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Using a sample from a population to estimate the proportion of the pop-
ulation with a certain category label is a broadly important problem. In the
context of microbiome studies, this problem arises when researchers wish to
use a sample from a population of microbes to estimate the population pro-
portion of a particular taxon, known as the taxon’s relative abundance. In this
paper, we propose a beta-binomial model for this task. Like existing models,
our model allows for a taxon’s relative abundance to be associated with co-
variates of interest. However, unlike existing models, our proposal also allows
for the overdispersion in the taxon’s counts to be associated with covariates
of interest. We exploit this model in order to propose tests not only for dif-
ferential relative abundance, but also for differential variability. The latter is
particularly valuable in light of speculation that dysbiosis, the perturbation
from a normal microbiome that can occur in certain disease conditions, may
manifest as a loss of stability, or increase in variability, of the counts asso-
ciated with each taxon. We demonstrate the performance of our proposed
model using a simulation study and an application to soil microbial data.

1. Introduction. Estimating the proportion of a population that belongs to a certain
category—the relative abundance—is a problem spanning fields as broad as social science,
population health and ecology. For example, researchers may be interested in estimating
the proportion of low-income students who attend competitive higher-education institutions
(Bastedo and Jaquette (2011)), child mortality rates in Sub-Saharan African regions (Mercer
et al. (2015)), or the proportion of diseased leaf tissue in coastal grasslands (Parker et al.
(2015)). In most of these settings, it is not possible to sample the entire population of interest,
and it is necessary to estimate the true proportion based on a sample of individuals from the
population. In this paper we consider the general problem of estimating the prevalence of a
category within a population when the category labels of the observed individuals may be
correlated.

While this problem is of broad interest, our method is particularly motivated by the ever-
increasing number of studies of microbiomes. A microbiome is the collection of microscopic
organisms (microbes), along with their genes and metabolites, that inhabit an ecological niche
(Poussin et al. (2018)). Microbes live on and in the human body, and in fact, microbial cells
may outnumber human cells (Sender, Fuchs and Milo (2016)). Because of this, the relative
abundance of a microbe—or a taxon, which refers to a biological grouping of microbes—is
a common marker of host or environmental health. For example, the species G. vaginalis
has been found to correlate with symptomatic bacterial vaginosis (Callahan et al. (2017));
different genera of Cyanobacteria flourish in response to precipitation and irrigation run-
off (Tromas et al. (2018)); and Parkinson’s disease has been associated with reduced levels
of the family Prevotellaceae (Hill-Burns et al. (2017)). Accurate and precise estimation of
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microbial abundances is critical for disease diagnosis and treatment (Qin et al. (2014), Grice
(2014), Gevers et al. (2014), Shi et al. (2015)).

A particularly challenging aspect of estimating microbial abundances is that the category
labels of microbes are known to be correlated. Microbial communities are spatially organized,
with a member of one taxon more likely to be observed close to the same taxon than close
to a different taxon (Welch et al. (2016)). In this paper we argue that a correlated-taxon
model is a natural approach to estimating relative abundances in this setting. It successfully
explains the large number of unobserved taxa in many samples, as well as overdispersion
in the abundance of observed taxa relative to models where the occurrences of individual
microbes are uncorrelated.

An additional advantage of our method is that it provides a statistical framework for testing
for dysbiosis. Dysbiosis describes a microbial imbalance, or a deviation from a healthy mi-
crobiome (Petersen and Round (2014), Hooks and O’Malley (2017)). In particular, the term
is often used to refer to a change in the stability of a microbiome. For example, inflammatory
bowel disease (IBD) has been associated with increases in the variability of the gut micro-
biome (Halfvarson et al. (2017)), and the microbiomes of IBD patients are often referred to
as dysbiotic (Tamboli et al. (2004)). Unlike many methods for modeling relative abundances
of microbial taxa, the method that we propose provides a natural framework for hypothesis
testing for dysbiosis via the parameters of a heteroskedastic model for taxon abundances.
Specifically, we can test whether the variability in a taxon’s counts is associated with some
covariate of interest.

Our paper is laid out as follows. In Section 2, we review several existing regression models
for microbial abundances. In Section 3, we propose our model, and discuss parameter estima-
tion. We propose approaches for testing for differential abundance and differential variability
in Section 4. In Section 5, we show via simulation that our hypothesis testing framework is
valid, even with small sample sizes. We apply our method to data from a soil microbiome
study in Section 6, and we close with a discussion of our method in Section 7. Software
for implementing our model and hypothesis testing procedures is available in the R package
corncob, available at github.com/bryandmartin/corncob and provided in Supplement A of
the Supplementary Material (Martin, Witten and Willis (2020a)).

2. Literature review. Modeling of population proportions, or relative abundances, has
a long history in the statistical literature, and includes basic methods such as z-tests for pro-
portions, and logistic regression. However, modeling microbial abundance data brings with it
a number of challenges. For example, the dynamic nature of the microbiome commonly gives
rise to a large number of microbial taxa that are only present in a small number of samples,
but are highly abundant when present (DiGiulio et al. (2015), Dethlefsen and Relman (2011)).
Some microbes may be so rare that they consistently evade detection or are observed at low
abundances in all samples (Sogin et al. (2006)). In addition, the number of taxa (typically on
the order of thousands) is generally substantially less than the number of samples (typically
less than one hundred). Finally, the number of counts that are observed in each sample may
differ substantially, and thus the amount of information contained in each sample may differ.

Thus, we focus our literature review on models for microbial abundances. We broadly cat-
egorize these models into two approaches: jointly modeling multiple taxa, and modeling each
taxon individually. While our proposal pertains to the latter, both approaches are common and
each has its advantages and disadvantages, which we now review.

Jointly modeling multiple taxa is a popular approach because it represents the entire mi-
crobial community with a single model. However, since these communities are often very
diverse (the total number of taxa is large), and different taxa exhibit differing levels of vari-
ability, a large number of parameters is typically needed to obtain a good model fit (Kurtz

http://github.com/bryandmartin/corncob


96 B. D. MARTIN, D. WITTEN AND A. D. WILLIS

et al. (2015), Sankaran and Holmes (2017)). Hierarchical models of absolute abundances
are often used to constrain the number of parameters (e.g., La Rosa et al. (2012), Holmes,
Harris and Quince (2012), Chen and Li (2013), Sankaran and Holmes (2017), Cao, Zhang
and Li (2017)). However, modeling the variance structure is challenging with few parame-
ters (Sankaran and Holmes (2017)). Many joint taxon models make use of the log-ratio or
centered log-ratio transformations to model relative abundances. However, these approaches
typically cannot be applied to zero-valued observations (Aitchison (1986), McMurdie and
Holmes (2014), Willis and Martin (2018)). Since many taxa are typically unobserved in each
sample, these methods commonly make use of pseudo-counts to replace zeros, or incorpo-
rate a zero-inflation component into their model (Xia et al. (2013), Mandal et al. (2015),
Li et al. (2018), Willis and Martin (2018)). In the case of pseudo-counts, parameter estima-
tion depends on an arbitrarily chosen hyperparameter, while zero-inflated models may lack
interpretability.

Because simultaneously modeling large numbers of microbial taxa is challenging, an al-
ternative approach is to model individual taxa one-by-one. We further classify individual
taxon models into models for observed relative abundances (the proportion of the observed
counts that corresponds to the specific taxon), and models for absolute abundances (the num-
ber of observed counts of the taxon). A particularly common model for observed relative
abundances is the beta distribution, which is a natural choice since it is supported on (0,1).
Zero-inflated beta regression models have been proposed to account for the large number of
zeros often observed in microbial abundance data, corresponding to the absence of a taxon in
a sample (Peng, Li and Liu (2016), Chen and Li (2016), Chai et al. (2018)). Nonparametric
models for observed relative abundances (White, Nagarajan and Pop (2009), Segata et al.
(2011)) and Gaussian models for transformed observed relative abundances (Morgan et al.
(2012, 2015)) have also been proposed.

Another option is to model the absolute abundance of a taxon. Popular methods originally
designed for RNAseq data, such as DESeq2 (Love, Huber and Anders (2014)) and EdgeR
(Robinson, McCarthy and Smyth (2010)), make use of the negative binomial distribution.
These models can be extended with random effects and a zero-inflation component to account
for correlation across subjects and to model additional overdispersion of the counts (Zhang
et al. (2017), Fang et al. (2016)). Alternative approaches to modeling absolute abundances
include the use of transformations such as cumulative sum scaling (Wahba et al. (1995),
Paulson et al. (2013)), trimmed mean of M-values (Robinson and Oshlack (2010), Law et al.
(2014)) and ratio approaches (Sohn, Du and An (2015), Chen et al. (2018)).

All of the papers mentioned thus far focus on an association between mean abundance
and covariates. In this paper, we propose a beta-binomial regression model for microbial
taxon abundances. To the best of our knowledge, this is the first regression model that allows
for an association between the variance of a taxon’s abundance and covariates, rather than
only an association between the mean abundance and covariates. In addition, our model can
accommodate the absence of a taxon in samples, variability in the total number of counts
across samples and high variability in the observed relative abundances.

3. The beta-binomial regression model.

3.1. A hierarchical model for microbial abundances. In this section, we present a beta-
binomial regression model for microbial abundance data. While the beta-binomial model
has been extensively studied in the statistics literature (Skellam (1948), Kleinman (1973),
Williams (1975), Prentice (1986), McCullagh and Nelder (1989), Aerts et al. (2002),
Dolzhenko and Smith (2014), Wagner, Riggs and Mikulich-Gilbertson (2015)), to our knowl-
edge, we are the first to propose a regression framework that can link both discrete and con-
tinuous covariates to both a relative abundance parameter and a correlation/overdispersion
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TABLE 1
The notation for the observed random variables, latent random variables and parameters of our proposed

beta-binomial model. The subscript i refers to the ith sample. Notations are defined for each taxon

Notation Definition

Yi,j indicator that the j th read corresponds to the taxon of interest
Wi observed counts, or observed absolute abundance, of the taxon of interest
Mi sequencing depth, or total number of counts, across all taxa
Wi/Mi observed relative abundance of the taxon of interest
Zi latent relative abundance of the taxon of interest
μi expected relative abundance of the taxon of interest
φi overdispersion, or within-sample correlation of the taxon of interest

parameter, as well as the first to apply this model to the analysis of microbial data. We sum-
marize the notation and definitions defined in this section in Table 1.

Suppose we have n samples of microbial communities, indexed by i = 1, . . . , n. Let Mi

be the sequencing depth, or the number of total counts (or reads) across all taxa, in the ith
sample. Let Yi,j for j = 1, . . . ,Mi be an indicator that the j th read corresponds to the taxon

of interest. Therefore, Wi = ∑Mi

j=1 Yi,j is the observed absolute abundance of the taxon of
interest in the ith sample.

It is natural to consider the model

(3.1) Wi |(Zi,Mi) ∼ Binomial(Mi,Zi),

and to perform inference on Zi , where Zi is the probability of observing the taxon of in-
terest in the ith sample. However, this model is insufficiently flexible to model microbial
abundance data. For example, Figure 1 (left) shows 95% prediction intervals from a binomial
model fit to the relative abundance of a strain of Rhizobium in 16 experimental replicates of
sampling microbes in soil (see Section 6 for details). We see that the data are substantially
overdispersed relative to the binomial model, which provides a very poor fit (see McMurdie
and Holmes (2014) for further discussion on overdispersion of microbial abundance data).

The overdispersion of the observed relative abundances compared to a binomial model
motivates a more flexible model. We propose the following model:

Wi |(Zi,Mi) ∼ Binomial(Mi,Zi),(3.2)

Zi ∼ Beta(a1,i , a2,i),(3.3)

FIG. 1. The relative abundance of a strain of Rhizobium in 16 biological replicate samples in a soil micro-
biology study, and 95% prediction intervals based on a binomial model (left) and the proposed beta-binomial
model (right). The data is clearly overdispersed relative to the binomial model, motivating the development of our
beta-binomial model.
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where a1,i ∈ R+, a2,i ∈ R+. In the model (3.2)–(3.3), Zi is itself a random variable, repre-
senting the latent relative abundance of the taxon. As we will demonstrate, this hierarchical
approach to modeling relative abundance is a major advantage of our approach.

Using the parameterization

(3.4) μi = a1,i

a1,i + a2,i

,

it can be shown that

(3.5) E(Wi |Mi) = Mi ×E(Zi) = Mi × μi.

Thus μi ∈ (0,1) is the expected relative abundance of the taxon in the ith sample. In addition,
using the parameterization

(3.6) φi = 1

a1,i + a2,i + 1
,

it can be shown that

(3.7) Var(Wi |Mi) = Mi × μi × (1 − μi) × (
1 + (Mi − 1) × φi

)
.

The multiplicative factor (1 + (Mi − 1) × φi) is therefore the overdispersion of the absolute
abundance of the taxon for the ith sample relative to a binomial random variable. Further-
more,

(3.8) Corr(Yi,j , Yi,j∗) = φi for 1 ≤ j < j∗ ≤ Mi,

so φi can also be interpreted as the correlation between the taxon indicator variables within
the ith sample (Prentice (1986)).

We then link the expected relative abundance, μi , and the overdispersion, φi , to covariates.
We define link functions

g(μi) = β0 + XT
i β,(3.9)

h(φi) = β∗
0 + X∗T

i β∗,(3.10)

where Xi , the ith row of the covariate matrix X = [Xij ] ∈ R
n×k , represents k covariates

associated with μi ; X∗
i , the ith row of the covariate matrix X∗ = [X∗

ij ] ∈ R
n×k∗

, represents

the k∗ covariates associated with φi ; β = (β1, . . . , βk)
T ; and β∗ = (β∗

1 , . . . , β∗
k∗)T . X and X∗

may be identical, or they may be non- or partially-overlapping.
Throughout this paper, we choose the logit transformation for the link functions in (3.9)

and (3.10), so that

g(x) ≡ h(x) := log
(

x

1 − x

)
.

This link function is convenient as it is a bijection between [0,1] and R. Other choices for the
link functions can be used as well, and the link functions for μi and φi need not be identical.

This hierarchical model has three key advantages over other approaches. First, the use
of a beta random variable as a model for the binomial probability allows us to incorporate
overdispersion. Second, the overdispersion parameter (rather than just the mean) can be mod-
eled with covariates. As we will see in Section 6, this is a key advantage of our approach.
Finally, our model makes direct use of the absolute abundance (W1, . . . ,Wn) and the total
number of counts (M1, . . . ,Mn), rather than simply transforming these quantities into the
observed relative abundance (W1/M1, . . . ,Wn/Mn), which would amount to throwing away
valuable information about the sequencing depth across in each sample. We show the 95%
prediction intervals from a beta-binomial model for the soil microbiology study in Figure 1
(right).
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3.2. Model fitting. Given n samples from the model (3.2)–(3.3), the log-likelihood is

(3.11)

logL(θ |W ,M)

=
n∑

i=1

log

[(
Mi

Wi

)
B(a1,i + Wi,a2,i + Mi − Wi)

B(a1,i , a2,i)

]

=
n∑

i=1

log

⎡
⎢⎢⎢⎣

(
Mi

Wi

) B( e
−β∗

0 −X∗T
i

β∗

1+e
−β0−XT

i
β

+ Wi,
e
−β∗

0 −X∗T
i

β∗

1+e
β0+XT

i
β

+ Mi − Wi)

B( e
−β∗

0 −X∗T
i

β∗

1+e
−β0−XT

i
β
, e

−β∗
0 −X∗T

i
β∗

1+e
β0+XT

i
β
)

⎤
⎥⎥⎥⎦ ,

where W ∈ R
n, M ∈ R

n, β ∈ R
k , β∗ ∈ R

k∗
, θ = (β0,β

T , β∗
0 ,β∗T )T , and B(·, ·) is the Beta

function given by B(x, y) = ∫ 1
0 tx−1(1 − t)y−1 dt for x ∈ R and y ∈R+. We fit the model by

maximum likelihood using the trust region optimization algorithm (Fletcher (1987), Nocedal
and Wright (1999), Geyer (2015)), which has accelerated computation relative to a line search
method.

In this iterative algorithm, a “trust region” is defined around the parameter estimate at each
iteration. The algorithm then updates the parameter estimate by minimizing a second-order
Taylor series expansion of the objective function, subject to the constraint that the solution is
within the trust region. If a proposed update is infeasible (i.e., it is outside of the parameter
space), then it is rejected and the trust region shrinks. The minimization of the objective
function then repeats with the new constraint. If a proposed update is close to the boundary
of the trust region, the trust region expands in the next iteration. We implement the trust
algorithm for minimizing the negative log-likelihood using the R package trust (Geyer
(2015)).

The log-likelihood is not concave in θ (see Appendix A), so trust region optimization
does not guarantee convergence to the global minimum of the objective function. However,
under mild conditions, the limit points of the trust algorithm are guaranteed to satisfy the
first- and second-order conditions that are necessary for a local minimum (Fletcher (1987),
Nocedal and Wright (1999)). We use multiple initializations and select the estimate that has
the largest log-likelihood. In practice, there is little difference in the parameter estimates
across initializations.

Each iteration of the trust region optimization algorithm makes use of the gradient and
Hessian of (3.11). These are given in Appendix B for the case of logit link functions for g(·)
and h(·) in (3.9) and (3.10).

4. Hypothesis testing. We now discuss inference on θ . We consider the null hypothesis
that Aθ = b, where A ∈ R

r×(k+k∗+2) has full row rank and r < k + k∗ + 2, b ∈ R
r , and

where θ is the parameter vector introduced in (3.11). Note that this general form for the null
hypothesis allows us to test arbitrary subsets and linear combinations of the parameters within
θ = (β0,β

T , β∗
0 ,β∗T )T . The Wald test statistic is

(4.1) T̂Wald = n(Aθ̂ − b)T
(
AÎ(θ̂)−1

n AT )−1
(Aθ̂ − b),

where

(4.2) θ̂ = argsup
θ

logL(θ |W ,M)

and Î(θ̂)n is the observed Fisher information evaluated at θ̂ :

(4.3) Î(θ̂)n = −1

n

n∑
i=1

[
∂2

∂θ∂θT
logL(θ |W ,M)

]
θ=θ̂

.
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Algorithm 1 Parametric Bootstrap Wald Test of H0 : Aθ = b

Require: W , M , X, X∗, a large integer B (e.g., B = 10,000)

1: Estimate θ̂ and θ̂0 as in (4.2) and (4.5), respectively, with the trust region optimization
procedure.

2: Compute T̂Wald as in (4.1) using A, b and θ̂ .
3: for b = 1, . . . ,B do
4: Simulate W̃

b
with elements W̃ b

i drawn from a beta-binomial distribution
with Mi draws and parameters θ̂0.

5: Estimate θ̃
b

as in (4.2) using W̃
b

and M with the trust region optimization
procedure.

6: Compute T̂ b
Wald as in (4.1) using A, b and θ̃

b
.

7: Calculate the p-value:

p̂ ← 1

B + 1

(
1 +

B∑
b=1

1
{
T̂ b

Wald ≥ T̂Wald
})

.

8: return p̂

Under the null hypothesis that Aθ = b, we find empirically that T̂Wald is well-approximated
by a χ2

r distribution if n is large (Section 5.1). Alternatively, we can test Aθ = b using a
likelihood ratio test statistic, defined as

(4.4) T̂LRT = 2
(
logL(θ̂ |W ,M) − logL(θ̂0|W ,M)

)
,

where

(4.5) θ̂0 = argsup
θ :Aθ=b

logL(θ |W ,M).

When n is large and Aθ = b, we find that the distribution of T̂LRT is well-approximated by a
χ2

r distribution (Section 5.1).
In practice, we often do not have the sample size necessary to use the χ2

r approximation.
For this reason, we also implement a parametric bootstrap hypothesis testing procedure. Our
parametric bootstrap Wald testing procedure is given in Algorithm 1; the parametric bootstrap
likelihood ratio test procedure is provided in Appendix C.

For certain realizations of W , Wald-type inference is uninformative. For example, if k =
k∗ = 1, Xi = X∗

i ∈ {0,1} for i = 1, . . . , n, and
∑

i:Xi=1 Wi = 0, then a parameter estimate
diverges to −∞ (see Lemma D.1 in Appendix D for details). This limitation is not unique to
our model, and hypothesis testing using Wald tests in the case of complete or quasi-complete
separation in logistic regression is known to have the same issue (see Albert and Anderson
(1984), Heinze and Schemper (2002), Heinze (2006) for further discussion). In this case, we
instead use the likelihood ratio test to test hypotheses about β , such as β = 0. However, in this
setting, even the likelihood ratio test does not provide a useful test of certain hypotheses about
β∗, such as β∗ = 0 (see Appendix D). Since it is often the case that a taxon is unobserved
in certain experimental conditions, the default behaviour for our software in this setting is to
return a test statistic of zero for Wald-type tests to indicate that inference is uninformative
and the null hypothesis should not be rejected.

While (4.4) and Algorithms 1–2 hold for any A and b, they require solving (4.5). This
may be difficult to do for certain A and b. In this case, an approximate solution could be
obtained by maximizing the likelihood subject to a penalty on ‖Aθ −b‖ (e.g., see Fiacco and
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McCormick (1968), Ryan (1974)). Alternatively, approximating the distribution of (4.1) with
a χ2

r distribution does not require restricted maximum likelihood estimation.
In summary, we implement four hypothesis testing procedures: the Wald test, the like-

lihood ratio test, the parametric bootstrap Wald test and the parametric bootstrap likelihood
ratio test. The Wald and likelihood ratio tests permit faster inference than the parametric boot-
strap tests. However, the parametric bootstrap procedures successfully control Type 1 error
in small sample sizes. We now demonstrate the performance of all of these hypothesis testing
procedures in simulation.

5. Simulation study. We now investigate the performance of our approach, which we
call count regression for correlated observations with the beta-binomial, or corncob, under
simulation. We study the Type I error rate and the power when testing for both differential
abundance and differential variability. We generate sequencing depths M ∈ R

n with elements
Mi simulated from the empirical distribution of the observed sequencing depths in the data
set discussed in Section 6, which ranges from 7821 to 58,655. We use sample sizes n ∈
{10,30,100} and a binary covariate Xi = X∗

i = 0 for i = 1, . . . , n/2−1 and Xi = X∗
i = 1 for

i = n/2, . . . , n. We then simulate absolute abundances W ∈ R
n with elements Wi simulated

under the data generating model (described below). The parameter values were selected by
fitting corncob to the genus Thermomonas in the data set discussed in Section 6 so that
simulated data are similar to what might be observed in a real-world experiment. For each
simulation, we calculate 10,000 p-values using all four of the hypothesis testing procedures
outlined in Section 4: the Wald test, the likelihood ratio test, the parametric bootstrap Wald
test and the parametric bootstrap likelihood ratio test. We use 1000 bootstrap iterations for
the parametric bootstrap testing procedures.

5.1. Type I error rate. We first confirm that corncob controls Type I error at the
nominal level. We generate data using the beta-binomial model with logit link functions
for mean and overdispersion, under three settings for β . In the first simulation setting, we
test the null hypothesis H0 : (β1, β

∗
1 ) = (0,0). We generated model parameters by fitting

a model to the genus Thermomonas without using soil amendment as a covariate, yield-
ing parameters (β̃0, β̃1, β̃

∗
0 , β̃∗

1 ) = (−5.75,0,−5.24,0). In the second simulation setting, we
test the null hypothesis H0 : β∗

1 = 0. We generated model parameters by fitting a model
to the genus Thermomonas using soil amendment as a covariate for μi , yielding param-
eters (β̃0, β̃1, β̃

∗
0 , β̃∗

1 ) = (−5.36,−1.12,−5.69,0). In the third simulation setting, we test
the null hypothesis H0 : β1 = 0. We generated model parameters by fitting a model to
the genus Thermomonas using soil amendment as a covariate for φi , yielding parameters
(β̃0, β̃1, β̃

∗
0 , β̃∗

1 ) = (−5.51,0,−5.38,0.70). For all three simulation settings, the null hy-
potheses are true, so we would expect p-values obtained from testing the null hypotheses
to be uniformly distributed.

The results are shown in Figure 2. For sample sizes of 30 and 100, all testing procedures
resulted in approximately uniform p-values, and Type I error is controlled. This suggests that
for this experiment, a sample size of 30 is sufficient to approximate the distribution of the
Wald and likelihood ratio test statistics using a χ2 distribution.

Example quantiles from each of the simulation settings are shown in Table 2 in Ap-
pendix E. For a sample size of 10, only the parametric bootstrap procedures resulted in ap-
proximately uniform p-values and successful Type I error control. The p-values obtained
using the Wald and likelihood ratio tests were anti-conservative, suggesting that for this ex-
periment, a sample size of 10 is too small to approximate the distribution of the test statistics
using a χ2 distribution. Therefore, to obtain reliable inference, we recommend the parametric
bootstrap procedure when n is smaller than 30.
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FIG. 2. Quantiles of p-values obtained from the Type I error rate simulation settings compared to quantiles of
a Uniform(0,1) distribution. We test the null hypotheses H0 : (β1, β∗

1 ) = (0,0) (left), H0 : β∗
1 = 0 (middle) and

H0 : β1 = 0 (right). A 45-degree line is shown (black). p-values were obtained using Wald (red), likelihood ratio
(green), parametric bootstrap Wald (blue) and parametric bootstrap likelihood ratio (purple) tests. Sample sizes
used were 10 (dashed), 30 (dotted) and 100 (solid). Quantiles of each test are shown in Table 2 in Appendix E.

5.2. Power. We now investigate the power of corncob to reject (i) the null hypothesis
H0 : β1 = 0, as well as (ii) the null hypothesis H0 : β∗

1 = 0. We consider two cases: varying
the value of β1, and varying the value of β∗

1 . For both settings, we generated model parameters
by fitting a model to the genus Thermomonas using soil amendment as a covariate for μi and
φi , yielding parameters (β̃0, β̃1, β̃

∗
0 , β̃∗

1 ) = (−5.17,−2.46,−5.13,−3.88). In the first case
(Setting 4 in Figure 3), we set (β0, β1, β

∗
0 , β∗

1 ) = (β̃0, cβ̃1, β̃
∗
0 , β̃∗

1 ) using c ∈ {0,0.05, . . . ,1}.
In the second case (Setting 5 in Figure 3), we set (β0, β1, β

∗
0 , β∗

1 ) = (β̃0, β̃1, β̃
∗
0 , cβ̃∗

1 ) using
c ∈ {0,0.05, . . . ,1}.

The results of the power analyses are shown in Figure 3. For both null hypotheses, all sam-
ple sizes, and all hypothesis testing procedures, the power increases as both the sample size
and the magnitude of the coefficient being tested increases. For sample sizes of 30 and 100,
there is little difference in power across the four testing procedures. This is not surprising,
given that in the simulations in Section 5.1, all procedures performed similarly with sample
sizes of 30 and 100. We do not show results for the procedures that rely on the asymptotic
distribution of the test statistics for n = 10, as we saw in Section 5.1 that these procedures
did not properly control Type I error.

6. Application to soil data. We now consider a study of the association between soil
treatments and soil microbiome composition (Whitman et al. (2016)). In this experiment,

FIG. 3. Power curves of p-values obtained from the power simulations. Setting 4 (left) tests H0 : β1 = 0. Setting
5 (right) tests H0 : β∗

1 = 0. A horizontal dashed line is shown at 0.05. p-values were obtained using Wald (red),
likelihood ratio (green), parametric bootstrap Wald (blue) and parametric bootstrap likelihood ratio (purple)
tests. Sample sizes used were 10 (dashed), 30 (dotted) and 100 (solid).
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there are three groups of soil treatments: no additions, biochar additions and fresh biomass
additions. For each treatment group, multiple experimental replicates were taken at three time
points: on the first day, after 12 days and after 82 days. The data include n = 119 samples
with sequencing depths ranging from 8830 to 194,356. After quality control (as described in
Whitman et al. (2016)), a total of 7770 operational taxonomic units were identified using the
UPARSE workflow (Edgar (2013)), and taxonomy was assigned using reference databases.
Using the assigned taxonomy, we aggregated counts to the genus level, giving 241 genera.

We are interested in applying our method to compare the microbiome of soil with no
additions after 82 days (n = 15) to the microbiome of soil with biochar additions after 82
days (n = 16). We remove 13 genera for which the total number of counts in these 31 sam-
ples is zero. We apply corncob using soil addition as a covariate for μi and φi as in (3.9)
and (3.10). We calculate p-values using the parametric bootstrap likelihood ratio test (Al-
gorithm 2) with B = 106 bootstrap iterations. We compare the results of corncob to those
from DESeq2 (Love, Huber and Anders (2014)), EdgeR (Robinson, McCarthy and Smyth
(2010)), metagenomeSeq (Paulson et al. (2013)) and a zero-inflated beta (ZIB) regression
model (Peng, Li and Liu (2016)).

6.1. Detection of differential abundance. We first compare p-values obtained from test-
ing for differential abundance across soil addition group. Roughly speaking, each of the ap-
proaches tests for a difference in abundance of a single taxon across conditions, although
the details of the model used vary across methods. In the context of corncob, testing for
differential abundance amounts to testing the null hypothesis H0 : β = 0, using the notation
defined in (3.9). Scatter plots of the negative log-10 p-values for each approach are shown in
Figure 4.

Overall, as p-values calculated using corncob decrease, so do those calculated using
other approaches. We observe moderate to strong correlations across the different approaches,
with Spearman’s correlation coefficients between the p-values obtained from corncob
(H0 : β = 0) and DESeq2, edgeR, metagenomeSeq and ZIB, respectively, of 0.854, 0.783,
0.552, 0.705. corncob calculated a lower p-value for 53.9%, 43.6%, 63.8% and 58.3%
of genera compared to DESeq2, edgeR, metagenomeSeq and ZIB, respectively. Median
p-values across all genera for corncob, DESeq2, edgeR, metagenomeSeq and ZIB are
0.273, 0.318, 0.297, 0.491 and 0.320, respectively. Therefore, while the p-values produced
by corncob are on a similar scale to the other approaches, they may be higher or lower for
any given taxon. While each of the approaches uses a different model and makes use of a
different test statistic, they are all testing for some difference in the mean abundance of the
taxon across the soil addition. Thus, it is unsurprising that the p-values are similar across the
approaches.

FIG. 4. The negative log-10 p-values obtained by testing for differential abundance using corncob
(H0 : β = 0) compared to those from DESeq2 (left-most, Spearman’s correlation coefficient ρ = 0.854), EdgeR
(middle-left, ρ = 0.783), metagenomeSeq (middle-right, ρ = 0.552) and ZIB (right-most, ρ = 0.705). A 45-degree
line is shown. We see that the p-values are on a similar scale overall. Thermomonas (green), Flavisolibacter (red)
and Myxococcus (blue) are further examined in Figure 6.
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FIG. 5. The negative log-10 p-values obtained by testing for differential variability using corncob
(H0 : β∗ = 0) compared to the negative log-10 p-values obtained by testing for differential abundance using
DESeq2 (left-most, Spearman’s correlation coefficient ρ = 0.127), metagenomeSeq (middle-left, ρ = 0.132), ZIB
(middle-right, ρ = 0.215) and corncob (H0 : β = 0) (right-most, ρ = 0.362). A 45-degree line is shown. Ther-
momonas (green), Flavisolibacter (red) and Myxococcus (blue) are further examined in Figure 6. We omit a
scatter plot showing p-values for edgeR (ρ = 0.234); results are similar to DESeq2.

6.2. Detection of differential variability. We now test for differences in the variability of
the abundance of a single taxon across conditions, which we refer to as differential variability.
Using corncob and the notation in (3.9)–(3.10), this amounts to testing the null hypothesis
H0 : β∗ = 0. As far as we know, corncob is the only approach that explicitly tests for
differential variability. Thus, in this section, we investigate whether testing for differential
variability allows us to identify new genera beyond what we identify when testing only for
differential abundance.

We compare the results of testing for differential variability to the results of testing for
differential abundance using the methods investigated in Section 6.1. Figure 5 shows scatter
plots of the negative log-10 transformations of the p-values for testing differential abundance
from DESeq2, metagenomeSeq, ZIB and corncob against the p-values for testing differ-
ential variability with corncob. We see from Figure 5 that there is only a weak association
between the p-values for differential variability obtained using corncob and the p-values
for differential abundance obtained using the other approaches. In particular, Spearman’s cor-
relation coefficients are 0.127, 0.234, 0.132, 0.215 and 0.362 between corncob p-values
for H0 : β∗ = 0 and p-values from DESeq2, edgeR, metagenomeSeq, ZIB and corncob for
H0 : β = 0, respectively. We omit from Figure 5 the scatter plot comparing the corncob
p-values for H0 : β∗ = 0 to the edgeR p-values because the p-values from edgeR are similar
to those from DESeq2. We conclude that applying corncob to test H0 : β∗ = 0 leads to the
discovery of a very different set of genera than those discovered by applying corncob or
other approaches to test for differential abundance.

To obtain greater insight into the results shown in Figure 5, we consider the 3 highlighted
genera, which we further investigate in Figure 6. The first, Thermomonas, has small p-values
for both differential abundance (p = 1.00 × 10−6) and differential variability (p = 1.00 ×
10−6) using corncob. The second, Flavisolibacter, has a small p-value for differential
abundance (p = 7.44×10−4) and a large p-value for differential variability (p = 0.404). The
third, Myxococcus, has a large p-value for differential abundance (p = 0.244) and a small
p-value for differential variability (p = 8.83 × 10−3), so it would not be identified using
the competing approaches (see Table 3 in Appendix F for p-values from all approaches).
Figure 6 indicates a clear visual difference between genera that are identified as differentially
abundant but not differentially variable, differentially variable but not differentially abundant,
and both differentially abundant and differentially variable. Researchers can use corncob
to distinguish between these three possibilities.

In practice, a data analyst will apply a multiple testing procedure to adjust the p-values
for multiple comparisons, so we also investigative the number of genera identified as either
differentially abundant or differentially variable after applying the Benjamini–Hochberg pro-
cedure (Benjamini and Hochberg (1995)) to the p-values obtained using corncob to test
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FIG. 6. The observed relative abundances of the genera Thermomonas (left), Flavisolibacter (middle) and Myx-
ococcus (right) in 31 soil samples. Each of these genera is highlighted in each panel of Figures 4 and 5. In each
panel, the first 16 samples correspond to the biochar additions group (darker color), and the remaining 15 samples
correspond to the no additions group (lighter color). 95% prediction intervals for the relative abundances from
a corncob fit using soil addition as a covariate for μi and φi are shown. Using corncob to test H0 : β = 0
and H0 : β∗ = 0 indicates that Thermomonas is both differentially abundant (p = 1.00 × 10−6) and differentially
variable (p = 1.00 × 10−6), Flavisolibacter is differentially abundant (p = 7.44 × 10−4) and not differentially
variable (p = 0.404), and Myxococcus is differentially variable (p = 8.83×10−3) and not differentially abundant
(p = 0.244). See Table 3 in Appendix F for p-values from all approaches.

H0 : β = 0 and H0 : β∗ = 0. The results are shown in Figure 7. We see that for a given
false discovery rate, in this data set we detect more genera as being differentially abundant
than differentially variable; this can also be seen in the right-most panel of Figure 5. All
code for performing this analysis is available in the supplementary materials available at
github.com/bryandmartin/corncob_supplementary and provided in Supplement B of the Sup-
plementary Material (Martin, Witten and Willis (2020b)).

7. Discussion. In this paper, we have proposed a beta-binomial regression model for
abundance data. Our model extends existing beta-binomial models by allowing discrete and
continuous covariates to be linked to both a relative abundance parameter and an overdisper-
sion parameter. Our method is particularly well-suited to modeling microbial abundance data
for a number of reasons. First, microbial taxa are commonly unobserved in many samples.
For example, in the data set examined in Section 6, 34% of absolute abundances were zero.
Our model can accommodate this without requiring a zero-inflation component or pseudo-
counts. Second, studies of microbial populations often have small sample sizes. Our simu-
lation study in Section 5 suggests that our parametric bootstrap inference methods (Algo-
rithms 1 and 2) give valid inference even with small samples. Third, the interpretation of μi

as the expected relative abundance and of φi as the within-sample correlation of taxon labels
(i.e., φi = Corr(Yij = Yij ′), see Section 3) are intuitive and complement ecological theory
(Welch et al. (2016)). Finally, regression models for contrasting microbial populations com-
monly focus on differential abundance. By conducting inference about φi , our model is also
able to identify differences in microbial populations associated with differential variability.

FIG. 7. The estimated false discovery rate using the Benjamini–Hochberg procedure, as a function of the number
of genera identified as differentially abundant and differentially variable. For a given false discovery rate, we
identify fewer genera that are differentially variable than differentially abundant.

http://github.com/bryandmartin/corncob_supplementary
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Many studies (e.g., see Gerber (2014), Faust et al. (2015), Zhou et al. (2015), among
others) employ a longitudinal design to investigate the dynamics of microbial populations
over time. To accommodate this setting, future work could incorporate random effects into
(3.9) and (3.10).

Our proposed approach models a single taxon’s abundance. A limitation of this approach
is that it does not enforce the compositionality constraint (i.e., the estimated expected relative
abundances need not sum to 1 across all microbes in the population). Future work could
consider a multivariate extension of our approach to enforce the compositionality constraint
or incorporate between-taxon correlations.

All methods proposed in this paper are implemented in an R package available at
github.com/bryandmartin/corncob and provided in Supplement A of the Supplementary Ma-
terial (Martin, Witten and Willis (2020a)). Code to reproduce all simulations and data anal-
yses are available at github.com/bryandmartin/corncob_supplementary and provided in Sup-
plement B of the Supplementary Material (Martin, Witten and Willis (2020b)).

APPENDIX A: NONCONCAVITY OF THE BETA-BINOMIAL LOG-LIKELIHOOD

We show that (3.11) is not guaranteed to be concave in θ . Let n = 1, W ≡ W1 = 15 and
M ≡ M1 = 2000. Suppose further that θ = (β0, β

∗
0 )T . Let θ1 = (−3 −5)T and θ2 = (−1 −

5)T . Then

logL
(
θ1|W1,M1

) = −8.481,

logL
(
θ2|W1,M1

) = −9.816,

logL
(
0.5θ1 + 0.5θ2|W1,M1

) = −9.251.

Therefore there exists θ1, and θ2 such that

logL
(
0.5θ1 + 0.5θ2|W ,M

)
< 0.5 logL

(
θ1|W ,M

) + 0.5 logL
(
θ2|W ,M

)
,

which establishes that (3.11) is not concave in θ .

APPENDIX B: ANALYTIC EXPRESSIONS FOR THE GRADIENT AND HESSIAN

Let γi = φi

1−φi
for all i, and define ψ(x) = ∫ ∞

0 ( e−t

t
− e−xt

1−e−t ) dt for x ∈ R+ to be the
digamma function, the derivative of the logarithm of the gamma function. Define Zi =
(1 Xi ) and Z∗

i = (1 X∗
i ) to be the design matrices for covariates associated with μi and

φi , respectively, including intercept terms. Then the expression for the gradient of (3.11) is
given by

∂ logL(θ |W ,M)

∂β

=
n∑

i=1

{
γ −1
i μi(1 − μi)Zi

[
ψ

(
1 − μi

γi

)

− ψ

(
Mi + 1 − μi − Wiγi

γi

)

+ ψ

(
Wi + μi

γi

)
− ψ

(
μi

γi

)]}
,

(B.1)

http://github.com/bryandmartin/corncob
http://github.com/bryandmartin/corncob_supplementary
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∂ logL(θ |W ,M)

∂β∗

=
n∑

i=1

{
γ −1
i Z∗

i

[
ψ

(
Mi + 1

γi

)
− ψ

(
1

γi

)

+ (μi − 1)

(
ψ

(
Mi + 1 − μi − Wiγi

γi

)
− ψ

(
1 − μi

γi

))

+ μi

(
ψ

(
μi

γi

)
− ψ

(
Wi + μi

γi

))]}
.

(B.2)

Let ψ(1)(x) = ∂
∂x

ψ(x) be the trigamma function. Define Y i = (ZT
i 0)T ∈ R

k+k∗+2 and
Y ∗

i = (0 Z∗T
i )T ∈R

k+k∗+2. Then the expression for the Hessian of (3.11), H , is given by

H =
n∑

i=1

[
c1,iμ

2
i (1 − μi)

2Y iY
T
i + c2,i

(
μi(1 − μi)Y iγiY

∗T
i

+ γiY
∗
i μi(1 − μi)Y

T
i

) + c3,i

(
γiY

∗
i γiY

∗T
i

)
+ c4,i

(
μi(1 − μi)(1 − 2μi)Y iY

T
i

) + c5,i

(
γiY

∗
i Y

∗T
i

)]
,

where

c1,i = [
ψ(1)(Mi + (1 − μi − Wiγi)/γi

) − ψ(1)((1 − μi)/γi

)
+ ψ(1)(Wi + μi/γi) − ψ(1)(μi/γi)

]
γ −2
i ,

c2,i = [
γi

(
ψ

(
Mi − (μi + Wiγi − 1)/γi

) − ψ
(
(1 − μi)/γi

)) + γi

(
ψ(μi/γi)

− ψ(μi/γi + Wi)
) + (μi − 1)

(
ψ(1)((1 − μi)/γi

)
− ψ(1)(Mi − (μi + Wiγi − 1)/γi

)) + ψ(1)(μi/γi)

− ψ(1)(μi/γi + Wi)
]
γ −3
i ,

c3,i = [
2γiψ(1/γi) + ψ(1)(1/γi) − 2γiψ(Mi + 1/γi) − ψ(1)(Mi + 1/γi)

+ (μi − 1)2ψ(1)(Mi − (μi + Wiγi − 1)/γi

)
− 2γi(μi − 1)ψ

(
Mi − (μi + Wiγi − 1)/γi

) − μ2
i ψ

(1)(μi/γi)

+ μ2
i ψ

(1)(μi/γi + Wi) − (μi − 1)2ψ(1)((1 − μi)/γi

)
+ 2γi(μi − 1)ψ

(
(1 − μi)/γi

) − 2γiμiψ(μi/γi)

+ 2γiμiψ(μi/γi + Wi)
]
γ −4
i ,

c4,i = [
ψ

(
(1 − μi)/γi

) − ψ
(
Mi − (μi + Wiγi − 1)/γi

) + ψ(μi/γi + Wi)

− ψ(μi/γi)
]
/γi,

c5,i = [
ψ(Mi + 1/γi) − ψ(1/γi) + μi

(
ψ(μi/γi) − ψ(μi/γi + Wi)

)
+ (μi − 1)

(
ψ

(
Mi − (μi + Wiγi − 1)/γi

) − ψ
(
(1 − μi)/γi

))]
γ −2
i .

APPENDIX C: PARAMETRIC BOOTSTRAP LIKELIHOOD RATIO TEST

We present Algorithm 2 to conduct a parametric bootstrap likelihood ratio test.

APPENDIX D: LIKELIHOOD RATIO TESTING WITH A ZERO-COUNT GROUP

We prove that testing the null hypothesis H0 : β∗ = 0 results in a test statistic of zero
under certain conditions. We first prove in Lemma D.1 that the log-likelihood of the model
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Algorithm 2 Parametric Bootstrap Likelihood Ratio Test of H0 : Aθ = b

Require: W , M , X, X∗, a large integer B (e.g., B = 10,000)

1: Estimate θ̂ and θ̂0 as in (4.2) and (4.5), respectively, with the trust region optimization
procedure.

2: Compute T̂LRT as in (4.4) using W , M , θ̂ and θ̂0.
3: for b = 1, . . . ,B do
4: Simulate W̃

b
with elements W̃ b

i drawn from a beta-binomial distribution
with Mi draws and parameters θ̂0.

5: Estimate θ̃
b

as in (4.2) using W̃
b

and M with the trust region optimization
procedure.

6: Estimate θ̃
b

0 as in (4.5) using W̃
b

and the trust region optimization
procedure.

7: Compute T̂ b
LRT as in (4.4) using W̃

b
, M , θ̃

b
and θ̃

b

0.

8: Calculate the p-value:

p̂ ← 1

B + 1

(
1 +

B∑
b=1

1
{
T̂ b

LRT ≥ T̂LRT
})

.

9: return p̂

(3.2)–(3.3) is equal to zero under certain conditions. We use this to prove our main claim in
Theorem D.2.

LEMMA D.1. Consider the model (3.2)–(3.3) with parameters as in (3.4)–(3.6) and link
functions as in (3.9)–(3.10) in the simplified setting with no covariates for μi , so that θ =
(β0, β

∗
0 ,β∗T )T . Suppose that

∑
i Wi = 0. Then

sup
β0

logL(θ |W ,M) = 0.

PROOF. We write the log-likelihood

logL(θ |W ,M)

=
n∑

i=1

log

⎡
⎢⎢⎣

(
Mi

Wi

) B(e
−β∗

0 −X∗T
i

β∗

1+e−β0
+ Wi,

e
−β∗

0 −X∗T
i

β∗

1+eβ0
+ Mi − Wi)

B(e
−β∗

0 −X∗T
i

β∗

1+e−β0
, e

−β∗
0 −X∗T

i
β∗

1+eβ0
)

⎤
⎥⎥⎦ .

Substituting Wi = 0, using the definition of B(·, ·), and taking the limit in β0 gives

lim
β0→−∞ logL(θ |W ,M) = lim

β0→−∞

n∑
i=1

log
[
	

(
e−β∗

0 −X∗T
i β∗

1 + eβ0
+ Mi

)]

+ log
[
	

(
e−β∗

0 −X∗T
i β∗

1 + e−β0
+ e−β∗

0 −X∗T
i β∗

1 + eβ0

)]

− log
[
	

(
e−β∗

0 −X∗T
i β∗

1 + e−β0
+ e−β∗

0 −X∗T
i β∗

1 + eβ0
+ Mi

)]

− log
[
	

(
e−β∗

0 −X∗T
i β∗

1 + eβ0

)]

= 0
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≥ sup
β0

logL(θ |W ,M),

where the last inequality is because the log-likelihood associated with a discrete distribution
cannot exceed 0.

Therefore,
sup
β0

logL(θ |W ,M) = lim
β0→−∞ logL(θ |W ,M) = 0.

�

THEOREM D.2. Consider the model (3.2)–(3.3) with parameters as in (3.4)–(3.6) and
link functions as in (3.9)–(3.10). Assume that k = k∗ = 1 and Xi = X∗

i ∈ {0,1} for i =
1, . . . , n. Suppose that

∑
i:Xi=0 Wi = 0 and

∑
i:Xi=1 Wi > 0. Then the likelihood ratio test

statistic for testing the null hypothesis that β∗
1 = 0 is equal to 0.

PROOF. Let Li represent the likelihood of the ith sample, so that

(D.1)
n∑

i=1

logLi

(
β0, β1, β

∗
0 , β∗

1 |Wi,Mi

) ≡ logL
(
β0, β1, β

∗
0 , β∗

1 |W ,M
)
.

We wish to show that the likelihood ratio test statistic

(D.2)

sup
β0,β1,β

∗
0 ,β∗

1

n∑
i=1

logLi

(
β0, β1, β

∗
0 , β∗

1 |Wi,Mi

)

− sup
β0,β1,β

∗
0

n∑
i=1

Li

(
β0, β1, β

∗
0 , β∗

1 = 0|Wi,Mi

) = 0.

First, we notice that for all i, the parameters β∗
0 and β∗

1 enter the likelihood Li(·) only
though the term β∗

0 + β∗
1 Xi . This term is equal to β∗

0 for all i such that Xi = 0, and β∗
0 + β∗

1
for all i such that Xi = 1. Similarly, the parameters β0 and β1 enter the likelihood Li(·)
only through the term β0 for all i such that Xi = 0, and β0 + β1 for all i such that Xi = 1.
Therefore, we can write the first term in (D.2) as the sum of two sub-problems,

sup
β0,β1,β

∗
0 ,β∗

1

n∑
i=1

logLi

(
β0, β1, β

∗
0 , β∗

1 |Wi,Mi

)

= sup
β0,β1,β

∗
0 ,β∗

1

∑
i:Xi=0

logLi

(
β0, β1, β

∗
0 , β∗

1 |Wi,Mi

)

+ sup
β0,β1,β

∗
0 ,β∗

1

∑
i:Xi=1

logLi

(
β0, β1, β

∗
0 , β∗

1 |Wi,Mi

)

= sup
β0,β1,β

∗
0 ,β∗

1

∑
i:Xi=1

logLi

(
β0, β1, β

∗
0 , β∗

1 |Wi,Mi

)
,

where the last equality results from Lemma D.1. Similarly, we can write the second term in
(D.2),

sup
β0,β1,β

∗
0

n∑
i=1

logLi

(
β0, β1, β

∗
0 , β∗

1 = 0|Wi,Mi

)

= sup
β0,β1,β

∗
0

∑
i:Xi=1

logLi

(
β0, β1, β

∗
0 , β∗

1 = 0|Wi,Mi

)
.

Thus, to show (D.2), it suffices to show that

sup
β0,β1,β

∗
0 ,β∗

1

∑
i:Xi=1

logLi

(
β0, β1, β

∗
0 , β∗

1 |Wi,Mi

)

− sup
β0,β1,β

∗
0

∑
i:Xi=1

logLi

(
β0, β1, β

∗
0 , β∗

1 = 0|Wi,Mi

) = 0.
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This follows directly from the fact that the parameters β∗
0 and β∗

1 enter the likelihood Li(·)
only though the term β∗

0 + β∗
1 for all i such that Xi = 1. This completes our proof of Theo-

rem D.2. �

APPENDIX E: QUANTILES OF TYPE I ERROR RATE SIMULATIONS

We present Table 2 to display sample quantiles from the type I error rate simulations
discussed in Section 5.1. We show the 5, 25, 50, 75 and 95% quantiles of each test.

TABLE 2
The 5, 25, 50, 75 and 95% quantiles of p-values from the type I error rate simulations discussed in Section 5.1.
The Wald and LRT procedures use a χ2 distribution to approximate the distributions of the test statistics (4.1)
and (4.4), respectively. The PB Wald and PB LRT procedures are the parametric bootstrap hypothesis testing

procedures discussed in Algorithms 1 and 2, respectively

Null Sample
hypothesis size Procedure 5% 25% 50% 75% 95%

(β1, β∗
1 ) = (0,0) 10 Wald 0.002 0.089 0.329 0.647 0.929

PB Wald 0.046 0.246 0.499 0.749 0.952
LRT 0.013 0.132 0.360 0.655 0.929
PB LRT 0.049 0.247 0.496 0.748 0.953

30 Wald 0.027 0.202 0.453 0.713 0.941
PB Wald 0.050 0.250 0.497 0.739 0.947
LRT 0.035 0.213 0.458 0.716 0.941
PB LRT 0.049 0.250 0.498 0.741 0.947

100 Wald 0.039 0.234 0.485 0.738 0.947
PB Wald 0.047 0.247 0.498 0.745 0.949
LRT 0.042 0.238 0.486 0.738 0.947
PB LRT 0.046 0.247 0.498 0.744 0.949

β∗
1 = 0 10 Wald 0.006 0.124 0.381 0.688 0.934

PB Wald 0.039 0.242 0.497 0.754 0.949
LRT 0.014 0.146 0.393 0.689 0.934
PB LRT 0.048 0.248 0.502 0.752 0.948

30 Wald 0.031 0.212 0.472 0.735 0.949
PB Wald 0.047 0.245 0.499 0.751 0.952
LRT 0.035 0.215 0.473 0.735 0.949
PB LRT 0.048 0.245 0.499 0.750 0.953

100 Wald 0.045 0.244 0.487 0.740 0.947
PB Wald 0.051 0.254 0.496 0.744 0.947
LRT 0.047 0.245 0.488 0.740 0.947
PB LRT 0.050 0.253 0.494 0.743 0.950

β1 = 0 10 Wald 0.002 0.123 0.387 0.685 0.935
PB Wald 0.048 0.248 0.498 0.745 0.949
LRT 0.015 0.157 0.401 0.687 0.935
PB LRT 0.047 0.251 0.497 0.746 0.949

30 Wald 0.030 0.216 0.470 0.740 0.953
PB Wald 0.050 0.246 0.496 0.755 0.955
LRT 0.037 0.221 0.472 0.741 0.953
PB LRT 0.049 0.246 0.496 0.752 0.955

100 Wald 0.044 0.24 0.492 0.747 0.952
PB Wald 0.052 0.249 0.499 0.752 0.953
LRT 0.048 0.242 0.492 0.746 0.952
PB LRT 0.049 0.248 0.501 0.752 0.953
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APPENDIX F: HYPOTHESIS TESTING RESULTS FOR EXAMPLE GENERA

We present Table 3 to display the results from the hypothesis tests conducted on the Ther-
momonas, Flavisolibacter and Myxococcus genera discussed in Section 6.2.

TABLE 3
Results from the hypothesis tests conducted on the genera discussed in

Section 6.2

Genus Method p-value

Thermomonas corncob (H0 : β = 0) 1.00 × 10−6

corncob (H0 : β∗ = 0) 1.00 × 10−6

DESeq2 3.58 × 10−15

edgeR 4.96 × 10−13

metagenomeSeq 0.0543
ZIB 0.00163

Flavisolibacter corncob (H0 : β = 0) 0.000735
corncob (H0 : β∗ = 0) 0.403
DESeq2 0.00387
edgeR 0.143
metagenomeSeq 0.759
ZIB 0.000941

Myxococcus corncob (H0 : β = 0) 0.243
corncob (H0 : β∗ = 0) 0.00871
DESeq2 0.0018
edgeR 0.0017
metagenomeSeq 0.0016
ZIB 0.0015
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