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JOINT MODEL OF ACCELERATED FAILURE TIME AND
MECHANISTIC NONLINEAR MODEL FOR CENSORED

COVARIATES, WITH APPLICATION IN HIV/AIDS1

BY HONGBIN ZHANG AND LANG WU

City University of New York and University of British Columbia

For a time-to-event outcome with censored time-varying covariates, a
joint Cox model with a linear mixed effects model is the standard modeling
approach. In some applications such as AIDS studies, mechanistic nonlin-
ear models are available for some covariate process such as viral load dur-
ing anti-HIV treatments, derived from the underlying data-generation mecha-
nisms and disease progression. Such a mechanistic nonlinear covariate model
may provide better-predicted values when the covariates are left censored or
mismeasured. When the focus is on the impact of the time-varying covari-
ate process on the survival outcome, an accelerated failure time (AFT) model
provides an excellent alternative to the Cox proportional hazard model since
an AFT model is formulated to allow the influence of the outcome by the
entire covariate process. In this article, we consider a nonlinear mixed effects
model for the censored covariates in an AFT model, implemented using a
Monte Carlo EM algorithm, under the framework of a joint model for simul-
taneous inference. We apply the joint model to an HIV/AIDS data to gain
insights for assessing the association between viral load and immunological
restoration during antiretroviral therapy. Simulation is conducted to compare
model performance when the covariate model and the survival model are mis-
specified.

1. Introduction. Human immunodeficiency virus (HIV) infection results in
progressive destruction of immune function, which may be indicated by a de-
crease of CD4 T-cells and an increase of CD8 T-cells. Successful treatments such
as antiretroviral therapy (ART) would typically suppress the amount of virus, as
measured by viral loads (RNA copies per milliliter of blood plasma), with partial
reconstitution of the immunologic perturbations. However, despite many advances
in drug development for suppressing HIV, the immune dynamics after initiating an
antiretroviral therapy remain not fully understood (Deeks et al. (2000), Lederman,
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Connick and Landy (1998), Palmisano and Yella (2011)). The CD4:CD8 ratio re-
cently has become a tool for assessing the condition of HIV subjects. Compared
to research focusing on the CD4 and CD8 processes separately, other research
shows that the CD4:CD8 ratio process may be more closely associated with vi-
ral dynamics: the time until first decline in this ratio has been shown to be more
closely associated with HIV viral rebound (see, e.g., Wu, Liu and Hu (2010) and
Huang, Hu and Dagne (2014)). Here we further investigate this claim. Wu, Liu and
Hu (2010) investigated such a relationship with a shared parameter joint modeling
approach where individual random effects are used to capture the characteristics
of viral load trajectories. In this paper, we model the error-prone viral load as a
time-dependent regressor for event outcome to directly model their relationship
for better interpretation. In particular, we aim to model the event times to first ratio
decline (FRD) as a function of ART received, the longitudinal viral loads and their
interaction for a better understanding of the interplay.

One of the main challenges in the analyses is that viral loads may be measured
with errors and may be left censored due to a lower detection limit. In survival
models, when a time-dependent covariate is left censored or measured with errors,
a usual approach is to assume a linear or generalized linear mixed effects covariate
model, and assume that the model holds for the unobserved censored values (e.g.,
Bernhardt, Wang and Zhang (2014), Sattar and Sinha (2019)). The inference is
then based on a joint model for the covariate and the response. However, such an
approach may lead to biased results if the assumed covariate model is misspecified,
especially for censored values. Nonlinear models, on the other hand, are typically
scientific or mechanistic models since they are usually derived based on the un-
derlying data-generation mechanisms, not just based on observed data. Although
such nonlinear models may not always be available, in many applications nonlin-
ear models can be obtained, such as in HIV viral dynamics (Wu, Zhao and Liang
(2004)). These mechanistic models are derived based on the underlying viral elim-
ination and production mechanisms and have been confirmed to fit the observed
data well (Wu and Ding (1999)). These mechanistic models are usually nonlinear
models since they are solutions of a set of differential equations which describe
the underlying data-generation mechanisms. Therefore, these mechanistic models
should hold for censored viral loads as well. In this paper, along with the line of
our recent development (Zhang, Wong and Wu (2018), Zhang and Wu (2018)), we
employed a mechanistic nonlinear mixed effects model (NLME) for the covariate
process. For the time to FRD, however, we consider the accelerated failure time
(AFT) models as an alternative to the Cox proportional hazard model (Zhang and
Wu (2018)). AFT models relax the proportional hazard assumption and allow the
entire viral load trajectory, including the early decay phase as well as the portion
censored by the detection limit, to influence the immune restoration, leading to a
possibly more biological plausible joint model.

To our knowledge, a joint model of NLME and AFT model with censored co-
variates has not been studied in the literature yet, especially using a mechanis-
tic nonlinear model to address censored and mismeasured covariates in the AFT
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model. Tseng, Hsieh and Wang (2005) considered joint linear mixed effects (LME)
and AFT model, without censoring in covariates. Wu, Liu and Hu (2010) studied
a joint NLME and AFT model based on a shared parameter model, again without
censoring in covariates. Riopoulos (2012) reviewed commonly used joint models
for longitudinal and survival data. There has been extensive research on joint mod-
els in more recent years, but none seems to consider the approaches described in
this article.

The innovations in the current article are as follows: (a) Instead of a shared
parameter joint model where the random effects from the NLME model are used
as “covariate,” here we use viral loads as time-varying covariates directly in the
AFT model to allow more natural interpretation. This extension is nontrivial be-
cause (i) the parameter estimation becomes more challenging since the baseline
hazard of the AFT model involves unknown parameters from the covariate model,
and (ii) the covariate values may be left censored or truncated due to the lower
detection limit. (b) In the current article, we focus on addressing left censored or
truncated time-dependent covariates in the joint model. This is important because
in HIV studies left censored viral loads reflect “viral suppression” which has im-
portant clinical implications. (c) The computation becomes even more challenging
in the current model setting than that in a shared parameter model where the “co-
variates” random effects are time-independent without censoring, and a simpler
log-linear representation of the AFT model can be used.

We present the joint NLME and AFT model with covariate censoring in Sec-
tion 2. In Section 3, we describe the Monte Carlo EM algorithm. In Section 4, we
analyze an AIDS dataset which motivated our research. In Section 5, we conduct a
simulation study to assess the joint model’s performance and compare with results
from other misspecified models. We conclude the article with some discussions in
Section 6.

2. The joint NLME and AFT model. In this section, we present the models
in general forms to enable generalizations in different settings. We consider a joint
model for longitudinal and survival data, where the longitudinal data are treated as
covariates with some covariates possibly being censored and measured with errors.
For simplicity of presentation, we focus on the key covariate with left censoring
and suppress other covariates. Suppose that the key covariate is repeatedly mea-
sured over time, subject to left censoring and measurement errors. We also assume
that a scientific or mechanistic nonlinear model can be obtained for the covariate
process. We use this nonlinear mechanistic covariate model to “predict” the un-
observed censored or mismeasured covariate values. The repeated measures may
serve as “replicates” to estimate magnitudes of measurement errors, assuming the
covariate values change smoothly over time. Note that there are two types of cen-
soring here: the longitudinal covariate values may be left censored, and the event
times may be right censored.
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Let the covariate value for individual i at time tij be xij , i = 1, . . . , n; j =
1, . . . , ni , subject to censoring and measurement errors. Let x∗

ij be the correspond-
ing true but unobserved covariate value. We consider the following NLME model,
which may be viewed as a classical measurement error model:

(2.1) xij = g(tij ,α,ai ) + eij ≡ x∗
ij + eij ,

where g(·) is a known nonlinear function, α is a vector of parameters (fixed
effects), ai is a random effects vector, and eij is measurement error. We as-
sume that ai ∼ N(0,A), and eij |ai i.i.d. ∼ N(0, σ 2), that is, eij is independent
of eik , j �= k, where σ 2 represents the magnitude of the measurement error. To
quantify the covariate effect history, we recast model (2.1) in continuous time,
xi(t) = g(t,α,ai) + ei(t) ≡ x∗

i (t) + ei(t) where xi(t), g(t,α,ai ), and ei(t) are
the covariate value, known nonlinear function, and measurement error at time t .

Suppose that there is a lower detection limit d for the covariate such that the
value of xij with xij < d cannot be observed. In the presence of left censoring in
the covariate, the covariate xi = (xi1, . . . , xini

) can be written as (xoi,xci), where
xoi = (xoi,1, . . . , xoi,noi

) represents the portion of observed covariate values for
individual i and xci = (xci,1, . . . , xci,nci

) represents the left censored portion, and
ni = noi + nci .

For the survival data, we consider the usual right censoring. We define Ti to be
the minimum of the event time T ∗

i and the right censoring time Ci , and define �i to
be the event indicator which takes value “1” if an event occurs before the censoring
time and “0” otherwise. We aim to associate x∗

i (t), the true and unobserved val-
ues of the longitudinal covariate process, with the event outcome. The commonly
used Cox model (Cox (1972)) can be written as hi(t;X∗

i (t)) = h0(t) exp(x∗
i (t)β),

where X∗
i (t) = {x∗

i (s) : 0 ≤ s ≤ t} is the covariate history up to time t , and h0(t)

the baseline hazard function. When covariates are constant, that is, time-fixed, Cox
model reduces to a proportional hazard model where the proportionality assump-
tion is hard to meet in practice. For the time-varying covariate, although Cox model
is no longer proportional in hazard, however, the baseline hazard is still assumed
to be independent with the covariate. Alternatively, Cox and Oakes (1984) pre-
sented a so-called AFT model (see also Miller (1976)) in which an individual with
covariate x∗

i (·) and survival time T ∗
i uses up her life at the rate of e−x∗

i (t)β rela-

tive to a “baseline time” T0i in the relationship T0i = ∫ T ∗
i

0 ex∗
i (s)β ds. The model is

succinctly written as

Si

(
t |x∗

i , β
) = S0i

(
c̄i (t)t

)
, c̄i(t) = 1

t

∫ t

0
ex∗

i (s)β ds,

where S0i (·) is the baseline survival function. Here, we can interpret c̄i (t) as the
average value of an acceleration factor ex∗

i (s)β over s ∈ [0, t). The model can be
equivalently specified through the hazard function as

(2.2) hi

(
t;X∗

i (t)
) = h0

(
c̄i (t)t

)
exp

(
x∗
i (t)β

)
.
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One can understand this model through the survivor function Si(t |x∗
i , β) =

S0i (c̄i(t)t). So if we have standardized the covariate process, suppose that we have
an individual with c̄(t) ≡ 1, for all t , so that we can regard them as a baseline in-
dividual with survivor function S0i . Then we can compare this individual to one
with c̄(t) = 2, say, for a value of t of interest. Then the prospects of living at least
t units of time for this individual are the same as the prospects for the baseline
individual to live at least 2t units. This model then allows survival prospects to
slide forwards or backwards relative to a hypothetical baseline individual. It is not
possible with the Cox model to make such a simple comparison with a baseline in-
dividual. In addition, we assume that the time-varying covariate process is internal
or endogenous (see, e.g., Kalbfleisch and Prentice (2002)).

Let θ = (α, σ 2,A,h0,β) be the collection of all unknown parameters in model
(2.1) and (2.2), and let f (·) denote a generic density function and f (X|Y) denote
a conditional density of X given Y . Under the assumptions of noninformative right
censoring of event times and conditional independence, the “joint likelihood” for
individual i can be written as

(2.3)
Lobs(θ) =

∫ ∞
−∞

∫ d

−∞
[
f (Ti,�i |ai;α,h0,β)

× f
(
xoi |ai;α, σ 2)

f
(
xci |ai;α, σ 2)

f (ai |A)
]
dxci dai ,

where the integration
∫

may be multidimensional. In (2.3), for the survival part,
we have

(2.4)
f (Ti,�i |ai;α,h0,β) = (

hi

(
Ti |X∗

i (Ti);α,h0,β
))�i

× S
(
Ti |X∗

i (Ti);α,h0,β
)
.

Note that, in the above covariate model for xij ’s, we have assumed that the
censored (unobserved) values of xij continue to follow the parametric distribu-
tion assumed for the observed xij values. This assumption should be reasonable
since such a nonlinear mechanistic model should hold for both observed and cen-
sored covariate values. When considering the censored data as nonignorable miss-
ing data, our approach may provide better “predictions” of the unobserved values,
implied by the EM algorithm described in the next section, than those from the
commonly used linear covariate models which may not hold for censored values.

3. Parameter estimation and inference. For statistical inference of joint
models of longitudinal and survival data, the key implementation difficulty is that
the integral in the likelihood Lobs(θ) is typically quite intractable, due to the nested
integrals because of the embedded nonlinear covariate in the AFT structure. When
the dimension of the censored portion and random effects, that is, dim(xci,ai ), is
not low, numerical methods such as Gaussian quadrature can be computationally
very intensive and may offer nonconvergence. We therefore offer a Monte Carlo
EM algorithm.
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The EM algorithm is a standard approach for likelihood estimation in the pres-
ence of missing data. When the E-step is highly complicated, Monte Carlo meth-
ods can be used to approximate the expectation, leading to a MCEM algorithm.
In our case, by treating the censored values xcen,i and random effects ai as “miss-
ing data,” we have “complete data” as {(xci ,xoi, Ti,�i,ai ) = (xi , Ti,�i,ai ), i =
1, . . . , n}, and the “complete-data” log-likelihood function for individual i can be
expressed as

(3.1)
lic(θ) = logf (Ti,�i |ai;α,h0,β) + logf

(
xci |ai;α, σ 2)

+ logf
(
xoi |ai;α, σ 2) + logf (ai;A).

The EM algorithm iterates between an E-step and a M-step until convergence. Let
θ (t) be the parameter estimates from the t th EM iteration. The E-step for individual
i at the (t + 1)th EM iteration can be expressed as

(3.2)

Qi(θ |θ (t)) =
∫ ∫ [

logf (Ti,�i |ai;α,h0,β)

+ logf
(
xci |ai;α, σ 2) + logf

(
xoi |ai;α, σ 2)

+ logf (ai;A)
] × f (xci ,ai |xoi, Ti,�i; θ (t)) dxci dai .

The above E-step again involves an intractable integration. However, because ex-
pression (3.2) is an expectation with respect to f (xci ,ai |xoi, Ti,�i; θ (t)), and it
can be evaluated using the MCEM algorithm (Ibrahim, Lipsitz and Chen (1999),
Wei and Tanner (1990)). Specifically, we may use the Gibbs sampler (Gelfand
and Smith (1990)) to generate many samples from f (xci ,ai |xoi, Ti,�i; θ (t))

by iteratively sampling from the full conditionals [xci |xoi, Ti,�i,ai; θ (t)], and
[ai |xi , Ti,�i; θ (t)] based on the following results:

f (xci |xoi, Ti,�i,ai; θ (t)) ∝ f (xi |ai; θ (t)),

f (ai |xi , Ti,�i; θ (t)) ∝ f (ai; θ (t)) · f (xi |ai; θ (t)) · f (Ti,�i |ai; θ (t)).

Monte Carlo samples from each of the above full conditionals can be gener-
ated using multivariate rejection sampling methods (see the Appendix for de-
tails). After generating large random samples from the conditional distribution
f (xci,ai |xoi, Ti,�i; θ (t)), we can then approximate the expectation Qi(θ |θ (t)) in
the E-step by its empirical mean, with “missing data” replaced by simulated values.
Then the M-step, which maximizes

∑n
i=1 Qi(θ |θ (t)), is like a complete-data maxi-

mization, so complete-data optimization procedures such as the Newton–Raphson
method may be used to update the parameter estimates. At convergence, we obtain
the MLE of θ or a possibly local maxima. We may try different starting values to
roughly check if an MLE (i.e., global maxima) is obtained.

To obtain the variance-covariance matrix of the MLE θ̂ , we consider the fol-
lowing approximate formula in McLachlan and Krishnan (1997). Denote the score
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function of the complete-data likelihood by S
(i)
c = ∂l

(i)
c /∂θ . Then an approximate

formula for the variance-covariance matrix of θ̂ is

Cov(θ̂) =
[

n∑
i=1

E
(
S(i)

c |xoi, Ti,�i; θ̂)
E

(
S(i)

c |xoi, Ti,�i; θ̂)T ]−1

,

where the expectation can be approximated by Monte Carlo empirical means.

4. Data analysis. In this section, we analyze the ACTG 388 dataset (Fischl,
Ribaudo and Collier (2003)). ACTG 388 study was a randomized, open-label study
comparing two different 4-drug regimens (efavirenz and nelfinavir) with a standard
3-drug regimen for 517 subjects with no or limited previous experience with an-
tiretroviral therapy (ART) who had a CD4 cell count ≤ 200 cells/mm3 or a plasma
HIV-1 RNA level ≥ 80,000 copies/mL at screening. The plasma HIV-1 RNA (vi-
ral load) is repeatedly quantified at weeks 0, 4, 8, 16, and every eight weeks until
week 72. Out of a total of 517 patients, 65 subjects were excluded from this study
as RNA assay results are not available for these subjects. The CD4 and CD8 cell
counts were also measured throughout the study on a similar scheme. The event
times of interest here are the occurrences of FRD (first CD4:CD8 ratio declining)
for which we treat the censored event times as right censoring for simplicity, al-
though strictly speaking, they are interval-censored. To see if this simple assump-
tion of right censoring is reasonable, we created three datasets where the event
times were assumed to occur at left-ends, middle and right-ends of the time inter-
vals. No major differences were found, and the results hereafter are based on the
dataset where the right-ends of the intervals were treated as the times of the event.
Also, we removed 60 subjects as they had less than three viral load measurements.
The final data has 392 individuals where 123 (31%) are in the “standard” 3-drugs
treatment arm, 140 (36%) in the “efavirenz” arm, 129 (33%) in the “nelfinavir”
arm.

Figure 1 displays viral load trajectories (up to the time point of FRD) for the
three treatment arms. The event FRD occurred to most individuals. The viral load
detection limit in this study is 25 copies/mL (or 1.39 in log10 scale). In total, 15%
of viral loads are left censored. In Figure 1, the censored viral loads are replaced
by half of the detection limit. We use log10 transformation on viral load to stabilize
the variation of the measurement errors, to make the normality assumption of the
errors more reasonable, and to speed up the estimation algorithm. To avoid too
small or too large parameter estimates, which may be unstable, we also re-scaled
the original time (in days) so that the new timescale is between 0 and 1.

For the observed viral load data xij , which is subject to measurement error and
left censoring, we consider the following mechanistic NLME model based on Wu
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FIG. 1. Individual viral loads stratified by the three treatment arms. The lower detection limit for
viral loads is log 10(25)(= 1.39), and censored data below the detection limit are replaced with half
of the limit (i.e., log 10(25/2) = (1.10)) in the plots.

and Ding (1999):

xij = log10
{
eα1i−α2i∗tij + eα3i−(α4i+α5i∗tij )∗tij

} + eij ≡ x∗
ij + eij ,

α1i = α1 + a1i , α2i = α2 + a2i ,

α3i = α3 + a3i , α4i = α4 + a4i , α5i = α5 + a5i ,

ai = (a1i , a2i , a3i , a4i , a5i )
T ∼ N(0,A), eij |ai ∼ N

(
0, σ 2)

,

(4.1)

where xij is the observed error-prone viral load (log10 transformed) for individual
i at time j , x∗

ij is the corresponding (unobserved) true viral load, aki ’s are random
effects, eij represents measurement error, parameter α2i represents the first-phase
viral decay rate and α4i + α5i tij represents the time-varying second-phase viral
change rate, parameters α1i and α3i are the amounts of virus produced and cleared
from productively infected cells and long-lived and/or latently infected cells re-
spectively.

Our primary goal in this analysis is to determine if and how the time to FRD
may be related to entire viral load process before the event and how treatments
modify the relationship. We consider the following AFT model for the time to
FRD:

(4.2) hi(t) = h0
[
ψ

{
X∗(t);β}]

ψ ′{X∗(t);β}
,

where ψ(X∗(t);β) = ∫ t
0 eβ1z1i+β2z2i+β3x

∗
i (s)+β4z1ix

∗
i (s)+β5z2ix

∗
i (s) ds, and ψ ′ is the

first derivative of ψ , x∗
i (s) is the true viral load value at time s subject to left

censoring, z1i and z2i are dummy variables for the three treatment arms such that
z1i = 0 & z2i = 0 for the “standard” treatment arm, z1i = 1 & z2i = 0 for the
“efavirenz” arm, and z1i = 0 & z2i = 1 for the “nelfinavir” arm, and βj ’s are the
corresponding parameters.
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Handling the AFT structure in the joint modeling setting is more difficult since
the baseline hazard function h0(·) involves unknown quantities (ai ,α,β). One
cannot use the point mass function with masses assigned to all uncensored sur-
vival times for the baseline hazard function h0 as in standard semi-parametric Cox
model implementation. To circumvent this, Tseng, Hsieh and Wang (2005) as-
sumed the baseline hazard function h0 to be a step function, while more recently,
Tseng and Yang (2016) propose a kernel-smooth function which requires an arbi-
trary choice on the number of the knots. Here we consider the parametric Weibull
distribution for the survival data since it provides a reasonable fit to the data and
is also easier to handle. In this case, we have h0(t) = λγ tγ−1, where λ is the lo-
cation parameter and γ is the shape parameter. For the integration in the baseline
hazard function, we use a numerical method called Gauss–Kronrod rule (Press
et al. (2007)).

In our implementation, the E-step in the MCEM method is the most time
consuming portion of the entire estimation procedure. Consider sampling from
f (xci |xoi, Ti,�i,ai; θ (t)). Since f (xci |xoi, Ti,�i,ai; θ (t)) ∝ f (xi |ai; θ (t)), we
could get the samples directly from the multivariate normal distribution
f (xi |ai; θ (t)) by rejecting those that do not fit the observed censoring patterns.
However, such a procedure may have an arbitrarily low yields and be time con-
suming. In the implementation, we take an alternative approach by using Gibbs
samplers again. Given an initial value of xi , new values of xi are generated by
iteratively sampling from univariate conditional distributions (Breslaw (1994)). To
get the initials values, we first fit the NLME covariate model separately, ignoring
the survival data. In particular, we use the popular iterative linearization method of
Lindstrom and Bates (1990), in which the left-censored response (covariate) val-
ues are handled in the working linear mixed effect model (LME) step within each
iteration based on the R package “lmec” (Vaida and Liu (2009)). We then obtain
the estimates of the survival model’s parameters with the true covariate values and
random effects substituted by their estimates from the previous step.

We start the MCEM estimation procedure with k0 = 100 Monte-Carlo samples
and increase the Monte-Carlo sample size as the number of iteration t increases:
kt+1 = kt + kt/c with c = 5 (see Booth and Hobert (1999)). We assess the conver-
gence of the Gibbs sampler by examining time series plots and sample autocorre-
lation function plots. We notice that the Gibbs sampler converges quickly and the
autocorrelations between successive generated samples are negligible after lag 30
(for the random effects) and 10 for the censored covariate. Therefore, we discard
the first 300 samples as the burn-in, and then we take one sample from every 30
simulated samples to obtain “independent” samples. Convergence of the EM algo-
rithm was considered to be achieved when the maximum percentage change of all
estimates was less than 0.01 in two consecutive iterations.

For comparison purpose, we also consider three alternative joint models for the
data, hoping to gain additional insights into the analysis. The first joint model
is “LME + AFT,” where an LME model is applied to the covariate data and an
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AFT model on survival data. The second joint model is “NLME + Cox,” where
an NLME model is fitted to the covariate data and a Cox model is assumed for
the survival data. The third model is “LME + Cox,” which is the standard joint
model in the literature. For the LME model, we consider the following LME
model (quadratic polynomial with random coefficients) based on AIC/BIC cri-
teria xij = (α1 + a1i ) + (α2 + a2i )tij + (α3 + a3i )t

2
ij + eij , where a1i , a2i , a3i

are the random effects for intercept, slope and quadratic terms and eij is the error
term for measurement error. Again we assume ai = (a1i , a2i , a3i )

T ∼ N(0,A) and
eij ∼ N(0, σ 2).

Table 1 shows the results of the population parameters estimates for both the co-
variate model and the survival model under the four modeling approaches. Across
the models, the covariate parameters are all estimated with high precision and are
all significant. When the NLME model is used, for example, in the “NLME +
AFT” and “NLME + Cox” joint models, the magnitude of measurement error was
estimated to be smaller, comparing to the LME joint models, for example, “LME
+ AFT” and “LME + Cox” joint models. For the survival response model, all
four models produced a significant (and positive) estimate of the key parameter β3,
which reflects the effects of the longitudinal (true) viral load on the risk of FRD.

TABLE 1
Data analysis results of ACTG 388: estimates (est), standard errors (se), and p-values (pv)

NLME + AFT LME + AFT NLME + Cox LME + Cox
Model est se pv est se pv est se pv est se pv

α1 6.40 0.18 <0.001 4.81 0.06 <0.001 6.23 0.15 <0.001 4.86 0.06 <0.001
α2 5.38 0.74 <0.001 −20.81 0.69 <0.001 4.60 0.64 <0.001 −21.74 0.66 <0.001
α3 12.56 0.16 <0.001 25.93 1.00 <0.001 12.53 0.15 <0.001 28.13 1.01 <0.001
α4 122.86 6.96 <0.001 121.65 7.54 <0.001
α5 −112.63 7.55 <0.001 −103.24 9.90 <0.001
σ 0.66 0.01 <0.001 0.97 0.02 <0.001 0.71 0.01 <0.001 0.94 0.01 <0.001
log(λ) 0.93 0.10 <0.001 0.91 0.10 <0.001 1.07 0.21 <0.001 1.37 0.17 <0.001
log(γ ) 0.39 0.11 <0.001 0.54 0.09 <0.001 0.44 0.08 <0.001 0.48 0.07 <0.001
β1 0.24 0.17 0.185 0.01 0.32 0.998 0.35 0.33 0.352 0.02 0.20 0.873
β2 0.47 0.24 0.051 0.20 0.21 0.377 0.44 0.31 0.182 0.22 0.24 0.386
β3 0.18 0.03 <0.001 0.22 0.02 <0.001 0.27 0.10 0.004 0.23 0.07 0.001
β4 −0.11 0.10 0.663 −0.05 0.06 0.409 −0.10 0.14 0.445 0.02 0.09 0.822
β5 −0.06 0.08 0.454 −0.01 0.08 0.861 −0.06 0.14 0.643 −0.01 0.11 0.974

Estimates of random effects covariance matrix parameters:

ANLME + AFT =

⎛
⎜⎜⎜⎜⎜⎝

3.31 1.79 0.16 0.68 0.55
26.93 −0.16 4.59 1.81

1.10 0.10 0.23
21.62 −0.40

18.92

⎞
⎟⎟⎟⎟⎟⎠ , ALME + AFT =

⎛
⎜⎝0.04 0.17 0.88

28.93 −55.24
145.99

⎞
⎟⎠ ,

ANLME + Cox =

⎛
⎜⎜⎜⎜⎜⎝

2.43 3.38 0.19 0.45 −0.28
61.62 −0.40 −9.35 −6.96

0.56 0.39 −0.01
51.49 0.01

46.57

⎞
⎟⎟⎟⎟⎟⎠ , ALME + Cox =

⎛
⎜⎝0.04 0.16 1.31

36.16 −76.05
227.28

⎞
⎟⎠ .
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FIG. 2. Plots for typical individuals’ c̄(t) functions, hazard functions, and survival functions based
on four joint models (NLME + AFT, LME + AFT, NLME + Cox and LME + Cox) stratified by three
treatment arms. As no c̄(t) function is available for non-AFT models (NLE + Cox and LME + Cox),
viral load trajectories for the typical individual are displayed.

However, for the parameter β2 which measures the effect of treatment “nelfinavir,”
the proposed “NLME + AFT” joint model gives a nearly significant estimate at
5% level (none of its interaction terms are significant), while all other models fail
to detect this significance. This is a new finding from the proposed model.

To gain better understanding of the results, we checked several related functions
for a “typical individual” for whom the random effects in the covariate model are
all set at zero values as opposed to integrating out the random effects, see Fig-
ure 2. For AFT models, we plotted the function c̄(t) (i.e., the average value of the
acceleration factor) for each treatment arm. Note that for the current application,
we have c̄(t) = 1

t

∫ t
0 exp(β1z1i + β2z2i + β3x

∗
i (s) + β4z1ix

∗
i (s) + β5z2ix

∗
i (s)) ds.

For Cox models, we only plotted the viral load trajectory for the “typical individ-
ual.” As a comparison, the corresponding treatment stratified hazard functions and
survival functions are also displayed. For the leftmost panel in Figure 2 for the
“NLME + AFT” model, we see that treatments lead to different c̄(t) profiles. The
“nelfinavir” treatment has the highest level of profile, with the “efavirenz” treat-
ment in the middle and the “standard” 3-drug treatment the lowest. The order of
magnitude of the treatment effects is preserved in the hazard functions and the sur-
vival functions. For the “LME + AFT” model, hazard and survival functions seem
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not distinguishable among the three treatments, especially between the “efavirenz”
arm and the “standard” arm. Notice that, for the “LME + Cox” model, the hazard
function and survival function are even more severely collided.

In the preceding data analysis, we have considered different models for lon-
gitudinal data and survival data respectively. Standard model diagnostics such as
residual plots show that these models fit the observed data reasonably well. How-
ever, the four joint models offer different estimations of key parameters, both the
magnitudes of the estimates and the corresponding p-values, as discussed above.
Moreover, for the longitudinal data, the NLME model has the advantage of being
biologically justified so that it may predict the left-truncated viral loads better than
the empirical LME model. For the survival data, the AFT model provides alterna-
tive biological interpretations than the Cox model, and it may also be viewed as
a tool for sensitivity analysis, that is, how sensitive the parameter estimates are to
the survival model specifications.

5. A simulation study. In this section, we evaluate the proposed model and
method when there are different amounts of left-censoring in the time-varying co-
variate, and we also assess model misspecifications through simulation. We gen-
erate the data based on the “NLME + AFT” joint model, and then we conduct
data analysis using the “NLME + AFT” joint model and the misspecified “LME
+ AFT,” “NLME + Cox” and “LME + Cox” joint models. The models and their
true parameter values in the simulations are chosen to be the same (or similar) to
those in the real data analysis. This setting allows us to validate the analysis results
in the previous section, in addition to the evaluation of model performance.

We first generate random effects for each individual, ai ∼ N(0,A), i =
1, . . . , n, and then we simulate the true covariate values from the two-compartment
model (4.1). We then generate the event time for each individual based on model
(4.2). In the simulation, as we mimic ACTG 388 which ends at week 72 (504
days), event times greater than 504 are treated as right censored. The resulting
proportion of right-censored event times is about 5%, which is comparable with
the real data. For each individual, we only preserve the portion of the longitudinal
data up to his/her event time. Left censoring of the longitudinal data is created at
the last step. We consider left-censored longitudinal data with censoring rate at
15% or 30% respectively. We choose the sample size to be the same as the real
data, that is, n = 392.

Table 2 summarizes the simulation results based on 100 simulation repetitions.
We present averaged parameter estimates (Est), averaged standard errors (SE),
standard deviations (SD) of the estimated parameter from the simulated samples,
percent biases (Bias%) (percentage on the change of the difference between the
estimated parameter and the true value relative to the true value) and coverage
rate (CR) of the 95% confidence intervals of the parameters. We see that the joint
model “NLME + AFT” produces the least biased estimates and coverage proba-
bilities closest to the nominal level 95%. For the “LME + AFT” joint model where
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TABLE 2
Simulation results (NA: NLME + AFT; LA: LME + AFT; NC: NLME + Cox; LC: LME + Cox)

α1 α2 α3 α4 α5 log(λ) log(γ ) β1 β2 β3 β4 β5
Model True 6.40 5.38 12.56 122.86 −112.63 0.93 0.39 0.24 0.47 0.18 −0.11 −0.06

15% left-censored
NA Est 6.42 5.47 12.68 124.96 −113.44 1.06 0.35 0.24 0.33 0.10 −0.09 −0.04

SE 0.18 0.56 0.14 4.46 5.24 0.08 0.08 0.22 0.24 0.04 0.09 0.08
SD 0.11 0.85 0.10 4.23 8.98 0.20 0.08 0.17 0.15 0.08 0.06 0.05
Bias% 1.94 20.33 0.93 4.96 4.27 15.62 −10.81 −7.35 −21.00 −14.29 −24.49 −17.01
CR 0.95 0.92 0.95 0.93 0.93 0.89 0.94 0.95 0.95 0.85 0.95 0.95

LA Est - - - - - 0.55 0.47 0.21 0.61 0.28 −0.09 −0.11
SE - - - - - 0.31 0.06 0.26 0.27 0.07 0.09 0.09
SD - - - - - 0.35 0.07 0.28 0.29 0.08 0.09 0.09
Bias% - - - - - −21.05 19.29 −18.61 19.24 24.92 −18.79 44.02
CR - - - - - 0.76 0.74 0.91 0.87 0.74 0.95 0.89

NC Est 6.50 5.71 12.61 121.66 −112.28 1.32 0.31 0.07 0.53 0.04 −0.07 −0.02
SE 0.17 0.69 0.11 3.61 4.05 0.17 0.05 0.23 0.24 0.05 0.06 0.07
SE 0.38 1.17 0.12 9.44 10.89 0.34 0.07 0.24 0.23 0.07 0.08 0.07
Bias% 1.58 6.19 0.41 −0.97 −0.31 22.40 −20.85 −32.70 12.79 −19.28 −20.78 −33.23
CR 0.81 0.86 0.88 0.59 0.61 0.86 0.81 0.84 0.94 0.83 0.95 0.72

LC Est - - - - - 0.17 0.44 0.16 0.59 0.15 −0.04 −0.11
SE - - - - - 0.22 0.05 0.32 0.33 0.09 0.12 0.12
SD - - - - - 0.25 0.05 0.35 0.38 0.10 0.12 0.13
Bias% - - - - - −41.50 71.43 68.68 89.89 64.18 60.27 −91.89
CR - - - - - 0.40 0.60 0.94 0.61 0.41 0.88 0.40

30% left-censored
NA Est 6.23 5.08 12.42 125.55 −116.79 1.21 0.32 0.19 0.38 0.08 −0.07 −0.04

SE 0.21 0.60 0.15 6.67 6.72 0.11 0.09 0.22 0.27 0.05 0.09 0.10
SD 0.24 0.76 0.14 12.45 8.98 0.16 0.11 0.29 0.23 0.09 0.12 0.10
Bias% −3.45 −31.97 −0.88 10.12 7.73 21.44 −17.27 −23.55 −45.65 −21.08 −35.91 −27.22
CR 0.90 0.88 0.95 0.92 0.94 0.85 0.92 0.93 0.93 0.86 0.92 0.95

LA Est - - - - - 0.13 0.48 0.27 0.74 0.35 −0.10 −0.15
SE - - - - - 0.41 0.06 0.32 0.32 0.08 0.11 0.11
SD - - - - - 0.50 0.08 0.36 0.36 0.10 0.12 0.11
Bias% - - - - - −56.99 71.77 95.18 49.61 92.75 87.66 −97.35
CR - - - - - 0.20 0.30 0.86 0.77 0.42 0.84 0.52

NC Est 6.07 2.82 12.59 115.11 −107.19 1.31 0.30 0.03 0.49 0.02 −0.01 −0.01
SE 0.16 0.48 0.11 3.41 3.92 0.18 0.05 0.24 0.25 0.04 0.06 0.06
SD 0.40 1.13 0.12 9.51 10.19 0.50 0.07 0.22 0.25 0.07 0.07 0.08
Bias% −5.08 −47.56 0.20 −6.31 −4.83 21.30 −23.30 −50.07 4.41 −49.57 −47.41 −41.52
CR 0.54 0.05 0.92 0.49 0.58 0.57 0.58 0.77 0.94 0.57 0.51 0.68

LC Est - - - - - 0.51 0.45 0.25 1.05 0.47 −0.11 −0.21
SE - - - - - 0.27 0.05 0.38 0.39 0.10 0.14 0.14
SD - - - - - 0.33 0.05 0.44 0.47 0.13 0.15 0.16
Bias% - - - - - −48.33 65.01 92.22 118.64 171.53 178.25 −110.97
CR - - - - - 0.10 0.20 0.87 0.47 0.39 0.85 0.44

the longitudinal covariate model is misspecified, we only show the estimation re-
sults for the survival model part. As expected, the misspecified model performs
worse than the NLME + AFT joint model. For example, when 15% of longitu-
dinal data are left censored, the coverage rate of the confidence intervals are less
than 80% for parameters log(λ), log(γ ) and β3, and the coverage drops below
50% when there are 30% censoring in the longitudinal covariate data. Comparing
to the “LME + AFT” model, the consequences of the misspecified survival model
in the “NLME + Cox” model is less severe. This is not surprising since the fo-
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TABLE 3
Fitting NLME + AFT model under different data-generating mechanism

LME + AFT NLME + Cox LME + COX

Parameter Bias% CR Bias% CR Bias% CR

log(λ) 41.37 0.39 −0.29 0.88 22.41 0.44
log(γ ) −39.11 0.64 32.28 0.25 −53.72 0.62
β1 −78.60 0.72 −54.91 0.92 99.12 0.67
β2 15.45 0.88 −55.74 0.86 −45.45 0.72
β3 −77.00 0.42 −81.23 0.23 −173.29 0.43
β4 −43.09 0.70 3.20 0.95 81.01 0.39
β5 29.44 0.89 −31.23 0.91 162.32 0.57

cus is on the left-censored longitudinal covariate data and Weibull model is also
proportional hazards. The misspecified joint model “LME + Cox” represents the
worst case since both the covariate model and the survival model are misspecified.
We see that the coverage rates for “LME + Cox” can be quite low, for example,
only 10% for log(λ) and the percent bias can be more than 100 when the covariate
left-censoring rate is at 30%.

Although the simulation results are somewhat expected, they do give us some
confidence about the data analysis results in the previous section and some idea
about how much worse a misspecified model may perform.

We have conducted another simulation study where we simulate the data under
the scenario that the time-varying covariate follows an LME model and the sur-
vival response follows a Cox model. Then we fit an NLME + AFT joint model
to check the performance of this misspecified joint model. The simulation results
are presented in Table 3, where we show the estimates of the parameters from
the survival response model, under 15% left censoring of the time-varying covari-
ate data. As expected, the NLME + AFT joint model does not perform as well
when it is misspecified. Thus, it is important to correctly specify the joint model.
In practice, since the true models are not known, we should choose models that
fit observed data reasonably well and have reasonable biological justifications or
interpretations.

6. Discussion. In some applications, AFT models may be more appealing
than Cox models since AFT models do not rely on the proportional hazard as-
sumption and allow for the entire covariate process to impact the disease process.
Moreover, AFT models have an attractive interpretation of “speed up” or “slow
down” of the disease process, which seems reasonable in HIV studies. Of course,
Cox models may be more popular in practice and have their advantages. The main
purpose of this article is to provide an alternative modeling approach, hoping to
gain new insights into the scientific problem.
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When the time-varying covariate is left censored due to a detection limit, under-
standing the underlying data-generating process is important since it may provide
better “predicted values” for the censored data. Our simulation results show that
serious biases may occur if the models are misspecified. On the other hand, both
the mechanistic NLME model and the empirical LME model may be misspecified
for the unobserved censored values since neither can be tested or verified based
on the observed data. However, the NLME model is derived based on reasonable
biological arguments, and it fits observed data well, while the LME model has no
biological justifications. Thus, although the NLME model may still be misspeci-
fied, it should be more desirable than the LME model.

The biological relationship between HIV viral dynamics and immunological
restoration is a complicated issue. In this paper, we study the possible relation-
ship between the risk of FRD and the viral load process before the event. Since
viral loads may be left censored and measured with errors, appropriately address-
ing censoring and measurement errors allows us to more accurately estimate the
magnitude and significance of the association between the risk intensity of im-
munological prognosis and viral load. We attempted several model formulations
in the data analysis and obtained consistent conclusions on the strong association
between immune prognosis and viral load process. Based on the AFT model with
the average accelerated factor (c̄(t)), we establish a natural connection between
the covariate process and the quantities (e.g., hazard function, survival function)
of the time-to-event outcome. Also, based on the proposed “NLME + AFT” joint
model, we find that the treatment “nelfinavir” is significantly associated with the
event risk, which is unavailable based on other joint models.

The joint models in our implementation are parametric models, including the
Cox sub-model where a Weibull baseline function is assumed. Typically Cox mod-
els are semiparametric. We choose parametric models because they fit the data
reasonably well and the computation is simpler. As a reviewer pointed out, a semi-
parametric Cox model would mitigate some model misspecification, the computa-
tion also becomes more challenging in the current settings.

A major challenge for the joint model in this article is computation, since the
baseline hazard function of the AFT model involves unknown parameters from
the covariates model as well as censoring in the covariates. A similar “NLME
+ AFT” joint model was considered in Wu, Liu and Hu (2010), but they con-
sidered a shared parameter joint model, which is computationally much simpler
since the time-independent random effects from the covariate model replace the
time-varying covariates so the AFT model can be written in a log-linear form.
Moreover, they did not consider censoring in the covariates. The Monte Carlo
EM algorithm in this article can be computationally quite intensive. Alternative
approaches include approximate inferences based on Laplace approximations or
linearization methods as reviewed in Wu (2010). We may also consider multiple
imputation methods where the NLME covariate model is used to generate imputed
values for the censored covariates. This approach may be computationally simpler
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since software is available for multiple imputations. We are currently investigating
approximate methods and multiple imputation methods.

APPENDIX: MULTIVARIATE REJECTION SAMPLING ALGORITHM

Sampling from the full conditional of the random effects can be accomplished
by a multivariate rejection algorithm. If the density functions are log-concave in the
appropriate parameters, the adaptive rejection algorithm of Gilks and Wild (1992)
may be used, as in Ibrahim, Lipsitz and Chen (1999). However, for joint modelling
with survival and NLME models, some densities may not be log-concave. In such
cases, the multivariate rejection sampling method Geweke (1996) may be used
to obtain the desired samples. Booth and Hobert (1999) discussed such a method
in the context of complete-data generalized linear mixed models, which can be
extended to our models as follows.

Consider sampling from f (ai |xi , Ti,�i; θ (t)). Let f ∗(ai ) = f (xi |ai; θ (t)) ·
f (Ti,�i |ai; θ (t)), and ξ = supu{f ∗(u)}. A random sample from f (ai |xi , Ti,�i;
θ (t)) can be obtained as follows:

Step 1: sample a∗
i from f (ai; θ (t)), and independently, sample w from the

uniform(0,1) distribution;
Step 2: if w ≤ f ∗(a∗

i )/ξ , then accept a∗
i as a sample point from f (ai |xi , Ti,�i;

θ (t)), otherwise, go back to step 1 and continue.
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