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Mass spectrometry proteomics, characterized by spiky, spatially hetero-
geneous functional data, can be used to identify potential cancer biomarkers.
Existing mass spectrometry analyses utilize mean regression to detect spec-
tral regions that are differentially expressed across groups. However, given
the interpatient heterogeneity that is a key hallmark of cancer, many biomark-
ers are only present at aberrant levels for a subset of, not all, cancer samples.
Differences in these biomarkers can easily be missed by mean regression but
might be more easily detected by quantile-based approaches. Thus, we pro-
pose a unified Bayesian framework to perform quantile regression on func-
tional responses. Our approach utilizes an asymmetric Laplace working like-
lihood, represents the functional coefficients with basis representations which
enable borrowing of strength from nearby locations and places a global-local
shrinkage prior on the basis coefficients to achieve adaptive regularization.
Different types of basis transform and continuous shrinkage priors can be
used in our framework. A scalable Gibbs sampler is developed to generate
posterior samples that can be used to perform Bayesian estimation and infer-
ence while accounting for multiple testing. Our framework performs quantile
regression and coefficient regularization in a unified manner, allowing them
to inform each other and leading to improvement in performance over com-
peting methods, as demonstrated by simulation studies. We also introduce
an adjustment procedure to the model to improve its frequentist properties
of posterior inference. We apply our model to identify proteomic biomarkers
of pancreatic cancer that are differentially expressed for a subset of cancer
patients compared to the normal controls which were missed by previous
mean-regression based approaches. Supplementary Material for this article is
available online.

1. Introduction.

1.1. Mass spectrometry proteomics. The rapid advancement of molecular biotechnology
has led to the ability to make large-scale molecular measurements using high-throughput
technologies at various molecular resolution levels, including DNA, mRNA, epigenetic,
metabolite and protein levels. DNA and mRNA have been most frequently studied, largely
because nucleotide sequences are easier to study and analyze in nature than proteins and
metabolites. However, it is proteins, rather than DNA or messenger RNA, that play a fun-
damental functional role in the molecular processes underlying various diseases, including
cancer. As a result, there is great interest in studying proteins directly and identifying pro-
teomic biomarkers of cancer that can potentially be used for early detection, new drug target
identification and precision medicine strategies.

Mass spectrometry is an analytical technique to survey a large number of different pro-
teins, peptides or metabolites in a biological sample by first ionizing the particles from the
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sample, then separating the ions based on their mass-to-charge ratio, detecting the ions and as-
sembling them into a mass spectrum for each sample. Commonly used ionization techniques
for solid and liquid biological samples include MALDI (matrix assisted laser desorption and
ionization), ESI (electrospray ionization) and popular mass analyzers which separate charged
particles and include TOF (time-of-flight) analyzer and quadrupole mass analyzers. Regard-
less of the ionization and separation techniques used, the resulting mass spectrum is a highly
spiky and irregular function with many peaks and with the spectral intensity y(t) approxi-
mating the relative abundance of a protein or peptide with the mass-to-charge ratio of t in the
given biological sample. To further enhance its capability for protein identification and quan-
tification, mass spectrometry is often used in tandem with liquid chromatography, which first
separates the proteomic sample through an LC column over a series of elution times based
on hydrophobicity or other physical properties before the mass spectrometry procedure, re-
sulting in 2D mass spectrometry data (LC-MS) with one dimension representing elution time
and the other dimension representing the mass-to-charge ratio (Liao et al. (2014), Zhang et al.
(2009)).

1.2. Interpatient heterogeneity and pancreatic cancer proteomic markers. At the Univer-
sity of Texas M.D. Anderson Cancer Center, a study was conducted using MALDI-TOF to
discover potential proteomic markers of pancreatic cancer. In this study researchers collected
the blood serum samples from 139 pancreatic cancer patients and 117 normal controls and
ran them on a MALDI-TOF mass spectrometer to produce a mass spectrum for each sam-
ple (Koomen et al. (2005), Morris et al. (2008)). The left column of Figure 1 displays the raw
spectrum of a pancreatic cancer patient and a normal control from this dataset which demon-
strates the highly spiky and irregular nature of mass spectrometry data. We also provide plots
of a random sample of individual spectra in Figure S1 in Section 3 in the Supplementary
Material (Liu, Li and Morris (2020)) to give readers an idea of the characteristics of these
functional data. The primary goal of this study is to identify proteins, represented by spec-
tral regions with differential abundance between pancreatic cancer and normal samples, and
potentially useful as diagnostic, prognostic or predictive biomarkers.

Classic approaches to analyzing mass spectrometry data depend on first performing peak
detection and then only analyzing the detected locations and sometimes intensities of those
peaks. For example, after applying a feature detection method to identify m peaks for each
of N spectra, these can be put together into an N × m matrix and analyzed to find which
of the m features are associated with factors of interest (cancer/normal). While this two-step
approach seems intuitive and reasonable, important proteomic differences across factors of
interest might be missed if the feature detection procedure in the first step fails to detect peaks
corresponding to the corresponding protein. An alternative to this feature extraction-based
approach is to model the entire mass spectra as functional data using functional data analy-
sis techniques. Morris (2012) applied the wavelet-based functional mixed model, introduced
by Morris and Carroll (2006) to this pancreatic cancer dataset, to identify differentially ex-
pressed regions between cancer and control in the range from t = 4000 to t = 20,000 Daltons
and flagged approximately 50% more significant spectral regions than the more commonly
used peak detection approach, suggesting that the functional modeling approach can yield
greater power for biomarker discovery.

As is the case for nearly all mass spectrometry analyses, both of these feature extraction
and functional data approaches and utilize mean regression in which the mean expression
levels are compared across predefined groups.

However, given the interpatient heterogeneity that is a hallmark of cancer, many potentially
useful proteomic biomarkers may have aberrant expression in only a small subset of cancer
patients compared to the normals. The cancer-normal differences in these cases may not be
apparent in the means but would manifest in certain quantiles in the tail of the distribution.
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FIG. 1. Sample spectra from the pancreatic cancer dataset. The first column shows the raw spectrum of a normal
control (a) and a cancer patient (c) randomly chosen from the pancreatic cancer MALDI-TOF mass spectrometry
dataset. The second column displays the corresponding spectra of the normal control (b) and the cancer patient
(d) after preprocessing, which includes baseline correction, normalization, denoising and log2 transformation.

To explore this possibility, we computed the difference in the mean and sample quantiles
between the cancer and normal groups for each spectral position between 5000D and 8000D
in Figure 2(a). Note that in the region (5700D, 6000D), there appear to be huge differences
in the 90th percentile in the upper tail, while there is little evidence of a difference in the
median or mean. More closely inspecting one location at 5764.1D, Figure 2(b) and (c) show
a strongly right-skewed pattern of the spectral intensity distribution for the cancer cohort and
a slightly left-skewed distribution with a similar mode for the normal cohort. This observation
suggests that a small subset of pancreatic cancer patients have much higher protein levels than
other patients and healthy controls at 5764.1D, but mean or median regression might not be
able to detect this important pattern. While these plots are suggestive of some difference,
formal statistical methods are needed to assess these potential differences, and these methods
need to account for the multiple testing problem inherent to these high-dimensional data. Our
goal in this paper is to develop such methods.

1.3. Literature review and contributions. Quantile regression, first introduced by
Koenker and Bassett (1978), has been widely used in many application areas to study the
effect of predictor variables on a given quantile level of the response and can reveal im-
portant information about how the entire distribution of response varies with predictors in
ways that might not be captured by mean regression. Traditionally, quantile regression is
formulated as an optimization problem in which the regression coefficients are estimated by
minimizing the check loss function (Koenker (2005)).

Recently, Bayesian quantile regression has gained a lot of attention, partly because poste-
rior samples can be used to perform Bayesian inference on any model parameter in a straight-
forward manner. A great variety of likelihoods have been proposed to perform Bayesian
quantile regression; see Lum and Gelfand (2012) and Yang, Wang and He (2016) for a com-
prehensive overview. Among them, Yang and He (2012) used the empirical likelihood in
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FIG. 2. Empirical comparisons of spectral intensities on the log2 scale between the cancer and normal cohorts
at multiple quantile levels and mean. (a) shows the differences of spectral intensities of the sample mean and
multiple quantile levels (denoted by different colors) in the spectral region [5000D, 8000D] between the cancer
and normal cohorts from the preprocessed pancreatic cancer dataset. The vertical line represents the spectral
location 5764.1D, where we observe a huge difference between the two cohorts in the 90th sample quantiles. The
histograms of the spectral intensities at 5764.1D are shown respectively for the cancer cohort (b) and the normal
cohort (c), with the sample mean and multiple quantile levels marked by vertical lines with different colors.

a Bayesian framework, making it possible to model multiple quantiles simultaneously and
achieve efficiency gains through borrowing strength across quantiles, and established the fre-
quentist asymptotic validity of posterior inference based on the empirical likelihood. Xi, Li
and Hu (2016) extended this approach to perform Bayesian variable selection in quantile
regression by putting a spike-and-slab prior on the regression coefficients. In this paper we
chose to use asymmetric Laplace (AL) error distribution (Yu and Moyeed (2001)) that has
been widely adopted in Bayesian quantile regression (Geraci and Bottai (2006), Yue and Rue
(2011), Lum and Gelfand (2012)), based on the fact that the maximization of an AL likeli-
hood is equivalent to the minimization of the check loss function.

In the present context, we would like to perform quantile regression for each spectral lo-
cation which is a generalization consisting of quantile regression of functional responses on
scalar predictors that we henceforth refer to as functional quantile regression (FQR). Kim
(2007) introduced a varying coefficient model for quantile regression which can model the
effect of a continuous predictor on the conditional quantile of a scalar response nonpara-
metrically; there has been some extensions along this line of work, including Cai and Xu
(2008), Wang, Zhu and Zhou (2009), Feng and Zhu (2016). There has also been recent work
on scalar-on-function quantile regression, where the conditional quantile of a scalar response
is modeled as an inner product of a functional predictor and an unknown coefficient func-
tion (Cardot, Crambes and Sarda (2005), Chen and Müller (2012), Ferraty, Rabhi and Vieu
(2005), Kato (2012), Li et al. (2016)). However, to the best of our knowledge, there is a
paucity of methods to perform FQR, that is, function-on-scalar quantile regression. One ap-
proach would be to simply fit independent quantile regressions for each t , which is unbiased
but expected to be inefficient since it does not borrow strength from nearby t as is typical
in functional data modeling approaches. As emphasized in a review of functional regression
techniques in Morris (2015), most functional regression methods borrow strength across t by
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using basis functions and penalization to induce smoothness and regularization in the func-
tional coefficients. The functional linear array model proposed by Brockhaus et al. (2015) is
a general framework for functional regression that can be used to perform FQR if the check
loss function is used. However, as we will show by simulations, this framework’s utilization
of spline basis functions and global L2 penalization may not work well for complex, irregu-
lar functions, like the mass spectrometry data here; the FDboost fitting approach (Brockhaus
and Ruegamer (2017)) has scalability problems in this setting. New methods for performing
functional response quantile regression are needed for such data.

We make the following contributions in this paper. Motivated by the mass spectrometry
dataset, we present a novel unified Bayesian FQR framework that is designed for complex,
high-dimensional functional data that are sampled on a dense grid. Our proposed framework
adopts AL distributed residual error functions, which lead to quantile regression on functional
responses, and adaptively regularizes the functional regression coefficients using a basis rep-
resentation with shrinkage priors on the corresponding basis coefficients. This framework
is highly general in that any basis functions and computationally tractable shrinkage pri-
ors can be chosen, depending on the characteristics of the functional data to be analyzed. It
is also easy-to-implement, given that basis transforms and hierarchical shrinkage priors are
well developed and frequently used tools in Bayesian modeling nowadays. In addition, this
framework not only yields estimates but also posterior samples that can be used to perform
Bayesian inference on the regression coefficients while accounting for multiple testing over t .
We develop a scalable Gibbs sampler to fit this fully Bayesian hierarchical model in an au-
tomated fashion with no tuning required. Our approach is computationally scalable and can
handle functional responses observed on grids of hundreds to thousands. We apply our model
to identify proteomic biomarkers of pancreatic cancer that are differentially expressed for a
subset of cancer patients, compared to the normal controls which were missed by previous
mean-regression based approaches.

We introduce the Bayesian functional quantile regression framework in Section 2.1, de-
scribe the procedures for posterior computation of our proposed model in Section 2.2, discuss
posterior inference in Section 2.3 and propose an adjusted version of our model to improve
the frequentist properties of posterior inference in Section 2.4. We conduct simulation stud-
ies to assess the performance of our model and compare to other alternatives in Section 3,
apply our model to the motivating pancreatic cancer mass spectrometry dataset and discuss
the findings in Section 4 and conclude the paper with a discussion in Section 5.

2. Methods.

2.1. Bayesian functional quantile regression (FQR) model. Suppose a sample of N

curves Y(t) = (Y1(t), . . . , YN(t))′ are observed on the same compact set T , and X is the
N × p design matrix. For the τ th quantile, the model we use to perform Bayesian functional
quantile regression is given by

Y(t) = XBτ (t) + Eτ (t),(2.1)

where Bτ (t) = (Bτ
1 (t), . . . ,Bτ

p(t))′ is a vector of regression coefficient functions measuring
the effect of covariates X on the τ th quantile of response function Y at position t , and Eτ (t) =
(Eτ

1 (t), . . . ,Eτ
N(t))′ is a vector of residual error functions that follow asymmetric Laplace

distribution AL(0, τ, σ (t)) at position t independently across positions and samples.
The probability density function of AL(0, τ, σ (t)) is given by

f (ε|μ,τ, σ ) = τ(1 − τ)

σ
exp

[
−ρτ (ε − μ)

σ

]
,
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where ρτ (u) = u(τ − 1(u≤0)) is the check loss function. The τ th quantile of the asymmet-
ric Laplace distribution AL(0, τ, σ (t)) is zero; therefore, model (2.1) implies Qτ(Y(t)|X) =
XBτ (t) for ∀t ∈ T , with Qτ(Y(t)|X) denoting the τ th quantile of Y(t) conditional on X
and Bτ

a (t) representing the partial effect of the covariate a on the τ th quantile of Y(t). An
asymmetric Laplace random variable ε can be represented as a scale mixture of normal dis-
tributions (Reed and Yu (2009)), that is,

ε
d= 1 − 2τ

τ(1 − τ)
ξ +

√
2σξ

τ(1 − τ)
Z,

where Z is a standard normal random variable and ξ is an independent exponential random
variable with mean σ . This representation allows the development of an efficient partially
collapsed Gibbs sampler for Bayesian quantile regression as detailed in Section 2.2.

To simplify notation, henceforth we omit the quantile level τ in the hierarchical model-
ing assumptions we make for the functional quantile regression coefficients Bτ (t), with the
understanding that the coefficients correspond to a particular choice of quantile τ .

Basis representation and shrinkage priors. As is typical for functional regression meth-
ods, we will induce regularization in the functional coefficients Ba(t) using a basis represen-
tation and penalization induced by sparsity priors. For a given chosen finite basis representa-
tion {φk(t), k = 1, . . . ,K}, we specify a basis representation for Ba(t),

Ba(t) =
K∑

k=1

B∗
akφk(t).(2.2)

Common choices of the basis functions include splines, functional principal components,
Fourier bases and wavelets.

As is typical in functional regression contexts (Morris (2015)), appropriate regularization
of basis coefficients B∗

ak produces smoother and more regular estimates of the correspond-
ing functional coefficients Ba(t) that borrow strength across t . We choose to penalize the
basis coefficients using a global-local shrinkage prior, which consists of a global shrink-
age parameter whose prior has substantial mass near zero to handle noise effectively, and
a local shrinkage parameter whose prior has a heavy tail to avoid over-shrinkage of signals
(Polson and Scott (2011)). Global-local shrinkage priors have been widely used in Bayesian
modeling these days, and some of them, including the horseshoe and the Dirichlet–Laplace
prior, have been shown to possess desirable theoretical properties in the high-dimensional
regression setting (Carvalho, Polson and Scott (2010), van der Pas, Kleijn and van der Vaart
(2014), Bhattacharya et al. (2015)). For extra flexibility in regularization, we group the basis
functions k = 1, . . . ,K into regularization subsets j = 1, . . . , J , each containing Hj basis
functions such that K = ∑J

j=1 Hj . This allows different sets of basis functions to experience
different levels of shrinkage which can lead to more adaptive regularization of Ba(t). For ex-
ample, for wavelet bases, j can index the wavelet scale, allowing higher and lower frequency
wavelets to experience different levels of shrinkage. For functional principal components
analysis, the Hj eigenfunctions that share the same �log10(ηk)�, where ηk denotes the corre-
sponding eigenvalue, can be grouped into the same regularization subset j . This allows for
the possibility that dimensions explaining a higher proportion of the functional variability
may also be more important for representing the functional predictor Ba(t) as well and be
allowed to experience less shrinkage.

Given the regularization groups, a general global-local prior on the basis coefficients B∗
ajh,

where the subscripts j and h index the regularization subset and basis function, respectively,
can be expressed as

(2.3) B∗
ajh ∼ N

(
0, λ2

ajhψ
2
aj

)
, λajh ∼ g1,ψaj ∼ g2(�aj ).
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This prior is comprised of a scale mixture of Gaussians, with a global shrinkage parameter
ψ2

aj and local shrinkage parameter λ2
ajh. The local shrinkage parameters λajh are assigned

some prior g1, allowing a different amount of shrinkage on B∗
ajh within the regularization

subset j . The global shrinkage parameter ψaj controls the overall level of shrinkage in the
subset j , which leads to some type of smoothing over t in Ba(t), and is assigned a prior g2

indexed by the hyperparameter �aj .
Conditioning on ψaj and integrating out λajh, different choices of g1 result in different

marginal distributional forms that lead to different types of penalization and forms of reg-
ularization. A degenerate distribution λajh ∼ δ1 induces a Gaussian prior on B∗

ajh, leading
to L2 penalization which would be a natural choice of regularization if spline basis func-
tions are used. λ2

ajh ∼ Exp(1
2) induces a Laplace prior on B∗

ajh, leading to L1 penalization
and for which the maximum a posteriori estimator is equivalent to the lasso estimate widely
used for variable selection. λajh ∼ C+(0,1) induces a horseshoe prior (Carvalho, Polson and
Scott (2009, 2010)) on B∗

ajh, leading to nonlinear adaptive shrinkage, particularly desirable
for wavelet transform, which tends to concentrate the signals in the data space on a relatively
small number of wavelet coefficients that are usually large in magnitude, with the remaining
coefficients being small and mostly consisting of noise. The infinitely tall spike of the horse-
shoe prior at the origin can strongly shrink the small coefficients, and its symmetric flat and
Cauchy-like tails can avoid over-shrinkage of the large coefficients and retain the dominant
local features in the observed data (Carvalho, Polson and Scott (2009)).

To summarize, our proposed model performs quantile regression on functional responses
based on model (2.1), represents the coefficient functions using an appropriate basis repre-
sentation as specified by model (2.2) and regularizes the basis coefficients by employing a
global-shrinkage prior in model (2.3). Henceforth, we term this model as Bayesian functional
quantile regression (FQR).

In practice, the functional responses are observed only on some discrete grid. Because
our model is built for functional data sampled on a sufficiently dense grid, interpolation can
be reasonably used to get a common grid for functional observations across subjects. If we
assume that Y(t) = (Y1(t), . . . , YN(t))′ are all observed on a common grid t = (t1, . . . , tT )′
and utilize the scale mixture representation of AL, we can represent the discrete version of
model (2.1) as

Yi(tl) = X′
iB

τ (tl) + 1 − 2τ

τ(1 − τ)
ξi(tl) +

√
2ξi(tl)σ (tl)

τ (1 − τ)
Zi(tl)(2.4)

for sample i = 1, . . . ,N and position l = 1, . . . , T . In model (2.4), Y is an N × T matrix of
functional responses with Yi(tl) being the observation for sample i at position l, B is a p ×T

matrix of functional coefficients with its lth column Bτ (tl) = (Bτ
1 (tl), . . . ,B

τ
p(tl))

′ being the
vector of quantile regression coefficients at position l, σ(tl) is the scale parameter of the
AL distribution at position l, ξi(tl) is the latent variable for sample i at position l following
exponential distribution with mean σ(tl) independently across positions and samples and
Zi(tl) is a standard normal variable i.i.d across positions and samples.

Equation (2.2) can now be expressed as

B = B∗�,(2.5)

where B∗ is a p × K matrix of basis coefficients and � is a full rank K × T matrix whose
kth row corresponds to the basis function φk evaluated on the discrete grid t.
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2.2. Posterior computation. We take a fully Bayesian approach to fit the FQR model. For
appropriately chosen priors g1 and g2, posterior sampling proceeds via a scalable blocked
Gibbs sampler with data augmentation if necessary. We outline the steps to draw posterior
samples of the parameters in model (2.4) as follows and leave the full computational details
in Section 1 in the Supplementary Material (Liu, Li and Morris (2020)):

1. For each l, sample (σ (tl)|B(tl),y(tl)) from an inverse Gamma distribution.
2. For each i and l, sample (1/ξi(tl)|B(tl), σ (tl),y(tl)) from an inverse Gaussian distribu-

tion.
3. For each a, sample (B∗

a|B∗−a,λa,ψa, ξ ,σ ,Y) from multivariate normal.
4. For each a, j , h, sample the local shrinkage parameter (λajh|B∗

ajh,ψaj ); for each a, j ,
sample the global shrinkage parameter (ψaj |λaj ,B∗

aj ).
5. Project the rows of the updated basis coefficients B∗ back to the data space using equa-

tion (2.5).

2.3. Posterior inference. The posterior samples obtained from the MCMC procedure can
be used to construct a Bayesian estimator and perform Bayesian inference for any func-
tion of the parameters in model (2.4). In particular, for the functional coefficient Ba =
(Ba(t1), . . . ,Ba(tL))′, a 100(1 − α)% simultaneous credible band can be constructed from
the posterior samples of Ba using the method described by Ruppert, Wand and Carroll
(2003) for α ∈ (0,1). Suppose {B(g)

a , g = 1, . . . ,G} are the G posterior samples of Ba , where
B(g)

a = (B
(g)
a (t1), . . . ,B

(g)
a (tT ))′. Let m(Ba(tl)) and ŝd(Ba(tl)) denote the mean and standard

deviation of Ba(tl) estimated from the G posterior samples; a 100(1 − α)% simultaneous
credible band can be constructed by[

m
(
Ba(tl)

) − qα ŝd
(
Ba(tl)

)
,m

(
Ba(tl)

) + qα ŝd
(
Ba(tl)

)]
, l = 1, . . . , T ,

where qα is the (1 − α) sample quantile of

max
1≤l≤T

∣∣∣∣B
(g)
a (tl) − m(Ba(tl))

ŝd(Ba(tl))

∣∣∣∣, g = 1, . . . ,G.

Given a quantile level τ and covariate a, it is often of interest to identify the locations t for
which Ba(t) is significantly different from zero while accounting for multiple testing in the
functional data context. For example, in the pancreatic cancer mass spectrometry dataset if
the covariate a denotes cancer status, then the identified locations t would correspond to the
spectral regions for which the τ th quantile of protein expressions significantly differs between
the cancer and normal populations. In this paper we consider an approach that performs
functional inference based on simultaneous band scores, or SimBaS (Meyer et al. (2015)),
which involve inverting the joint credible bands for each t . SimBaS of a functional location tl
is defined as the minimum α for which the 100(1−α)% simultaneous credible band excludes
zero at tl . At a prechosen level α, we flag tl as significant if its SimBaS is less than or
equal to α. Given that it is based on the 100(1 − α)% simultaneous credible band for which
there is a 100(1 − α)% posterior probability that the entire function Ba(t) lies within the
corresponding band, use of this measure effectively accounts for multiple testing based on an
experimentwise error rate like criterion.

In terms of flagging significant spectral regions, the SimBaS account for statistical sig-
nificance but not practical significance. One may wish to also require a difference of some
minimum effect size to flag a spectral region as significant, which can be specified as a mini-
mum fold change δ if the log spectral intensities are measured. In that case, one may require
SimBaS < α and |Ba(t)| ≥ log2 δ, requiring at least a δ-fold change for the τ th quantile of
protein expressions between cancer and normal groups, quantified by posterior mean esti-
mates of Ba(t).
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2.4. Sandwich likelihood correction. We note that the AL likelihood is used as a work-
ing likelihood in our Bayesian framework which is not likely to be the true data generating
likelihood. Recent studies raised concerns about the validity of posterior inference based on
the AL working likelihood (Yang, Wang and He (2016), Sriram (2015), Syring and Martin
(2019)). More specifically, for any given location t , when assigned a proper prior, the pos-
terior distribution of the p × 1 vector Bτ (t) is shown to be approximately normal centered
at B̃τ (t) = m(Bτ (t)) for large n, but its scaled posterior covariance matrix n�̃τ (t) does not
converge to the asymptotic covariance of n1/2B̂τ (t) as established in Koenker (2005), where
B̂τ (t) is the M-estimator of Bτ (t) by minimizing the check loss function. This suggests that
the 100(1 − α)% Bayesian credible sets, based on the AL likelihood in general, do not have
a frequentist coverage of 1 − α. These studies also proposed simple adjustment strategies to
achieve asymptotically valid posterior inference. Among them, Sriram (2015) showed that, if
we assume any fixed scale parameter σ(t) and construct a “sandwich likelihood” specified in
(2.6),

p
(
D(t)|Bτ (t)

) ∝ exp
[
−1

2

(
B̃τ (t) − Bτ (t)

)′
�̃τ

adj(t)
−1(

B̃τ (t) − Bτ (t)
)]

,(2.6)

where D(t) represents the observed data at t , �̃τ
adj(t) = nτ(1−τ)

σ 2(t)
�̃τ (t)D̃0�̃

τ (t) and D̃0 =
n−1X′X, then the Bayesian credible sets of Bτ (t) based on this sandwich likelihood and a
proper prior have the nominal frequentist coverage asymptotically.

Motivated by these concerns, we also considered an adjusted version of our Bayesian FQR
model to improve the frequentist properties of posterior inference in the simulation studies
and real data application, in which we replace the AL likelihood with the Gaussian sandwich
likelihood in (2.6) at each location tl (l = 1, . . . , T ). Since the adjusted posterior covariance
�̃τ

adj(t) is shown to be asymptotically invariant in the value of the scale parameter σ(t) (Yang,
Wang and He (2016)), we fix σ(t) = 1 at each t for convenience. The posterior sampling of
the adjusted Bayesian FQR proceeds in a similar manner as the Bayesian FQR, and the full
computational details are provided in Section 2 in the Supplementary Material (Liu, Li and
Morris (2020)).

3. Simulation studies. We conducted simulation studies to evaluate the performance of
our proposed model and compare to several straightforward approaches that people might
use in the FQR setting.

Simulation design. The shapes of mass spectrometry peaks can be approximated by
Gaussian densities (Zhang et al. (2009)), with the heights of the peaks roughly quantifying
the relative abundance of proteins at the corresponding spectral locations. Thus, in construct-
ing a simulation to mimic mass spectrometry data, we utilize peaks with Gaussian shapes.
Specifically, functional data were generated based on the following model:

yi (t) =
4∑

k=1

ci,kϕ(t |μk,σk) + ei (t),

ci,k =1{xi2 = −1}f1,k + 1{xi2 = 1}f2,k + xi3αk,

(3.1)

with a sample size of N = 400 subjects indexed by i and K = 4 non-overlapping peaks
indexed by k. ϕ(t |μk,σk) is the probability density function of a normal distribution with
mean μk and standard deviation σk which corresponds to a Gaussian shaped peak in y(t)

centered at μk . The design matrix X consists of three columns: an intercept x1, a binary
variable x2 taking values from {−1,1} with equal probability and an independent standard
normal variable x3. In the context of mass spectrometry data, x2 can be interpreted as a group
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TABLE 1
Parameter specifications of the data generating models in simulations

Basis index k μk σk f1,k f2,k αk

1 1 0.18 1.75t2 + 30 N(30,12) 0
2 3.25 0.18 N(30,12) N(30,12) 0
3 5.5 0.18 N(30.5,0.42) IG(1,0.35) + 30 0
4 8 0.18 N(30,12) N(30,12) 1

indicator of each subject, that is, whether the subject belongs to the cancer cohort or the
normal cohort. x3 can be interpreted as a continuous demographic or clinical factor that is
rescaled to have a standard normal distribution in the population and is potentially predictive
of expression levels of certain proteins. ci,k , which is determined jointly by xi2 and xi3,
dictates the magnitude of peak k in the funcional observation yi (t). e(t), the noise term
assumed to be i.i.d across subjects, is a Gaussian AR(1) process with lag 1 autocorrelation
ρ = 0.5 and a marginal distribution e(t) ∼ N(0,9). The functional response y(t) is observed
on an equally spaced grid of 301 on the interval [0,9]. The distributions of f1,k, f2,k and the
values taken by μk , σk and αk are provided in Table 1. It should be noted that, while the noise
term e(t) in our simulation setup (3.1) is Gaussian, the conditional distribution p(y(t)|x) in
many cases is not Gaussian. This is because the curve-to-curve variations include both the
residual terms e(t) and the stochastic functional components induced by ci,k in (3.1), which in
turn depend on f1,k or f2,k . A non-Gaussian distribution of f1,k or f2,k , such as t2 or inverse
Gamma presented in Table 1, induces curve-to-curve deviations that are not Gaussian. We
simulated 100 replicate datasets.

At a given quantile τ , the model Y = XBτ + Eτ is fitted to perform FQR, with Y being the
400 × 301 functional response matrix and X being the 400 × 3 design matrix. The quantities
of interest are: (1) the group effect function Bτ

2 (t), which quantifies the difference in the τ th
quantile at position t between the two groups indexed by x2 while conditioning on x3, and
(2) Bτ

3 (t), which quantifies the change in peak heights if the continuous predictor x3 increases
by one unit while conditioning on x2.

The true group effect functions Bτ
2 (t) at various levels of τ are shown in Figure 3(a). Con-

ditional on x3, obvious group differences are present at τ = 0.1,0.2,0.8,0.9 at the first peak
and at τ = 0.8,0.9 at the third peak. For the first peak these group differences would not be
detected by mean or median regression on the simulated data, because the magnitudes asso-
ciated with the first peak are purposely designed to have identical mean and median between
two groups when conditioning on x3, but the symmetric heavy tailed t2 chosen for f1,1 leads
to remarkable group differences at more extreme quantiles. For the third peak the choice of
an inverse Gamma distribution without a finite mean for f2,3 renders it theoretically implau-
sible to perform mean regression on the simulated data, while its heavily right-skewed nature
makes the distributions of the simulated spectral intensities at the third peak greatly differ
in the upper tail but not the median or lower tail between two groups when conditioning on
x3. This design is motivated by the setting whereby group differences are evident in the tails
but not the center of the distribution, which we observed from Figure 2 in the spectral region
(5700D, 6000D) and described in Section 1.2, and allows us to examine the performance of
our proposed approach in different types of heavy tailed settings.

The true functional coefficient Bτ
3 (t), which is constant across different quantile levels, is

shown in Figure 3(b). Conditioning on x2, αk represents the change in the magnitude of peak
k that is caused by one unit increase of the continuous covariate x3.



FUNCTION-ON-SCALAR QUANTILE REGRESSION 531

FIG. 3. Ground truth for functional coefficients of interest. The true group effect functions Bτ
2 (t) at multiple

quantile levels are shown in (a). The true Bτ
3 (t), which quantifies the change in peak magnitudes per unit change

in x3 conditional on other covariates and is constant across different quantile levels, is shown in (b).

Bayesian FQR model. We applied our Bayesian FQR model to these simulated data,
using a wavelet basis with a Daubechies wavelet with f our vanishing moments, periodic
boundary conditions, and a decomposition level J = 6, and a horseshoe regularization prior.
Note that we did not simulate data with AL residual errors, nor were wavelets used in any
way in simulating the data. Therefore, the data generating process for the simulated data does
not give any inherent advantage to our approach over others.

Alternative approaches. In addition to our proposed Bayesian FQR approach, we also
considered a few alternative approaches and assessed their performance, including: (1) the
naïve Bayesian quantile regression, or Bayesian QR (Yu and Moyeed (2001)) which performs
Bayesian quantile regression separately at each location t using the AL likelihood; (2) the ad-
justed Bayesian FQR as proposed in 2.4; (3) the naïve quantile regression, or QR (Koenker
(2005)), which does quantile regression at each individual location t by minimizing the check
loss function; (4) QR with spline smoothing, which smooths the functional coefficients esti-
mated by QR using splines. All unique values of t are used as knots to determine the spline ba-
sis functions, and the smoothing parameter is chosen by generalized cross-validation; (5) QR
with wavelet denoising which denoises the functional coefficients estimated by QR by pro-
jecting them into the wavelet domain and placing minimax hard thresholding on the wavelet
coefficients; (6) FDboost which fits a functional linear array model by component-wise gra-
dient boosting.

It should be pointed out that the two-step methods (4) and (5), while perhaps natural ideas
to consider, have not to our knowledge been used in the literature to perform FQR, so are
in a sense themselves new methods introduced in this paper, but we hypothesize that our
unified approach will have inferential advantages over them. We implemented the Bayesian
approaches in MATLAB (MATLAB (2016)) and ran each MCMC chain for 8000 iterations,
discarding the first 2000 and keeping every three. For the approaches (3)–(5), we called the
“quantreg” package (Koenker (2017)) in R (R Core Team (2017)) to do quantile regression
and performed bootstrap on the entire functional response y(t) and the covariate x to do
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inference. 2000 bootstrap samples were generated per case. We called the “FDboost” pack-
age (Brockhaus and Ruegamer (2017)) in R to implement approach (6).

Evaluation criteria. At each of the quantile levels 0.1,0.2,0.5,0.8,0.9, Bayesian FQR
model and alternative methods were applied to the simulated datasets to perform FQR. We
used SimBaS to identify regions of the functional coefficients Bτ

a (t) (a = 2,3) where the
absolute magnitude exceeds some practically meaningful threshold δ at each quantile level.
Given the true Bτ

2 (t) and Bτ
3 (t) in this simulation, we chose δ = 0.3 here. For non-Bayesian

approaches, bootstrap samples were used in place of posterior samples to construct simulta-
neous confidence bands and compute SimBaS. At a given level α, we flagged a location t as
significant if the SimBaS at t is less than or equal to α and computed the sensitivity and false
positive rate for detecting sites of at least size δ = 0.3 for each approach.

We also evaluated the estimation performance of these methods using: (i) the integrated
mean squared error (IMSE), (ii) the coverage probability of 95% simultaneous band covering
the true values and (iii) the average width of 95% simultaneous band across t . For a func-
tional parameter θ(t) (t ∈ T ) with true value θ0(t), suppose {θ̂ (m)(t),m = 1, . . . ,M} are the
mean estimates computed from M replicate datasets. For a replication m, IMSE is defined as∫
T {θ̂ (m)(t) − θ0(t)}2 dt .

Simulation results. Table 2 summarizes the estimation and inferential performance of
these methods at each quantile for Bτ

2 (t) (panel (a)) and Bτ
3 (t) (panel (b)). Where applicable,

these summary measures are averaged over 100 replicate datasets with standard deviations in
parentheses.

The total time to perform FQR on a simulated dataset at the five quantile levels on a 64-
bit operating system with two processors and an RAM of 32 GB was about 40 minutes for
Bayesian QR, 75 minutes for Bayesian FQR with or without adjustment and 60 minutes for
the bootstrap-based approaches with or without smoothing. This indicates that the Bayesian
FQR is computationally scalable to high-dimensional functional datasets and on the same
order of magnitude as the potential competing approaches.

At each quantile level τ considered, the Bayesian FQR and the adjusted Bayesian FQR
clearly outperformed the naïve Bayesian QR by having better estimation accuracy (IMSE)
and lower posterior variability which is reflected by the narrower credible bands for both
Bτ

2 (t) and Bτ
3 (t). They also had substantially increased sensitivity for detection of significant

regions in Bτ
2 (t) at each of the commonly used levels α, compared to naïve Bayesian QR.

The same conclusions applied to the comparison between the bootstrap-based QR with spline
smoothing and its naïve counterpart. These comparisons indicate that proper regularization
of the functional coefficients leads to greatly improved performance in both estimation and
inference.

Compared to the bootstrap-based methods with smoothing, the Bayesian FQR and the
adjusted Bayesian FQR had similar or better estimation accuracy in all cases; in terms of
inference, both of them had much tighter simultaneous credible band with similar coverage
and considerably higher sensitivity for detecting significant functional regions in Bτ

2 (t) than
the bootstrap-based methods with smoothing. Note that at each commonly used threshold α,
all the bootstrap-based methods have a very low sensitivity (<0.3) for discovery of significant
sites in Bτ

2 (t) at each quantile level considered.
Comparing the Bayesian FQR with and without adjustment, the sandwich likelihood cor-

rection led to improved estimation accuracy, slightly wider simultaneous credible band and
marginally higher coverage in all cases. In terms of detection of significant regions, the false
positive rates of the original Bayesian FQR are already negligibly small; the adjustment fur-
ther reduced the false positive rate to zero in almost all cases which is accompanied with a
decrease in the sensitivity that is more pronounced for Bτ

2 (t).
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TABLE 2
Simulation results. For the Bayesian FQR and alternative methods, the sensitivity (×10−2) and false positive

rate (×10−2) for detecting functional regions of at least size δ = 0.3 based on SimBaS at commonly used levels
of α as well as the integrated mean squared error (IMSE), the coverage probability and average width of 95%
simultaneous band are presented for Bτ

2 (t) in panel (a), and Bτ
3 (t) in panel (b). Standard deviations over 100

replicates are given in parentheses where applicable. QR (+s) and QR (+w) refer to the bootstrap-based
two-step approaches with spline smoothing and wavelet denoising respectively

(a)

Sensitivity False positive rate Coverage Ave width
τ Methods (×10−2) (×10−2) IMSE Joint band Joint band

α: 0.001 0.01 0.05 0.10 0.001 0.01 0.05 0.10

0.1 Bayes QR 42.8 53.7 61.5 64.4 0.5 1.2 2.4 3.2 21.1 (3.1) 0.977 1.24 (0.02)
Bayes FQR 64.1 72.8 78.5 81.3 0 0.1 0.4 0.7 9.8 (2.8) 0.992 0.97 (0.03)
Bayes FQR (+adj) 23.5 46.3 64.8 72.2 0 0 0 0 5.9 (2.8) 0.998 1.11 (0.05)
QR 0.3 1.6 4.6 8.1 0 0 0 0 19.8 (3.0) >0.999 2.42 (0.04)
QR (+s) 0.3 5.4 19.0 29.9 0 0 0 0 6.9 (2.8) >0.999 1.27 (0.07)
QR (+w) 0 0 0.2 0.6 0 0 0 0 8.2 (2.9) >0.999 2.45 (0.05)

0.2 Bayes QR 10.1 19.6 27.6 32.4 0.1 0.3 0.7 1.0 14.3 (1.8) 0.993 1.23 (0.02)
Bayes FQR 31.3 50.1 66.5 73.3 0 0 0.1 0.3 5.1 (1.6) 0.997 0.83 (0.04)
Bayes FQR (+adj) 7.7 25.3 44.3 53.4 0 0 0 0 3.8 (1.6) 0.998 0.91 (0.04)
QR 0.4 0.8 3.3 5.1 0 0 0 0 13.7 (1.7) >0.999 1.90 (0.02)
QR (+s) 0.3 1.9 10.0 16.1 0 0 0 0 5.0 (1.6) >0.999 1.09 (0.06)
QR (+w) 0 0 0.1 0.4 0 0 0 0 5.8 (1.5) >0.999 1.95 (0.03)

0.5 Bayes QR – – – – 0 0.1 0.2 0.3 11.0 (1.2) 0.998 1.23 (0.03)
Bayes FQR – – – – 0 0 0.1 0.1 2.8 (1.0) 0.999 0.73 (0.03)
Bayes FQR (+adj) – – – – 0 0 0 0 2.3 (0.9) >0.999 0.79 (0.03)
QR – – – – 0 0 0 0 10.7 (1.2) >0.999 1.62 (0.02)
QR (+s) – – – – 0 0 0 0 4.2 (1.2) >0.999 0.99 (0.04)
QR (+w) – – – – 0 0 0 0 4.7 (1.1) >0.999 1.66 (0.02)

0.8 Bayes QR 5.8 11.9 18.6 23.2 0.1 0.3 0.7 1.0 15.0 (2.4) 0.993 1.28 (0.07)
Bayesian FQR 28.5 49.5 64.1 70.1 0 0.1 0.2 0.3 5.8 (2.1) 0.995 0.84 (0.04)
Bayes FQR (+adj) 16.5 37.4 56.2 65.1 0 0 0 0 4.6 (2.0) 0.997 0.93 (0.04)
QR 0.2 0.9 2.9 5.0 0 0 0 0 14.5 (2.3) >0.999 1.95 (0.03)
QR (+s) 0.4 3.9 15.7 25.9 0 0 0 0 5.7 (2.1) >0.999 1.13 (0.06)
QR (+w) 0 0 0.2 0.5 0 0 0 0 6.6 (2.0) >0.999 1.99 (0.04)

0.9 Bayes QR 26.1 36.2 45.9 49.8 0.5 1.2 2.4 3.1 26.5 (8.9) 0.978 1.38 (0.14)
Bayes FQR 57.1 69.3 76.9 79.5 0.1 0.2 0.6 0.9 13.5 (5.6) 0.986 1.02 (0.04)
Bayes FQR (+adj) 27.8 53.4 70.1 75.9 0 0 0 0 9.5 (4.2) 0.995 1.16 (0.06)
QR 0 0.2 1.7 3.5 0 0 0 0 25.8 (10.7) >0.999 2.70 (0.15)
QR (+s) 0.1 1.1 7.7 16.0 0 0 0 0 12.5 (10.2) >0.999 1.52 (0.16)
QR (+w) 0 0 0 0.1 0 0 0 0 14.4 (10.4) >0.999 2.75 (0.17)

We also applied FDboost to our simulated data but found that it did not appear to be
suitable for these spiky, spatially heterogeneous functional data and did not scale up well to
the densely sampled data as considered in our simulations. Details about our implementation
of FDboost are provided in Section 4 in the Supplementary Material (Liu, Li and Morris
(2020)).

4. Functional quantile regression for protein biomarker discovery. We applied our
Bayesian FQR model using wavelet basis functions as well as the alternative methods de-
scribed in Section 3 to perform FQR on the pancreatic cancer mass spectrometry dataset
at τ = 0.1,0.25,0.5,0.75,0.9. We are primarily interested in identifying regions of the
mass spectra that significantly differ between the cancer and normal group at each quan-
tile level, while accounting for multiple testing, and comparing the flagged regions across
different quantiles. For comparative purpose we also applied the wavelet-based functional
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TABLE 2
(Continued)

(b)

Sensitivity False positive rate Coverage Ave width
τ Methods (×10−2) (×10−2) IMSE Joint band Joint band

α: 0.001 0.01 0.05 0.10 0.001 0.01 0.05 0.10

0.1 Bayes QR 72.7 78.5 81.5 83.0 0.4 1.1 2.1 2.8 20.0 (2.4) 0.979 1.26 (0.04)
Bayes FQR 78.5 83.8 87.2 88.8 0.1 0.2 0.7 1.1 8.9 (1.9) 0.992 0.96 (0.04)
Bayes FQR (+adj) 62.1 72.7 79.6 82.8 0 0 0 0 5.2 (1.6) >0.999 1.11 (0.07)
QR 22.3 37.8 49.0 53.4 0 0 0 0 18.6 (2.3) >0.999 2.53 (0.09)
QR (+s) 69.1 76.8 83.4 85.6 0 0 0 0 6.2 (1.7) >0.999 1.26 (0.09)
QR (+w) 16.1 34.3 47.3 52.1 0 0 0 0 7.5 (1.6) >0.999 2.43 (0.09)

0.2 Bayes QR 73.0 78.3 82.3 83.7 0.1 0.3 0.6 1.0 13.8 (1.6) 0.994 1.24 (0.04)
Bayes FQR 81.4 87.7 91.3 93.2 0 0 0.1 0.3 4.8 (1.1) 0.998 0.83 (0.04)
Bayes FQR (+adj) 71.0 79.8 87.0 90.5 0 0 0 0 3.9 (1.1) >0.999 0.92 (0.04)
QR 42.8 55.4 62.7 65.5 0 0 0 0 13.3 (1.6) >0.999 2.02 (0.07)
QR (+s) 75.3 81.3 86.8 88.8 0 0 0 0 5.0 (1.3) >0.999 1.10 (0.07)
QR (+w) 36.3 51.4 59.8 64.0 0 0 0 0 5.7 (1.2) >0.999 1.97 (0.07)

0.5 Bayes QR 74.5 79.4 82.7 83.8 0 0.1 0.2 0.3 10.8 (1.5) 0.998 1.24 (0.05)
Bayes FQR 82.9 89.3 94.0 95.6 0 0 0.1 0.3 3.5 (1.0) 0.998 0.74 (0.03)
Bayes FQR (+adj) 76.4 85.0 90.8 93.3 0 0 0 0.1 3.3 (1.0) >0.999 0.80 (0.04)
QR 54.5 62.5 69.4 72.2 0 0 0 0 10.6 (1.5) >0.999 1.72 (0.06)
QR (+s) 78.8 84.2 87.7 89.5 0 0 0 0 4.6 (1.2) >0.999 1.01 (0.06)
QR (+w) 49.5 58.3 66.0 70.0 0 0 0 0 4.9 (1.1) >0.999 1.69 (0.06)

0.8 Bayes QR 74.0 79.0 82.5 83.7 0.1 0.3 0.6 1.0 14.1 (1.8) 0.994 1.29 (0.07)
Bayesian FQR 80.7 87.5 92.1 94.0 0 0.1 0.3 0.4 4.9 (1.3) 0.997 0.84 (0.05)
Bayes FQR (+adj) 71.9 79.8 86.3 90.1 0 0 0 0.1 4.0 (1.2) >0.999 0.92 (0.05)
QR 43.8 54.2 62.4 65.6 0 0 0 0 13.6 (1.8) >0.999 2.05 (0.07)
QR (+s) 75.3 81.3 86.5 88.9 0 0 0 0 5.3 (1.5) >0.999 1.13 (0.08)
QR (+w) 36.5 50.9 60.1 62.9 0 0 0 0 5.9 (1.4) >0.999 2.00 (0.08)

0.9 Bayes QR 72.8 78.0 81.4 83.1 0.4 1.0 1.9 2.6 21.3 (3.4) 0.980 1.36 (0.11)
Bayes FQR 76.8 83.9 88.5 90.3 0 0.2 0.6 1.1 9.3 (2.7) 0.993 1.00 (0.05)
Bayes FQR (+adj) 63.5 73.4 81.4 85.2 0 0 0 0.1 5.8 (2.2) >0.999 1.12 (0.07)
QR 21.7 37.3 49.8 54.5 0 0 0 0 20.1 (3.3) >0.999 2.63 (0.10)
QR (+s) 69.5 77.3 83.8 87.1 0 0 0 0 7.2 (2.9) >0.999 1.32 (0.10)
QR (+w) 15.8 33.3 46.0 52.1 0 0 0 0 8.7 (2.7) >0.999 2.53 (0.10)

mixed model, or WFMM (Morris and Carroll (2006)), to perform functional mean regres-
sion to assess which results found by the Bayesian FQR would have been missed had only
functional mean regression been done.

Our analysis is focused on the part of the spectra from t = 5000 to t = 8000 Daltons,
including 1659 observations per spectrum. To draw meaningful biological conclusions from
the mass spectrometry data, it is critical to perform appropriate preprocessing before fur-
ther statistical analysis (Sorace and Zhan (2003)). The preprocessing steps for MALDI-TOF
mass spectrometry data include baseline correction, normalization and denoising which were
performed using the methods described by Coombes et al. (2005). The spectral intensities
can span several orders of magnitude across mass-to-charge ratio t for a given sample and
demonstrate extreme skewness across samples at a given t . To mitigate these issues, we took
log2 transformation on the mass spectrometry data which also allows an absolute difference
of one on the log2 scale to be interpreted as a two-fold change on the original scale. These
samples were processed in four different blocks over a span of several months. Previous stud-
ies (Baggerly, Morris and Coombes (2004), Baggerly et al. (2003)) show that block effects
associated with MALDI-TOF instruments can often be severe; so, we estimated and sub-
tracted the block-specific mean from the preprocessed mass spectra to adjust for the block
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effects. In Figure 1 the right column displays the corresponding preprocessed spectra of the
raw spectra in the left column, and this comparison clearly shows the effect of preprocessing.

The design matrix X for this dataset is a 256 × 2 matrix, with the first column being
the intercept and the second column denoting cancer (= 1) or normal (= −1) status. The
models Y = XBτ + Eτ (τ = 0.1,0.25,0.5,0.75,0.9) and Y = XBmean + Emean are individu-
ally fitted to perform FQR and functional mean regression. The cancer main effect functions
Bτ

2 (t) and Bmean
2 (t), respectively, quantify the difference in the τ th quantile and mean of the

log2 spectral intensities between cancer and normal groups at the spectral location t . For the
Bayesian FQR model with and without adjustment, we performed discrete wavelet transform
(DWT) using the Daubechies wavelet with four vanishing moments, periodic boundary con-
ditions and a decomposition level J = 8. We placed a horseshoe prior on B∗

ajh, assuming
λajh ∼ C+(0,1) and ψaj ∼ C+(0, sa), where sa is a hyperparameter with a vague hyperprior
s2
a ∼ inverse Gamma(0.001,1.001). For the WFMM we used the same wavelet basis func-

tions to perform DWT and implemented the MCMC procedures as described in Morris et al.
(2008) to draw posterior samples. For Bayesian approaches, we ran each MCMC chain for
15,000 iterations, discarding the first 5000 and keeping every five. The trace plots and Geweke
diagnostic results of various parameters, which are provided in Section 3 in the Supplemen-
tary Material, indicate good mixing of the chains. Using the posterior samples of Bτ

2 (t) or
Bmean

2 (t), we computed the posterior mean estimate, the 100(1 − α)% simultaneous credible
band for α ∈ (0,1) and SimBaS of the corresponding functional coefficient at each spectral
location t . We flagged t as significantly different in the τ th quantile, or mean, between the
cancer and control groups if its SimBaS is less than or equal to 0.05 and its posterior estimate
is greater than 1

2 log2(1.5) in magnitude, corresponding to at least a 1.5-fold change. Such
flagging criteria allow us to identify regions that are both statistically and practically signif-
icant. For each non-Bayesian method, we generated 2000 bootstrap samples to compute the
mean estimate of Bτ

2 (t) and perform functional inference.
To perform FQR on the pancreatic dataset at each quantile level, it took about one hour

for Bayesian QR, 4.5 hours for Bayesian FQR with or without adjustment and 2.5 hours
for each bootstrap-based alternative under the computer setting specified in Section 3. For
each quantile τ , we summarized the mean estimate of Bτ

2 (t) and the 95% simultaneous cred-
ible band obtained from the Bayesian FQR and each alternative approach in plots. For the
Bayesian FQR, we ran several parallel MCMC chains with different initial values at each
quantile level and obtained essentially the same point estimates and credible bands for Bτ

2 (t).
At τ = 0.1,0.25,0.5, no region was identified as significant by any of the approaches used.
At τ = 0.75,0.9, the regions flagged by each approach were marked on the x-axis in the cor-
responding plot. All these plots are available in Section 3 in the Supplementary Material, and
here we highlighted in Figure 4 the results for τ = 0.9 produced by our proposed Bayesian
FQR with or without adjustment, as well as QR with wavelet denoising, an intuitive alterna-
tive that people might use to do FQR in this context since wavelet thresholding is known to
work well for spiky and spatially heterogeneous functions and, in particular, for mass spec-
trometry data (Morris et al. (2008)). Results from FQR at τ = 0.9 were also compared to the
functional mean regression results from WFMM in Figure 4.

The Bayesian FQR model with and without adjustment and the bootstrap-based QR with
wavelet denoising produced an estimate of B0.9

2 (t) that are clearly greater in magnitude than
Bmean

2 (t) in the region (5700D, 6000D) which coincided with what we observed from the
empirical quantiles and mean in Figure 2(a). These quantile regression-based methods also
identified far more locations than WFMM which only flagged one narrow contiguous region
[5841.5D, 5844.9D]. This suggested that functional mean regression failed to detect most
of the spectral locations whose protein expressions differ significantly in the 90th quantile
between two groups.
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FIG. 4. Estimated cancer main effect functions for the pancreatic cancer dataset. (a) B0.9
2 (t) estimated by the

Bayesian FQR model. (b) B0.9
2 (t) estimated by the adjusted Bayesian FQR model. (c) B0.9

2 (t) estimated by the
bootstrap-based QR with wavelet denoising. (d) Bmean

2 (t) estimated by the WFMM model. The estimated cancer
main effects are plotted on log2 scale along with the corresponding 95% simultaneous credible bands. A spectral
location is flagged as significant and marked on the x-axis if its SimBaS is less than or equal to 0.05 and the
estimate corresponds to at least 1.5-fold change indicated by the two horizontal lines.

Compared to the QR with wavelet denoising, both the Bayesian FQR and the adjusted
Bayesian FQR produced much tighter 95% simultaneous credible bands, allowing them
to detect more locations that may correspond to proteomic biomarkers of pancreatic can-
cer. In particular, the Bayesian FQR flagged three contiguous regions [5690.6D, 5881.2D],
[5912.4D, 5957.7D] and [7607.8D, 7619.6D]; the adjusted Bayesian FQR flagged two con-
tiguous regions [5694.0D, 5884.7D] and [5905.5D, 5959.4D]. These flagged regions covered
the regions [5704.3D, 5789.8D] and [5817.4D, 5872.6D] flagged by the QR with wavelet
denoising but included many more locations. Notably, the regions [5912.4D, 5957.7D]
and [7607.8D, 7619.6D] were identified by our Bayesian FQR but entirely missed by the
bootstrap-based approach. In addition, the bootstrap-based approach appeared to have an
over-smoothed estimate of B0.9

2 (t). For example, the Bayesian FQR detected two separate
peaks at 5824D and 5842D, whereas the bootstrap-based approach only recognized one
broader peak in this region.

The proteins corresponding to the regions flagged by our model might serve as potential
biomarkers of pancreatic cancer. The expressions of these proteins differ in the 90th quantile
but not in the mean or median between the cancer cohort and the normal cohort, indicating
that they are over-expressed in only a subset of cancer patients, and may fundamentally char-
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acterize unique features of this subset of pancreatic cancer patients. These potential biomark-
ers would have been missed by mean or median regression, with many of them missed by QR
with wavelet denoising. We assessed the possible protein identities of the flagged spectral re-
gions using TagIdent (Gasteiger et al. (2005)), an online protein identification tool that can
create a list of proteins from one or more organisms within a range of the pH and mass-to-
charge ratio specified by the user. In particular, the flagged region [5690.6D, 5881.2D] may
correspond to basic salivary proline-rich peptide IB-7 (5769D) and peptide IB-8c (5843D)
coded by PRB2 gene, whose single-nucleotide polymorphism (SNP) has been found to be
significantly associated with the response of pancreatic cancer patients to gemcitabine based
on a genome-wide association study (Innocenti et al. (2012)). The flagged region [5912.4D,
5957.7D] may correspond to a variant of transient receptor potential cation channel subfamily
M member 8 (TRPM8, 5940D) which has been reported to be aberrantly expressed in pan-
creatic adenocarcinoma and have the potential to become a clinical biomarker and therapeu-
tic target for pancreatic cancer (Yee et al. (2012)). The narrow region, [7607.8D, 7619.6D]
which was flagged only by our approach, may correspond to stromal cell-derived factor 1
(SDF1, 7610D) coded by CXCL12 gene, and it has been discovered that CXCL12–CXCR7
signaling axis is significantly associated with the invasive potential of pancreatic tumor cells
and the overall survival of pancreatic cancer patients (Guo et al. (2016)). To definitively find
the protein identities of these spectral regions, it would be necessary to conduct a tandem
mass spectrometry (MS/MS) experiment (Deutsch, Lam and Aebersold (2008), Kinter and
Sherman (2005)), but this is beyond the scope of our current study.

5. Discussion. In this paper we introduced a fully Bayesian approach to perform quantile
regression on functional responses. The existing work on functional response regression has
focused predominantly on mean regression. However, sometimes predictors may not strongly
influence the conditional mean of functional responses, but other aspects of their conditional
distributions may instead, as illustrated by our analysis of the motivating pancreatic cancer
mass spectrometry dataset. In this case, performing functional quantile regression to delineate
the relationship between functional responses and predictors is warranted. This can straight-
forwardly be done by performing quantile regression at each individual functional location,
but as we demonstrate this is not an efficient strategy since it fails to borrow strength from
nearby functional locations. Our proposed approach borrows strength across nearby locations
by representing the functional coefficients with appropriate basis functions and induces adap-
tive penalization on the basis coefficients by placing a global-local shrinkage prior. We devel-
oped a scalable data augmented block Gibbs sampler for posterior computation, which can be
implemented automatically without tuning parameters and scale up well to moderately-sized
functional data consisting of hundreds of observations per curve. Posterior samples were used
to perform Bayesian estimation and inference on parameters of interest while accounting for
multiple testing. In the pancreatic cancer data application, our Bayesian FQR model identi-
fied many more spectral locations compared to mean-based alternatives, which correspond
to proteins whose intensity levels differ significantly in the 90th quantile but not the mean
between the cancer and normal populations.

Our framework is flexible in that it allows different types of basis transform and continuous
shrinkage priors which are chosen based on the characteristics of functional data. We chose
to use wavelets and a horseshoe prior to present our approach which are well suited for the
highly spiky and irregular mass spectrometry data. Other basis functions including functional
principal components, Fourier series and splines and a great variety of shrinkage priors can
also be used, as elaborated in Section 2.1. In addition, our framework can accommodate mul-
tidimensional functional data by applying a multidimensional basis transform. For example,
a 2D wavelet transform can be applied to the 2D mass spectrometry data collected in LC-MS
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experiment (Liao et al. (2014), Zhang et al. (2009)). We assumed the conditional quantile
to be linear in the covariates in this paper, but our model can be easily extended to model
nonparametric effect of covariates (Kim (2007), Cai and Xu (2008), Wang, Zhu and Zhou
(2009), Feng and Zhu (2016), Fasiolo et al. (2018)) by using spline design matrices.

We simulated functional data with Gaussian shaped peaks to mimic mass spectra, evalu-
ated the performance of our method and compared to simpler alternatives that people might
use to perform FQR in the simulation study. Our approach consistently outperformed the
naïve Bayesian quantile regression in both estimation and inference, showing that it is inef-
ficient to ignore the functional nature of data and do quantile regression separately for each
location. In addition to borrowing strength, our model adopted a sparsity prior that can ef-
fectively shrink small wavelet coefficients to zero and avoid attenuation of large coefficients,
minimizing bias and substantially reducing variation in parameter estimation.

We also considered bootstrap-based two-step alternatives which are themselves new meth-
ods that we introduced to compare with our proposed approach. One might think of it a
natural approach to draw bootstrap samples of observed functional data and postsmooth the
pointwise quantile regression estimates in each bootstrap iteration, using spline smoothing or
wavelet denoising. Compared to these two-step alternatives that seemed intuitively appealing,
our approach achieved comparable estimation accuracy but considerably smaller variability,
which led to much tighter simultaneous credible band with similar coverage, and greatly im-
proved sensitivity for identifying significant regions in the functional coefficients at particular
quantile levels. This improvement of our Bayesian FQR model could be explained by the fact
that quantile regression and penalization of functional coefficients are performed jointly in a
unified manner in our Bayesian framework. The possibly heteroscedastic noise levels across
t in the functional data are learned in the quantile regression step and then carried forward
to the coefficient penalization step, which we believe to have the potential to achieve more
adaptive regularization than performing them separately as done in the two-step approaches.
While our Bayesian hierarchical model is convenient to implement, it would be very chal-
lenging to fit a non-Bayesian counterpart with the same flexibility and complexity and yield
estimation and inference of B while choosing various penalization parameters λajh and ψaj

by cross-validation.
We chose to use the asymmetric Laplace likelihood as the working likelihood in our frame-

work due to its computational efficiency. Motivated by recent studies raising concerns about
the frequentist properties of posterior inference based on this likelihood, we also considered
an adjusted Bayesian FQR model by performing a pointwise likelihood correction proposed
by (Sriram (2015)) and compared its performance to our original model in simulation studies
and data application. The simulation results showed that the original model had satisfactory
performance in terms of parameter estimation and signal detection in all the scenarios we
considered; the adjustment procedure further improved estimation accuracy, led to slightly
wider credible bands and essentially removed any false positives at the expense of slightly
decreased sensitivity compared to the original model. While our adjustment is done separately
at each individual location and seems ad hoc, it does have very good empirical performance
based on our simulations. It would be insightful to extend this adjustment strategy to the func-
tional data setting so that it can accommodate the within-function dependence structure and
also to study its asymptotic properties, but these are beyond the scope of our current work.

There exists limited work on FQR in the literature. Based on our simulations, the frame-
work proposed by Brockhaus et al. (2015) appears to work satisfactorily for simple and ho-
mogeneous functions sampled on a relatively sparse grid but not as well for high-dimensional
spiky and complex functions in terms of coefficient estimation and computational feasibility.
In addition, their framework does not automatically yield pointwise or joint inference.
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One should always ensure that the effective sample size N min{τ,1 − τ } is sufficiently
large before performing FQR at τ th quantile. While we propose a highly flexible and com-
putationally tractable Bayesian framework to perform FQR, there is still room for improve-
ment. Our modeling approach is built for functional data sampled on a sufficiently fine grid
where interpolation can be reasonably used to obtain a common grid for subjects. Further
adaptations of our model would be required for functional data sampled on sparse grids that
vary across subjects. We assume independent residual errors across t , but observations from
nearby functional locations are typically correlated. This independent error assumption may
lead to conservative inference; thus, further efficiency and power gains are possible if within-
function correlations could be accommodated (Morris (2017)). However, the tractability of
our proposed framework breaks down if we are to model this dependence structure. While
it is relatively easy to account for intrafunctional correlations in functional mean regression,
we find it much more challenging to do so for FQR which has never yet been addressed in
the existing literature to our best knowledge. It should be pointed out that, even with an in-
dependent error assumption, our proposed approach still beats all the simpler methods that
people might use to perform FQR, as shown by the simulations; so, we believe our work is
a significant step forward in this area. Finally, alternative regularization methods on the basis
coefficients can be explored, such as the FLiRTI model (James, Wang and Zhu (2009)), that
enforces sparsity in the functional coefficients or their derivatives to improve interpretability.
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Supplement A to “Function-on-scalar quantile regression with application to mass
spectrometry proteomics data” (DOI: 10.1214/19-AOAS1319SUPPA; .zip). We provided
the pancreatic cancer mass spectrometry dataset and the related code, which are also available
at https://github.com/MorrisStatLab/FunctionalQuantileRegression.

Supplement B to “Function-on-scalar quantile regression with application to mass
spectrometry proteomics data” (DOI: 10.1214/19-AOAS1319SUPPB; .pdf). We provided
details of the MCMC sampling procedure, additional results of data application and imple-
mentation details of the “FDboost” package.

REFERENCES

BAGGERLY, K. A., MORRIS, J. S. and COOMBES, K. R. (2004). Reproducibility of SELDI-TOF protein patterns
in serum: Comparing datasets from different experiments. Bioinformatics 20 777–785.

BAGGERLY, K. A., MORRIS, J. S., WANG, J., GOLD, D., XIAO, L.-C. and COOMBES, K. R. (2003). A com-
prehensive approach to the analysis of matrix-assisted laser desorption/ionization-time of flight proteomics
spectra from serum samples. Proteomics 3 1667–1672.

BHATTACHARYA, A., PATI, D., PILLAI, N. S. and DUNSON, D. B. (2015). Dirichlet–Laplace priors for opti-
mal shrinkage. J. Amer. Statist. Assoc. 110 1479–1490. MR3449048 https://doi.org/10.1080/01621459.2014.
960967

BROCKHAUS, S. and RUEGAMER, D. (2017). FDboost: Boosting functional regression models.
BROCKHAUS, S., SCHEIPL, F., HOTHORN, T. and GREVEN, S. (2015). The functional linear array model. Stat.

Model. 15 279–300. MR3349797 https://doi.org/10.1177/1471082X14566913
CAI, Z. and XU, X. (2008). Nonparametric quantile estimations for dynamic smooth coefficient models. J. Amer.

Statist. Assoc. 103 1595–1608. MR2504207 https://doi.org/10.1198/016214508000000977

https://doi.org/10.1214/19-AOAS1319SUPPA
https://github.com/MorrisStatLab/FunctionalQuantileRegression
https://doi.org/10.1214/19-AOAS1319SUPPB
http://www.ams.org/mathscinet-getitem?mr=3449048
https://doi.org/10.1080/01621459.2014.960967
http://www.ams.org/mathscinet-getitem?mr=3349797
https://doi.org/10.1177/1471082X14566913
http://www.ams.org/mathscinet-getitem?mr=2504207
https://doi.org/10.1198/016214508000000977
https://doi.org/10.1080/01621459.2014.960967


540 Y. LIU, M. LI AND J. S. MORRIS

CARDOT, H., CRAMBES, C. and SARDA, P. (2005). Quantile regression when the covariates are functions.
J. Nonparametr. Stat. 17 841–856. MR2180369 https://doi.org/10.1080/10485250500303015

CARVALHO, C. M., POLSON, N. G. and SCOTT, J. G. (2009). Handling sparsity via the horseshoe. In Artificial
Intelligence and Statistics 73–80.

CARVALHO, C. M., POLSON, N. G. and SCOTT, J. G. (2010). The horseshoe estimator for sparse signals.
Biometrika 97 465–480. MR2650751 https://doi.org/10.1093/biomet/asq017

CHEN, K. and MÜLLER, H.-G. (2012). Conditional quantile analysis when covariates are functions, with appli-
cation to growth data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 67–89. MR2885840 https://doi.org/10.1111/j.
1467-9868.2011.01008.x

COOMBES, K. R., TSAVACHIDIS, S., MORRIS, J. S., BAGGERLY, K. A., HUNG, M.-C. and KUERER, H. M.
(2005). Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced
laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Pro-
teomics 5 4107–4117.

DEUTSCH, E. W., LAM, H. and AEBERSOLD, R. (2008). Data analysis and bioinformatics tools for tandem mass
spectrometry in proteomics. Physiol. Genomics 33 18–25. https://doi.org/10.1152/physiolgenomics.00298.
2007

FASIOLO, M., GOUDE, Y., NEDELLEC, R. and WOOD, S. N. (2018). Fast calibrated additive quantile regression.
Preprint. Available at arXiv:1707.03307.

FENG, X. and ZHU, L. (2016). Estimation and testing of varying coefficients in quantile regression. J. Amer.
Statist. Assoc. 111 266–274. MR3494658 https://doi.org/10.1080/01621459.2014.1001068

FERRATY, F., RABHI, A. and VIEU, P. (2005). Conditional quantiles for dependent functional data with applica-
tion to the climatic El Niño phenomenon. Sankhyā 67 378–398. MR2208895
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