR
3 TP 100.00 (0.00) 100.00 (0.00) 61.00 (4.90) 86.00 (3.49)

FN 0.00 (0.00) 0.00 (0.00) 13.50 (2.34) 2.00 (0.98)

FP 0.00 (0.00) 0.00 (0.00) 0.02 (0.01) 0.01 (0.00)

ER 1.16 (0.08) 1.08 (0.08) 10.64 (1.08) 4.67 (0.56)

VR 99.97 (0.00) 99.97 (0.00) 96.13 (0.61) 99.12 (0.21)

VICDR
4 TP 100.00 (0.00) 100.00 (0.00) 56.00 (4.99) 80.00 (4.02)

FN 0.00 (0.00) 0.00 (0.00) 11.00 (2.20) 2.00 (0.98)

FP 0.00 (0.00) 0.00 (0.00) 0.05 (0.01) 0.02 (0.00)

ER 1.08 (0.08) 1.11 (0.09) 11.05 (1.13) 5.09 (0.54)

VR 99.97 (0.00) 99.97 (0.00) 95.98 (0.66) 99.02 (0.21)

VICDR
5 TP 99.00 (1.00) 100.00 (0.00) 54.00 (5.01) 72.00 (4.51)

FN 0.00 (0.00) 0.00 (0.00) 9.00 (2.06) 2.00 (0.98)

FP 0.00 (0.00) 0.00 (0.00) 0.07 (0.01) 0.03 (0.01)

ER 1.18 (0.09) 1.1 (0.08) 11.20 (1.14) 5.80 (0.59)

VR 99.96 (0.01) 99.97 (0.00) 95.92 (0.72) 98.81 (0.22)

7. Some technical results. In this section, we summarize some major technical results
used in the proof of our theorems. They are generally applicable and self-important. In Sec-
tion 7.1, we present a tail inequality for unbounded degenerate U -process that is useful to
show model selection consistency of CIC and CICDR . In Section 7.2, we show uniform con-
sistencies of empirical maximizers of V̂ and Ĉ, which enable us to bound the probability that
VIC or CIC selects an overfitted model in the ultrahigh dimension.

7.1. Tail inequality for unbounded degenerate U -process. In this subsection, we provide
a tail inequality for the supremum of order two U -process with finite ψ1 Orlicz norm. We
first introduce some notation. Let X1, . . . ,Xn be i.i.d. random variables taking values on X ,
F a countable class of measurable and symmetric functions from X ×X to R.

THEOREM 7.1. Assume f satisfies Ef (Xi, x) = Ef (x,Xi) = 0, f (x, x) = 0 for
any x, and ωn = ‖maxi �=j F (Xi,Xj )‖ψ1 < ∞, where the function F satisfies F(x, y) ≥
supf |f (x, y)| for any x, y. Define the following degenerate U -process:

Z = sup
f ∈F

∣∣∣∣∑
i,j

f (Xi,Xj )

∣∣∣∣.
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TABLE 5
Simulation results for Settings 3 and 4 (%, standard deviations in parenthesis)

S3 S4

n 200 300 200 300

CICDR TP 91.00 (2.88) 99.00 (1.00) 48.00 (5.02) 66.00 (4.76)

FN 3.00 (1.19) 0.00 (0.00) 27.00 (3.21) 14.00 (2.47)

FP 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.03 (0.01)

ER 3.15 (0.61) 1.42 (0.11) 16.50 (1.50) 10.90 (1.27)

VR 99.23 (0.28) 99.95 (0.01) 92.09 (1.03) 95.63 (0.75)

BIC TP 55.00 (5) 61.00 (4.9) 32.00 (4.69) 40.00 (4.92)

FN 0.00 (0.00) 0.00 (0.00) 18 (3.06) 8.00 (2.10)

FP 0.08 (0.01) 0.11 (0.02) 0.14 (0.02) 0.15 (0.02)

ER 4.23 (0.33) 3.69 (0.35) 17.4 (1.35) 13.99 (1.2)

VR 99.48 (0.06) 99.57 (0.06) 92.27 (0.95) 94.52 (0.74)

VICDR
3 TP 82.00 (3.86) 98.00 (1.41) 39.00 (4.90) 59.00 (4.94)

FN 7.00 (1.74) 0.00 (0.00) 29.50 (3.26) 17.50 (2.60)

FP 0.01 (0.00) 0.00 (0.00) 0.05 (0.01) 0.03 (0.01)

ER 5.16 (0.85) 1.38 (0.12) 18.02 (1.46) 12.39 (1.29)

VR 98.4 (0.38) 99.94 (0.01) 91.4 (1.01) 94.79 (0.77)

VICDR
4 TP 89.00 (3.14) 98.00 (1.41) 43.00 (4.98) 59.00 (4.94)

FN 2.50 (1.10) 0.00 (0.00) 26.00 (3.29) 14.50 (2.49)

FP 0.01 (0.00) 0.00 (0.00) 0.06 (0.01) 0.05 (0.01)

ER 2.97 (0.54) 1.42 (0.13) 17.41 (1.53) 12.2 (1.28)

VR 99.35 (0.24) 99.94 (0.01) 91.61 (1.06) 94.88 (0.78)

VICDR
5 TP 90.00 (3.02) 97.00 (1.71) 43.00 (4.98) 54.00 (5.01)

FN 2.00 (0.98) 0.00 (0.00) 23.00 (3.21) 13.50 (2.45)

FP 0.01 (0.00) 0.00 (0.00) 0.07 (0.01) 0.07 (0.01)

ER 2.85 (0.52) 1.43 (0.13) 16.95 (1.48) 12.52 (1.28)

VR 99.4 (0.25) 99.94 (0.01) 91.98 (1.02) 94.73 (0.78)

Let ε1, . . . , εn be i.i.d. Rademacher random variables independent of {X1, . . . ,Xn}, and in-
troduce the random variables:

Zε = sup
f ∈F

∣∣∣∣∑
i,j

εiεjf (Xi,Xj )I
(
F(Xi,Xj ) ≤ 8ωn

)∣∣∣∣,
Uε = sup

f ∈F
sup

α:‖α‖2≤1

∑
i,j

εiαjf (Xi,Xj )I
(
F(Xi,Xj ) ≤ 8ωn

)
,

Mε = sup
f ∈F

, sup
k=1,...,n

∣∣∣∣∑
i

εif (Xi,Xk)I
(
F(Xi,Xk) ≤ 8ωn

)∣∣∣∣.
Then there exists some constants C > 0 such that for all n and t > 0,

Pr(Z > CEZε + t)
(7.1)

≤ 3 exp
(
−min

(
t2

(EUε)2 ,
t

EMε

,
t

nωn

,

(
t

ωn

√
n

)2/3
,

√
t

ωn

))
.

REMARK 7.2. For bounded degenerate U -process, that is, F ≤ F0 for some constant F0,
Clémençon, Lugosi and Vayatis (2008) showed LHS of (7.1) can be bounded by

(7.2) exp
(
−min

(
t2

(EUε)2 ,
t

EMε

,
t

nF0
,

(
t

F0
√

n

)2/3
,

√
t

F0

))
.



INFORMATION CRITERIA FOR OPTIMAL TREATMENT DECISION 67

For unbounded U -process whose envelope function has finite ψ1 Orlicz norm, it is natural to
replace the uniform bound F0 in (7.2) by ωn. Upper bounds for the Rademacher complexities
EZε , EMε and EUε can be obtained as in Clémençon, Lugosi and Vayatis (2008).

7.2. Uniform consistency of empirical maximizers. Recall that

�+ = {
λ ∈ [λmin, λmax] : Mβ0 � M̂(λ),

∣∣M̂(λ)
∣∣ ≤ sn

}
.

For any λ ∈ �+, define

θ̃M̂(λ) = arg max
θ=(c,βT )T ∈S̃(θ0)

βM̂(λ)c=0

V̂ (θ), β̃M̂(λ) = arg max
β∈S(β0)

βM̂(λ)c=0

Ĉ(β).

By the definitions of CIC and VIC, the probabilities that VIC and CIC choose an overfitted
model are upper bounded by

Pr
(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈�+

{
nV̂ (θ̂M̂(λ)) − κn‖β̂M̂(λ)‖0

})
,(7.3)

Pr
(
CIC(β̂M̂(λ0)

) ≤ sup
λ∈�+

{
nĈ(β̂M̂(λ)) − κn‖β̂M̂(λ)‖0

})
.(7.4)

Notice that V̂ (θ̃M̂(λ)) ≥ V̂ (θ̂M̂(λ)), Ĉ(β̃M̂(λ)) ≥ Ĉ(β̂M̂(λ)). Therefore, (7.3) and (7.4) are
upper bounded by

Pr
(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈�+

{
nV̂ (θ̃M̂(λ)) − κn‖β̂M̂(λ)‖0

})
,(7.5)

Pr
(
CIC(β̂M̂(λ0)

) ≤ sup
λ∈�+

{
nĈ(β̃M̂(λ)) − κn‖β̂M̂(λ)‖0

})
,(7.6)

respectively. To bound (7.5) and (7.6), we need uniform convergence rates of θ̃M̂(λ) and

β̃M̂(λ) over all λ ∈ �+, summarized as follows.

LEMMA 7.1. Under the conditions in Theorem 3.3, there exists some constant t0 > 0
such that for all t ≥ t0,

Pr
( ⋂

λ∈�+

{‖θ̃M̂(λ) − θ0‖2 ≥ tn−1/3∣∣M̂(λ)
∣∣1/3 log1/3 p

})
(7.7)

≤ exp
(−c̄t3 log(p)

) + exp
(
− c̄t2n2/3 log1/3 p

log(n)

)
+ exp

(
− c̄n

log(n)

)
.

Under the conditions in Theorem 3.4, there exists some constant t0 > 0 such that for all t ≥ t0,

Pr
( ⋂

λ∈�+

{‖β̃M̂(λ) − β0‖2 ≥ tn−1/2∣∣M̂(λ)
∣∣1/2 log1/2 p log1/2(n)

})
(7.8)

≤ exp
(−c̄t2 log(p)

) + exp
(−c̄t

√
n log(p)

) + exp
(
− c̄n

log(n)

)
.

REMARK 7.3. In the fixed-p scenario, θ̃M converges at a rate of Op(n−1/3). In compar-
ison, the uniform convergence rate in (7.7) is slower by a factor of |M̂(λ)|1/3 log1/3 p. This
is the price we pay to search over the entire overfitted model space. By assumption, we have
log(p) = O(na0), sn = O(nl0), supλ∈�+ |M̂(λ)| ≤ sn. When a0 + l0 < 1, we have

n−1/2∣∣M̂(λ)
∣∣1/2 log1/2 p log1/2(n) � n−1/3∣∣M̂(λ)

∣∣1/3 log1/3 p, for all λ ∈ �+.
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Therefore, it follows from (7.7) and (7.8) that supλ∈�+ ‖β̃M̂(λ) − β0‖2 converges faster than

supλ∈�+ ‖θ̂M̂(λ) − θ0‖2.

8. Discussion. In this paper, we propose the concordance and value information criteria
(CIC and VIC) to select important variables that are involved in the optimal treatment regime.
We consider both fixed-p and high dimensional settings, and show that VIC and CIC are
able to correctly identify those important variables in both scenarios when the contrast is a
monotonic function of a linear combination of baseline covariates. In addition, we show CIC
is more reliable than VIC both theoretically and empirically.

8.1. Extensions to multiple stages. The proposed concordance and value information cri-
teria can be extended to multistage settings, where models are selected via backward induc-
tion. These results are provided in Section 11 of the Supplementary Material. We find out
that if the contrast function on each stage is a monotonic function of a linear combination of
available covariates and previous treatments up to that stage, our information criteria are con-
sistent. Otherwise, estimators selected by our information criteria will converge to some least
false parameters and it is likely that CIC and VIC choose different models. In addition, con-
ditions on κn are strengthened in backward induction, due to the variability in the estimation
of the contrast function of previous stages.

8.2. Model misspecification. In Section 12 of the Supplementary Material, we further
investigate the performance of the proposed information criteria when the contrast function
does not take the monotonic linear index form. Theorem 12.1 shows the model CIC and
VIC choose will converge to the support of some least false parameters. We further conduct
simulation studies in Section 12.2. We find CIC achieves better model selection results when
compared to VIC in finite samples. In addition, all the numerical results improve when sample
size increases, validating our theoretical findings.

8.3. Nonregularity. Our method requires assuming the uniqueness of the optimal treat-
ment. In the nonregular cases where Pr(τ (X0) = 0) > 0, Conditions (A5)(ii), (A5′)(ii),
(A6)(iii) and (A6′)(iii) are likely to be violated. More detailed discussions can be found in
Section B.1.2 and Section B.2.3 of the Supplementary Material. Thus, selection consistencies
of our proposed information criteria are not guaranteed. We further investigate the numerical
performance of our proposed information criteria in the nonregular cases. Results are pro-
vided in Section I.1 of the Supplementary Material. We find CIC still works better when
compared to VIC. However, increasing the sample size does not improve the performance of
CIC. This suggests that our information criteria might not be consistent in this case.

9. Proof of Theorem 3.3. Here, we only present the proof of Theorem 3.3. Proofs of
other theorems and lemmas are given in the Supplementary Material. Let �− be the under-
fitted model space,

�− = {
λ ∈ [λmin, λmax] : Mβ0 �⊂ M̂(λ),

∣∣M̂(λ)
∣∣ ≤ sn

}
.

Assumption (A4′) states that

(9.1) Pr
({‖θ̂M̂(λ0)

− θ0‖2 = O(Rn)
} ∩ {

M̂(λ0) = Mβ0

}) → 1.

Under the events defined in (9.1), to prove Theorem 3.3, we provide tail inequalities for

(9.2) Pr
(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈�−

VIC(θ̂M̂(λ))
)
.

Then we bound

(9.3) Pr
(
VIC(θ̂M̂(λ0)

) ≤ sup
λ∈�+

{
nV̂ (θ̃M̂(λ)) − κn‖β̂M̂(λ)‖0

})
.
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9.1. Underfitted model space. Since V (θ0) > V (0), we have θ0 �= 0. For any θ =
(c, βT )T �= 0 and x, we have

I
(
βT x > −c

) = I

(
βT

‖θ‖2
‖θ0‖2x > − c

‖θ‖2
‖θ0‖2

)
.

This implies we have

(9.4) V (θ) = V
(‖θ0‖2θ/‖θ‖2

)
,

for any θ �= 0. The vector ‖θ0‖2θ/‖θ‖2 lies on the L2 surface S̃(θ0).
For any λ ∈ �−, we have β

j
0 �= 0 and β̂

j

M̂(λ)
= 0 for some j . By the definition of δ, this

implies ∥∥∥∥θ0 − ‖θ0‖2θ̂M̂(λ)

‖θ̂M̂(λ)‖2

∥∥∥∥
2
≥ ∣∣βj

0

∣∣ > δ,

or θ̂M̂(λ) /∈ Ñδ , if θ̂M̂(λ) �= 0. Since δ ≤ ε0, it follows from Assumption (A5′)(i) that there
exists some constant ξ > 0 such that

V (θ0) > V

(‖θ0‖2θ̂M̂(λ)

‖θ̂M̂(λ)‖2

)
+ 3ξ.

It follows from (9.4) that

(9.5) V (θ0) > V (θ̂M̂(λ)) + 3ξ.

By assumption (A5′)(i), we have V (θ0) > V (0). Without loss of generality, assume 3ξ <

V (θ0)−V (0). Then (9.5) holds for any λ ∈ �−. Assumptions (A5′)(iii) and the event defined
in (9.1) imply that

(9.6) V (θ̂M̂(λ0)
) ≥ V (θ0) − O

(
R2

n

)
.

It follows from (9.5) and (9.6) that

V (θ̂M̂(λ0)
) ≥ sup

λ∈�−
V (θ̂M̂(λ)) + 3ξ − O

(
R2

n

)
.

Since the sequence Rn → 0, for sufficiently large n, we have ξ ≥ O(R2
n). Hence,

(9.7) V (θ̂M̂(λ0)
) − sup

λ∈�−
V (θ̂M̂(λ)) ≥ 2ξ,

for sufficiently large n. Since the number of nonzero elements in β̂M̂(λ0)
is fixed, we have

κn

(‖β̂M̂(λ0)
‖0 − ‖β̂M̂(λ)‖0

) ≤ O(κn) for all λ ∈ �−.

Together with (9.7) and the condition κn = o(n), we obtain that for sufficiently large n and
all λ ∈ �−,

(9.8)
{
V (θ̂M̂(λ0)

) − V (θ̂M̂(λ))
} − κn

n

(‖θ̂M̂(λ0)
‖0 − ‖θ̂M̂(λ)‖0

) ≥ ξ.

By (9.8) and the definition of VIC, the event defined in (9.2) happens if

sup
λ∈�−

∣∣{V̂ (θ̂M̂(λ0)
) − V (θ̂M̂(λ0)

) − V̂ (θ̂M̂(λ)) + V (θ̂M̂(λ))
}∣∣ ≥ ξ,

or

sup
‖β‖0≤sn,c∈R

∣∣V̂ (θ) − V (θ)
∣∣ ≥ ξ

2
.
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Therefore, we can bound (9.2) by

(9.9) Pr
(

sup
c∈R,‖β‖0≤sn

∣∣V̂ (θ) − V (θ)
∣∣ ≥ ξ

2

)
.

We now provide an upper bound for (9.9). Define BM = {β ∈ Rp : βMc = 0}. We define
�∗ = {M ∈ � : |M| = sn}. It follows from Bonferroni’s inequality that (9.9) is bounded by

(9.10)
∑

M∈�∗
Pr

(
sup

c∈R,β∈BM

∣∣V̂ (θ) − V (θ)
∣∣ ≥ ξ

2

)
.

For any triple o = (y, a, x), define

ψV
θ (o) =

(
a

π0(x)
− 1 − a

1 − π0(x)

)
yI

(
xT β > −c

) + 1 − a

1 − π0(x)
y.

For each fixed M, the class of functions VM = {ψV
θ : c ∈ R, β ∈ BM} has finite VC index

sn + 3 (see Lemma 2.6.15 and 2.6.18 in van der Vaart and Wellner (1996)). Therefore, we
have

J (1,V) ≡ sup
Q

∫ 1

0

√
1 + logN

(
ε‖VM‖Q,2,VM,L2(Q)

)
dε

(9.11)

≤
∫ 1

0

√
1 + (sn + 3) log(K/ε) dε = O(

√
sn),

for some constant K , where VM stands for an envelope function of VM, and the supremum is
taken over all discrete measures Q with ‖VM‖Q,2 > 0. The definition of the entropy number
N(·, ·, ·) can be found in van der Vaart and Wellner (1996). The above bound is uniform for
all M ∈ �∗.

For any M, VM(Oi) is bounded by

sup
θ=(c,βT )T

∣∣∣∣AiI(X
T
i β > −c) + (1 − Ai)I(X

T
i β ≤ −c)

Aiπ0,i + (1 − Ai)(1 − π0,i)
Yi

∣∣∣∣
(9.12)

≤ sup
c,β

∣∣∣∣AiI(X
T
i β > −c) + (1 − Ai)I(X

T
i β ≤ −c)

Aiπ0,i + (1 − Ai)(1 − π0,i )
Yi

∣∣∣∣ ≤ 1

(1 − c2)c1
|Yi |,

by Assumption (A3). In addition, it follows from Lemma H.1 and Cauchy–Schwarz inequal-
ity that

(9.13)
(
E|Yi |)2 ≤ E|Yi |2 ≤ 2‖Yi‖2

ψ1
= O(1).

Therefore, we have EV 2
M(O1) = O(1) where the big-O notation is uniform in M.

It follows from (9.11) and Theorem 2.14.1 in van der Vaart and Wellner (1996) that

(9.14) E sup
c∈R

β∈BM

∣∣V̂ (θ) − V (θ)
∣∣ ≤ O(1)

√
sn

n

√
nEV 2

M(O1).

Here, O(1) denotes a universal constant that is independent of M.
This together with (9.12) and (9.13) implies

(9.15) sup
M∈�∗

E
(

sup
c∈R,β∈BM

∣∣V̂ (θ) − V (θ)
∣∣) = O

(√
sn

n

)
.
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For sufficiently large n, RHS of (9.15) goes to 0. It follows from (9.15) that (9.10) is
bounded by∑

M∈�∗
Pr

(
sup

c∈R,β∈BM

∣∣V̂ (θ) − V (θ)
∣∣ − (1 + η)E sup

c∈R,β∈BM

∣∣V̂ (θ) − V (θ)
∣∣ ≥ ξ

4

)
,

for some fixed η > 0.
For any β and c, it follows from (9.12) that supM∈�∗ ‖VM(Oi)‖ψ1 = O(1). Similarly we

have supM∈�∗ EV 2
M(Oi) = O(1). Take η = 0.5, it follows from Lemma H.4 that the above

probability can be bounded by

(9.16)
∣∣�∗∣∣{exp(−c̄n) + 3 exp

(−c̄n/ log(n)
)}

,

for some constant c̄ > 0. Observe that |�∗| = O(psn). It follows from the condition n �
sn log(p) log(n) that (9.16) is bounded by

exp
(−c̄n + k1sn log(p)

) + 3 exp
(−c̄n/ log(n) + k1sn log(p)

)
≤ 4 exp

(−c̄n/ log(n)
) ≤ exp

{−k2n/
(
2 log(n)

)} ≤ exp
(−k2 log(p)

)
,

for some constants k1, k2 > 0 and sufficiently large n. This provides the tail inequality that
VIC chooses an underfitted model.

9.2. Overfitted model space. It follows from Lemma 7.1 that

Pr
( ⋂

λ∈�+

{‖θ̃M̂(λ) − θ0‖2 ≤ t0n
−1/3∣∣M̂(λ)

∣∣1/3 log1/3(p)
})

≥ 1 − exp
(−c̄t3

0 log(p)
) − exp

(
− c̄t2

0 n2/3 log1/3 p

log(n)

)
− exp

(
− c̄n

log(n)

)
,(9.17)

≥ 1 − 3 exp
(−c̄t3

0 log(p)
) ≥ 1 − exp

(
log 3 − c̄t3

0 log(p)
) ≥ 1 − exp

(−c̄∗ log(p)
)
,

for some c̄, c̄∗ > 0, where the second inequality is due to the condition log(p) = O(na0)

for some 0 < a0 < 1, which further implies n2/3 log1/3 p � log(n) log(p) and n �
log(p) log(n).

On the event defined in (9.1), it follows from Assumption (A6′)(iii) that∣∣V (θ0) − V (θ̂M̂(λ0)
)
∣∣ = O

(
R2

n

)
.

This together with supλ∈�+ V (θ̃M̂(λ)) ≤ V (θ0) implies that

(9.18) V (θ̂M̂(λ0)
) ≥ sup

λ∈�+
V (θ̃M̂(λ)) − O

(
R2

n

)
.

Denoted by sβ the number of nonzero elements in β0. For any λ ∈ �+, we have
‖β̂M̂(λ)‖0 > sβ . Therefore, for any λ ∈ �+, we obtain

(9.19)
κn

|M̂(λ)|
(‖β̂M̂(λ)‖0 − ‖β̂M̂(λ0)

‖0
) = κn

(
1 − sβ

|M̂(λ)|
)

≥ κn

sβ + 1
.

Since sβ is fixed, under the condition κn � nR2
n, it follows from (9.18) and (9.19) that for

any λ ∈ �+ and sufficiently large n,

1

|M̂(λ)|
{
nV (θ̂M̂(λ0)

) − nV (θ̃M̂(λ)) − κn

(‖β̂M̂(λ0)
‖0 − ‖β̂M̂(λ)‖0

)} ≥ κn

2(sβ + 1)
.
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Hence, the event defined in (9.3) happens if

sup
λ∈�+

n

|M̂(λ)|
∣∣{V̂ (θ̃M̂(λ)) − V (θ̃M̂(λ)) − V̂ (θ̂M̂(λ0)

) + V (θ̂M̂(λ0)
)
}∣∣ ≥ κn

2(sβ + 1)
,

or

sup
λ∈�+

n

|M̂(λ)|
∣∣m̂V (θ̃M̂(λ)) − mV (θ̃M̂(λ))

∣∣ ≥ κn

4(sβ + 1)
,

and

(9.20) sup
λ∈�+

n

|M̂(λ)|
∣∣m̂V (θ̂M̂(λ0)

) − mV (θ̂M̂(λ0)
)
∣∣ ≥ κn

4(sβ + 1)
,

where m̂V (θ) = V̂ (θ) − V̂ (θ0) and mV (θ) = V (θ) − V (θ0). Since |M̂(λ)| ≥ 1, for any λ ∈
�+, LHS of (9.20) is smaller than n|m̂V (θ̂M̂(λ0)

) − mV (θ̂M̂(λ0)
)|. In the following, we show

that conditional on the event defined in the LHS of (9.17),

Pr
(

sup
λ∈�+

n

|M̂(λ)|
∣∣m̂V (θ̃M̂(λ)) − mV (θ̃M̂(λ))

∣∣ ≥ κn

4(sβ + 1)

)
(9.21)

≤ exp
(−k3 log(p)

)
,

for some constant k3 > 0. Similarly, we can show

Pr
(
n
∣∣m̂V (θ̂M̂(λ0)

) − mV (θ̂M̂(λ0)
)
∣∣ ≥ κn

4(sβ + 1)

)
≤ exp

(
−k4κ

2
n

nRn

)
,

for some constant k4 > 0. This together with (9.21) and (9.17) yields (3.9).
Let RV

M = t0n
−1/3|M|1/3 log1/3 p, and �∗+ = {M ∈ � : Mβ0 �M, |M| ≤ sn}, LHS of

(9.21) is bounded by

(9.22)
∑

M∈�∗+
Pr

(
sup

θ=(c,βT )T

c∈R,β∈BM
‖θ−θ0‖2≤RV

M

n

|M|
∣∣m̂V (θ) − mV (θ)

∣∣ ≥ κn

4(sβ + 1)

)
,

using Bonferroni’s inequality. Observe that

m̂V (θ) − mV (θ) = 1

n

∑
i

{
ψV

θ (Oi) − EψV
θ (Oi)

}
.

Let �V
M = {θ = (c, βT )T : β ∈ BM, c ∈ R,‖θ −θ0‖2 ≤ RV

M}. By Assumption (A3), the class
of functions {|ψV

θ (o)| : θ ∈ �V
M} is bounded by

�V
M(o) = c̄

(
sup

θ∈�V
M

|y|{∣∣I(xT β > −c
) − I

(
xT β0 > −c0

)∣∣}),
for some c̄ > 0. Therefore, we have supM ‖�V

M(Oi)‖ψ1 = O(1). In addition, it follows from
the Cauchy–Schwarz inequality that E|�V

M(Oi)|2 is bounded by

2c̄2EY 2
i

∣∣∣ sup
θ∈�V

M

∣∣∣I(XT
i β > −c

) − I
(
XT

i β0 > −c0
)∣∣∣∣∣∣2

≤ 2c̄2E
(
E

(
Y 2

i |Xi

)∣∣∣ sup
θ∈�V

M

∣∣∣I(XT
i β > −c

) − I
(
XT

i β0 > −c0
)∣∣∣∣∣∣)(9.23)

≤ 2c̄2C̄E
∣∣∣ sup
θ∈�V

M

∣∣∣I(XT
i β > −c

) − I
(
XT

i β0 > −c0
)∣∣∣∣∣∣ = O

(
RV
M

)
,
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where the second inequality is due to the condition that supx{EY 2
0 |X0 = x} ≤ C̄, and the

second equality is due to Assumption (A5′)(ii). The big-O term on the right-hand side is
uniform in M ∈ �∗+. Similar to (9.11) and (9.14), it follows from (9.23) that

E
(

sup
θ∈�V

M

∣∣m̂V (θ) − mV (θ)
∣∣) ≤ O(1)

√
|M|RV

M√
n

,

and hence

(9.24)
1

|M|E
(

sup
θ∈�V

M

∣∣m̂V (θ) − mV (θ)
∣∣) ≤ O(1)n−2/3 log1/6 p.

Since κn � n1/3 log2/3 p, we have κn � n1/3 log1/6 p. For sufficiently large n, (9.22) is
bounded by ∑

M∈�∗+
Pr

(
sup

θ∈�V
M

n

|M|
∣∣m̂V (θ) − mV (θ)

∣∣
(9.25)

− 3

2
E sup

θ∈�V
M

n

|M|
∣∣m̂V (θ) − mV (θ)

∣∣ ≥ κn

8(sβ + 1)

)
.

It follows from (9.23) and Lemma H.4 that (9.25) is bounded by

(9.26)
∑

M∈�∗+

{
exp

(
− c̄κ2

n |M|2
nRV

M

)
+ 3 exp

(
− c̄κn|M|

log(n)

)}
,

for some constants c̄ > 0.
Define �∗

s = {M ∈ �∗+ : |M| = s}, it is immediate to see that �∗+ ⊆ ⋃sn
s=1 �∗

s . Hence,
(9.26) is bounded by

(9.27)
sn∑

s=1

∣∣�∗
s

∣∣{exp
(
− c̄κ2

ns5/3

n2/3 log1/3 p

)
+ 3 exp

(
− c̄κns

log(n)

)}
.

For each s, the number of elements in |�∗
s | is bounded by O(ps). By assumption, we have

κn � n1/3 log2/3 p and hence κn � log(p) log(n). This implies

κ2
ns5/3

n2/3 log1/3 p
� s log(p)and

κns

log(n)
� s log(p).

Hence, for sufficiently large n, (9.27) is bounded by

|sn|min
s≥1

{
exp

(
− c̄κ2

ns5/3

2n2/3 log1/3 p

)
+ 3 exp

(
− c̄κns

2 log(n)

)}

= O(n)

{
exp

(
− c̄κ2

n

2n2/3 log1/3 p

)
+ 3 exp

(
− c̄κn

2 log(n)

)}
(9.28)

≤ exp
(
− c̄κ2

n

3n2/3 log1/3 p

)
+ 3 exp

(
− c̄κn

3 log(n)

)

≤ 1

2
exp

(
− c̄κ2

n

4n2/3 log1/3 p

)
+ 1

2
exp

(
− c̄κn

4 log(n)

)
≤ exp

(−c̄ log(p)
)
,

where the last inequality is due to κn � n1/3 log2/3(p) and κn � log(p) log(n). This proves
(9.21). The proof is hence complete.
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