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Under correlation-type conditions, we derive an upper bound of order
(logn)/n for the average Kolmogorov distance between the distributions of
weighted sums of dependent summands and the normal law. The result is
based on improved concentration inequalities on high-dimensional Euclidean
spheres. Applications are illustrated on the example of log-concave probabil-
ity measures.

1. Introduction. Let X = (X1, . . . ,Xn) be an isotropic random vector in R
n (n ≥ 2),

that is, with uncorrelated components having mean zero and variance one. We consider the
distribution functions Fθ(x) = P{Sθ ≤ x} of the weighted sums

Sθ = θ1X1 + · · · + θnXn, θ = (θ1, . . . , θn), θ
2
1 + · · · + θ2

n = 1,

with coefficients taken from the unit sphere Sn−1 in R
n. Thus, ESθ = 0 and Var(Sθ ) = 1 for

all θ ∈ Sn−1.
The central limit problem is to determine natural conditions on X and θ which ensure

that the random variables Sθ are nearly standard normal. In this case, one would also like to
explore the rate of normal approximation in the Kolmogorov distance

ρ(Fθ ,�) = sup
x

∣∣Fθ(x) − �(x)
∣∣,

where

�(x) = 1√
2π

∫ x

−∞
e−y2/2 dy, x ∈ R,

is the standard normal distribution function. Let us briefly recall several well-known results
in the case of independent components Xk . Here, one of general variants of the central limit
theorem asserts that ρ(Fθ ,�) will be small, as long as Xk are identically distributed (the i.i.d.
case), while maxk |θk| is small. Moreover, under the third moment condition this property may
be quantified by virtue of the Berry–Esseen bound

(1.1) ρ(Fθ ,�) ≤ c

n∑
k=1

|θk|3E|Xk|3.

Here and below, we denote by c, or by cj with an integer index j absolute positive constants
which may vary from place to place. The inequality (1.1) extends to the non-i.i.d. case as well
[28, 29].

It easy to see that the sum in (1.1) is greater than or equal to 1/
√

n for all θ , and that (1.1)
leads to this standard 1√

n
-rate in the i.i.d. case, once the coefficients θk are equal to each other.

For general distributions of Xk , this standard rate cannot be improved by assuming stronger

Received October 2018; revised June 2019.
MSC2010 subject classifications. 60E, 60F.
Key words and phrases. Sudakov’s typical distributions, normal approximation.

1202

http://www.imstat.org/aop/
https://doi.org/10.1214/19-AOP1388
http://www.imstat.org
mailto:bobkov@math.umn.edu
mailto:chistyak@math.uni-bielefeld.de
mailto:goetze@math.uni-bielefeld.de
http://www.ams.org/mathscinet/msc/msc2010.html


CLT FOR WEIGHTED SUMS 1203

moment-type conditions. Nevertheless, one may look at the problem from an ensemble point
of view in θ asking whether or not ρ(Fθ ,�) will be essentially smaller than 1/

√
n for most

of θ on the sphere measured with the uniform probability measure sn−1 on Sn−1. A striking
result in this direction was obtained by Klartag and Sodin [21], showing in particular that

(1.2) Eθρ(Fθ ,�) ≤ c

n
β̄4, β̄4 = 1

n

n∑
k=1

EX4
k,

where we use Eθ to denote the average over the measure sn−1. Large deviation bounds for the
set on the sphere where ρ(Fθ ,�) exceeds a multiple of 1

n
β̄4 are derived in [21] as well. Thus,

when β̄4 is bounded like in the i.i.d. case, the distances ρ(Fθ ,�) turn out to be typically of
order 1/n in contrast to the classical case of equal coefficients.

The aim of these notes is to extend this interesting phenomenon under a suitable
correlation-type condition (and thus for some class of dependent Xk) to isotropic random
vectors with a similar 1

n
-rate modulo a logarithmic factor. The scheme of the weighted sums

under dependence has already a long history, going back to the seminal work of Sudakov
[30]. We will give a short overview of this line of research in Section 10 (partly in Section 7),
and now turn to the main result.

We will say that the random vector X satisfies a second-order correlation condition with
constant �, if for any collection aij ∈ R,

(1.3) Var

(
n∑

i,j=1

aijXiXj

)
≤ �

n∑
i,j=1

a2
ij .

An optimal value � = �(X) is finite as long as |X| has a finite fourth moment, and then it rep-
resents the maximal eigenvalue of the covariance matrix associated with the n2-dimensional
random vector (XiXj −EXiXj )

n
i,j=1.

THEOREM 1.1. Let X be an isotropic random vector in R
n with a symmetric distribution

and a finite constant � = �(X). Then

(1.4) Eθρ(Fθ ,�) ≤ c logn

n
�.

The characteristic � may be bounded, for example, via the relation � ≤ 4/λ1 in terms of
a positive spectral gap, that is in terms of the optimal value λ1 = λ1(X) in the Poincaré-type
inequality

(1.5) λ1 Var
(
u(X)

) ≤ E
∣∣∇u(X)

∣∣2
(with λ1 > 0), where u is an arbitrary smooth function u on R

n (cf. Proposition 3.4 below).
In one important particular case, the well-known Kannan–Lovász–Simonovits conjecture as-
serts that λ1 is bounded away from zero for the whole class of isotropic log-concave probabil-
ity distributions on the Euclidean space R

n of any dimension (for short, K-L-S). Conditional
on K-L-S, Theorem 1.1 would hence guarantee the logn

n
-rate.

COROLLARY 1.2. Let X be an isotropic random vector in R
n with a symmetric log-

concave distribution. Assuming the K-L-S hypothesis, we have

(1.6) Eθρ(Fθ ,�) ≤ c logn

n
.
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In fact, modulo a logarithmic factor, the conclusion may be reversed in the sense that (1.6)
implies 1/λ1 ≤ c(logn)7; cf. Section 8.

An unconditional statement in the isotropic log-concave case with a standard rate of nor-
mal approximation can be obtained by combining the results of [1] and [2] on the concen-
tration of Fθ(x) around the average distribution function F(x) = EθF (x) with respect to the
variable θ with a recent bound in the thin-shell problem due to Lee and Vempala [23] on the
concentration of the Euclidean length |X| about its average value E|X| (which is in essence
equivalent to the closeness of F to the standard normal distribution function �). More details
are given in Section 7; one then gets

(1.7) Eθρ(Fθ ,�) ≤ c√
n

√
logn.

As for the general (not necessarily log-concave) case, the functional �(X) turns out to be
responsible for both, formally different concentration problems. The proof of Theorem 1.1
is based on results for spherical concentration, which have been recently developed in [7].
They provide improved rates of concentration for smooth functions u on the sphere based
on the additional information about the Hessian of u. This naturally leads to the definition
of �(X) as introduced above. The “second-order” concentration inequalities on Sn−1 may
also be used to derive large deviation bounds for ρ(Fθ ,�) considered as random variables on
the probability space (Sn−1, sn−1). Moreover, one may remove the symmetry assumption as
well, by adding to the right-hand side of (1.4) an additional term responsible for third-order
correlations between Xk . We refrain from including these somewhat more technical results
here and refer the interested reader to [6] for a full account.

As we will see, there exist several natural classes of probability distributions for which a
bound on the parameter � can be obtained. Some of them are considered in Section 3, after a
brief discussion of general properties of � and related functionals in Section 2. Some results
about the second-order concentration on the sphere are described in Sections 4, which we
apply in Section 5 to explore the concentration of characteristic functions of Sθ with respect
to the variable θ . In Section 6, relying upon a general Berry–Esseen-type inequality, we
finalize the proof of Theorem 1.1. The relationship of Theorem 1.1 with the K-L-S conjecture
and a closely related thin-shell problem in the log-concave case are discussed separately in
Sections 7–8.

2. Second-order correlation condition and related functionals. As usual, the Eu-
clidean space R

n is endowed with the canonical norm | · | and the inner product 〈·, ·〉. We
start with preliminary remarks on the second-order correlation condition and related func-
tionals.

Let X = (X1, . . . ,Xn) be a random vector in R
n. With the Hilbert–Schmidt norm of a

matrix A = (aij )
n
i,j=1 given by ‖A‖HS = (

∑
a2
ij )

1/2, the definition (1.3) becomes

Var
(〈AX,X〉) ≤ �‖A‖2

HS,

where we may restrict ourselves to symmetric matrices A only. This description shows that
the functional �(X) is invariant under linear orthogonal transformations of the space Rn (just
as the Hilbert–Schmidt norm).

Related moment and variance-type functionals are

Mp = Mp(X) = sup
θ∈Sn−1

(
E|Sθ |p)1/p

(p ≥ 1),

σ 2
4 = σ 2

4 (X) = 1

n
Var

(|X|2)
.
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We are mostly interested in the moments Mp with p = 2 and p = 4. For example, M2 = 1 in
the isotropic case, and σ4 = 0, if |X| is constant a.s. These functionals can be controlled in
terms of �, as the following statement shows.

PROPOSITION 2.1. We have

(a) M4
4 ≤ M4

2 + �; (b) σ 2
4 ≤ �.

PROOF. Choosing in (1.3) aij = θiθj , θ ∈ Sn−1, we get Var(S2
θ ) ≤ �. Since ES2

θ ≤ M2
2 ,

it follows that ES4
θ ≤ M4

2 + �, that is, (a). Putting aij = δij , we also obtain (b). �

In turn, the Mp-moments may be related to the moments of |X|. It is easy to see that(
E|X|p)1/p ≤ Mp

√
n, p ≥ 2,

while in the isotropic case, there is an opposite inequality (E|X|p)1/p ≥ √
n.

The functionals σ 2
4 , M4, and � are useful for the estimation of “small” ball probabilities.

For example, if E|X|2 = n, using an independent copy Y of X, we have

P

{
|X − Y |2 ≤ 1

4
n

}
≤ A

n2 , A = 256
(
M8

4 + σ 4
4
)
.

This bound was applied in the proof of Lemma 6.1 below (for details, we refer to [9]). Here,
by Proposition 2.1(a) in the isotropic case, A ≤ c�2, which is also due to the fact that the
functional �(X) is bounded away from zero for n ≥ 2 (in contrast to σ4).

PROPOSITION 2.2. If X is isotropic, then � ≥ n−1
n

.

PROOF. Applying the inequality (1.3) to the matrix A with only one nonzero entry on
the (i, j)-place, we get

Var(XiXj ) = EX2
i X

2
j − δij ≤ �.

Summing these bounds over all i, j leads to E|X|4 − n ≤ n2�. But E|X|4 ≥ (E|X|2)2 = n2.
�

All of the above definitions extend to complex-valued random variables Xi using complex
numbers aij in the definition (1.3) (of course, a2

ij should be replaced with |aij |2). Note that,
if ξ is a complex-valued random variable, its variance is defined by

Var(ξ) = E|ξ −Eξ |2 = E|ξ |2 − |Eξ |2.
3. Classes of distributions satisfying second-order correlation condition. Here, we

provide a few examples where functionals defined above may be easily evaluated or properly
estimated. Bounds are attained for the second-order correlation parameter for the follow-
ing classes of distributions: i.i.d., coordinatewise symmetric, log-concave and coordinatewise
symmetric, and probability measures with a spectral gap.

As before, let X = (X1, . . . ,Xn), n ≥ 2. The case of independent components may be dealt
with by simple calculation.

PROPOSITION 3.1. If the random variables X1, . . . ,Xn are independent and have mean
zero, then

σ 2
4 (X) = 1

n

n∑
i=1

Var
(
X2

i

)
,(3.1)

M2(X) = max
i

(
EX2

i

)1/2
, �(X) ≤ 2 max

i
EX4

i .(3.2)
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Note that equality (3.1) obviously extends to pairwise independent random variables with
mean zero. The proof of the bound of �(X) in (3.2) is similar to the one in Proposition 3.2
below, so we omit it.

Another class of illustrative examples is given by distributions of random vectors X which
are equal to (ε1X1, . . . , εXn) for arbitrary choices of signs εi = ±1. We call such distribu-
tions coordinatewise symmetric, although in the literature they are also called distributions
with unconditional basis. This class includes all symmetric product measures on R

n and
corresponds to the case where the components Xi are i.i.d. random variables with symmet-
ric distributions on the line. It is therefore not surprising that many formulas like those in
Proposition 3.1 extend to the coordinatewise symmetric distributions. In particular, the first
equality in (3.2) is still valid. As for �(X), it may be essentially reduced to the moment-type
functional

V (X) = sup
θ∈Sn−1

Var
(
θ1X

2
1 + · · · + θnX

2
n

)
,

representing the maximal eigenvalue of the matrix {cov(X2
i ,X

2
j )}ni,j=1.

PROPOSITION 3.2. Given a random vector X = (X1, . . . ,Xn) in R
n with a coordi-

natewise symmetric distribution, we have

(3.3) V (X) ≤ �(X) ≤ 2 max
i

EX4
i + V (X).

If additionally the distribution of X is invariant under permutations of coordinates, then

(3.4) σ 2
4 (X) ≤ �(X) ≤ 2EX4

1 + σ 2
4 (X),

where the last term σ 2
4 (X) may be removed when cov(X2

1,X
2
2) ≤ 0.

The proof of this proposition is rather elementary, but technical. So, we postpone it to
Section 9.

The following subfamily of coordinate-symmetric distributions admits a uniform bound
on �. Let us recall that a (Borel) probability measure μ on R

n is called log-concave, if it
satisfies the Brunn–Minkowski-type inequality

μ
(
tA + (1 − t)B

) ≥ μ(A)tμ(B)1−t , 0 < t < 1,

for all nonempty compact sets A and B in R
n, where tA + (1 − t)B = {tx + (1 − t)y : x ∈

A,y ∈ B} denotes the Minkowski weighted sum. An equivalent description was given by
Borell [12]: the measure μ should be supported on a closed convex set V ⊂ R and have a
log-concave density p with respect to the Lebesgue measure λV on V of the same dimension
as V (i.e., logp is concave). Note that, if μ is isotropic and log-concave, then necessarily V

has dimension n, so that μV is the (full) Lebesgue measure.

PROPOSITION 3.3. Assume that the random vector X in R
n is isotropic and has a coor-

dinatewise symmetric, log-concave distribution. Then

σ 2
4 (X) ≤ �(X) ≤ c.

PROOF. The distribution of the random vector (|X1|, . . . , |Xn|) has a log-concave, coor-
dinatewise nonincreasing density. By a theorem due to Klartag [20], the following weighted
Poincaré-type inequality holds

Var
(
u(X)

) ≤ 4E
n∑

i=1

X2
i

(
∂iu(Xi)

)2
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for any smooth even function u on R
n. Choosing u(x) = θ1x

2
1 + · · · + θnx

2
n with θ2

1 + · · · +
θ2
n = 1, we get

Var
(
u(X)

) ≤ 16
n∑

i=1

θ2
i EX4

i ≤ 16 max
i≤n

EX4
i .

In view of Proposition 3.2, we get

�(X) ≤ 2 max
i

EX4
i + sup

θ∈Sn−1
Var

(
θ1X

2
1 + · · · + θnX

2
n

) ≤ 18 max
i

EX4
i .

It remains to recall that Lp-norms of random variables with log-concave distributions
are equivalent to each other. In particular, for isotropic log-concave Xi’s, we have EX4

i ≤
c(EX2

i )
2 = c. �

The above subclass may be potentially enlarged by considering the usual Poincaré-type
inequality

(3.5) λ1 Var
(
u(X)

) ≤ E
∣∣∇u(X)

∣∣2.
PROPOSITION 3.4. Assume that a mean zero random vector X in R

n satisfies a
Poincaré-type inequality with constant λ1 > 0. Then M2

2 (X) ≤ 1/λ1. Moreover,

σ 2
4 (X) ≤ �(X) ≤ 4

λ2
1

,

and if X isotropic, then

σ 2
4 (X) ≤ �(X) ≤ 4

λ1
.

PROOF. Applying (3.5) to the linear functions f (x) = 〈x, θ〉, θ ∈ Sn−1, we obtain

λ1 Var
(〈X,θ〉) ≤ 1.

If X has mean zero, the latter means that M2
2 (X) ≤ 1/λ1. In particular, EX2

j ≤ 1
λ1

. Taking the
quadratic function u(x) = ∑n

i,j=1 aij xixj with aij = aji , we get, by Cauchy’s inequality,

Var

(
n∑

i,j=1

aijXiXj

)
≤ 4

λ1

n∑
i=1

E

(
n∑

j=1

aijXj

)2

≤ 4

λ1

n∑
i,j=1

a2
ijEX2

j .

Hence, the right-hand side does not exceed 4/λ2
1 subject to

∑n
i,j=1 a2

ij ≤ 1, and thus �(X) ≤
4/λ2

1, while �(X) ≤ 4/λ1 in the isotropic case. �

4. Second-order concentration on the sphere. Concentration of measure on the sphere
means that the range of deviations of any Lipschitz function u on the unit sphere Sn−1 is
essentially of order at most 1√

n
, which may be strengthened as the sub-Gaussian stochastic

dominance |u| ≤ c√
n
|Z| where Z denotes a standard normal random variable (cf. [22, 26]).

More precisely, there is a sub-Gaussian deviation inequality

(4.1) sn−1
{∣∣u(θ)

∣∣ ≥ r
} ≤ 2e−(n−1)r2/2, r > 0,

valid whenever the smooth function u has sn−1-mean zero and Lipschitz seminorm ‖u‖Lip ≤
1. This may be partly seen from the Poincaré inequality

(4.2)
∫

|u|2 dsn−1 ≤ 1

n − 1

∫
|∇u|2 dsn−1
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in the class of all smooth complex-valued u with sn−1-mean zero. Although here there is
equality for all linear functions, the spherical concentration phenomenon may be strengthened
with respect to the dimension n for a wide subclass of smooth functions. In order to facilitate
applications, we shall not use sphere intrinsic gradients but use Euclidean notions induced
by the standard embedding of the sphere. Here, functions are defined in an open subset of
R

n and their partial derivatives are understood in the usual sense. We denote by ∇2u(x) the
Hessian, that is, the n × n matrix of second-order partial derivative ∂iju(x), and by In the
identity n × n matrix. The next proposition summarizes several recent results from [7].

PROPOSITION 4.1. Suppose that a real-valued function u is defined and C2-smooth in
some neighborhood of Sn−1. If u is orthogonal to all affine functions in L2(sn−1), then

(4.3)
∫

u2 dsn−1 ≤ 5

(n − 1)2

∫ ∥∥∇2u − aIn

∥∥2
HS dsn−1

for any a ∈ R. Moreover, if ‖∇2u − aIn‖ ≤ 1 uniformly on Sn−1 for the operator norm, and
the second integral in (4.2) is bounded by b, then

(4.4)
∫

exp
{

n − 1

2(1 + 4b)
|u|

}
dsn−1 ≤ 2.

By Markov’s inequality, (4.4) yields a corresponding large deviation bound, which may
be stated informally as a subexponential stochastic dominance |u| ≤ cb(

1√
n
Z)2. In particular,

this means that the deviations of u are of order at most 1/n.
The second-order Poincaré-type inequality (4.3) obviously extends to all complex-valued

u that are orthogonal to all affine functions on the sphere. In this case, (4.4) may be applied
separately to the real and imaginary part of u, which results in

(4.5)
∫

exp
{

n − 1

4(1 + 4b)
|u|

}
dsn−1 ≤ 2,

assuming that ‖∇2u − aIn‖ ≤ 1 on Sn−1 for some a ∈C.

5. Concentration of characteristic functions. Given an isotropic random vector X =
(X1, . . . ,Xn) in R

n, introduce the smooth functions

(5.1) ut(θ) = fθ (t) = Eeit〈X,θ〉, θ ∈R
n,

where t �= 0 serves as a parameter. For any fixed θ , t → fθ (t) represents the characteristic
function of the weighted sum Sθ = 〈X,θ〉 with distribution function Fθ , while the sn−1-mean
of ut ,

f (t) = Eθfθ (t) = EθEeit〈X,θ〉,

is the characteristic function of the average distribution function

(5.2) F(x) =
∫

Fθ(x) dsn−1(θ) = EθP{Sθ ≤ x}, x ∈R.

Let us recall that we use Eθ to denote integrals over the unit sphere with respect to the uniform
measure sn−1.

In order to study deviations of the functions ut from their sn−1-means f (t) on Sn−1, one
may start from the Poincare inequality (4.2). Indeed, differentiating the equality (5.1), we get
that, for any θ ′ ∈ Sn−1, 〈∇ut(θ), θ ′〉 = itE

〈
X,θ ′〉eit〈X,θ〉,
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which, by Cauchy’s inequality, implies∣∣〈∇ut(θ), θ ′〉∣∣2 ≤ t2
E

〈
X,θ ′〉2 = t2.

Taking the supremum over all θ ′, it follows that |∇ut(θ)| ≤ |t |, which means that ut has a
Lipschitz seminorm ‖ut‖Lip ≤ |t | (on the whole space R

n). Therefore, by (4.2),

(5.3) Eθ

∣∣fθ (t) − f (t)
∣∣2 ≤ t2

n − 1
.

Thus, the deviations of fθ(t) from f (t) with respect to θ ∈ Sn−1 are of order at most
1/

√
n—a property which may potentially be transferred to the analogous statement about the

deviations of the distribution functions Fθ from F in the sense of certain weak metrics.
In order to obtain better rates, we employ Proposition 4.1, assuming additionally that the

random vector X is symmetric and satisfies a second-order correlation condition (1.3) with
parameter �. To apply the bounds (4.3) and (4.5), we need to choose a suitable value a ∈
C and estimate the operator norm ‖∇2ut − aIn‖ and the Hilbert–Schmidt norm ‖∇2ut −
aIn‖HS. First note that, by differentiation of (5.1), the Hessian of ut is given by

[∇2ut (θ)
]
jk = ∂2

∂θj ∂θk

fθ (t) = −t2
EXjXke

it〈X,θ〉

for any fixed t ∈ R. Hence, a good choice could be a = −t2f (t) in order to balance the
diagonal elements in the matrix of second derivatives of ut . For any vector v ∈ C

n with
complex components, using the canonical inner product in the complex n-space, we have〈∇2ut (θ)v, v

〉 = −t2
E

∣∣〈X,v〉∣∣2eit〈X,θ〉.

Hence, with this choice of a, by the isotropy assumption,∣∣〈(∇2ut (θ) − aIn

)
v, v

〉∣∣ ≤ t2
E

∣∣〈X,v〉∣∣2 + |a||v|2 ≤ 2t2, |v| = 1.

This bound insures that

(5.4)
∥∥∇2ut(θ) − aIn

∥∥ ≤ 2t2.

In addition, putting a(θ) = −t2fθ (t), we have

∥∥∇2ut (θ) − a(θ)In

∥∥2
HS =

n∑
j,k=1

∣∣∇2ut(θ)jk − a(θ)δjk

∣∣2

= sup

∣∣∣∣∣
n∑

j,k=1

zjk

(∇2ut(θ)jk − a(θ)δjk

)∣∣∣∣∣
2

= t4 sup

∣∣∣∣∣E
n∑

j,k=1

zjk(XjXk − δjk)e
it〈X,θ〉

∣∣∣∣∣
2

≤ t4 supE

∣∣∣∣∣
n∑

j,k=1

zjk(XjXk − δjk)

∣∣∣∣∣
2

,

where the supremum is running over all complex numbers zjk such that
∑n

j,k=1 |zjk|2 = 1.
But, under this constraint, due to the second-order correlation condition, the last expectation
is bounded by �, so that

(5.5)
∥∥∇2ut (θ) − a(θ)In

∥∥2
HS ≤ �t4
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for all θ . On the other hand, by (5.3), and using n
n−1 ≤ 2,

(5.6) Eθ

∥∥(
a(θ) − a

)
In

∥∥2
HS = nt4

Eθ

∣∣fθ (t) − f (t)
∣∣2 ≤ 2t6.

The two bounds give

(5.7) Eθ

∥∥∇2ut (θ) − aIn

∥∥2
HS ≤ 2�t4 + 4t6.

Note that (5.6) is worse in comparison with (5.5) in the variable t . Nevertheless, applying
the second-order Poincaré-type inequality, it is possible to improve the resulting inequality
(5.7) for reasonably long t-intervals. Since the distribution of X is symmetric about the origin,
the characteristic functions fθ (t) are even with respect to θ , that is, f−θ (t) = fθ (t). Hence,
they are orthogonal in the Hilbert space L2(sn−1) to all linear functions on the sphere. Thus,
the conditions of Proposition 4.1 are fulfilled for the function u = ut , and using (5.7), the
inequality (4.3) gives

(5.8) Eθ

∣∣fθ (t) − f (t)
∣∣2 ≤ 5

(n − 1)2

(
2�t4 + 4t6)

.

This bound allows us to improve (5.6) to the form

Eθ

∥∥(
a(θ) − a

)
In

∥∥2
HS ≤ nt4 5

(n − 1)2

(
2�t4 + 4t6) ≤ c�t4

n

(
t4 + t6)

.

Combining this with (5.5), we therefore obtain that

Eθ

∥∥∇2ut (θ) − aIn

∥∥2
HS ≤ 2�t4 + c�t4

n

(
t4 + t6)

.

Here, similar to (5.5), the right-hand side is at most c�t4 in the interval |t | ≤ n1/6. To enlarge
the t-interval, one may repeat the argument. By (4.3),

Eθ

∣∣fθ (t) − f (t)
∣∣2 ≤ 5

(n − 1)2

(
2�t4 + c�t4

n

(
t4 + t6))

.

This bound improves (5.6) to the form

Eθ

∥∥(
a(θ) − a

)
In

∥∥2
HS ≤ nt4 5

(n − 1)2

(
2�t4 + c�t4

n

(
t4 + t6)) ≤ c�t4,

where in the last inequality we assume that |t | ≤ n1/5. Combining this with (5.5), we get

Eθ

∥∥∇2ut (θ) − aIn

∥∥2
HS ≤ c�t4.

In view of (4.3), this already gives the inequality (5.9) below.
To get a stronger deviation inequality, note that, by (5.4), the conditions of Proposition 4.1

(in its second part) are fulfilled for the function

u(θ) = 1

2t2

(
fθ (t) − f (t)

)
, θ ∈ R

n,0 < |t | ≤ n1/5,

with parameter b = c�. Applying (4.5), we arrive at the following.

COROLLARY 5.1. Let X be an isotropic random vector in R
n with a symmetric distri-

bution and finite constant �. Then the characteristic functions fθ (t) = Eeit〈X,θ〉 satisfy

(5.9) Eθ

∣∣fθ (t) − f (t)
∣∣2 ≤ c

n2 �t4

whenever 0 < |t | ≤ n1/5. Moreover,

(5.10) Eθ exp
{

n

c�t2

∣∣fθ (t) − f (t)
∣∣} ≤ 2.
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As we have seen, removing the constraint |t | ≤ n1/5, (5.9) may be replaced with a weaker
inequality (5.8). When applying the latter to the estimation of ρ(Fθ ,F ) via Lemma 6.1 below,
we would gain an additional logn factor in Theorem 1.1. Continuing the iteration process in
the proof of Corollary 5.1, one may state (5.9)–(5.10) in the intervals |t | ≤ nα with any fixed
α < 1

4 . The power α = 1
5 turns out to be useful in the study of large deviations of ρ(Fθ ,�)

above the mean (which we however do not discuss here).

6. Proof of Theorem 1.1. Based on the deviation inequalities (5.9)–(5.10), Fourier ana-
lytic tools yield bounds for the closeness of the distribution functions Fθ to the sn−1-mean dis-
tribution function F defined in (5.2). The following Berry–Esseen-type bound can be found
in [9] (cf. Lemma 6.2), which we state in the case p = 2.

LEMMA 6.1. Suppose that a random vector X in R
n has a finite moment of order 4, with

E|X|2 = n. Then, for all T ≥ T0 > 0,

cEθρ(Fθ ,F ) ≤
∫ T0

0
Eθ

∣∣fθ (t) − f (t)
∣∣dt

t
(6.1)

+ M4
4 + σ 2

4

n

(
1 + log

T

T0

)
+ 1

T
+ e−T 2

0 /16.

PROOF OF THEOREM 1.1. Applying Propositions 2.1–2.2 and using the isotropy as-
sumption, we have M4

4 + σ 2
4 ≤ 1 + 2� ≤ 4�. Hence, (6.1) yields

c1Eθρ(Fθ ,F ) ≤
∫ T0

0
Eθ

∣∣fθ (t) − f (t)
∣∣dt

t

+ �

n

(
1 + log

T

T0

)
+ 1

T
+ e−T 2

0 /16.

Here, the integrand may be estimated by virtue of (5.9), and then we get

c2Eθρ(Fθ ,F ) ≤ 1

n
T 2

0

√
� + 1

n

(
1 + log

T

T0

)
� + 1

T
+ e−T 2

0 /16,

provided that T0 ≤ n1/5. As a natural choice, take T0 = 5
√

logn, T = 5n (assuming that n is
large enough), which leads to the bound

(6.2) c3Eθρ(Fθ ,F ) ≤ logn

n
�.

We finally refer to [8], Theorem 1.1 (cf. also [9], Corollary 4.2) where the estimate

(6.3) ρ(F,�) ≤ c
1 + σ 2

4

n

was derived. Using σ 2
4 ≤ � and combining (6.2) with the triangle inequality for ρ, we arrive

at the desired inequality (1.4). �

REMARK 6.2. Under proper moment assumptions and using the spherical deviation in-
equality (5.10), one may derive large deviation bounds for ρ(Fθ ,�) as well. In particular,
suppose that

(6.4) Ee|Sθ |/β ≤ 2

for all θ ∈ Sn−1 with some β > 0. Then, in the setting of Theorem 1.1,

sn−1

{
ρ(Fθ ,F ) ≥ c logn

n

(
� + β4)

r

}
≤ 3 exp

{−r1/8}
, r ≥ 0.
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In other words, with high sn−1-probability,

ρ(Fθ ,F ) ≤ c(logn)9

n

(
� + β4)

.

For details, we refer the interested reader to [6].

7. The log-concave case. Specializing to the class of isotropic log-concave distributions
on R

n, first let us comment on the unconditional statement with a standard rate of normal
approximation as indicated in the inequality (1.7). If the isotropic random vector X has a
uniform distribution over a symmetric convex body in R

n, it was shown by Anttila, Ball and
Perissinaki that

(7.1) sn−1
{
ρ(Fθ ,F ) ≥ r

} ≤ c1
√

n logne−c2nr2
, r > 0

(actually with c2 = 50; cf. [1]). With a different argument, this inequality has been extended
to arbitrary isotropic log-concave distributions in [2]. In both papers, as a main step, it was
observed that, for every point x ∈ R, the function u(θ) = Fθ(x) has a bounded Lipschitz
seminorm on the unit sphere, so that one may apply the spherical concentration inequality
(4.1), leading to

sn−1
{∣∣Fθ(x) − F(x)

∣∣ ≥ r
} ≤ 2e−cnr2

, r > 0.

Since ρ(Fθ ,F ) ≤ 1, (7.1) readily yields an upper bound

Eθρ(Fθ ,F ) ≤ c

√
logn

n
.

Combining it with (6.3) and applying the triangle inequality for the metric ρ, we therefore
obtain the normal approximation on average in the form of the relation

(7.2) cEθρ(Fθ ,�) ≤
√

logn

n
+ σ 2

4

n
.

It remains to involve the bound σ 2
4 ≤ c

√
n, which was recently derived by Lee and Vempala

[23], and then we arrive at (1.7).
A thin-shell conjecture, raised in [11], asserts that the functional σ 2

4 (X), or equivalently
Var(|X|), is actually bounded by a dimension-free (and thus universal) constant over the
whole class of isotropic log-concave random vectors X in R

n. Specializing to the convex
body case, a similar concentration hypothesis was also suggested in [1]. It states that the
deviation inequality

P

{∣∣∣∣ |X|√
n

− 1
∣∣∣∣ ≥ εn

}
≤ εn

holds true with εn ≤ c(logn)/
√

n. The boundedness of σ 2
4 allows one to take a slightly thinner

shell with εn = c/
√

n. Anyhow, the bound (7.2) subject to the thin-shell conjecture still leads
to the standard normal approximation as in (1.7).

Note that, by the Poincaré-type inequality (1.5) applied with u(x) = |x|2, one gets σ 2
4 ≤

4/λ1, so that the thin-shell conjecture is formally weaker than the K-L-S (which is further
shown in Proposition 3.4). On the other hand, recently Eldan [15] has developed a new lo-
calization technique, in essence reducing the stronger hypothesis to the weaker one modulo
a logarithmic factor. It is is therefore possible to state Corollary 1.2 alternatively as follows.
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COROLLARY 7.1. Let X be an isotropic random vector in R
n with a symmetric log-

concave distribution. Assuming that the thin-shell conjecture is true, we have

Eθρ(Fθ ,�) ≤ c(logn)3

n
.

PROOF. Combining Theorem 1.1 with Proposition 3.4, we get

(7.3) Eθρ(Fθ ,�) ≤ c

λ1,nn
logn,

where λ1 = λ1,n is the smallest spectral gap in the Poincaré-type inequality over the class of
all isotropic log-concave probability measures on R

n. Assuming the K-L-S conjecture, λ1,n

is bounded away from zero, which thus leads to the inequality (1.6) of Corollary 1.2. Within
the same class, this quantity may be related to the largest value σ 2

4,n = supX σ 2
4 (X). Namely,

as shown by Eldan [15],

(7.4)
1

λ1,n

≤ c logn

n∑
k=1

σ 2
4,k

k
.

In particular, the bound of the form σ 2
4,n ≤ c1n

α (0 ≤ α ≤ 1) implies that

(7.5) λ−1
1,n ≤ cηα(n)

with ηα(n) = c1
α

nα logn in case α > 0 and η0(n) = 3c1(logn)2. It remains to apply (7.5) in
(7.3) with α = 0. �

8. From the normal approximation to the shin shell. To refine the relationship be-
tween the central limit theorem and the thin-shell problem, let us complement Corollary 7.1
by the following general statement involving the maximal ψ1-norm of linear functionals of
X.

PROPOSITION 8.1. Let X be a random vector in R
n with E|X|2 = n, satisfying the mo-

ment condition (6.4) with some β > 0. Then

(8.1) cσ 2
4 (X) ≤ n(β logn)4

Eθρ(Fθ ,�) + β4

n4 + 1.

In the isotropic log-concave case, the condition (6.4) is fulfilled with some absolute con-
stant β (by the well-known Borell’s lemma 3.1 in [12]), and this simplifies (8.1) to

cσ 2
4 (X) ≤ n(logn)4

Eθρ(Fθ ,�) + 1.

Hence, the potential property

(8.2) Eθρ(Fθ ,�) ≤ c logn

n

as in Corollary 1.2 would imply that

(8.3) σ 2
4 (X) ≤ c(logn)5,

assuming additionally that the distribution of X is symmetric about zero. But the symmetry
condition may easily be dropped. Indeed, define X′ = (X − Y)/

√
2, where Y is an indepen-

dent copy of a random vector X with an isotropic log-concave distribution on R
n. Then the

distribution of X′ is isotropic, log-concave and symmetric about zero. Moreover,

σ 2
4
(
X′) = 1

2n
Var

(|X|2 + |Y |2 − 2〈X,Y 〉)

= 1

2n
Var

(|X|2) + 1

2n
Var

(|Y |2) + 2

n
E〈X,Y 〉2 = σ 2

4 (X) + 2.
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Hence, once (8.3) is true for the random vector X′, it continues to hold for X as well (with
other constant).

Note also that, applying Eldan’s inequality (7.4) together with (8.3), from the normal ap-
proximation (8.2) we get

λ−1
1,n ≤ c(logn)7.

PROOF OF PROPOSITION 8.1. In view of the triangle inequality ρ(F,�) ≤ Eθρ(Fθ ,�),
it is sufficient to derive (8.1) for ρ(F,�) in place of Eθρ(Fθ ,�). This means that we need
in essence to reverse the inequality (6.3) by using (6.4). To this aim, let us rewrite the defini-
tion (5.2) as

F(x) = P
{|X|θ1 ≤ x

}
, x ∈ R,

where we assume that X and θ = (θ1, . . . , θn) ∈ Sn−1 (as a random vector uniformly dis-
tributed on the sphere) are independent. This description yields

∫ ∞
−∞

x4 dF(x) = E|X|4Eθ θ
4
1 = (

n2 + σ 2
4 n

) 3

n(n + 2)
,

or equivalently

(8.4)
∫ ∞
−∞

x4 dF(x) −
∫ ∞
−∞

x4 d�(x) = 3

n + 2

(
σ 2

4 − 2
)
,

where σ 2
4 = σ 2

4 (X). On the other hand, it follows from (6.4) that

∫ ∞
−∞

e|x|/β dF (x) ≤ 2.

Using t2 ≤ 4e−2et (t ≥ 0) together with the property
∫ ∞
−∞ x2 dF(x) = 1

n
E|X|2 = 1, we have

β ≥ e/
√

8, which can be used to derive the bounds

1 − �(x) ≤ 1

2
e−x2/2 ≤ 2e−x/β, x ≥ 0.

In addition, by Markov’s inequality, F(−x) + (1 − F(x)) ≤ 2e−x/β , so that

∣∣F(−x) − �(−x)
∣∣ + ∣∣F(x) − �(x)

∣∣ ≤ 6e−x/β

for all x ≥ 0. Hence, integrating by parts, we see that, for any T ≥ 6β , the left-hand side of
(8.4) does not exceed in absolute value

4
∫ T

−T
|x|3∣∣F(x) − �(x)

∣∣dx + 24
∫ ∞
T

x3e−x/β dx

≤ 2T 4ρ(F,�) + 48βT 3e−T/β.

Choosing T = 9β logn and recalling (8.4), we get

σ 2
4 ≤ 6 + cn

[
β4(logn)4ρ(F,�) + β4

n9 (logn)3
]
. �
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9. Proof of Proposition 3.2. The lower bound on � in (3.3) immediately follows from
(1.3) by choosing the coefficients to be of the form aij = θiδij . For the upper bound, put
v2
i = EX2

i and define

X
(2)
ij = XiXj −EXiXj = XiXj − δij v

2
i .

The covariances of these mean zero random variables are given by

EX
(2)
ij X

(2)
kl = E

(
XiXj − δij v

2
i

)
XkXl

(9.1)
= EXiXjXkXl − δij δklv

2
i v

2
k .

Case 1: i �= j . By the symmetry with respect to the coordinate axes, the right-hand side of
(9.1) is vanishing unless (i, j) = (k, l) or (i, j) = (l, k). In both cases, it is equal to

EX
(2)
ij X

(2)
ij = EX

(2)
ij X

(2)
j i = EX2

i X
2
j .

Case 2: i = j . The right-hand side in (9.1) is nonzero only when k = l.
Case 2(a): i = j , k = l, i �= k. The right-hand side in (9.1) is equal to

EX
(2)
ii X

(2)
kk = EX2

i X
2
k −EX2

i EX2
k = cov

(
X2

i ,X
2
k

)
.

Case 2(b): i = j = k = l. The right-hand side is equal to

EX
(2)
ii X

(2)
ii = EX4

i −EX2
i EX2

i = Var
(
X2

i

)
.

In both subcases, EX
(2)
ii X

(2)
kk = cov(X2

i ,X
2
k). Therefore, for any collection of real numbers

aij such that aij = aji and
∑n

i,j=1 a2
ij = 1,

Var

(
n∑

i,j=1

aijXiXj

)
=

n∑
i,j=1

n∑
k,l=1

aij aklEX
(2)
ij X

(2)
kl

= 2
∑
i �=j

a2
ijEX2

i X
2
j + ∑

i,k

aiiakk cov
(
X2

i ,X
2
k

)
.

Here, the first sum on the right-hand side does not exceed

max
i �=j

EX2
i X

2
j

∑
i �=j

a2
ij ≤ max

i
EX4

i

∑
i �=j

a2
ij ≤ max

i
EX4

i

(by applying Cauchy’s inequality). As for the second sum, it does not exceed V (X), and we
obtain

(9.2) �(X) ≤ 2 max
i �=j

EX2
i X

2
j + V (X),

from which (3.3) follows immediately.
As for (3.4), recall that the first inequality always holds; cf. Proposition 2.1. For the second

one, let us note that

(9.3) σ 2
4 (X) = 1

n
Var

(|X|2) = Var
(
X2

1
) + (n − 1) cov

(
X2

1,X
2
2
)

and that, for any θ = (θ1, . . . , θn) ∈ Sn−1,

Var
(
θ1X

2
1 + · · · + θnX

2
n

) =
(

n∑
i=1

θi

)2

cov
(
X2

1,X
2
2
) − cov

(
X2

1,X
2
2
) + Var

(
X2

1
)
.
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Here, in the case cov(X2
1,X

2
2) ≥ 0, the right-hand side is maximized for equal coefficients,

and recalling (9.3), we then get

Var
(
θ1X

2
1 + · · · + θnX

2
n

) ≤ (n − 1) cov
(
X2

1,X
2
2
) + Var

(
X2

1
) = σ 2

4 (X).

Hence, (9.2) implies (3.4). In the case cov(X2
1,X

2
2) ≤ 0, we similarly conclude that

Var
(
θ1X

2
1 + · · · + θnX

2
n

) ≤ − cov
(
X2

1,X
2
2
) + Var

(
X2

1
)

= EX4
1 −EX2

1X
2
2,

which means that V (X) ≤ EX4
1 −EX2

1X
2
2. Thus, by (9.2),

�(X) ≤ 2EX2
1X

2
2 + V (X) ≤ EX2

1X
2
2 +EX4

1 ≤ 2EX4
1.

Hence, (3.4) follows in this case as well even without the σ 2
4 (X)-functional.

10. Historical remarks. Finally, let us give a short overview on results related to Theo-
rem 1.1 (some account can also be found in the book [13]). It is natural to distinguish between
two types of results.

10.1. Deviations of Fθ from the mean distribution F in different metrics. The paper by
Sudakov [30] starts with the hypothesis

E

(
n∑

i=1

aiXi

)2

≤ M2
2

n∑
i=1

a2
i , ai ∈R,

which may be called a first-order correlation condition. Here, an optimal value M2 = M2(X)

is the same functional we considered in Section 2; equivalently, M2
2 represents the maximal

eigenvalue of the correlation operator for the random vector X. As was shown in [30], if M2
is bounded, and n is large, then most of Fθ are close to the average distribution F in the sense
of the Kantorovich or L1-distance

W1(Fθ ,F ) = ‖Fθ − F‖L1(R,dx) =
∫ ∞
−∞

∣∣Fθ(x) − F(x)
∣∣dx.

A closely related observation was also made by Diaconis and Freedman [14]. A somewhat
different scheme, in which the coefficient vectors are drawn from the Gaussian measure μn

on R
n with mean zero and covariance matrix 1

n
In, was also considered by Nagaev [27] and

von Weizsäcker [31]. In particular, assuming that M1 = 1, [27] contains a quantitative bound

(10.1)
(∫

‖Fθ − F‖2
L2(R,dx)

dμn(θ)

)1/2
≤ 1

(πn)1/4

for the L2-distance between the distribution functions. When the coefficients have a special
structure, similar phenomena were considered in [3, 10].

Returning to the spherical measure sn−1, the rate as in (10.1) is achieved for the Lévy
distance as well. More precisely, there is a general bound

EθL(Fθ ,F ) ≤ c
logn

n1/4 ,

where the constant c depends on M1 only; cf. [5]. Large deviation bounds on L(Fθ ,F ) were
given in [2] in the isotropic case. As was already discussed in Section 7, the rate and deviation
bounds may be essentially improved and be stated for the stronger Kolmogorov distance,
when the random vector X has an isotropic log-concave distribution.
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Quantitative variants of Sudakov’s theorem for W1 were studied in [4], where it was shown
that, for any p > 1,

EθW1(Fθ ,F ) ≤ 12p

p − 1
Mpn

−p−1
2p .

The rate is thus approaching 1/
√

n for growing p. Under a stronger assumption (6.4), the
above inequality easily implies

EθW1(Fθ ,F ) ≤ cβ
logn√

n
.

Here, the logarithmic term may be removed, if X has an isotropic log-concave distribution
(by virtue of Proposition 3.1 in [2]). Note that, in all these results, the rates are not better than
a multiple of 1/

√
n.

10.2. Deviations of Fθ from the standard normal distribution function �. To study the
approximation of Fθ by the standard normal distribution function for most of θ ’s, one is led to
determine rates for the distance ρ(F,�), which may be reduced to the estimation of σ 2

4 (X)

(via relation (6.3)). In fact, the control of the two functionals, M4 and σ4, is sufficient to
guarantee a standard rate of normal approximation for Fθ on average. As was shown in [9],
we have

Eθρ(Fθ ,�) ≤ c
(
M3

4 + σ
3/2
4

) 1√
n
.

Note that Theorem 1.1 essentially improves this bound as long as � is of the same order as
M4 and σ4. However, whether or not � and even σ4 is bounded might be a difficult problem
for some classes of distributions on R

n such as the class of isotropic log-concave probabil-
ity measures. For this class, the property that ρ(Fθ ,�) is small for most of θ (when n is
large) was first established by Klartag [18]. In particular, Eθρ(Fθ ,�) ≤ εn → 0 as n → ∞
uniformly over the class. For further refinements in this direction, see [16, 17, 19].

There is also a number of results, where the coefficients are fixed, and ρ(Fθ ,�) are
bounded by a quantity, which depends on θ as well; cf., for example, [24, 25]. One strik-
ing result due to Klartag [20] should be mentioned: If the random vector X in R

n is isotropic
and has a coordinatewise symmetric, isotropic log-concave distribution, then

ρ(Fθ ,�) ≤ c

n∑
k=1

θ4
k .

Moreover, a similar bound holds true for the stronger total variation distance. This is of course
more precise in comparison with the average estimate Eθρ(Fθ ,�) ≤ c/n.
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