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The central subspace of a pair of random variables (y,x) € RPHL s
the minimal subspace S such that y L x|Pgx. In this paper, we consider
the minimax rate of estimating the central space under the multiple index
model y = f(B7x,B3x,..., ﬂfix, €) with at most s active predictors, where
x ~ N(0, X) for some class of X. We first introduce a large class of models
depending on the smallest nonzero eigenvalue A of var(E[x]|y]), over which
we show that an aggregated estimator based on the SIR procedure converges
atrate d A ((sd + slog(ep/s))/(n))). We then show that this rate is optimal
in two scenarios, the single index models and the multiple index models with
fixed central dimension d and fixed A. By assuming a technical conjecture,
we can show that this rate is also optimal for multiple index models with
bounded dimension of the central space.

1. Introduction. Because of rapid advances in information technologies in recent years,
it has become a common problem for data analysts that the dimension (p) of data is much
larger than the sample size (n), that is, the “large p, small n problem.” For these problems,
variable selection and dimension reduction are often the indispensable first steps. In the early
1990s, a fascinating supervised dimension reduction method, the sliced inverse regression
(SIR) (Li (1991)), was proposed to discover how a univariate response relates to a low di-
mensional projection of the predictors. More precisely, SIR postulates the following multiple
index model for the data

(1) y=f(Bix,B3x,...,B5x,¢€),

and estimates the subspace S = span{f, ..., B,} via an eigenanalysis of the estimated con-
ditional covariance matrix var[E(x|y)]. Note that the individual f;’s are not identifiable, but
the space S can be estimated well. Based on the observation that y | x | Psx, where Psx
is the projection of x onto S, Dennis Cook (1998) proposed a more general framework for
dimension reduction without loss of information, often referred to as the Sufficient Dimen-
sion Reduction (SDR). Under this framework, researchers look for the minimal subspace
S’ C RP suchthat y I x | Pgy, where y is no longer necessarily a scalar response. Although
numerous SDR algorithms have been developed in the past decades, SIR is still the most pop-
ular one for practitioners because of its simplicity and computational efficiency. Asymptotic
theories developed for these SDR algorithms have all focused on scenarios where the data di-
mension p is either fixed or growing at a much slower rate compared with the sample size n
(Dennis Cook (2000), Li (2000), Li and Wang (2007)). The “large p, small n” characteristic
of modern data raises new challenges to these SDR algorithms.
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Algorithm 1 DT-SIR for Single-Index Models

1: Let §; = {ilf\H(i, i) > t} for a properly chosen ¢, where KH is an estimate of var (E[x |
y]) as defined in (3).

2: Let ﬁ be the principal eigenvector of An (St, So)-

3: We embed ﬁ into R? by filling the entries outside S; with O and denote it by BDT-

Lin, Zhao and Liu (2018) recently showed under mild conditions that the SIR estimate
of the central space is consistent if and only if hm% = 0. This provides a theoretical justi-
fication for the necessity of some structural assumptions for SIR when p > n. A commonly
employed and also practically meaningful structural assumption made for high-dimensional
linear regression problems is the sparsity assumption, that is, only a few predictors among the
thousands or millions of candidate ones participate in the model. We will show that this spar-
sity assumption can also rescue the curse of dimension for SDR algorithms such as SIR. Mo-
tivated by Lasso and the regularized sparse PCA (Tibshirani (1996), Zou and Hastie (2005)),
Li and Nachtsheim (2006) and Li (2007) proposed some regularization approaches for SIR
and SDR. However, these approaches often fail in high dimensional numerical examples and
are difficult to rectify because little is known about theoretical behaviors of these algorithms
in high dimensional problems. The DT-SIR algorithm (i.e., Algorithm 1) in Lin, Zhao and
Liu (2018) has been shown to provide consistent estimation. The main objective of the cur-
rent paper is to understand the fundamental limits of the sparse SIR problem from a decision
theoretic point of view. Such an investigation not only is interesting in its own right, but will
also provide insights for other SDR algorithms developed for high-dimensional problems.

Neykov, Lin and Liu (2016) considered the (signed)-support recovery problem of the fol-
lowing class of single index models:

y=f(B"x.€), PB;e{£l//s,0} supp(B) =,

where x ~ N(0,1,), e ~ N(0,1). Let £ = Slo”w. They proved that (a) if £ is sufficiently
small, any algorithm fails to recover the (signed) support of 8 with probability at least 1/2;
and (b) if & is sufficiently large, the DT-SIR algorithm (see Lin, Zhao and Liu (2018) or
Algorithm 1) can recover the (signed) support with probability converging to 1 as n — oo.
That is, the minimal sample size required to recover the support of B is of order slog(p).
These results shed some light on the possibility of obtaining the optimal rate of SIR-type
algorithms in high dimension.

SIR is widely considered as a “generalized eigenvector” problem (Chen and Li (1998)).
Inspired by recent advances in sparse PCA (Amini and Wainwright (2008), Birnbaum et al.
(2013), Cai, Ma and Wu (2013), Johnstone and Lu (2004), Vu and Lei (2012)), where re-
searchers aim at estimating the principal eigenvectors of the spiked model, it is reasonable to
expect a similar phase transition phenomenon (Johnstone and Lu (2004)), the signed support
recovery (Amini and Wainwright (2008)), and the optimal rate (Birnbaum et al. (2013), Cai,
Ma and Wu (2013), Vu and Lei (2012)) for SIR when X = I. However, as was pointed out by
Lin, Zhao and Liu (2018), the sample means in the corresponding slices of the SIR algorithm
are neither independent nor identically distributed. The usual concentration inequalities are
not applicable. This difficulty forced them to develop the corresponding deviation properties,
that is, the “key lemma” in Lin, Zhao and Liu (2018). On the other hand, the observation that
the number H of slices is allowed to be finite when d is bounded (we always require that
H > d) suggests that a consistent estimate of the central space based on finite (e.g., H) sam-
ple means is possible. This is again similar to the so-called high-dimension, low sample-size
(HDLSS) scenario of PCA, which was first studied in Jung and Marron (2009) by estimating
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the principal eigenvectors based on finite samples. These connections suggest that theoretical
issues in sparse SIR might be analogous to those in sparse PCA. However, our results in this
article suggest that sparse linear regression is a more appropriate prototype for sparse SIR.
The main contribution of this article is the determination of the minimax rate for estimat-
ing the central space. The risk of our interest is E[|| Py — Py ||%], where V is an orthogonal
matrix formed by an orthonormal basis of S, and Py is an estimate of Py, the projection
matrix associated with the orthogonal matrix V. We first construct an estimator (computa-
tionally unrealistic) such that the risk of this estimator is of order % Ad. We further

demonstrate that the risk of any estimator is bounded below by M A 1 over two classes
of models, M(p,d, A, k) and M; 4(p.d, A, k), defined in (8) and (14), respectively. To the
best of our knowledge, this is the first result about the minimax rate of estimating the central
space in high dimension. In Section 2.7, we show that the computationally efficient algorithm
DT-SIR (Lin, Zhao and Liu (2018)) achieves this optimal rate when d =1 and s = O( pl_‘s)
for some § > 0. Furthermore, we investigate the effects of the slice number H in the SIR
procedure.

2. Main results. Since the establishment of the SDR framework about two decades ago,
estimating the central space has been investigated under different assumptions (Cook, Forzani
and Rothman (2012), Dennis Cook (1998), Dennis Cook and Weisberg (1991), Ferré (1998),
Hsing and Carroll (1992), Li and Wang (2007), Schott (1994)). Various SDR algorithms have
their own advantages and disadvantages for certain classes of link functions (models). For
example, SIR only works when both the linearity and coverage conditions are satisfied (Li
(1991)); Sliced Average Variance Estimation (SAVE) (Dennis Cook and Weisberg (1991))
works when the coverage condition is slightly violated but requires the constant variance
condition. Thus, to discuss the minimax rate of estimating the central space for model (1), it
is necessary to first specify the class of models where one or several algorithms are practically
used, and then check if these algorithms and their variants can estimate the central space
optimally over this class of models. SIR is one of the most widely used and well understood
SDR algorithms. It is of special interest to know if it is rate optimal over a large class of
models. This will not only improve our understanding of high dimensional behaviors of SIR
and its variants, but also bring us insights on behaviors of other SDR algorithms.

2.1. Notation. In addition to those that have been used in Section 1, we adopt the follow-
ing notation throughout the article. For a matrix V, we denote its column space by col(V)
and its ith row and jth column by V; . and V, ;, respectively. For vectors x and 8 € R”, we
denote the kth entry of x as x (k) and the inner product (x, ) as x (). For two positive num-
bers a, b, we use a vV b and a A b to denote max{a, b} and min{a, b}, respectively. For a matrix
A, ||A|lF = tr(AAT)!/2. For a positive integer p, [p] denotes the index set {1,2, ..., p}. For
any positive integers p and d, Q(p, d) denotes the set of all p x d orthogonal matrices. We
use C, C’, C; and C; to denote generic absolute constants, though the actual value may vary
from case to case. For two sequences a, and b,, we denote a, > b, and a, < b, if there
exist positive constants C and C’ such that a,, > Cb,, and a,, < C'b,,, respectively. We denote
a, < b, if both a,, > b,, and a,, < b,, hold.

2.2. A brief review of SIR. Since we are interested in the space spanned by B;’s in model
(1), without loss of generality, we can assume that V = (8, ..., B;) is a p x d orthogonal
matrix (i.e., V'V =1,) and the models considered in this paper are

) y=f(V'x,e), VeO(p,d),
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where f is an unknown link function, x ~ N(0,I,), and € ~ N(0, 1) independent of x.
Though V is not identifiable, the column space col(V) can be estimated. The Sliced Inverse
Regression (SIR) procedure proposed in Li (1991) estimate the central space col(V') without
knowing f(-), which can be briefly summarized as follows. Given n i.i.d. samples (y;, x;),
i=1,...,n, SIR first divides them into H equal-sized slices according to the order statistics
y(i).l We reexpress the data as yj j and x5, j, where (h, j) is the double subscript in which &
refers to the slice number and j refers to the order number of a sample in the Ath slice, that
is,

Yh,j = Y(cth—1)+j)> Xn,j =X(c(h—1)+))-

Here, x ) is the concomitant of y() (see, e.g., Yang (1977)). Let the sample mean in the hth
slice be X},.., and the overall sample mean be X. Then SIR uses

- 1 &
3) Ag=— ¥4.x}.
H h=1 ’

to estimate A £ var(E[x|y]), and col(V g) to estimate the central space col(V), where 1% H
is the matrix formed by the top d eigenvectors of A 5. We assume that the dimension of the
central space d is known throughout the article.

In order for SIR to give a consistent estimate of the central space, the following sufficient
conditions have been suggested (Hsing and Carroll (1992), Li (1991), Zhu, Miao and Peng
(2006)) in addition to the “linearity condition” that is automatically satisfied for Gaussian x:

(A") Coverage condition:

span{E[x|y]} =span{V . 1,..., Vi a},
where V. ; is the ith columns of the orthogonal matrix V.
(B’) Smoothness and tail conditions on the central curve E[x|y].

Smoothness condition: For B > 0 and n > 1, let I1,(B) be the collection of all the n-point
partitions —B < y(1) < --- < yiu) < B of [—B, B]. The central curve m(y) satisfies the fol-
lowing conditions:

n
lim sup n V4> |m(y)—m(yi_)|,=0, VB=>O0.
n_)(x,yennsz) Z;” i i—1 Hz

Tail condition: For some By > 0, there exists a nondecreasing function 7i(y) on (By, 00),
such that

At P(Y]>y) =0 asy— oo,

) [m(y) = m(y") |, < |i(lyl) — A(]y"])]
for y,y' € (—oo, —Bp) or y, y’ € (By, 00).

Asin Lin, Zhao and Liu (2018), where they demonstrated the phase transition phenomenon
of SIR in high dimension, we replace Condition (B’) by

(B”) Modified smoothness and tail conditions.

ITo ease notation and arguments, we assume thatn = cH.
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They are the same as those in (B’) except that eqn (4) is replaced by
E[i(y)*1 1> B,] < 00,
) [m(y) = m(y)[, < |a(iyl) = ()]
fory,y" € (—oo, —By) or y, y' € (B, 00).

It is easy to see that Condition (B”) is slightly stronger than Condition (B’). A main advan-
tage of Condition (B”) is the following proposition proved in Neykov, Lin and Liu (2016).

PROPOSITION 1. If Condition (B") holds, the central curve E[x|y] satisfies the sliced
stable condition (defined below) with ¥ = %

DEFINITION 1 (Sliced stable condition). Let Y be a random variable. For0 <y, <1 <
Vo, let Ay (y,,»,) denote all partitions {—co =ag <az <--- <ap = 400} of R, such that

Vi Y2
— <Pa,<Y< <=
7= (an =Y =apy1) = o

A curve m(y) € R? is ¢-sliced stable with respect to Y, if m(y) lies in a d-dimensional
subspace and there exist positive constants y |, ¥, ¥3, C such that for any H > Cd, for any
partition € Ay (y,¥,) and any B € R”, we have
1 u T Y3 T
(6) o Zvar(ﬁ m(Y)|ap—1 <Y <ap) < 5 var(BTm(Y)).
h=1

A curve is sliced stable if it is ¢*-sliced stable for some positive constant .

Intuitively, H — oo implies that the LHS of (6) converges to zero. Definition 1 states that
its convergence rate is a power of H, although any function of H that converges to 0 can
be used to replace 1/H? on the RHS of (6). Thus, the sliced stable condition is almost the
necessary condition to ensure that the SIR works. A main advantage of the sliced stable con-
dition is that we can easily quantify the deviation properties of the eigenvalues, eigenvectors
and each entries of A . This is one of the main technical contributions of Lin, Zhao and Liu
(2018). We henceforth assume that the central curve satisfies the sliced stable condition. As
shown by Proposition 1, Condition (B”) ensures the sliced-stable condition.

2.3. The class of functions Fg(A,k). Let z = V'x, then z ~ N(0,I;). Let A, =
var(E[z|y]). Since E[x|y] = PyE[x|y] = VE[V*x|y] = VE[z|y], the sliced stability for
E[z]y] implies the sliced stability for E[x|y] and vice verse. Since we have assumed that
x ~ N(0,I,), the linearity condition holds automatically.

Inspired by the assumption on the condition number in Cai, Ma and Wu (2013), we con-
sider the following condition:

@) * < Ag(var(E[x|y])) < A1 (var(E[x|y])) <«kir <1

for some positive constant ¥ > 1, which is a refinement of the coverage condition, that is,
rank(var(E[x|y])) = d. Without loss of generality, we assume thereafter A < 1/2. Since A =
var(E[x|y]) = VA, VT, we know A;(A) =A;(A;), j=1,...,d. In particular, we have A <
ra(var(E[z]y])) < A (var(E[z|y])) < «A <1, where « is assumed to be a fixed constant. The
class of functions that satisfy the sliced-stable and coverage conditions, denoted as F4(A, k),
is of our main interest and defined below.

DEFINITION 2. Let z ~ N(0,I;) and € ~ N (0, 1). A function f(z,€) belongs to the
class F; (X, k) if the following conditions hold:
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(A) Coverage condition: 0 < A < Ag(A;) < --- < A1(A;) < kA < 1, where A, £
var(E[z| f (z, €)]).

(B) Sliced stable condition: m;(y) = E[z|f(z,€) = y] is sliced stable with respect to
f(z, €.

It is easy to see that almost all functions f that make SIR work belong to F; (A, ) for some
k and A.

2.4. Upper bounds on the risks. Suppose we have n samples generated from a multiple
index model M with link function f and orthogonal matrix V, thatis, y = f(V'x,€). We
are interested in the risk Eaq|| Py — Py ||%E where Py is an estimate of Py based on these
samples. In this subsection, we provide an upper bound on this risk. All detailed proofs are
deferred to Section 4 and Supplementary Material (Lin et al. (2020)).

2.4.1. Oracle risk. Here, we are interested in estimating the central space over the fol-
lowing class of models parametrized by (V, f):

®) M(p,d, 1,k) = {(V, HIV € O(p,d), f € Falr,«)}.

We refer to the risk over 90t as the “oracle risk.” The first main result of this article is the
following.

dp

THEOREM 1 (An upper bound on the minimax oracle risk). Assuming that « is fixed, 3

is sufficiently small, d*> < p and log(n\) < p, we have

d(p—d
9) inf sup EadllPy— Pylh <d n SP=D
V. MeM(p.d,rk) ni

We will show that the estimate Py, achieves the rate in Theorem 1 where Vy is the pxd

orthogonal matrix forming by the top-d eigenvectors of An (See equation (3)). This appears
to contradict a result in Lin, Zhao and Liu (2018), which states that

A I Hp |Hp
(10) |}AH—Var(IE[x|y])||2:Op(m—i-T-k - )

Lin, Zhao and Liu (2018) indicates that the convergence rate (i) does not depend on d, the
dimension of central subspace; (ii) does not depend on X, the smallest nonzero eigenvalue
of var(E[x|y]); (iii) depends on H (the number of slices) and seems worse than our upper
bound here. The first two differences appear simply because Lin, Zhao and Liu (2018) have
assumed that d is bounded and the nonzero eigenvalues of var(E[x|y]) are bounded below
by some positive constant (i.e., the information about eigenvalues and d is absorbed by some
constants). The third difference appears because we here are interested in the convergence
rate of the SIR estimate of the space S rather than the convergence rate of the SIR estimate
of the matrix var(E[x|y]). As they have pointed out, the convergence rate of Ay might be
different (slower) than the convergence rate of Py, . More precisely, we have

(1) Ay —A=(Ay—PyApPy)+(PyApPy — A).
From the proof of Theorem 1 of Lin, Zhao and Liu (2018), we can easily check that the

first term is of rate pTH2 + pTHZ and the second term is of rate %. Since PVX g Py and A
share the same column space and we are interested in estimating Py, the convergence rate
of the second term in (11) does not matter provided that H is a large enough integer. Thus,
Theorem 1 does not contradict the convergence result in Lin, Zhao and Liu (2018).
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REMARK 1. On the role of H. Researchers have claimed that the performance of SIR
procedure is not sensitive to the choice of H, that is, H can be as large as 5 (Hsing and
Carroll (1992)) and can also be a large enough fixed integer when d = 1 (Duan and Li (1991)).
A direct corollary of Theorem 1 is that if d is fixed, H can be a large enough constant such
that col(V g) is an optimal estimate of col(V'). In the SIR literature, researchers care about
the eigenvectors of A and ignore the eigenvalue information. We show here that when H
is relatively small comparing with the sample size, the larger the H, the more accurate the
estimate of the eigenvalues of A, and illustrate this phenomenon numerically in Section 3.1.

2.4.2. Upper bound on the risk of sparse SIR. Lin, Zhao and Liu (2018) shows that when
dimension p is larger than or comparable with the sample size n, the SIR estimate of the
central space is inconsistent. Thus, structural assumptions such as sparsity are necessary for
high dimensional SIR problems. We here impose the weak [, sparsity on the loading vectors
Vils..., Viq. Fora p x d orthogonal matrix V (i.e., V'V =1 ), we order the row norms
in decreasing order as ||V (1) «[l2 > --- > ||V (p),«ll2 and define the weak [, radius of V' to be

(12) IV llg.w £ max jlIVjll7.
Jjelpl

Let Qg 4(p,d) ={VI|V € O(p,d) such that | V||, » < s} be the set of weak I, sparse or-
thogonal matrices. Weak [,-ball is a commonly used condition for sparsity. See, for exam-
ple, Abramovich et al. (2006) for wavelet estimation and Cai and Zhou (2012) for sparse
covariance matrix estimation. Furthermore, we need the notion of effective support, which
was introduced by Cai, Ma and Wu (2013). The size of effective support is defined to be

kg.s = [x4(s,d)], where
nA q/2
X=S\ o epy
(d +log(7p)) }

and [a] denotes the smallest integer no less than a € R. See Cai, Ma and Wu (2013) for a
more detailed discussion about sparse orthogonal matrices.

In this subsection, we are interested in estimating the central space over the following class
of high dimensional models parametrized by (V, f):

(13) xq(s,d)émax{o§x5p

(14) Ms.q(p,d, 2 k) £{(V, )V €Os4(p,d), f € Falr, )}

Let e,% = % (dkg,s + kg5 log k‘%). We have the following result.

THEOREM 2 (The upper bound on optimal rates). Assume that « is fixed, d*> < kg.s
log(ni) < ky s and e,% is sufficiently small. We have

dky s + kg slog —ke”‘
(15) inf sup Eml Py — Pyl <d A CEN
V. MeM 4 (p.d,r k) ni

In order to establish the upper bound in Theorem 2, we need to construct an estimator that
attains it. Let B(ky, 5) be the set of all subsets of [p] with size k, ;. To ease the notation, we

often drop the subscript (g, s) of k; ;s below and assume that there are n = 2H ¢ samples.

Let us divide the samples into two equal-sized sets at random. Let KS) and Kg) be the SIR

estimates of A = var(E[x]|y]) based on the first and second sets of samples, respectively.
Inspired by the idea in Cai, Ma and Wu (2013), we introduce the following aggregation
estimator Vg of V.
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Aggregation estimator V. Foreach B € By, we let

V2 argmé/lX(Kg), VvV = argm‘z}xTr(VTXg,)V)

(16)
s.t. VIV =14, ||V|4.w =k and supp(V) C B
and
B* £ arg max (K(;), VBIA/;)zarg max Tr(f/;;\\g)ffg).
BeB(k) BeB(k)

Our aggregation estimator Vi is defined to be V ..
B* is a stochastic set and, for any fixed B, V p is independent of the second set of samples.
From the definition of V g, it is easy to see

(17) (AP VeV —VEVE) >0

for any V 3 where B € B. We have shown in Lin et al. (2020) that the aggregation estimator
V g achieves the convergence rate on the right-hand side of (15).

2.5. Lower bound and minimax risk. We assume that dimension d of the central space
is bounded in this subsection. This is a reasonable assumption since most numerical studies
in existing literature have only d < 2 except that Ferré (1998) performed a numerical study
for a model with d =4 and reported that the 4th direction was difficult to discover. We have
also observed from extensive numerical studies that the 4th direction is difficult to detect for
p = 10 even with the sample size greater than 10°. To the best of our knowledge, the optimal
rate of estimating the central space depending only on n, s and p in high dimensions has
never been discussed in the literature.

The semiparametric characteristic of the multiple index model brings us additional diffi-
culties in determining the lower bound of the minimax rate. Because of our ignorance on the
function class F,4 (A, k), we can only establish the lower bound in two restrictive cases: (i) A,
the smallest nonzero eigenvalue of var(E[x|y]), is a bounded below by a sufficiently small
positive constant; and (ii) single index models where d = 1.

2.5.1. A is bounded below by a sufficiently small positive constant. Assume that A, the
smallest nonzero eigenvalues of var(E[x]|y]), is bounded below by a sufficiently small pos-
itive constant and « is a sufficiently large positive constant. We begin with the following
optimal convergence rate of the oracle risk.

THEOREM 3 (Oracle risk). Assume that d is bounded, X\ is bounded below by a suf-
ficiently small constant, and k is a sufficiently large constant. If dn—p sufficiently small and
log(nA) < p, we have

d
(18) inf sup  EmlPy— Pyld=dna L.
V. MeM(p.d,rk) n

REMARK 2. Although we have assumed that the dimension of the central space d is
bounded, we include it in the convergence rate to emphasize that the result holds for multiple
index models.

Because of Theorem 1, we only need to establish the lower bound. We defer the detailed
proof to the online Supplementary Material (Lin et al. (2020)) and briefly sketch its key
steps here. One of the key steps in obtaining the lower bound is to construct a finite family
of distributions that are distant from each other in the parameter space and close to each



SIR-MINIMAX 9

other in terms of the KL-divergence. Recall that, for any sufficiently small ¢ > 0 and any
positive constant & < 1, Cai, Ma and Wu (2013) have constructed a subset ® C G(p, d), the
Grassmannian manifold consisting of all the d dimensional subspaces in R”, such that

d(p—d)
C
CE (—0) and
oc]

2

a?e? <16, — 0113 < €

for any 6;,0; € ©

for some absolute constants ¢y and cy. For any 0; € ©, if we can choose a p x d orthogonal
matrix B such that the column space of B corresponds to 6; € G(p, d), we may consider
the following finite class of models:

y=f(Bjx)+e, x~N(01I,)ande~N(0,1).

Here, f is a d-variates function with bounded first derivative such that these models belong
to M(p,d, A, k) where A is sufficiently small and « is sufficiently large (cf. Lemma 15 in
Lin et al. (2020)). Let p s, denote the joint density of (y, x). Simple calculation shows (cf.
Lemma 14 in Lin et al. (2020)) that

(19) KL(py.B,, Ps.B,) < C(max||[Vf|?)|B) — B2|% < C||B| — Ba||%.
If we have
(20) IB1 — Ba|% < || Pg, — P, %,

we may apply the standard Fano type argument (e.g., Cai, Ma and Wu (2013)) to obtain the
essential rate %” of the lower bound.

However, (20) is not always true (e.g., it fails if B; and B, are two different orthogonal
matrices sharing the same column space). We need to carefully specify B ; foreach6; € ® C
G(p, d) such that they satisfy the inequality (20) (cf. Lemma 22 in Lin et al. (2020). Thus
we know that the rate in Theorem 1 is optimal if d is bounded, X is a sufficiently small
constant and « is a sufficiently large constant. Once the “oracle risk” has been established,
the standard argument in Cai, Ma and Wu (2013) leads us the following.

THEOREM 4 (Optimal rates). Assume that d is bounded, )\ is bounded below by a suffi-
ciently small constant, and k is a sufficiently large constant. If n™! (dkg.s +kg sloglep/ky s))
is sufficiently small and log(n)) < p, we have

dkg s + kg s log kz%

1) inf  sup  Ep|VVI—VVTLi=xdn
V. MeM; 4(p.d, i)

PROOF. See the Supplementary Material (Lin et al. (2020)). [

2.5.2. Single index models. If we restrict our consideration to single index models (i.e.,
d = 1), we have a convergence rate optimally depending on n, A, s and p.

THEOREM 5 (Oracle risk for single index models). Assuming that the conditions of The-
orem 1 hold and that d = 1, we have

(22) inf  sup  En|VV —vVIisi1al

V. MeM(p,d,ik) ni
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With the upper bound in Theorem 1, all we need to do is to establish a suitable lower
bound. Let us consider the following linear model:

y=fHi(BTx)= \/ﬁﬂ’x +e,

where B is a unit vector, x ~ N (0,I) and e ~ N (0, 1) and A < 1/2. Simple calculation shows
that

var(E[Bx|y]) = >) and Vf;, <Cva.

Thus, inequality (19) becomes
(23) KL(pr.p,, Prp,) < C(max |V LIP)IB; — BalF < CrIBy — Ball3:

and the desired lower bound follows from the same argument as that of Theorem 3. Once the
oracle risk has been established, the standard argument in Cai, Ma and Wu (2013) leads us to
the following result.

142

THEOREM 6 (Optimal rates: d = 1). Assume that the conditions of Theorem 2 hold and
that d = 1. We have
L kg slog 2
(24) inf sup EM”VVT—VVt”i,xl/\—k‘N‘
V. MeMy 4 (p.d,rk) na

PROOF. It is similar to the proof of Theorem 4, and thus omitted. [

2.5.3. Multiple index models with d bounded. The arguments in the Section 2.5.2 moti-
vate us to propose the following (conjectural) property for the function class F; (X, k).

CONJECTURE 1. Ifd is bounded, there is a constant C such that for any 0 < A < 1, there
exists a d-variate function f) such that f5(x1,...,xq) + xXq+1 € Fa(A, k) and

(25) IV filx1, ..., xa)| < CV/.

REMARK 3. Inequality (25) can be slightly relaxed to that it holds with high probability
for x ~ N(0,1,).

The construction in Section 2.5.2 shows that this conjecture holds for d = 1. For d > 1,
suppose that there exists a function f such that f(xy, ..., xq7) + x4+1 € Fa(u, k). We expect
that, for y = /A f (x) + €, there exist constants C; and C such that

Cir < rg(var(Exl[x]y])) < Ap(var(E;[x|y])) < Cakh.

Note that the density function p(y) of y is the convolution of the density functions of €
and /A f(x). Heuristically, if f(x) is (nearly) normal, by the continuity of the convolution
operator, we expect that Az (var(E[x|y])) < A. Since we cannot prove it rigorously, we present
some supporting numerical evidences in Section 3.2. Assuming this conjecture, we have the
following theorems, of which the proofs are similar to those of Theorems 3 and 4.

THEOREM 7 (Oraclerisk). Assuming that the conditions of Theorem 1 hold, d is bounded
and Conjecture 1 holds, we have

. 5o 2 dp
(26) inf  sup  Ep|VV I —VVT|5=xdA—.
V. MeM(p.d, k) ni
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PROOF. It is similar to the proof of Theorem 3, and thus omitted. [

THEOREM 8 (Optimal Rates). Assuming that the conditions of Theorem 2 hold, d is fixed
and Conjecture 1 holds, we have

qu,s + kq,S log kc;]%

27) inf  sup  Ep|VV —VVTL=<dA
V. MeM; 4(p.d, k) na

PROOF. It is similar to the proof of Theorem 4, and thus omitted. [

2.6. Beyond the uncorrelated predictors. So far we have shown that the lower bound
% A 1 is achievable for a quite general class of single-index models with uncorrelated
predictors. A natural further question is whether a rate-optimal estimator for the SDR di-
rection with correlated predictors (i.e., when x ~ N (0, X)) can achieve the lower bound as
well.

A complete answer is beyond the scope of a single paper. In fact, the minimax rate for
linear regression with Gaussian design is obtained only for ¥ with bounded eigenvalues
(Raskutti, Wainwright and Yu (2011)); and the minimax rate for sparse PCA is derived only
for spiked models where the irrelevant noises are uncorrelated (Cai, Ma and Wu (2013)).
Because the semiparametric characteristic of SIR makes it more difficult to analyze, it is
within our expectation that the minimax rate results for single or multiple index models are
even less complete and concise than those for linear regression and sparse PCA.

We provide here a slightly more general statement regarding the minimax rate with corre-
lated predictors. More precisely, we consider the class 0, (p, d, A, k, X) consisting of models
y=f(T*x,¢),x ~N(0, X) and € ~ N(0, 1) where the covariance matrix ¥ and the p x d
orthogonal matrix I' satisfying the following condition:

(28) I/kTllF < CllJgk XL | F

for any K C [p], where Jk is the diagonal matrix diag{Jy, ..., Jp} with J; =11if j € K and
0, otherwise. We further assume the following conditions:

(G1) X has at most k nonzero entries in each row where k is a fixed integer and C; <
Amin(X) < Amax (X) < C, for some constants C1 and C5.

(G2) E[x | y] satisfying the sliced stability condition.

(G3) O <Ar<ig(var(E[x | y])) <--- < Ai(var(E[x | y])) < kA for some constant .

(G4) |supp(I)| <.

Then we have the following result.

THEOREM 9 (Optimal rates). Assuming that d is fixed, s = o(p), s log(p)/(ni) is suffi-
ciently small, Conjecture 1, and conditions (G1)—(G4) hold, we have

s 1
(29) inf sup Epq Hl—-rr B rr’H% 1A s og(p)‘

T MeM;q(p.d.hk.E) ni

PROOF. A sketch of proof is presented in the Supplementary Material. [
In a recent work (Lin, Zhao and Liu (2019)), we proposed the Lasso-SIR algorithm to
estimate the central space for general X and showed that it achieves the optimal rate in certain

regions.

REMARK 4. One could easily verify that condition (28) implies the following:
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e There is a constant C satisfying that, forany j,1 < j <pandi, 1 <i <d, we have

(*) Sl T 2 (P15,

1

where T';(j) is the jth coordinate of T'; and X is the jth column (or row) vector of X.

In fact, let K be any integer € {1,2, ..., p}. We know that Condition (28) implies Condi-
tion (A).

On the other hand, assuming that condition (A) holds for any 1 < j < p. Now, for any
K C [p], we have

d
W ETI2 =33 (%6, T0)* = C S IZrl2 T 0 |5 = Chmin(2) 21k TI1%,
i=1kekK i k

where we use I' to denote the matrix (I'y, ..., T'y).

The condition (A) might be easier to verify than the condition (28) in some cases. For
example, if the angles between X ;’s and I'; are away from % that is, there exists a constant
C such that [(X;,T;)| > C|IT;|]2]|% |2, then condition (A) holds since ||T; |2 > [IT;(j)|l2.

2.7. Optimality of DT-SIR. 1In the previous section, we have proved that the aggregation
estimator V g is rate optimal. In practice, however, it is computationally too expensive. The
DT-SIR algorithm proposed in Lin, Zhao and Liu (2018) is computationally efficient in gen-
eral, and can be further simplified when ¥, = L. In this section, we focus on the single index
models with the exact sparsity on the loading vector B, that is, | supp(8)| = s.

THEOREM 10. Suppose that s = O(pi_‘s) for some § > 0, % is sufficiently small
and n = O(p€) for some constant C. Let Bpt be the DT-SIR estimate with threshold level

t=C log% for some constant C1, then we have

slog(p — )

. 2
(30) Egll Py, — Poll> < Ca—

PROOF. See the Supplementary Material (Lin et al. (2020)). O

From Theorem 10, it is easy to see that, if s = O( pl_‘g), the DT-SIR estimator PEDT is
rate optimal for n > s log(p). However, this is not the case for sparse PCA since the diagonal
thresholding (DT) algorithm achieves the minimax rate only if n > 52 log(p). This leads us to
speculate that a more appropriate prototype of sparse SIR should be sparse linear regression
instead of sparse PCA (Lin, Zhao and Liu (2019)). The idea of comparing SIR with linear
regression dates back to the birth of SIR (Chen and Li (1998)). In support of this viewpoint,
we note that the diagonal elements of A can be treated as a generalization of the square of

Elyx;].

EXAMPLE 1. Consider the simple model y = ajx; + axxa + € where x1, x; ~ N(0, 1)
and € ~ N(0, 1). It is easy to show that

2
N a; N N2 a2 12
var(E[x; | y]) = [y a%’ T3 cor(y, x;)” ~a; = (E[yx;])

if a12 and ag are sufficiently small.
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TABLE 1
The empirical mean (standard error) of the SIR estimate /):(u) (true A equals to u here)

/1000 H=2 H=5 H=10 H=50 H=100 H=200 H=500

n=0.5 5 0.319 0.446 0.479 0.503 0.509 0.520 0.551
(0.013) (0.017) (0.017) (0.016) (0.017) (0.018) (0.017)

10 0.318 0.448 0.480 0.500 0.505 0.510 0.525
(0.009) 0.012) (0.012) (0.012) (0.012) (0.013) (0.012)

50 0.319 0.448 0.479 0.498 0.500 0.501 0.504
(0.004) (0.006) (0.005) (0.006) (0.005) (0.006) (0.006)

100 0.319 0.448 0.479 0.498 0.499 0.501 0.503
(0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

n=0.3 5 0.190 0.271 0.288 0.307 0.313 0.328 0.371
0.011) (0.012) (0.014) (0.015) (0.015) (0.014) (0.016)

10 0.191 0.27 0.288 0.302 0.307 0.312 0.335
(0.008) (0.009) (0.010) (0.010) (0.010) (0.010) (0.012)

50 0.191 0.269 0.288 0.299 0.3 0.302 0.307
(0.003) (0.004) (0.005) (0.005) (0.005) (0.005) (0.004)

100 0.191 0.269 0.288 0.299 0.3 0.301 0.303
(0.002) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003)

n=0.1 5 0.064 0.091 0.098 0.109 0.117 0.136 0.190
(0.007) (0.008) (0.009) (0.009) (0.009) (0.010) (0.010)

10 0.0643 0.0901 0.0973 0.103 0.108 0.117 0.144
(0.005) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007)

50 0.0638 0.0899 0.0963 0.101 0.101 0.103 0.109
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

100 0.0636 0.0898 0.0961 0.100 0.100 0.102 0.104
(0.001) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

3. Numerical studies. We illustrate three aspects of the high dimensional behavior of
SIR via numerical experiments. The first experiment focuses on the impacts of the choice of
H (assuming that it is small relative to the sample size) in SIR: the larger the H, the more
accurate the estimate of eigenvalue of var(E[x|y]). The second experiment aims at providing
supporting evidences for Conjecture 1. The third experiment demonstrates empirical perfor-
mances of the DT-SIR algorithm.

3.1. Effects of H. Our numerical results below show that the accuracy in estimating the
eigenvalues of var(E[x|y]) depends on the choice of H. In general, the larger the H is, the
more accurate the estimation, provided that there are a sufficient number of samples within
each slice. Let us consider the following linear model:?

G1) Model w: y= /1“ Xi+e x~N(@OIL) e~N(©,1).
—

It is easy to see that the only nonzero eigenvalue of var(E[x|y]) is w. The results are shown
in Table 1, where H ranges in {2, 5, 10, 50, 100, 200, 500}, @ in {0.5,0.3,0.1} and # in
{5000, 10,000, 50,000, 100,000}. Each entry is the empirical mean (standard deviation), cal-
culated based on 100 replications, of the SIR estimate of i for given w, n and H.

From Table 1, it is clear that the estimations became quite acceptable when H ranges from
10 to 100. The larger the n is, the more accurate the estimations are. The cautious reader may

2Up to a monotone transform, this is the only case that we can give the explicit value of A(var(E[x]|y])).
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TABLE 2
The empirical expectation of A1 (L) /1L

n;L/H2 u=1 wu=05 =01 ©=0.05 =001 ©=0.005 w=0.001 w=0.0005 w=0.0001

2 0.352 0.579 1.438 1.732 1.978 1.999 2.009 1.985 1.994
(0.002) (0.004) (0.014) (0.013) (0.014)  (0.011) (0.010) (0.009) (0.007)
4 0.341 0.579 1.415 1.697 1.949 1.969 1.991 1.982 1.977
(0.001) (0.002) (0.005) (0.005) (0.006)  (0.006) (0.005) (0.005) (0.006)
10 0.333 0.571 1.409 1.706 1.944 1.970 1.970 1.964 1.971
(4.6e-4) (1.0e-3) (1.8e-3) (2.2e-03) (2.4e-3) (2.6e-03) (1.4e-03) (1.7e-03)  (1.8e-03)
20 0.329 0.565 1.412 1.702 1.950 1.971 1.963 1.968 1.969

(3.2e-04) (3.4e-04) (1.0e-03) (1.5e-03) (1.5-03) (1.2e-03) (8.9e-04) (1.1e-03)  (1.1e-03)

notice that, in the row with u = 0.1 and n = 5000, the empirical mean and the standard error
are not behaving as we have expected, for example, when H = 500, the empirical mean and
standard error are 0.190 and 0.010, respectively, which are worse than the case with H = 10.
This is not contradicting our theory. Note that in the Lemma 1, the deviation property of
A depends on the value %, that is, the larger the % is, the more concentrated the A is.
In particular, for the entry corresponding to u = 0.1, n = 5000 and H = 500, the value
% = 1/500 is much smaller than the corresponding value, 5, associated with the entry with

n=0.1,n/1000 =5 and H = 10.

3.2. Supporting evidences for Conjecture 1. Let us consider the following model with
two indexes (i.e., d = 2):

(32) Model pu: y = /(1 +g(x1))(g(x1) + g(x2)) +e,
where g : R — R is a smooth function such that for a small constant § > 0,

x if |x| <100 — 4,

33) SO =00 i x| = 100+ 5
and |g'(x)| < C for some constant C. Let A;(u) and Ap(u) be the two eigenvalues of
var(E[x|y]). Since we know that the absolute value of the derivative of the link function
< C/u, we want to check if Cipu < A2(u) < A1() < Coru holds for some positive con-
stant C and C3 and if model (32) belongs to F>(C1u, C2/C1). We study the boundedness of
A1(w)/p and Ao () /e via numerical simulation. In the simulation, we choose H to be 20. Let
w range in {1, 0.5,0.1, 0.05,0.01, 0.005, 0.001, 0.0005, 0.0001} and the ratio nu/H? range
in {2, 4, 10, 20}.

In Tables 2 and 3, each entry is the average of 100 replications. For a fixed u, the larger the
ratio np/H?, the more accurate the estimation of A;(i)/u, i = 1, 2. In particular, it is easy
to see from the rows with the ratio n;L/H2 =20 that A; (u)/u, i =1, 2. are bounded.

3.3. Performance of DT-SIR. We assume the exact sparsity s = O(p' %) for some § €
(0, 1), and consider the following data generating models:
Model 1:  y=x"B +sin(x*B) +e,
Model 2: y =2arctan(x*B) + €,
Model 3: y=(x"B) +e,
Model 4: y =sinh(x"B) +¢,
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TABLE 3

The empirical expectation of Ap(jL)/ 1L

15

n;L/H2 u=1 wu=05 =01 u=0.05 £=0.01 ©£=0.005 w=0.001 w=0.0005 w=0.0001
2 0.110  0.127 0.126 0.099 0.051 0.037 0.027 0.025

(4.5e-4) (6.4e-4) (6.1e-4) (3.7e-4) (1.9e-4) (l.le-4) (6.0e-05) (7.1e-05) (6.3e-05)
4 0.097 0.114 0.109 0.091 0.039 0.028 0.014 0.013

(2.6e-4) (2.4e-4) (2.6e-4) (2.2e-4) (7.6e-5) (5.2e-5) (2.2e-05) (2.0e-5) (1.6e-5)
10 0.094  0.111 0.103 0.083 0.032 0.021 0.008 0.006

(1.0e-4) (1.1e-4) (1.1e-4) (5.9e-5) (2.9e-5) (1.6e-5)  (4.9e-6) (4.1e-06) (2.4e-06)
20 0.092 0.108 0.102 0.080 0.003 0.002 0.005 0.004

(4.e-5) (6.3e-5) (4.9e-5) (4.0e-5) (1.3e-5) (7.6e-6) (2.0e-06)  (1.4e-06) (6.9¢-07)

where x ~ N(0,1,), ¢ ~N(0,1), x 1L €, and B is a fixed vector with s nonzero coor-
dinates. Let ¥ = {slog(p — s)/n}~'. The dimension p of the predictors takes value in
{100, 200, 300, 600, 1200}, the sparsity parameter § is fixed at 0.5, and i takes values in
{3,5,7,...,61}. For each (p, ¥) combination, s = [ p' ™%, n = [¥slog(p — 5)], and we
simulate data from each model 1000 times. We then get the estimate BDT using DT-SIR al-
gorithm, and the results of the average values of ||P3DT — Pg | for each model with each
(p, ¥) combination are shown in Figure 1, which shows the distance between the estimated
projection matrix and the true one becomes smaller as Y increases for all fixed p.
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FIG. 2. Average values 0f1ﬁ||PBDT — Pg ||2.

According to Theorem 10, ¢ || PEDT — Pg |? is less than a constant with high probability.
Therefore, we also display the average values of v || PBDT — Pg]| 2 for these models in Figure 2,

which demonstrates that v | PBDT — Pg I? is a decreasing function of ¥ and tends to stabilize
when 1 becomes large enough. These empirical results also validate Theorem 10.

4. Proofs. We need the following technical lemma, which can be derived from the proof
of the “key lemma” in Lin, Zhao and Liu (2018).

LEMMA 1. Assume that f € F4(A, k) in the model (2). Let KH be the SIR estimate (3)
of var(E[x|y]) (= A). There exist positive absolute constants C, C, C>» and C3 such that, for
any f € Fg(h, k) and any v > 1, if H > C('/? v/ d) for sufficiently large constant C, then
for any unit vector B that lies in the column space of A, we have

—_ 1
(34) B"(Ap — M| > Eﬂfl\ﬁ
with probability at most
nBtAB
C] exXp —CZW + C3 log(H)) .

In particularly, if d and v are bounded, we can choose H to be a large enough finite integer
such that (34) holds with high probability.
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PROOF. It is a direct corollary of the “key lamma” in Lin, Zhao and Liu (2018). [

Notation: Suppose that we have n = Hc samples (y;, x;) from the distribution defined
by the model M = (V, f) € M(p,d, «x,L). Let H = Hid where H; is a sufficiently large
integer and V =(Vi,...,Vy) where V; is the eigenvector associated to the ith largest eigen-
value of A 7. We introduce the following decomposition:

x=Psx+ Psix 2 ¢ +w,

that is, ¢ lies in the central space S and w lies in the space S which is perpendic-
ular to S. Let V+ be a p x (p — d) orthogonal matrix such that V*V+ = 0. Since
S =span{V} and x ~ N(0,I,), we may write w = V-Le for some € ~ N(0, I,_4). Thus
we know that X, £ var(w) = V- VL7, We introduce the notation Eh’,, wy,,. and €p,. similar
to the definition of Xj,.. Let Z = ﬁ(?l’,,fz’.,...,fﬂ_), W = ﬁ(ﬁ1,.,ﬁz,., LWL,

E= \/Lﬁ(gl,., €.,...,€p ) bethree p x H matrices formed by the vectors ﬁfkv, ﬁwh,.,

and \/LﬁEh We have the following decomposition:

Ay=ZZ"+ 2ZW +WZ" + WWT
(35)
=A,+ ZETVET pvlezt L vlegty T,

where we define A, £ ZZ7 and use the fact W = V+&. Since € ~ N(0, I,_4), we know
that the entries &; ; of £ are i.i.d. samples of N (0, %).

4.1. Proof of Theorem 1. First, we have the following lemma.
LEMMA 2. Let p = £. Assume that L is sufficiently small. We have the following state-
ments:
(1) There exist constants C1, Co and C3 such that
P(|WWT| > Ci(p +1)) < Crexp(—Csnt).

We will take t = p/n in the late argument.

(ii) For any vector B € RP and any v > 1, let Eg(v) = {|B*(Ay — A)B| > %ﬂrAﬂ}.
Recall that H = d Hy. If we choose H\ sufficiently large such that H” > Cv for some positive
constant C, there exist positive constants C1,..., C3 and Cy4 such that

na
P(U Eﬂ(l))) <Ci exp(—CzW + Czlog(H) + C4d>.

B
(ii1)) For any v > 1, there exist positive constants Cq,..., Ce¢ and C7, such that
A
P(|WZT| > Civ/kap) < Cy exp<—c2# + C3log(H) + C4d>

+ Csexp(—Cegp).

PROOF. (i) is a direct corollary of Lemma 23. (ii) is a direct corollary of Lemma 1 and
the usual e-net argument. (iii) is a direct corollary of (i) and (ii)). [

Let E = E| N E; N E3 where E| = {|[WW?]|| < Cp}, E2 = {IWZT|| < Ckip}, E3 =
{IIA, — Al < %Kl}, and C is a constant larger than 2C and C7 in the lemma.
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COROLLARY 1. Assume log(nX) < p. Lemma 2 implies the following simple results
where C stands for some absolute constant which might be varying in different statements:

(@) P(E) < S
(b) Conditioning on E3, we have Lg(Ay) > (1 — Z"—U)A.

(c) Conditioning on E, ifn% is sufficiently small, we have IIKH — Ayl < C@.
(d) Conditioning on E, If % is sufficiently small, we have A1 (KH) < %A.
Now we start the proof of Theorem 1. Note that
E|[VVT—VVT|3
—E[VV —VV | 1 +E|[VV = VVT|5 1k,

1 11

For Il. ltis easy to see that

CdH? Cd*H}
1 <2(d A (p—d)P(ES) =2dP(E) < —=— L.
n n

ForI. Let A, =VDygV' be the spectral decomposition of A,, where Visa p X d or-
thogonal matrix and Dy is a d x d diagonal matrix. Conditioning on E, we know that V and
V are sharing the same column space. Thus we have VV  =VVT. Let us apply the Sin—
Theta theorem (e.g., Lemma 24to the pair of symmetric matrices (A, A g = Ay + Q) where
(0] £ KH — A,. Since % is sufficiently small, conditioning on E, we have Ag41 (KH) < }‘A
and 14(Ay) =Aq(Dp) > %. Thus, we have

E[VVT—VV |2 1g=E|VV —VV' |31,
32 . ST o502 St a2
< minE[V7TQV[1s B[V V|7 15)
< 22 min(E 0V 315, B| @7 1)
Since V and V are sharing the same column space, we have VW =V'W =0 and
VJ"IZ = V172 =0. Thus, we have
ViQ=VZW VT =V W+ VT wzT
Conditioning on E, we have ||A,||2 < 2«xA. Thus
~ ~ ~ dic
min(E| @V 21z, E| @V 1|2 15) < 2E| VT 2W7 | 215 < 40E|W |2 < Z2d(p — d).
n

Since « is assumed to be fixed, we know that if % is sufficiently small and d? < p, we have

—~ dip—d
swp  E|PVT—vveR < LD
MeM(p.d.kc,2) ni

5. Discussion. In this paper, we have determined the minimax rate of estimating the
central space over a large class of models M; ,(p,d, A, k) in two scenarios: (1) single
index models, and (2) d and A are bounded. Here, A, the smallest nonzero eigenvalue of
var(E[x|y]), plays the role of signal strength in SIR and can be viewed as a generalized no-
tion of the signal-to-noise ratio for multiple index models. Since we have established an upper
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bound of convergence rate of estimating the central space for all d and X, we will attempt to
show that this convergence rate is optimal even for diverging d and X in a future research.

The aggregation estimator we constructed here is actually an estimator of the column space
of var(E[x|y]) rather than that of the central space. Since we have assumed that ¥ = I in this
paper, the column space of var(IE[x|y]) coincides with the central space in model (1). When
there are correlations between predictors, if we assume that the eigenvectors associated with
nonzero eigenvalues of var([E[x|y]) are sparse (with sparsity s) instead of assuming that the
loading vectors B;’s are sparse, our argument in this paper implies that E[|| P_| arEily )
Peol(var(E[x|y]) ||%] converges at the rate w.

Although our studies of the sparse SIR were inspired by recent advances in sparse PCA, the
results in this paper suggest a more intimate connection between SIR and linear regressions.
Recall that for the linear regression model y = 7x + € with x ~ N(0,I) and s = O(p' %),
the minimax rate (Raskutti, Wainwright and Yu (2011)) of estimating B is achieved by the
simple correlation screening. Analogously, the minimax rate for estimating Pg is achieved
by the DT-SIR algorithm of Lin, Zhao and Liu (2018), which simply screens each variable
based on the estimated variance of its conditional means. This fact suggests that a more
appropriate prototype of SIR in high dimensions might be linear regression rather than sparse
PCA, because there is a computational barrier of the rate optimal estimates for sparse PCA
(Berthet and Rigollet (2013)). This possibility further suggests that an efficient (rate optimal)
high dimensional variant of SIR with general variance matrix ¥ might be possible, since it
is now well known that lasso (Tibshirani (1996)) and the Dantzig selector (Candes and Tao
(2007)) achieve the optimal rate of linear regression (Bickel, Ritov and Tsybakov (2009)) for
general X. This speculation warrants further future investigations.
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