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We consider the random conductance model in a stationary and ergodic
environment. Under suitable moment conditions on the conductances and
their inverse, we prove a quenched invariance principle for the random walk
among the random conductances. The moment conditions improve earlier re-
sults of Andres, Deuschel and Slowik (Ann. Probab. 43 (2015) 1866–1891)
and are the minimal requirement to ensure that the corrector is sublinear ev-
erywhere. The key ingredient is an essentially optimal deterministic local
boundedness result for finite difference equations in divergence form.

1. Introduction.

1.1. Setting of the problem and the main result. In this paper, we study the near-
est neighbor random conductance model on the d-dimensional Euclidean lattice (Zd,Bd),
for d ≥ 3. Here, B

d is given by the set of nonoriented nearest neighbor bonds, that is,
B

d := {{x, y} | x, y ∈ Z
d, |x − y| = 1}.

We set � := (0,∞)B
d

and call ω(e) the conductance of the bond e ∈ B
d for every ω =

{ω(e) | e ∈ B
d} ∈ �. To lighten the notation, for any x, y ∈ Z

d , we set

ω(x, y) = ω(y, x) := ω
({x, y}) ∀{x, y} ∈ B

d,

ω
({x, y}) = 0 ∀{x, y} /∈ B

d .

In what follows, we consider random conductances that are distributed according to a proba-
bility measure P on � equipped with the σ -algebra F := B((0,∞))⊗B

d
and we write E for

the expectation with respect to P.
We introduce the family of space shifts {τx : � → � | x ∈ Z

d} defined by

τxω(·) := ω(· + x) where for any e = {e, e} ∈ B
d , e + x := {e + x, e + x}.

For any fixed realization ω, we study the reversible continuous time Markov chain, X = {Xt :
t ≥ 0}, on Z

d with generator Lω acting on bounded functions f : Zd →R as

(1)
(
Lωf

)
(x) := ∑

y∈Zd

ω(x, y)
(
f (y) − f (x)

)
.

We emphasize at this point that Lω is in fact a finite-difference operator in divergence form;
see (14) below. Following [3], we denote by Pω

x the law of the process starting at the vertex
x ∈ Z

d and by Eω
x the corresponding expectation. X is called the variable speed random walk

(VSRW) since it waits at x ∈ Z
d an exponential time with mean 1/μω(x), where μω(x) =∑

y∈Zd ω(x, y) and chooses its next position y with probability pω(x, y) := ω(x, y)/μω(x).
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ASSUMPTION 1. Assume that P satisfies the following conditions:

(i) (Stationarity) P is stationary with respect to shifts, that is, P ◦ τ−1
x = P for all x ∈ Z

d .
(ii) (Ergodicity) P is ergodic, that is, P[A] ∈ {0,1} for any A ∈ F such that τx(A) = A for

all x ∈ Z
d

(iii) (Moment condition) There exists p,q ∈ (1,∞] satisfying

(2)
1

p
+ 1

q
<

2

d − 1

such that

(3) E
[
ω(e)p

]
< ∞, E

[
ω(e)−q]

< ∞ for any e ∈ B
d .

The main result of the present paper is a quenched invariance principle for the process X

under Assumption 1.

DEFINITION 1. Set X
(n)
t := 1

n
Xn2t , t ≥ 0. We say that a quenched functional CLT (QF-

CLT) or quenched invariance principle holds for X if for P-a.e. ω under Pω
0 , X(n) converges

in law to a Brownian motion on R
d with covariance matrix �2 = � · �t . That is, for every

T > 0 and every bounded continuous function F on the Skorokhod space D([0, T ],Rd), set-
ting ψn = Eω

0 [F(X(n))] and ψ∞ = EBM
0 [F(� ·W)] with (W,PBM

0 ) being a Brownian motion
started at 0, we have that ψn → ψ∞, P-a.s.

THEOREM 1 (Quenched invariance principle). Suppose d ≥ 3 and that Assumption 1 is
satisfied. Then the QFCLT holds for X with a deterministic nondegenerate covariance matrix
�2.

REMARK 1. Another natural process is given by the so-called constant speed random
walk (CSRW) Y , which is defined via the generator Lω

Y ,

(
Lω

Y f
)
(x) := 1

μω(x)

∑
y∈Zd

ω(x, y)
(
f (y) − f (x)

)
,

where μω(x) = ∑
y∈Zd ω(x, y). In contrast to the VSRW, the CSRW waits on each vertex

x ∈ Z
d an exponential time with mean 1. The invariance principle for the VSRW X and

Assumption 1 implies also a QFCLT for Y with a covariance matrix given by [μω(0)]−1�2

(where � is as in Theorem 1); see [3], Remark 1.5.

Random walks among random conductances are one of the most studied examples of ran-
dom walks in a random environment; see [13, 27] for relatively recent overviews of the field.
In [20] (see also [25]), a weak FCLT, that is, the convergence of ψn to ψ∞ in Definition 1
holds in P-probability, for stationary and ergodic laws P with E[ω(e)] < ∞ is established.
In the last two decades, much attention has been devoted to obtain quenched FCLT. In [35],
the quenched invariance principle is proven in the uniformly elliptic case, that is, with the
assumption that there exists c ∈ (0,1] such that P[c ≤ ω(e) ≤ c−1] = 1 for all e ∈ B

d , which
corresponds to the case p = q = ∞ (see also an earlier result [17] valid only in d = 2).
Recently, there is an increasing interest to relax the uniform ellipticity assumption. In the
special case of i.i.d. conductances, that is, when P is the product measure which includes,
for example, percolation models, it is shown in [1] (building on previous works [9, 12, 15,
28, 29, 35]) that a QFCLT holds provided that P[ω(e) > 0] > pc with pc = pc(d) being the
bond percolation threshold. In particular, no moment conditions such as (3) are needed. In
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the general ergodic situation, it is known that at least first moments of ω and ω−1 are neces-
sary for a QFCLT to hold (see [8] for an example where the QFCLT fails but (3) holds for
any p,q ∈ (0,1)). In [3], Andres, Deuschel and Slowik proved the conclusion of Theorem 1
under the moment condition (3) with the more restrictive relation

(4)
1

p
+ 1

q
<

2

d
.

The result of [3] was already extended in several directions: to the continuum case [19] (for
an earlier contribution with q = ∞, see [22]), random walks on more general graphs [21]
and to dynamic situations [2]; see also [16, 32]. Previous to [3], Biskup [13] proved QFCLT
under the minimal moment condition p = q = 1 in two dimensions, and thus we focus our
attention to the case d ≥ 3. To the best of our knowledge Theorem 1 is the first quenched
invariance principle in the general stationary and ergodic setting under a less restrictive mo-
ment condition compared to (4) valid in d ≥ 3. Optimality of condition (2) in Theorem 1 is
not clear to us, since in particular in [7] a quenched invariance principle for diffusion in R

d

with a locally integrable periodic potential is proven. However, we emphasize that condition
(2) is essentially optimal for the everywhere sublinearity of the corrector; see Proposition 2
and Remark 4. The latter is of independent interest for stochastic homogenization of elliptic
operators in divergence form with degenerate coefficients; for further recent results in that
direction, see [5, 6, 10, 34].

1.2. Strategy. The proof of Theorem 1 follows the classical approach to show an invari-
ance principle and relies on a decomposition of the process X into a martingale part and a
remainder (see, e.g., [25]). General martingale theory (in particular [24]) yields a quenched
invariance principle for the martingale part and it remains to show that the remainder is neg-
ligible. A key insight in [3] was to apply deterministic elliptic regularity theory, in particular
Moser’s iteration argument [30, 31], to control the remainder term. The main effort in the
present contribution is to improve the deterministic part of the argument. Let us now be more
precise (in what follows we use the notation introduced in Section 1.3 below). Following, for
example, [3, 13], we introduce harmonic coordinates, that is, we construct a corrector field
χ : � ×Z

d →R
d such that

	(ω,x) = x − χ(ω,x)

is Lω-harmonic in the sense that for every x ∈ Z
d and j ∈ {1, . . . , d}

(5) 0 = Lω(
j − χj )(x) = −∇∗(
ω∇(
j − χj )

)
(x),

where 
j(y) = y · ej and χj (y) = χ(y) · ej for every y ∈ Z
d . The Lω-harmonicity of 	

implies that

Mt := 	(ω,Xt) = Xt − χ(ω,Xt)

is a martingale under Pω
0 for P-a.e. ω. The QFCLT of M can, for example, be found in [3]

under less restrictive assumptions compared to Assumption 1; see Proposition 1 below. In
order to establish the QFCLT for X, we show that for any T > 0 and P-a.e. ω,

sup
t∈[0,T ]

1

n

∣∣χ(
ω,nX

(n)
t

)∣∣ → 0 in Pω
0 -probability as n → ∞;

see Proposition 3 below. In fact, we establish a much stronger statement: instead of proving
sublinearity of χ along the path of the process X we show sublinearity everywhere

(6) lim
n→∞ max

x∈B(n)

1

n

∣∣χ(ω,x)
∣∣ = 0 for P-a.e. ω;

see Proposition 2 below. The proof of (6) relies on the following deterministic regularity
result for Lω-harmonic functions.
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THEOREM 2. Fix d ≥ 3, ω ∈ � and let p,q ∈ (1,∞] be such that 1
p

+ 1
q

< 2
d−1 . Then

there exists c = c(d,p, q) ∈ [1,∞) such that solutions of ∇∗(ω∇u) = 0 in Z
d satisfy for

every y ∈ Z
d and every n ∈ N,

(7) max
x∈B(y,n)

∣∣u(x)
∣∣ ≤ c�ω(

B(y,2n)
)p′ δ+1

δ ‖u‖L1(B(y,2n)),

where δ := 1
d−1 − 1

2p
− 1

2q
> 0, p′ := p

p−1 and for every bounded set S ⊂ Z
d ,

(8) �ω(S) := ‖ω‖Lp(S)

∥∥ω−1∥∥
Lq(S).

REMARK 2. A continuum version of Theorem 2 was recently proven by the authors
of the present paper in [11]. In the continuum case, relation 1

p
+ 1

q
< 2

d−1 is essentially
optimal for local boundedness (see [23]) and so it is in the discrete setting considered here;
see Remark 4 below. In [3], a version of Theorem 2 is proven for solutions of the Poisson
equation

(9) ∇∗(ω∇u) = ∇∗(ω∇f )

on rather general weighted graphs but under the more restrictive relation 1
p

+ 1
q

< 2
d

; see [3],
Theorem 3.7 (for related classical results in the continuum see [33, 36, 37]). This regularity
statement is then applied in [3] to the corrector equation (5) to ensure (6). Our method does
not directly apply to solutions of (9) but due to the specific form of the right-hand side in the
corrector equation (5), that is, f (x) = x ·ej , we are able to deduce from Theorem 2 the needed
sublinearity of the corrector. In Proposition 4 below, we present a version of Theorem 2 in
the case d = 2 with the minimal requirement p = q = 1.

REMARK 3. In [11], we also establish Harnack inequality for nonnegative solutions u

and we expect that this can be extended to the discrete case, too. In [4], Andres, Deuschel
and Slowik establish elliptic and parabolic versions of Harnack inequality for the CSRW;
see Remark 1, on weighted graphs under moment conditions (3) with 1

p
+ 1

q
< 2

d
. From the

parabolic version, they deduced a quenched local limit theorem and showed that condition
1
p

+ 1
q

< 2
d

is essentially optimal for that result. It is an interesting question if the methods
developed here can be used to derive parabolic Harnack inequality and local limit theorems
for the VSRW under less restrictive relations between the exponents p and q compared to the
CSRW.

We provide the proof of Theorem 2 in Section 3.2. Similar as in [3, 36], the argument relies
on a modification of the Moser iteration method [30, 31]. The argument in [3], Theorem 3.7,
relies on two key observations: By a combination of the Hölder and Sobolev inequalities, we
find κ = κ(d, q) > 1 (in fact 1

κ
= 1 + 1

q
− 2

d
) such that for any u with compact support in

B(n)

(10)
∥∥u2∥∥

Lκ(B(n)) ≤ cn2∥∥ω−1∥∥
Lq(B(n))

∥∥ω(∇u)2∥∥
L1(B(n)).

Moreover, by testing the equation Lωu = 0 with uη2, where η is a suitable cut-off function
satisfying η = 1 in B(n) with compact support in B(2n), we can bound the right-hand side
of (10) with help of the following Caccioppoli inequality:

(11)
∥∥ω(∇u)2∥∥

L1(B(n)) ≤ c‖∇η‖2
L∞(B(2n))‖ω‖Lp(B(2n))

∥∥u2∥∥
L

p
p−1 (B(2n))

.

Choosing a linear cut-off function, that is, ‖∇η‖L∞(B(2n)) ≤ cn−1, estimates (10) and (11)
contain an improvement in summability of u if and only if κ >

p
p−1 which is equivalent to 1

p
+
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1
q

< 2
d

. This tiny improvement suffices to obtain local boundedness of u by Moser’s iteration
argument; see [3, 36]. In the situation of Theorem 2, that is, with the relaxed assumption
1
p

+ 1
q

< 2
d−1 , we do not have a weighted Poincaré inequality in the form of (10) at hand.

However, a version of (10) is valid if we replace the d-dimensional box B(n) by (d − 1)-
dimensional “spheres” ∂B(n). In order to exploit this observation, we need an additional
optimization step compared to the Caccioppoli inequality (11) which is gathered in Lemma 2
given in Section 3.1.

1.3. Notation.

• (Sets and Lp spaces) For y ∈ Z
d , n ∈ N := {1,2,3, . . .}, we set B(y,n) := y + ([−n,n] ∩

Z)d with the shorthand B(n) = B(0, n). For any S ⊂ Z
d , we denote by SBd ⊂ B

d the set of
bonds for which both end-points are contained in S, that is, SBd := {e = {e, e} ∈ B

d | e, e ∈
S}. For any S ⊂ Z

d , we set ∂S := {x ∈ S | ∃y ∈ Z
d \ S s.t. {x, y} ∈ B

d}. Given p ∈ (0,∞),
S ⊂ Z

d , we set for any f : Zd →R
d and F : Bd →R,

‖f ‖Lp(S) :=
(∑

x∈S

∣∣f (x)
∣∣p) 1

p

, ‖F‖Lp(S
Bd ) :=

( ∑
e∈S

Bd

∣∣F(e)
∣∣p) 1

p

,

and ‖f ‖L∞(S) = supx∈S |f (x)|. Moreover, normalized versions of ‖ · ||Lp are defined for
any finite subset S ⊂ Z

d and p ∈ (0,∞) by

‖f ‖Lp(S) := |S|− 1
p ‖f ‖Lp(S), ‖F‖Lp(S

Bd ) := |SBd |− 1
p ‖F‖Lp(S

Bd ),

where |S| and |SBd | denote the cardinality of S and SBd , respectively. Throughout the
paper, we drop the subscript in SBd if the context is clear.

• (Discrete calculus) For any bond e ∈ B
d , we denote by e, e ∈ Z

d the (unique) vertices satis-
fying e = {e, e} and e − e ∈ {e1, . . . , ed}. For f : Zd →R, we define its discrete derivative
as

∇f : Bd →R, ∇f (e) := f (e) − f (e).

For f,g : Zd →R, the following discrete product rule is valid:

∇(fg)(e) = f (e)∇g(e) + g(e)∇f (e) = f (e)∇g(e) + g(e)∇f (e),(12)

where we use for the last equality the convenient identification of a function h : Zd → R

with the function h : Bd →R defined by the corresponding arithmetic mean

h(e) := 1

2

(
h(e) + h(e)

)
.

The discrete divergence is defined for every F : Bd →R as

∇∗F(x) := ∑
e∈Bd

e=x

F (e) − ∑
e∈Bd

e=x

F (e) =
d∑

i=1

(
F

({x − ei, x}) − F
({x, x + ei})).

Note that for every f : Zd → R, that is, nonzero only on finitely many vertices and every
F : Bd →R it holds

(13)
∑

e∈Bd

∇f (e)F (e) = ∑
x∈Zd

f (x)∇∗F(x).

Finally, we observe that the generator Lω defined in (1) can be written as a second-order
finite-difference operator in divergence form, in particular,

(14) ∀u : Zd →R Lωu(x) = −∇∗(ω∇u)(x) for all x ∈ Z
d .
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2. The quenched invariance principle. In this section, we prove Theorem 1. As men-
tioned above, we follow a well-established strategy and decompose the process X such that
Mt = Xt − χ(ω,Xt) is a martingale under Pω

0 for P-a.e. ω. It is already known that under
Assumption 1 the martingale part M satisfies a QFCLT and it is left to show that the remain-
der χ(ω,Xt) vanishes in a suitable sense. In Section 2.1, we recall the construction of the
corrector from [3] and state the needed known results for M and χ . In Section 2.2, we use
Theorem 2 to prove that the corrector is sublinear everywhere.

2.1. Harmonic embedding and the corrector. The construction of the corrector and the
invariance principle for the martingale part can be found in the literature; see, for example,
[3, 13]. For convenience, we recall the needed results.

DEFINITION 2. A random field � : � × Z
d → R satisfies the cocycle property if for

P-a.e. ω,

�(τxω,y − x) = �(ω,y) − �(ω,x) for all x, y ∈ Z
d .

We denote by L2
cov the set of functions � : �×Z

d →R satisfying the cocycle property such
that

‖�‖2
L2

cov
:= E

[ ∑
x∈Zd

ω(0, x)�(ω,x)2
]

< ∞.

Note that:

LEMMA 1. L2
cov is a Hilbert-space.

A function φ : � → R is called local if it depends on the value of ω ∈ � (recall � =
(0,∞)B

d
) at finitely many bonds e ∈ B

d . The horizontal derivative Dφ : � × Z
d → R of φ

is defined by

Dφ(ω,x) = φ(τxω) − φ(ω), x ∈ Z
d .

We define the subspace L2
pot of potential random fields as

L2
pot := cl{Dφ | φ : � →R local} in L2

cov

and the subspace L2
sol, of solinoidal random fields, as the orthogonal complement of L2

pot in

L2
cov.
The corrector is now constructed as a suitable projection. For this, we introduce the posi-

tion field 
 : � × Z
d → R

d with 
(ω,x) = x for all x ∈ Z
d and ω ∈ �. Set 
j := 
 · ej

and observe that 
j satisfies the cocycle property and ‖
j‖2
L2

cov
= 2E[ω(0, ej )] < ∞. Hence,


j ∈ L2
cov and we define χj ∈ L2

pot and 	j ∈ L2
sol by

(15) 
j = χj + 	j ∈ L2
pot ⊕ L2

sol.

Finally, we define the corrector χ = (χ1, . . . , χd) : � ×Z
d →R

d and the process Mt as

Mt := 	(ω,Xt) = Xt − χ(ω,Xt).

The needed properties of Mt , 	 and χ are gathered in the following.

PROPOSITION 1. Let d ≥ 2 and suppose that part (i) and (ii) of Assumption 1 are satis-
fied. Moreover, suppose that E[ω(e)] < ∞ and E[ω(e)−1] < ∞ for every e ∈ B

d . Then there
exists �1 ⊂ � with P(�1) = 1 such that:
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(i) (Lω-harmonicity of 	) for all ω ∈ �1

(16) Lω	(x) = ∑
y∈Zd

ω(x, y)
(
	(ω,y) − 	(ω,x)

) = 0, 	(ω,0) = 0.

(ii) (QFCLT for M) Set M
(n)
t := 1

n
Mn2t , t ≥ 0. For all ω ∈ �1, the sequence {M(n)}

converges in law in the Skorokhod topology to a Brownian motion with a nondegenerate
covariance matrix �2 given by

�2
ij = E

[ ∑
x∈Zd

ω(0, x)	i(ω, x)	j (ω, x)

]
.

(iii) (L1-sublinearity of χ ) For all ω ∈ �1 and any j ∈ {1, . . . , d},
(17) lim

n→∞
1

n

∥∥χj (ω, ·)∥∥L1(B(n)) = 0.

Statement (i) is contained in [3], Proposition 2.3, (ii) is contained [3], Proposition 2.5, and
(iii) can be easily deduced from [3], Proposition 2.9.

2.2. L∞-Sublinearity of the corrector. In this section, we improve the sublinearity of the
corrector in L1 (see Proposition 1 part (iii)) to sublinearity in the L∞-sense. This is content
of the following.

PROPOSITION 2. Let d ≥ 3 and suppose that Assumptions 1 is satisfied. Then, for any
L ∈ N and j ∈ {1, . . . , d},
(18) lim

n→∞
1

n
max

x∈B(Ln)

∣∣χj (ω, x)
∣∣ = 0 P-a.s.

REMARK 4. In [3], the sublinearity of the corrector in the form (18) is shown under mo-
ment conditions (3) with the more restrictive relation 1

p
+ 1

q
< 2

d
. In two dimensions, (18) is

proven in [13] under the minimal assumptions p = q = 1, and thus we focus here on d ≥ 3
(see however Appendix B for a discussion of the case d = 2). We emphasize that Assump-
tion 1 is essentially optimal for the conclusion of Proposition 2. Indeed, it was recently shown
by Biskup and Kumagai [14] that the statement of Proposition 2 fails if (3) only holds for p,
q satisfying 1

p
+ 1

q
> 2

d−1 provided d ≥ 4; see [14], Theorem 2.7. This nonexistence of a

sublinear corrector implies that the condition 1
p

+ 1
q

< 2
d−1 in Theorem 2 is essentially sharp.

Indeed, if estimate (7) were valid for some p,q ∈ [1,∞], then the proof of Proposition 2
together with Proposition 1 yield (18) which contradicts the findings in [14] if 1

p
+ 1

q
> 2

d−1 .

PROOF OF PROPOSITION 2. Throughout the proof, we write � if ≤ holds up to a positive
constant which depends only on d , p and q . Before we give the details of the proof, we briefly
explain the idea. We introduce an additional length-scale n

m
with m ∈ N such that 1 � m � n

and compare χj on boxes with diameter ∼ n
m

with Lω-harmonic functions 	j − (ej · x − c)

with a suitable chosen c ∈R. Using the L1-sublinearity of χj and the fact that the linear part
coming from ej · x can be controlled by 1

m
on each box of radius ∼ n

m
, we obtain the desired

claim.

Step 1. As a preliminarily step, we recall the needed input from ergodic theory. Following
[3], we introduce the following measures μω and νω on Z

d :

(19) μω(x) = ∑
y∈Zd

|y−x|=1

ω(x, y) and νω(x) = ∑
y∈Zd

|y−x|=1

1

ω(x, y)
.
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In view of the spatial ergodic theorem, we obtain from the moment condition (3) that there
exists �′ ⊂ � with P(�′) = 1 such that for ω ∈ �′ and every z ∈ Z

d

(20)
lim

n→∞
∥∥μω

∥∥p

Lp(B(nz,n))
= E

[
μ(0)p

]
and

lim
n→∞

∥∥νω
∥∥q

Lq(B(nz,n))
= E

[
ν(0)q

];
see, for example, [26], Section 6.

Step 2. We set �2 := �1 ∩ �′, where �′ is given as in Step 1 and �1 in Proposition 1.
Clearly, �2 has full measure. From now on, we fix ω ∈ �2.

Fix m ∈ N. For n sufficiently large compared to m (the choice n ≥ m(m + 1) will do), we
cover the box B(n) with finitely many boxes B(� n

m
�z, � n

m
�), z ∈ B(m). For z ∈ B(m), set

uz
j (ω, x) := χj (ω, x) − ej · (x − � n

m
�z) = −	j(ω,x) + ej · � n

m
�z. Obviously, (16) implies

that uz
j is Lω-harmonic. Hence, (7) yields

(21)

∥∥uz
j

∥∥
L∞(B(� n

m
�z,� n

m
�))

� �ω

(
B

(⌊
n

m

⌋
z,2

⌊
n

m

⌋))p′(1+ 1
δ
)∥∥uz

j

∥∥
L1(B(� n

m
�z,2� n

m
�))

� �ω

(
B

(⌊
n

m

⌋
z,2

⌊
n

m

⌋))p′(1+ 1
δ
)(

‖χj‖L1(B(� n
m

�z,2� n
m

�)) +
⌊

n

m

⌋)
,

where p′ = p
p−1 , δ = 1

d−1 − 1
2p

− 1
2q

> 0. Estimate (21) implies the following L∞-estimate
on χj :

‖χj‖L∞(B(n))

≤ sup
z∈B(m)

‖χj‖L∞(B(� n
m

�z,� n
m

�))

� sup
z∈B(m)

∥∥uz
j

∥∥
L∞(B(� n

m
�z,� n

m
�)) +

⌊
n

m

⌋

(21)
� sup

z∈B(m)

�ω

(
B

(⌊
n

m

⌋
z,2

⌊
n

m

⌋))p′(1+ 1
δ
)

×
(
‖χj‖L1(B(� n

m
�z,2� n

m
�)) +

⌊
n

m

⌋)
+

⌊
n

m

⌋

�
(
md‖χj‖L1(B(2n)) +

⌊
n

m

⌋)

× sup
z∈B(m)

�ω

(
B

(⌊
n

m

⌋
z,2

⌊
n

m

⌋))p′(1+ 1
δ
)

+
⌊

n

m

⌋
.

(22)

Since B(m) is a finite set, we obtain from the definition of μ and ν (see (19)), and the spatial
ergodic theorem in the form (20) that

(23)

lim sup
n→∞

max
z∈B(m)

�ω

(
B

(⌊
n

m

⌋
z,2

⌊
n

m

⌋))

� lim sup
n→∞

max
z∈B(m)

∥∥μω
∥∥
Lp(B(2� n

m
�z,2� n

m
�))

∥∥νω
∥∥
Lq(B(2� n

m
�z,2� n

m
�))

≤ E
[
μ(0)p

] 1
pE

[
ν(0)q

] 1
q < ∞.
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Finally, we combine (22) and (23) with the L1-sublinearity of χj (17) and obtain

lim sup
n→∞

1

n
‖χj‖L∞(B(n)) � m−1(

E
[
μ(0)p

] 1
pE

[
ν(0)q

] 1
q
)p′(1+ 1

δ
) + m−1.

The arbitrariness of m ∈ N implies (18) for L = 1 and the trivial identity

lim
n→∞

1

n
max

x∈B(Ln)

∣∣χj (ω, x)
∣∣ = L lim

n→∞
1

n
max

x∈B(n)

∣∣χj (ω, x)
∣∣ = 0

completes the proof. �

2.3. Proof of Theorem 1. With the help of Propositions 1 and 2, we can establish Theo-
rem 1 following the argument in [3]. First, we observe that Proposition 2 implies the follow-
ing.

PROPOSITION 3. Let T > 0. For P-a.e. ω,

sup
t∈[0,T ]

1

n

∣∣χ(
ω,nX

(n)
t

)∣∣ → 0 in Pω
0 -probability as n → ∞.

PROOF. Appealing to Proposition 2, we can follow verbatim the argument of the proof
given [3], Proposition 2.13. �

PROOF OF THEOREM 1. A combination of Proposition 1 (part (ii)) and Proposition 3
yields the desired claim. �

3. Local boundedness for Lω-harmonic functions.

3.1. An auxiliary lemma. In this section, we provide a key estimate, formulated in
Lemma 2 below, that is central in our proof of Theorem 2. Before we come to this lemma,
we recall suitable versions of the Sobolev inequality.

THEOREM 3. Fix d ≥ 2. For every s ∈ [1, d), set s∗
d := ds

d−s
.

(i) For every s ∈ [1, d), there exists c = c(d, s) ∈ [1,∞) such that for every f : Zd → R

it holds

(24)
∥∥f − (f )B(n)

∥∥
L

s∗
d (B(n))

≤ c‖∇f ‖Ls(B(n)),

where (f )B(n) := 1
|B(n)|

∑
x∈B(n) f (x).

(ii) For every s ∈ [1, d −1), there exists c = c(d, s) ∈ [1,∞) such that for every f : Zd →
R it holds

(25) ‖f ‖
L

s∗
d−1 (∂B(n))

≤ c
(‖∇f ‖Ls(∂B(n)) + n−1‖f ‖Ls(∂B(n))

)
.

PROOF. The above statements are standard. Since we did not find a textbook reference
for the discrete situation considered here we provide the argument for some parts of the
statement. In what follows, we write � if ≤ holds up to a positive constant that depends only
on the dimension d .

Step 1. Proof of part (i). For s ∈ (1, d), the proof of the claim can be found in [32], Theo-
rem 2.6. It is left to consider the case s = 1. In [16], it is proven that for any f : Zd →R with
finite support it holds ( ∑

x∈Zd

∣∣f (x)
∣∣ d

d−1

) d−1
d

�
∑

e∈Bd

∣∣∇f (e)
∣∣,(26)
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and for any f : Zd →R

(27)
∥∥f − (f )B(n)

∥∥
L1(B(n)) �

∣∣B(n)
∣∣ 1

d ‖∇f ‖L1(B(n));
see [16], Lemma 2.1 and 2.2. We deduce (24) (with s = 1) from (26) and (27) by a simple
extension argument. Indeed, functions defined on a box B(n) can easily extended by succes-
sive reflections (see, e.g., [18], Section 9.2). In particular, there exists k = k(d) ∈ N \ {1,2}
such that for every g : B(n) →R we find ḡ : B(kn) →R such that

ḡ(x) = g(x) in B(n), ‖ḡ‖L1(B(kn)) � ‖g‖L1(B(n)),

‖∇ḡ‖L1(B(kn)) � ‖∇g‖L1(B(n)).
(28)

Choose g := f − (f )B(n) and consider a cut-off function η : Zd → [0,1] satisfying

(29) η(x) =
{

1 if x ∈ B(n),

0 if x ∈ Z
d \ B(3n − 1),

∣∣∇η(e)
∣∣ � n−1 for all e ∈ B

d .

Then

∥∥f − (f )B(n)

∥∥
L

d
d−1 (B(n))

(28), (29)≤ ‖ηḡ‖
L

d
d−1 (B(kn))

(26)
�

∥∥∇(ηḡ)
∥∥
L1(B(kn))

(12), (29)
� ‖∇ḡ‖L1(B(kn)) + n−1‖ḡ‖L1(B(kn))

(28)
� ‖∇f ‖L1(B(n)) + n−1∥∥f − (f )B(n)

∥∥
L1(B(n))

(27)
� ‖∇f ‖L1(B(n)),

where in the last estimate we used |B(n)| 1
d � n.

Step 2. Proof of part (ii). Consider a facet F of ∂B(n) given by {x ∈ B(n) | x · ej = tn} for
some j ∈ {1, . . . , d} and t ∈ {−1,1}. Then, appealing to part (i), we find c = c(d, s) ∈ [1,∞)

such that

(30)

‖f ‖
L

s∗
d−1 (F )

≤ ∥∥f − (f )F
∥∥
L

s∗
d−1 (F )

+ ∥∥(f )F
∥∥
L

s∗
d−1 (F )

≤ c‖∇f ‖Ls(F ) + |F | 1
s
− 1

d−1
∣∣(f )F

∣∣
≤ c‖∇f ‖Ls(F ) + |F |− 1

d−1 ‖f ‖Ls(F ).

Summing (30) over all facets F and using |F | = (2n − 1)d−1, we obtain (25). �

LEMMA 2. Fix d ≥ 3, ω ∈ �, ρ,σ ∈ N with ρ < σ and v : Zd →R. Consider

J (ρ,σ, v) := inf
{ ∑

e∈Bd

ω(e)
(|v|(e))2(∇η(e)

)2
∣∣∣ η : Zd → [0,∞),

η = 1 in B(ρ) and η = 0 in Z
d \ B(σ − 1)

}
,
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where |v|(e) = 1
2(|v(e)| + |v(e)|). Then there exists c = c(d,p) ∈ [1,∞) such that

J (ρ,σ, v)

≤ c
‖ω‖Lp(B(σ)\B(ρ−1))

(σ − ρ)
2d

d−1

(‖∇v‖2
Lp∗ (B(σ )\B(ρ−1)) + ρ−2‖v‖2

Lp∗ (B(σ )\B(ρ−1))

)
,

(31)

where p∗ is given by 1
p∗ = 1

2 − 1
2p

+ 1
d−1 .

PROOF. Step 1. We claim

(32)
J (ρ,σ, v) ≤ (σ − ρ)

−(1+ 1
γ

)

(
σ−1∑
k=ρ

( ∑
e∈S(k)

ω(e)|v|(e)2
)γ

) 1
γ

for every γ > 0,

where for every m ∈N

S(m) := {
e ∈ B

d | e ∈ ∂B(m), e ∈ ∂B(m + 1)
}
.

Restricting the class of admissible cut-off functions to those of the form η(x) =
η̂(maxi=1,...,d{|x · ei |}), we obtain

(33)

J (ρ,σ, v) ≤ inf

{
σ−1∑
k=ρ

η̂′(k)2
( ∑

e∈S(k)

ω(e)
(|v|(e))2

) ∣∣∣ η̂ :N → [0,∞),

η̂(ρ) = 1, η̂(σ ) = 0

}
=: J1d,

where η̂′(k) := η̂(k + 1) − η̂(k). The minimization problem (33) can be solved explicitly.
Indeed, set f (k) := ∑

e∈S(k) ω(e)(|v|(e))2 for every k ∈ Z and suppose f (k) > 0 for every

k ∈ {ρ, . . . , σ − 1}. Then η̂ :N→ [0,∞) with η̂(i) = 1 − (
∑σ−1

k=ρ f (k)−1)−1 ∑i−1
k=ρ f (k)−1 is

a valid competitor in the minimization problem for J1d and we obtain

J (ρ,σ, v) ≤
(

σ−1∑
k=ρ

( ∑
e∈S(k)

ω(e)
(|v|(e))2

)−1
)−1

.

By Hölder’s inequality, we obtain for any s > 1 that σ − ρ = ∑σ−1
k=ρ (

f
f
)

1
s′ ≤ (

∑σ−1
k=ρ f

s
s′ )

1
s ×

(
∑σ−1

k=ρ
1
f
)

1
s′ with s′ = s

s−1 , and thus

J1d ≤ (σ − ρ)−s′
(

σ−1∑
k=ρ

( ∑
e∈S(k)

ω(e)
(|v|(e))2

) s
s′

) s′
s

.

The claim (32) follows with γ = s − 1 > 0. Finally, in the case that f (k) = ∑
e∈S(k) ω(e) ×

(|v|(e))2 = 0 for some k ∈ {ρ, . . . , σ − 1}, we easily obtain J1d = 0 and (32) is trivially
satisfied.

Step 2. We estimate the right-hand side of (32) with the help of the Hölder inequality and
the Sobolev inequality in the form (25). More precisely, there exists c = c(p, d) ∈ [1,∞)
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(changing from line to line) such that

(σ − ρ)
1+ 1

γ J (ρ,σ, v)

≤ c

(
σ−1∑
k=ρ

( ∑
e∈S(k)

ω(e)p
) γ

p
( ∑

x∈∂B(k)
x∈∂B(k+1)

∣∣v(x)
∣∣ 2p

p−1

) (p−1)γ
p

) 1
γ

≤ 21− 1
p c

(
σ−1∑
k=ρ

( ∑
e∈S(k)

ω(e)p
) γ

p (‖v‖2γ

L
2p

p−1 (∂B(k))

+ ‖v‖2γ

L
2p

p−1 (∂B(k+1))

)) 1
γ

(25)≤ c

(
σ−1∑
k=ρ

( ∑
e∈S(k)

ω(e)p
) γ

p
k+1∑
i=k

(‖∇v‖2γ
Lp∗ (∂B(i)) + i−2γ ‖v‖2γ

Lp∗ (∂B(i))

)) 1
γ

,

where 1
2 − 1

2p
= 1

p∗ − 1
d−1 (note that (p∗)∗d−1 = 2p

p−1 ). The choice γ = d−1
d+1 yields γ

p
+ 2γ

p∗ = 1,
and thus by Hölder’s inequality we obtain (31) for some c = c(d,p) ∈ [1,∞). �

3.2. Proof of Theorem 2. We first present a weaker version of Theorem 2 in which the
right-hand side of the estimate (7) is replaced by a slightly larger term.

THEOREM 4. Fix d ≥ 3, ω ∈ � and let p,q ∈ (1,∞] be such that 1
p

+ 1
q

< 2
d−1 . Then

there exists c = c(d,p, q) ∈ [1,∞) such that solutions of ∇∗(ω∇u) = 0 in Z
d satisfy for

every n ∈ N,

max
x∈B(n)

∣∣u(x)
∣∣ ≤ c�ω(

B(4n)
) δ+1

2δ ‖u‖
L2p′

(B(4n))
,

where δ = 1
d−1 − 1

2p
− 1

2q
> 0, p′ = p

p−1 and �ω is defined in (8).

PROOF. Throughout the proof, we write � if ≤ holds up to a positive constant that de-
pends only on d , p and q . For a function v : Zd and α ≥ 1, we set

ṽα := (signv)|v|α.

The proof is divided in three steps: First, by testing Lωu = 0 with η2ũ2α−1, where η is
a suitable cut-off function, and using Lemma 2 we obtain a crucial a priori estimate for
‖∇ũα‖

L
2q

q+1
. In the second step, we refine this a priori estimate to the one-step improvement

(40), where a suitable Sobolev-type norm of ũχα with χ > 1 is bounded by the correspond-
ing norm of ũα on a slightly larger ball. With help of (40), we obtain the desired claim by an
iteration argument similar to [3], proof of Theorem 3.7.

Step 1. Basic energy estimate.
We claim that for every α ≥ 1 and n,ρ,σ ∈ N with n ≤ ρ < σ ≤ 2n it holds

‖∇ũα‖
L

2q
q+1 (B(ρ))

� α
�ω(B(2n))

1
2

(1 − ρ
σ
)

d
d−1

(
ρ−1‖ũα‖Lp∗ (B(σ )) + ‖∇ũα‖Lp∗ (B(σ ))

)
,(34)

‖∇u‖
L

2q
q+1 (B(ρ))

� �ω(B(2n))
1
2

σ − ρ
‖u‖

L2p′
(B(σ ))

,(35)

where 1
p∗ = 1

2 − 1
2p

+ 1
d−1 and p′ = p

p−1 .
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Substep 1.1. Let η : Zd → [0,∞) be such that η = 0 in Z
d \ B(2n − 1). We claim that for

every α ≥ 1,

(36)
∑

e∈Bd

η2(e)ω(e)∇ũα(e)2 ≤ 256α4

(2α − 1)2

∑
e∈Bd

ω(e)
(|u|α(e)

)2(∇η(e)
)2

,

where η2(e) = 1
2(η2(e) + η2(e)) and |u|α(e) = 1

2(|u(e)|α + |u(e)|α); see Section 1.3. Using

Lωu
(14)= −∇∗(ω∇u) = 0 in Z

d and the summation by parts formula (13) with F = ω∇u and
f = η2ũ2α−1, we obtain

(37)

0 = ∑
e∈Bd

ω(e)∇u(e)∇(
η2ũ2α−1

)
(e)

= ∑
e∈Bd

2η(e)ũ2α−1(e)ω(e)∇u(e)∇η(e)

+ ∑
e∈Bd

η2(e)ω(e)∇u(e)∇ũ2α−1(e),

where we use the discrete chain rule (12) and ∇η2(e) = η2(e)−η2(e) = (η(e)−η(e))(η(e)+
η(e)) = 2∇η(e)η(e). Estimate (51) implies ∇ũα(e)2 ≤ α2

2α−1(∇u(e)∇ũ2α−1(e)) for all e ∈
B

d , and thus

(38)
∑

e∈Bd

η2(e)ω(e)∇u(e)∇ũ2α−1(e) ≥ 2α − 1

α2

∑
e∈Bd

η2(e)ω(e)∇ũα(e)2.

To estimate the first term on the right-hand side in (37), we use the pointwise inequality
|ũ2α−1|(e)|∇u(e)| ≤ 4|∇ũα(e)||u|α(e) (see (52)), and thus by Young’s inequality (together
with elementary inequality η(e)2 ≤ η2(e))

(39)

2
∣∣∣∣ ∑
e∈Bd

ω(e)∇u(e)η(e)∇η(e)ũ2α−1(e)
∣∣∣∣

≤ 2α − 1

2α2

∑
e∈Bd

ω(e)η2(e)
(∇ũα(e)

)2

+ 128α2

2α − 1

∑
e∈Bd

ω(e)
(|u|α(e)

)2(∇η(e)
)2

.

Combining (37)–(39), we obtain (36).

Substep 1.2. Proof of (34). By minimizing the right-hand side of (36) over all η : Zd →
[0,∞) satisfying η = 1 on B(ρ) and η = 0 in Z

d \ B(σ − 1), we obtain in view of Lemma 2,

∑
e∈B(ρ)

ω(e)
(∇ũα(e)

)2 � α2‖ω‖Lp(B(σ))

(σ − ρ)
2d

d−1

(‖∇ũα‖2
Lp∗ (B(σ )) + ρ−2‖ũα‖2

Lp∗ (B(σ ))

)
.

By Hölder’s inequality, we obtain

‖∇ũα‖2

L
2q

q+1 (B(ρ))

≤ ∥∥ω−1∥∥
Lq(B(ρ))

( ∑
e∈B(ρ)

ω(e)
(∇ũα(e)

)2
)

� α2‖ω−1‖Lq(B(ρ))‖ω‖Lp(B(σ))

(σ − ρ)
2d

d−1

(‖∇ũα‖2
Lp∗ (B(σ )) + ρ−2‖ũα‖2

Lp∗ (B(σ ))

)
and the claim (34) follows.
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Substep 1.3. Estimate (35) is a straightforward consequence of (36) (with α = 1 and a
“linear” cut-off function η satisfying η(x) = 1 for x ∈ B(ρ), η = 0 on Z

d \ B(σ − 1) and
∇η(e) = (σ − ρ)−1 for all e ∈ S(k) and k ∈ {ρ, . . . , σ − 1}) and an application of Hölder’s
inequality.

Step 2. One-step improvement.
Fix α ≥ 1 and ρ,σ ∈ N with n ≤ ρ < σ ≤ 2n. We claim that there exists c = c(d,p, q) ∈

[1,∞) such that

‖ũχα‖
1

χα

W 1,p∗ (B(ρ))
≤

(
cα�ω(B(2n))

1
2

(1 − ρ
σ
)

d
d−1

) 1
χα ‖ũα‖

1
α

W 1,p∗ (B(σ ))
,(40)

where χ := 1 + δ > 1 with δ = 1
d−1 − 1

2q
− 1

2p
> 0 and for p ∈ [1,∞) and any pair (y, n) ∈

Z
d ×N the (normalized) Sobolev norm ‖ · ‖W 1,p(B(y,n)) is defined for any v : Zd →R as

‖v‖W 1,p(B(y,n)) := ‖v‖Lp(B(y,n)) + n‖∇v‖Lp(B(y,n)).

In order to establish (40), we use Step 1 and the following two estimates:

‖ũχα‖Lp∗ (B(ρ)) = ‖ũα‖χ

Lχp∗ (B(ρ))
� ‖ũα‖χ

W 1,p∗ (B(ρ))
,(41)

ρ‖∇ũχα‖Lp∗ (B(ρ)) � ρ‖∇ũα‖
L

2q
q+1 (B(ρ))

‖ũα‖δ

L1(B(ρ))
.(42)

Estimate (41) is a consequence of Sobolev inequality (note that χ ∈ (1, d
d−1 ], and thus 1

χp∗ ≥
1
p∗ − 1

dp∗ ≥ 1
p∗ − 1

d
since p∗ ≥ 1) and (42) follows from

‖∇ũα(1+δ)‖Lp∗ (B(ρ))

(50)≤ (1 + δ)

( ∑
e∈B(ρ)

∣∣∇ũα(e)
∣∣p∗(2|u|αδ(e)

)p∗
) 1

p∗

≤ (1 + δ)‖∇ũα‖
L

2q
q+1 (B(ρ))

( ∑
e∈B(ρ)

(
2|u|αδ(e)

) 1
δ

)δ

.

Appealing to estimates (34), (42), (41) and Jensen inequality in the form ‖ · ‖L1(B(ρ)) ≤ ‖ ·
‖Lp∗ (B(ρ)), we obtain

‖ũχα‖W 1,p∗ (B(ρ))

(41), (42)
� ‖ũα‖χ

W 1,p∗ (B(ρ))

+ ρ‖∇ũα‖
L

2q
q+1 (B(ρ))

‖ũα‖δ
Lp∗ (B(ρ))(43)

(34)
�

(
α�ω(B(2n))

1
2

(1 − ρ
σ
)

d
d−1

)
‖ũα‖χ

W 1,p∗ (B(σ ))
,

where for the last estimate we used that α ≥ 1, n ≤ ρ < σ ≤ 2n, �ω(B(2n)) ≥ 1 and χ =
1 + δ. Taking the 1

χα
power, we obtain (40).

Step 3. Iteration.
For ν ∈ N∪ {0}, set αν = χν−1 and ρν = n + � n

2ν �. Then for any ν ∈ N satisfying 2ν ≤ n,
estimate (40) (with α = αν , ρ = ρν and σ = ρν−1) implies that there exists c = c(d,p, q) ∈
[1,∞) such that

(44) ‖ũχν‖
1

χν

W 1,p∗ (B(ρν))
≤ (

c�ω(
B(2n)

) 1
2 (4χ)ν

) 1
χν ‖ũχν−1‖

1
χν−1

W 1,p∗ (B(ρν−1))
,
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where we used the elementary estimate

(
1 − ρν

ρν−1

)− d
d−1 =

(
n + � n

2ν−1 �
� n

2ν−1 � − � n
2ν �

) d
d−1 ≤ (

22+ν) d
d−1

d≥2≤ 42+ν.

Set ν̂(n) := max{ν ∈ N | 2ν ≤ n}. Using (44) ν̂(n)-times, we obtain

(45)
‖u‖

Lp∗χν̂(n)
(B(n))

≤
ν̂(n)∏
ν=1

(
c�ω(

B(2n)
) 1

2 (4χ)ν
) 1

χν ‖u‖W 1,p∗ (B(2n))

≤ (
c�ω(

B(2n)
) 1

2
)∑∞

ν=1
1

χν (4χ)
∑∞

ν=1
ν+1
χν ‖u‖W 1,p∗ (B(2n)).

To estimate the right-hand side of (45), we use (35), Jensen’s inequality and the fact that
p∗ <

2q
q+1 ≤ 2 ≤ 2p′,

‖∇u‖Lp∗ (B(2n)) ≤ ‖∇u‖
L

2q
q+1 (B(2n))

(35)
� n−1�ω(

B(4n)
) 1

2 ‖u‖
L2p′

(B(4n))
,

‖u‖Lp∗ (B(2n)) � ‖u‖
L2p′

(B(4n))
.

Since �ω ≥ 1 and
∑∞

ν=0(1 + ν)χ−ν � 1, we obtain

‖u‖L∞(B(n)) ≤ ∣∣B(n)
∣∣ 1

p∗χν̂(n) ‖u‖
Lp∗χν̂(n)

(B(n))

�
∣∣B(n)

∣∣ 1
p∗χν̂(n) �ω(

B(2n)
) 1

2 ( 1
1−χ−1 −1)‖u‖W 1,p∗ (B(2n))

�
∣∣B(n)

∣∣ 1
p∗χν̂(n) �ω(

B(4n)
) 1

2
χ

χ−1 ‖u‖
L2p′

(B(4n))
.

Hence, it is left to show that |B(n)|
1

χν̂(n) � 1 (recall χ = 1+δ). Assuming n ∈ N is sufficiently
large, we have ν̂(n) ≥ 1

2 log2 n, and thus

(46)

∣∣B(n)
∣∣ 1

χν̂(n) � nd/
√

χ log2 n = nd/
√

n
log2 χ = exp

(
log

(
nd/

√
n

log2 χ ))
= exp

(
d log(n)/

√
n

log2 χ )
� 1,

which completes the proof. �

Using a well-known iteration argument (see, e.g., [3], Corollary 3.9), we refine the state-
ment of Theorem 4 and obtain the following.

COROLLARY 1. Fix d ≥ 3, ω ∈ � and let p,q ∈ (1,∞] be such that 1
p

+ 1
q

< 2
d−1 . For

every γ ∈ (0,1], there exists c = c(d,p, q, γ ) ∈ [1,∞) such that solutions of ∇∗(ω∇u) = 0
in Z

d satisfy for every n ∈ N,

max
x∈B(n)

∣∣u(x)
∣∣ ≤ c�ω(

B(2n)
) δ+1

2δγ ‖u‖
L2p′γ (B(2n))

,

where δ = 1
d−1 − 1

2p
− 1

2q
> 0, p′ = p

p−1 and �ω is defined in (8).

PROOF OF THEOREM 2. The choice γ = 1
2p′ in Corollary 1 yields (7) for y = 0 ∈ Z

d

and by translation we obtain the general claim. �
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PROOF OF COROLLARY 1. Throughout the proof, we write � if ≤ holds up to a positive
constant that depends only on d , p and q .

Step 1. We claim that for every N,N ′ ∈ N with N ′ < N ,

(47) max
x∈B(N ′)

∣∣u(x)
∣∣ � �ω(B(N))

δ+1
2δ

(1 − N ′
N

)s
‖u‖

L
2p

p−1 (B(N))

,

where s := d
2 (1 + 1

q
+ ( 1

p
+ 1

q
)1
δ
). Suppose N − N ′ ≥ 4. Theorem 4 and a simple translation

argument yield for every y ∈ B(N ′),
max

x∈B(y,�N−N ′
4 �)

∣∣u(x)
∣∣

� �ω(
B

(
y,N − N ′)) δ+1

2δ ‖u‖
L

2p
p−1 (B(y,N−N ′))

�
(

Nd

(N − N ′)d
)p−1

2p
+( 1

q
+ 1

p
) δ+1

2δ

�ω(
B(N)

) δ+1
2δ ‖u‖

L
2p

p−1 (B(N))

and estimate (47) follows. For the remaining case 1 ≤ N − N ′ ≤ 3, we use the discrete L∞-
L1-estimate in the form

max
x∈B(N ′)

∣∣u(x)
∣∣ ≤ ‖u‖

L
2p

p−1 (B(N))

� N
d
2 (1− 1

p
)‖u‖

L
2p

p−1 (B(N))

which implies estimate (47) (using 1 ≤ N,�ω(B(N)) and (1 − N ′
N

)−s ≥ (N
3 )s with d

2 (1 −
1
p
) ≤ s).

Step 2. Iteration. Fix γ ∈ (0,1). For ν ∈ N ∪ {0}, we set ρν = 2n − � n
2ν �. Combining the

elementary interpolation inequality,

(48) ‖u‖
L2p′

(B(ρν))
≤ ‖u‖γ

L2p′γ (B(ρν))
‖u‖1−γ

L∞(B(ρν))

with the estimate (47), we obtain for every ν ∈ N,

‖u‖L∞(Bρν−1 )

(47)
� �ω(

B(ρν)
) δ+1

2δ

(
1 − ρν−1

ρν

)−s

‖u‖
L2p′

(B(ρν))

(48)≤ �ω(
B(ρν)

) δ+1
2δ

(
1 − ρν−1

ρν

)−s

× ‖u‖γ

L2p′γ (B(ρν)
‖u‖1−γ

L∞(B(ρν))

≤ 2νsC‖u‖γ

L2p′γ (B(2n))
‖u‖1−γ

L∞(B(ρν))

(49)

with C = c�ω(B(2n))
δ+1
2δ and a suitable constant c = c(d,p, q) ∈ [1,∞), where we used for

the last estimate ρν ≥ n for all ν ∈ N and (1 − ρν−1
ρν

)−s ≤ (22+ν)s .
Iterating (49) from ν = 1 to ν̂(n) := max{ν ∈ N | 2ν ≤ n}, we obtain

‖u‖L∞(B(n))

= ‖u‖L∞(B(ρ0))

(49)≤ 4s
∑ν̂(n)−1

ν=0 (ν+1)(1−γ )ν (C‖u‖γ

L2p′γ (B(2n))

)∑ν̂(n)−1
ν=0 (1−γ )ν‖u‖(1−γ )ν̂(n)

L∞(B(ρν̂(n)))
.
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Using
∑∞

ν=0(ν + 1)(1 − γ )ν � 1,
∑ν̂(n)−1

ν=0 (1 − γ )ν = 1
γ
(1 − (1 − γ )ν̂(n)), C ≥ 1 and the

discrete L∞-L1-estimate in the form ‖u‖L∞(B(ρν̂(n))) ≤ ‖u‖
L2p′γ (B(2n))

, we obtain

‖u‖L∞(B(n)) ≤ c�ω(
B(2n)

) δ+1
2δγ ‖u‖

L2p′γ (B(2n))

∣∣B(2n)
∣∣ (1−γ )ν̂(n)

2p′γ ,

where c = c(γ, d,p, q) ∈ [1,∞). Finally, a similar calculation as in (46) yields

|B(2n)|
(1−γ )ν̂(n)

2p′γ � c(γ ) ∈ [1,∞), which completes the proof. �

APPENDIX A: TECHNICAL ESTIMATES

We recall some estimates proven in [3], Lemma A.1, that we used in the proof of Theo-
rem 2.

LEMMA 3 ([3], Lemma A.1). For a ∈R and α ∈R \ {0}, set ãα = |a|α signa.

(i) For all a, b ∈ R and any α,β �= 0,

(50) |ãα − b̃α| ≤
(

1 ∨
∣∣∣∣αβ

∣∣∣∣
)
|ãβ − b̃β |(|a|α−β + |b|α−β)

.

(ii) For all a, b ∈ R and α > 1
2 ,

(51) (ãα − b̃α)2 ≤ α2

2α − 1
(a − b)(ã2α−1 − b̃2α−1).

(iii) For all a, b ∈ R and α ≥ 1
2 ,

(52)
(|a|2α−1 + |b|2α−1)

(a − b) ≤ 4|ãα − b̃α|(|a|α + |b|α)
.

APPENDIX B: THE TWO-DIMENSIONAL CASE

In two dimensions, Biskup [13] proved sublinearity of the corrector and the QFCLT under
the minimal moment condition p = q = 1 in (3). The reasoning in [13] (which has its origins
in [12]) combines geometric, analytical and probabilistic arguments. In this section, we sketch
a proof of Biskups result that relies only on deterministic regularity theory and the spatial
ergodic theorem. The main ingredient is the following local boundedness result.

PROPOSITION 4. Fix ω ∈ (0,∞)B
2
. Then there exists c ∈ [1,∞) such that solutions of

∇∗(ω∇u) = 0 in Z
2 satisfy for every n ∈ N,

(53) max
x∈B(n)

∣∣u(x)
∣∣ ≤ c

(
n
∥∥ω−1∥∥ 1

2

L1(B(2n))

∥∥ω(∇u)2∥∥ 1
2

L1(B(2n))
+ ‖u‖L1(B(2n))

)
.

PROOF. Throughout the proof, we write � if ≤ holds up to a generic positive constant.
The proof is elementary and relies on three ingredients: First, ∇∗(ω∇u) = 0 in Z

2 implies
a maximum principle in the form

(54) max
x∈B(n)

∣∣u(x)
∣∣ ≤ max

x∈B(k)

∣∣u(x)
∣∣ ≤ max

x∈∂B(k)

∣∣u(x)
∣∣ for all k ∈ {n, . . . ,2n}.

Second, since

2n∑
k=n

(
‖∇u‖L1(∂B(k)) + 1

n
‖u‖L1(∂B(k))

)
≤ ‖∇u‖L1(B(2n)) + 1

n
‖u‖L1(B(2n)),
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we can choose a “good” k̃ ∈ {n, . . . ,2n} satisfying

(55) ‖∇u‖
L1(∂B(k̃))

+ 1

n
‖u‖

L1(∂B(k̃))
≤ 1

n

(
‖∇u‖L1(B(2n)) + 1

n
‖u‖L1(B(2n))

)
.

The last ingredient is a one-dimensional Sobolev inequality (which follows simply by the
discrete version of the fundamental theorem of calculus)

(56) max
x∈∂B(k)

∣∣u(x)
∣∣ � ‖∇u‖L1(∂B(k)) + 1

k
‖u‖L1(∂B(k)) for all k ∈ {n, . . . ,2n}.

Combining (54)–(56) and k̃ ∈ {n, . . . ,2n}, we obtain

max
x∈B(n)

∣∣u(x)
∣∣ (54)≤ max

x∈∂B(k̃)

∣∣u(x)
∣∣ (56)

� ‖∇u‖
L1(∂B(k̃))

+ 1

n
‖u‖

L1(∂B(k̃))

(55)
� n‖∇u‖L1(B(2n)) + ‖u‖L1(B(2n)),

where we used in the last inequality also the fact |B(2n)| � n2. Clearly, (53) follows from the
last displayed formula and Hölder’s inequality. �

PROPOSITION 5. Let d = 2 and suppose that parts (i) and (ii) of Assumptions 1 are
satisfied. Moreover, suppose that E[ω(e)] < ∞ and E[ω(e)−1] < ∞ for every e ∈ B

2. Then,
for every j ∈ {1, . . . , d},

lim
n→∞

1

n
max

x∈B(n)

∣∣χj (ω, x)
∣∣ = 0 P-a.s.

PROOF. Throughout the proof, we write � if ≤ holds up to a generic positive constant.

Step 1. More ergodic theory. In contrast to (7), the right-hand side of (53) depends on the
discrete gradient of the Lω-harmonic function. In the application to the corrector equation
∇∗(ω∇	j) = 0, we use the ergodic theorem to control terms coming from ∇	j . For this, it
is convenient to introduce the following measure on Z

d :

ιωj (x) := ∑
y∈Zd

ω(x, y)
(
χj (ω, y) − 
j(ω,y) − (

χj (ω, x) − 
j(ω,x)
))2

(15)= ∑
y∈Zd

ω(x, y)
(
	j(ω,y) − 	j(ω,x)

)2
,

where j ∈ {1, . . . , d} and 
j denotes the position field introduced in Section 2.1. Since 	j

is defined as a projection of 
j on L2
sol in L2

cov, we have

(57) E
[
ιj (0)

] = E

[ ∑
y∈Zd

ω(0, y)	j (y)2
]

= ‖	j‖2
L2

cov
≤ ‖
j‖2

L2
cov

≤ E
[
μ(0)

]
,

where we use 	j(ω,0) = 0 for every ω (which follows directly from the cocycle property).
Moreover, appealing to the cocycle property of 	j , we have ιτzω(x) = ιω(x + z) for every
x, z ∈ Z

d , and thus, by (57) and the spatial ergodic theorem, we find a set �′ ∈ � with
P[�′] = 1 such that for all ω ∈ �′ and for every z ∈ Z

d ,

(58) lim
n→∞

∥∥ιωj ∥∥
L1(B(nz,n)) = E

[
ιωj (0)

] ≤ E
[
μ(0)

]
< ∞.
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Step 2. From now on, we use the notation of Step 2 in the proof of Proposition 2. Using
estimate (53) instead of (7), we obtain

(59)

∥∥uz
j

∥∥
L∞(B(� n

m
�z,� n

m
�))

�
⌊

n

m

⌋∥∥ω−1∥∥ 1
2

L1(B(� n
m

�z,2� n
m

�))
∥∥ω(∇χj − ∇
j)

2∥∥ 1
2

L1(B(� n
m

�z,2� n
m

�))

+ ‖χj‖L1(B(� n
m

�z,2� n
m

�)) +
⌊

n

m

⌋
,

instead of (21). Estimate (59) implies the following L∞-estimate on χj :

‖χj‖L∞(B(n))

� sup
z∈B(m)

∥∥uz
j

∥∥
L∞(B(� n

m
�z,� n

m
�)) +

⌊
n

m

⌋

(59)
�

⌊
n

m

⌋
sup

z∈B(m)

(∥∥ω−1∥∥ 1
2

L1(B(� n
m

�z,2� n
m

�))
∥∥ω(∇	j)

2∥∥ 1
2

L1(B(� n
m

�z,2� n
m

�))
)

(60)
+ sup

z∈B(m)

‖χj‖L1(B(� n
m

�z,2� n
m

�)) +
⌊

n

m

⌋

�
⌊

n

m

⌋
sup

z∈B(m)

∥∥ω−1∥∥ 1
2

L1(B(� n
m

�z,2� n
m

�))
∥∥ω(∇	j)

2∥∥ 1
2

L1(B(� n
m

�z,2� n
m

�))

+ md‖χj‖L1(B(2n)) +
⌊

n

m

⌋
.

The ergodic theorem in the versions (20) and (58) implies that P-a.s.:

(61)
lim sup
n→∞

max
z∈B(m)

∥∥ω−1∥∥ 1
2

L1(B(� n
m

�z,2� n
m

�))
∥∥ω(∇	j)

2∥∥ 1
2

L1(B(� n
m

�z,2� n
m

�))

� E
[
ν(0)

] 1
2E

[
ιj (0)

] 1
2 ≤ E

[
ν(0)

] 1
2E

[
μ(0)

] 1
2 .

Combining (60), (61) and the L1-sublinearity of χj (17), we obtain

lim sup
n→∞

1

n
‖χj‖L∞(B(n)) � 1

m

(
1 +E

[
ν(0)

] 1
2E|μ(0)] 1

2
)
.

The arbitrariness of m ∈ N yields the desired claim. �
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