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The Wisconsin Public Land Survey database describes historical forest
composition at high spatial resolution and is of interest in ecological studies
of forest composition in Wisconsin just prior to significant Euro-American
settlement. For such studies it is useful to identify recurring subpopulations
of tree species known as communities, but standard clustering approaches
for subpopulation identification do not account for dependence between spa-
tially nearby observations. Here, we develop and fit a latent discrete Markov
random field model for the purpose of identifying and classifying historical
forest communities based on spatially referenced multivariate tree species
counts across Wisconsin. We show empirically for the actual dataset and
through simulation that our latent Markov random field modeling approach
improves prediction and parameter estimation performance. For model fitting
we introduce a new stochastic approximation algorithm which enables com-
putationally efficient estimation and classification of large amounts of spatial
multivariate count data.

1. Introduction. In this paper we consider analyzing historical tree species
composition data and mapping forest ecological communities of keen interest
in a variety of ecological disciplines, including environmental history and land-
scape ecology. Sound modeling and analysis of historical vegetation using novel
statistical methodology is useful for multiple purposes, including to aid ecologi-
cal restoration efforts by providing reference landcover information at restoration
sites and to assess landscape changes over time (Schulte, Mladenoff and Nordheim
(2002), Shea, Schulte and Palik (2014)). If an area is known to have historically
supported a particular vegetation profile, this could indicate that restoration to the
historically supported vegetation type may be more ecologically appropriate (Egan
(2005)).

The historical public land survey (PLS) contains informative data for studies
of past forest composition. The PLS database for the state of Wisconsin is partic-
ularly noteworthy for both its spatial extent (approximately 150,000 km2) and its
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high resolution (survey points at roughly half mile intervals across the entire state).
The survey was initially conducted to assess land values and facilitate the sale of
land, but the collated and digitized PLS data currently provide the only precise,
statewide record of the natural ecosystems that were present in Wisconsin just prior
to major Euro-American settlement (Schulte and Mladenoff (2001)). The database
is derived from surveyor notebooks from the original U.S. PLS, conducted across
the United States from the late 1700’s to the early 1900’s. The Wisconsin portion
of the survey was conducted from 1832 to 1866 (Liu et al. (2011)). Surveyors de-
marcated the land into square mile sections and placed a post as a survey marker
at each section corner and at each half-mile point. At each survey point the pro-
tocol required that they record several environmental characteristics, including the
species of two to four “witness” trees.

Here, we consider the resulting tree species composition data from the Wiscon-
sin PLS and aggregate the observed tree species counts within an overlaid grid
of cells for analysis. An illustration of this type of data is shown in Figure 1. We
also consider the identification of community subpopulation structure in the PLS
relating to recurring assemblages of tree species which are described in ecological
literature as forest communities (Barnes et al. (2010)). Community subpopulations
are a common feature of tree species composition data such as in the PLS database.
We model forest community subpopulations via the classification of each grid cell
with the forest community type most representative of that cell. Our modeling goal
is twofold. On the one hand we would like to use tree species composition data to
identify discrete assemblages of species corresponding to forest communities in
the state of Wisconsin prior to the major environmental disturbances accompany-
ing Euro-American settlement. On the other hand we would like to classify cells in
the survey region with the forest community type to which they most likely belong.

To achieve our goal of accurately modeling and mapping forest community
subpopulations in the PLS survey, we develop an approach wherein forest com-
munities across the survey region are described by discrete, spatially correlated

FIG. 1. Data from a 10 by 10 km subregion of the Wisconsin Public Land Survey dataset. The
overlaid grid cells are 1 km by 1 km. Tree species are recorded at multiple survey points within each
grid cell.
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latent variables. The observed tree counts are described by community dependent
multinomial distributions. Thus, the observed tree species compositions in the PLS
dataset are assumed to result from a set of multiple underlying forest community
types which occur in a spatially correlated fashion across the survey region. Our
approach allows us to describe, indirectly but flexibly, spatial correlation between
observations in nearby grid cells and also to address unobserved structure due to
distinct forest community subpopulations.

Our analysis of tree species composition in the PLS dataset is unique among
previous literature in that it explicitly accounts both for spatial correlation effects
between nearby observations as well as for latent forest community structure. Tree
species composition in the PLS was also studied in Paciorek et al. (2016), using,
for example, a latent conditional autoregressive (CAR) model to account for spa-
tial correlation with the goal of providing estimation of tree species composition
in the PLS survey region. While the posterior predictions of forest composition in
Paciorek et al. (2016) capture spatial covariance between the occurrence of related
tree species, these predictions do not explicitly identify or map forest communi-
ties. A dissimilarity-based clustering approach as taken in Schulte, Mladenoff and
Nordheim (2002) allows forest communities to be identified and mapped, but this
approach does not explicitly model spatial correlation in the occurrence of forest
community types across the study region.

In our work the tree species composition data come in the form of tree species
count vectors, so that the data in each areal unit are multivariate, with counts of
zero for absent tree species. As such, in contrast to most work in spatial cluster-
ing, our response variable is both multivariate and unordered. We do not constrain
the forest community types to appear in spatially contiguous blocks. We also do
not expect any ordinal relationship between the forest community types. In certain
other common settings the term “spatial cluster” may refer to a spatially contigu-
ous block of areal units where a response variable such as disease risk or rate is
unusually high relative to other areal units. Frequently, the analysis goal in these
settings is to identify “hotspots” of a disease and any associated risk factors (see,
e.g., Gangnon and Clayton (2003), Lawson (2010), Waller (2009)). Constraints are
also sometimes imposed so that each disease rate cluster only appears in a single
contiguous block of areal units (see, e.g., Knorr-Held and Raßer (2004)).

We estimate the parameters of our model via maximum likelihood (ML), and
we develop a new Markov chain Monte Carlo (MCMC) stochastic approximation
(SA) method to do this. Our MCMC-SA method is related to but differs from
the direct expectation-maximization (EM) approach (Dempster, Laird and Rubin
(1977)). First, instead of performing the full M-step, we take a gradient step for the
Markov random field parameters and a modified EM step for the other parameters
in the model. Such EM algorithms with partial updates in the M-step are some-
times termed generalized EM algorithms (Dempster, Laird and Rubin (1977)). In
general, performing the full M-step of the EM algorithm requires inverting be-
tween the mean parameterization and the natural parameterization of the complete
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data distribution (see, e.g., Fort and Moulines (2003)). In the Markov random field
setting, performing this inversion is challenging, and it requires an MCMC sam-
pling step nested within each EM algorithm iteration, as in Forbes and Fort (2007).
We additionally apply regularization penalties to ensure that maxima of our objec-
tive function do not occur at the boundary of the parameter space (see, e.g., Chen
(2017), Hong et al. (2017), Städler, Bühlmann and van de Geer (2010)). Finally, in
our latent Markov random field model, the spatial dependence between the latent
forest community types makes computing the log-likelihood challenging, and we
use a path integration approach to accurately compute log likelihoods on holdout
data (see, e.g., Section 6.2 in Neal (1993), or Gelman and Meng (1998)).

While MCMC methods may in general be slow, our MCMC-SA method is fea-
sible even for relatively big data like the PLS dataset due to a computationally
efficient implementation of the sampling. Additionally, in the case study of the
PLS dataset, we achieve significant improvement in prediction performance using
our method relative to an alternative approach that does not account for spatial
dependence. A simulation study further shows that our MCMC-SA method can
recover the true parameters under the correct model specification and outperform
some competing methodology. Though our application in this paper focuses on
identification and classification of forest communities across space, our methodol-
ogy can be readily modified for use in other ecological community identifications
or other settings such as medical image segmentation of tissue types.

The remainder of the paper is organized as follows. In Section 2 we propose a
multinomial model with a latent discrete Markov random field for the PLS dataset.
In Section 3 we develop a maximum likelihood approach to estimate the model
parameters and propose a stochastic approximation procedure to compute these
estimates. In Section 4 we apply our model and estimation method to analyze
and interpret the PLS dataset. In Section 5 results are presented from a simulation
study, followed by conclusions and a discussion in Section 6. We also provide a
supplemental article containing additional technical details (Berg et al. (2019)).

2. Model. Our observed data consist of the counts of each tree species within
an overlaid grid of cells. We assume that each cell has a latent forest community
type with an associated multinomial probability distribution governing the species
composition for each type of forest community. We also assume conditional inde-
pendence between observed trees given the latent forest community types which
in turn are assumed to follow a Markov random field. Thus, our model is a mixture
of multinomial distributions, where the types are spatially correlated.

2.1. Latent model. The spatial grid of cells are assumed to be labeled with one
of K possible types, in our case K different forest communities. Corresponding
to each grid cell is a spatial neighborhood of adjacent grid cells. We view our
approach as agnostic regarding the underlying origin of the spatial dependence
in the dataset. For example, an influential environmental covariate may occur in
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discrete patches across a map, causing certain forest community types to appear
or disappear in these areas. Additionally, local within- and between-community
interactions may cause spatial patterning on the observed grid. The approach here
attempts to mimic and to account for the observed spatial correlation structure
rather than to exactly replicate the true data generating process.

For notation we refer to random variables with capitals and realizations in low-
ercase. When referring to a probability density for a discrete random vector Z

depending on a parameter vector θ , we use the shorthand p(z|θ) for p(Z = z|θ).
For a vector z, we use zi to denote the ith entry of z. For a matrix A we use the
notation Aj to denote the j th column of A, and Aij to denote the element in the
ith row and the j th column of A. We denote the set of spatial neighbors of a cell
i by the set N(i) = {i ′ : i′ is a neighbor of cell i}, where the neighbors are defined
so that i /∈ N(i). We use the notation i ′ ∼ i to indicate that i′ ∈ N(i). Additionally,
the neighborhoods are assumed to be symmetric, so that if cell i is a neighbor of
cell i ′, then cell i ′ is a neighbor of cell i.

Let n denote the total number of grid cells, and z ∈ � = {1, . . . ,K}n denote
a vector of n (unobserved) forest community types. The random vector of forest
community types Z is assumed to follow a Potts-type model with a vector of pa-
rameters η ∈ R

K :

(1) p(z|η) = exp

{
n∑

i=1

K−1∑
k=1

ηkI (zi = k) + ηK

n∑
i=1

∑
i′∈N(i)

i′>i

I (zi = zi′) − ξ(η)

}
,

where zi refers to the forest community type for cell i, and

ξ(η) = ∑
z′∈�

exp

{
n∑

i=1

K−1∑
k=1

ηkI
(
z′
i = k

)+ ηK

n∑
i=1

∑
i′∈N(i)

i′>i

I
(
z′
i = z′

i′
)}

is a normalizing constant ensuring that p(z|η) is a probability density (Wu (1982)).
In (1), for k < K , the parameter ηk controls the probability of the kth type relative
to the baseline type K . The spatial correlation parameter ηK controls the strength
of interactions between the types and, when ηK = 0, the types are spatially inde-
pendent across grid cells.

We define a length K vector T (z) of sufficient statistics with the kth entry

T (z)k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

I (zi = k); (k < K),

n∑
i=1

∑
i′∈N(i)

i′>i

I
(
zi = z′

i

); (k = K).
(2)

This allows us to rewrite the model (1) more succinctly as

p(z|η) = exp
{
ηT T (z) − ξ(η)

}
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which belongs to the exponential family with the natural parameter vector η (Shao
(2003)).

For boundary conditions in lattice data models, there are several approaches
to specifying the neighborhood of the cells on the boundary of the lattice. We
use the so-called “free” boundary conditions, where boundary cells simply have
fewer neighbors than internal cells (see, e.g., Comets and Gidas (1992)). Other
approaches attempt to ensure that each cell has the same number (usually 4, for
the square lattice) of neighbors. For example, in “toroidal” boundary conditions
cells on one side or corner of the lattice are connected to cells on the opposing side
or corner of the lattice.

2.2. Data model. Given the forest community types, we specify our model for
the conditional distribution of the observed tree species counts. For notation we let
the integer M > 0 denote the number of tree species in the dataset. For the PLS
case study the M = 33 most common species are used. We denote by Yi the length
M vector of tree counts in cell i and use Y ∈ Z

M×n to denote the matrix of count
vectors for the entire dataset. Thus, Ymi is the count of trees of species m in cell i.
We let qi denote the total number of trees observed within the ith cell. That is,
qi =∑M

m=1 Ymi .
We assume that each of the K forest community types is associated with a dis-

tinct multinomial distribution over the M tree species. Conditional on the latent
type Zi = k, the tree species of individual trees within a grid cell are assumed
to be independent multinomials with sample size 1, so that the count vector Yi

follows a multinomial distribution with sample size qi and species probability pa-
rameters depending on the kth forest community type. Additionally, the species
of individual trees are assumed to be independent across grid cells and, thus, the
counts Yi are also independent across grid cells, both conditional on the latent
forest community types. However, when the spatial correlation parameter ηK �= 0,
the latent types are spatially correlated which induces spatial correlation among
the tree counts Yi .

We parameterize the species distribution for each forest community type k us-
ing a species probability vector μk ∈ M , where M refers to the (open) proba-
bility simplex defined by M = {μ = [μ1, . . . ,μM ]T :∑m μm = 1;μm > 0,∀m}.
We also define the species probability matrix μ with column vectors μk by
μ = [

μ1 μ2 . . . μK

] ∈ M K . The μmk element of the μ matrix is equal to
the probability that a tree in a grid cell is species m, given that the forest commu-
nity type of that grid cell is k.

By the conditional independence of tree species between and within grid cells,
the conditional density of the observed tree counts given the forest community
types Z and the species probability matrix μ is

(3) p(y|z,μ) =
n∏

i=1

p(yi |zi,μ) =
n∏

i=1

Ci

M∏
m=1

μymi
m,zi

,
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where μm,zi
is the mth entry of column zi of μ, and the factor Ci =

(
∏M

m=1 ymi !)−1qi ! counts the number of possible ways of assigning species to each
tree in the ith grid cell with the species counts yi .

In summary, our full data generating mechanism comprises two steps:

1. Draw the forest community types Z according to the density in (1).
2. Conditioning on the forest community types Z = z from step 1, draw the

tree species counts Y according to the density in (3).

Define R(y, z) ∈ R
M×K to be a matrix of statistics with the (m, k)th element

R(y, z)mk =∑n
i=1 ymiI (zi = k) summarizing the total number of species m trees

in the grid cells that belong to the kth type of forest community. Then, the complete
data density for (Y,Z) is

p(y, z|η,μ)

= p(z|η)p(y|z,μ)

= exp

{
ηT T (z) − ξ(η) +

M∑
m=1

K∑
k=1

log(μmk)Rmk(y, z) +
n∑

i=1

log(Ci)

}
.

(4)

It is sometimes convenient to write the parameter vector η and the parameter
matrix μ using a single vector parameter θ . Conversely, we may also need to obtain
η and μ from the corresponding vector θ . Thus, we define a vectorization operator
vec(A) : RM×K → R

MK , μ → [μT
1 , . . . ,μT

K ]T for viewing the parameter matrix
μ as a vector. Then, we define θ ∈ R

K+MK by θ = [ηT ,vec(μ)T ]T . We use � to
denote the parameter space for θ , and we use η(θ) ∈ R

K and μ(θ) ∈ R
M×K to

denote the η and μ associated with θ . When it is clear, we simply write η or μ
rather than η(θ) or μ(θ).

3. Method.

3.1. Maximum regularized likelihood estimation. Here, we estimate the pa-
rameter θ via maximum likelihood. For the model described in (1) and (3), the
observed data log likelihood when Y = y is

(5) �(θ) = log
{∑

z∈�

p(y, z|θ)

}
.

The consistency of the maximum likelihood estimate, θ̂ = argmaxθ �(θ), is shown
in an increasing domain asymptotics setting, under identifiability assumptions on
θ and when the estimation is constrained to a compact parameter space (Comets
and Gidas (1992)).

The observed data log-likelihood (5) may exhibit unwanted behavior, such as
maxima on the boundary of the parameter space, which is common in latent vari-
able models. Such behavior can occur even in simple settings, such as a mixture of
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normal densities with component-specific variances, where it is possible to achieve
an arbitrarily high likelihood by setting the mean of one of the components to a
single data point and by sending the variance of that component toward 0 (see, e.g.,
Chen (2017), Section 3.2). In our work there is apparent convergence of entries of
the tree species probability matrix, μmk , to 0, which seems to occur mostly for the
rarer tree species, while there is no observed convergence of components of the
parameters associated with the forest community types, η, to the boundary of RK .

To guarantee the convergence of our estimation procedures to points within
the parameter space �, we impose weakly informative prior penalties on the ob-
served data log likelihood (5) (see, e.g., Chen (2017), Hong et al. (2017), Städler,
Bühlmann and van de Geer (2010)). In particular Kushner and Yin (1997) added
“soft penalties” to ensure that the objective function is well behaved and the it-
erates from a stochastic approximation procedure remain bounded, which we use
here to optimize a regularized log-likelihood function,

(6) �pen(θ) = �(θ) + ρ1(η) + ρ2(μ),

where ρ1(η) and ρ2(μ) are penalty functions.
For each component of η, we apply a Logistic(0, σ ) prior density with σ > 0.

That is, ρ1(η) =∑K
k=1 logfσ (ηk), where for k = 1, . . . ,K ,

(7) fσ (ηk) = σ−1[exp
{
ηk/(2σ)

}+ exp
{−ηk/(2σ)

}]−2
.

In the PLS case study and in the simulation studies, we use σ = 1.
For each column of μ, we put a Dirichlet(α1M) prior with α > 1, where 1M is

a vector of M 1’s, so that

(8) ρ2(μ) = (α − 1)

K∑
k=1

M∑
m=1

log(μmk).

For an integer α > 1, ρ2(μ) can be viewed as adding to the dataset some pseudo-
data corresponding to α−1 grid cells for each forest community type in which one
tree from each of the M species is observed. We use α = 2 as the regularization
parameter.

3.2. Modified EM algorithm. To optimize the penalized likelihood in (6), we
derive a modified EM algorithm. The computations required by both the η and μ
updates involve expectations over all possible Kn configurations of the forest com-
munity types. When the spatial correlation parameter ηK �= 0, we approximate the
exact updates by a stochastic procedure, which we describe in Section 3.3. When
the spatial correlation parameter ηK = 0, it is possible to compute the expecta-
tions exactly, and we derive the EM updates for the spatially independent model in
Section B.1 of Supplement A (Berg et al. (2019)).

Since the forest community types are unobserved, the problem of estimating
the parameters θ = [ηT ,vec(μ)T ]T falls naturally into the missing data frame-
work and the expectation-maximization (EM) algorithm is a possible solution
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(Dempster, Laird and Rubin (1977)). In each iteration of our modified EM algo-
rithm, a surrogate function is constructed in the E-step and is based on the current
parameter value θcur:

Q
(
θ |θcur)= ρ1(η) + ρ2(μ) + ∑

z∈�

p
(
z|y, θcur) log

{
p(z,y|θ)

}
=
[
ρ1(η) + ∑

z∈�

p
(
z|y, θcur) log

{
p(z|η)

}]
(9)

+
[
ρ2(μ) + ∑

z∈�

p
(
z|y, θcur) log

{
p(y|z,μ)

}]
≡ Q1

(
η|θcur)+ Q2

(
μ|θcur).

In the M-step the parameter value θnew for the next iteration is obtained by max-
imizing the Q-function over θ . This process is repeated iteratively by setting
θcur = θnew and then maximizing the new Q-function again. Under suitable con-
ditions any limit point of such an EM algorithm is guaranteed to be a stationary
point of the log likelihood (Wu (1983)).

The surrogate Q-function (9) takes an average over the complete data log likeli-
hood log{p(z,y|θ)} with respect to the conditional distribution p(z|y, θcur) of the
types, given the observed data y and evaluated at θcur, whereas the penalty func-
tions ρ1(η) and ρ2(μ) remain unchanged. The Q-function (9) can also be shown
to minorize the regularized log likelihood (6), in the sense that

�pen(θ) − �pen
(
θcur)> Q

(
θ |θcur)− Q

(
θcur|θcur).

Thus, increasing the value of the Q-function guarantees an even greater increase
in the value of the regularized log likelihood (6). The implementation detail for
maximizing the Q-function is given as follows:

Update η: First, we deal with the maximization of the Q1-function in (9),

Q1
(
η|θcur)= ∑

z∈�

p
(
z|y, θcur) log

{
p(z|η)

}+ ρ1(η).(10)

Since p(z|η) is in the exponential family with sufficient statistic T (z), we have
∂ log{p(z|η)}/∂η = T (z) − E{T (z′)|η} (Shao (2003)) and

∂Q1(η|θcur)

∂η

∣∣∣∣
η=ηcur

= ∂ρ1(η)

∂η

∣∣∣∣
η=ηcur

+ ∑
z′∈�

p
(
z′|y, θcur)[T (z′)− E

{
T (z)|ηcur}](11)

= ∂ρ1(η)

∂η

∣∣∣∣
η=ηcur

+ E
{
T (z)|y, θcur}− E

{
T (z)|ηcur}.
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Thus, the gradient of Q1(η|θcur) has a convenient representation in terms of the
conditional and marginal distributions at θ = θcur. Furthermore, it can be shown
that ∂�pen(θ)

∂η
|θ=θcur = ∂Q1(η|θcur)

∂η
|η=ηcur .

Finding the η, which maximizes Q1(η|θcur) in the M-step, would require in-
verting, at every iteration, between the exponential family natural parameter, η,
and the exponential family mean parameter, E{T (z)|η}. For Markov random field
models, this inversion would require a sequence of MCMC draws and is a chal-
lenging computational problem (Forbes and Fort (2007)). Thus, we elect to instead
use a gradient ascent update for the η component of θ :

(12) ηnew = ηcur + c−1 ∂Q1(η|θcur)

∂η
= ηcur + c−1 ∂�pen(θ)

∂η
,

where c is a fixed constant stepsize chosen to ensure reasonable convergence be-
havior.

Update μ: In contrast to η, the update for μ has a convenient representation in
terms of the conditional distribution p(z|y, θ cur), because by (3), we have

Q2
(
μ|θcur)= ρ2(μ) + ∑

z∈�

p
(
z|y, θcur) log

{
p(y|z,μ)

}

= ρ2(μ) + ∑
z∈�

p
(
z|y, θcur) n∑

i=1

K∑
k=1

{
log(μk)

T yi

}
I (zi = k)

+
n∑

i=1

log(Ci)(13)

= ρ2(μ) +
n∑

i=1

K∑
k=1

{
log(μk)

T yi

}
P
(
zi = k|y, θcur)+ n∑

i=1

log(Ci)

=
K∑

k=1

Qk
2(μk) +

n∑
i=1

log(Ci),

where
∑n

i=1 log(Ci) does not depend on μ and

Qk
2(μk) =

M∑
m=1

(α − 1) log(μmk) +
n∑

i=1

M∑
m=1

P
(
zi = k|y, θcur)ymi log(μmk).

It is shown in Section B.2 of Supplementary Material (Berg et al. (2019)) that the
maximizer μnew of (13) has entries

μnew
mk = {α − 1 + Nmk}/{M(α − 1) + Nk

}
,(14)

where Nmk =∑n
i=1 P(zi = k|y, θcur)ymi and Nk =∑M

m=1 Nmk .
In a standard EM update for μ, we have μnew

k = μcur
k + (μnew

k −μcur
k ). Here, it is

more convenient to use an altered version, because p(z|y, θcur) is known only up
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to a normalizing constant, and the μ update must be approximated by MCMC. The
quantities related to p(z|y, θcur) appear in both the numerator and denominator of
(14) and, thus, it is challenging to estimate the EM update for μ in an unbiased
fashion based only on a single draw from p(z|y, θcur). Thus, we propose a “short-
step” for updates:

μ̃new
k = μcur

k + γk

(
μnew

k − μcur
k

)
,(15)

where

γk = {
M(α − 1) + Nk

}/{
M(α − 1) +

n∑
i=1

qi

}
.(16)

Since Nk <
∑n

i=1 qi for all θ ∈ �, we have γk < 1 for all θcur. On the other hand
γk ≥ {M(α − 1)}/{M(α − 1) +∑n

i=1 qi} > 0. Thus, the μ̃new update results from
taking a shortened EM step starting from μcur. For the product γkμ

new
k in (15), the

numerator of γk cancels with the denominator of μnew
k in (14). The denominator of

γk depends on the number of tree species M , the regularization parameter α and
the number of trees in the dataset

∑n
i=1 qi . Thus, γkμ

new
k depends on p(z|y, θcur)

only through the numerator of the μnew
k update in (14) which can be estimated

based on a single draw from p(z|y, θ) (see Section 3.3).
The set M is convex, and from (14), μnew ∈ M K . From convexity, when

μnew ∈ M K and μcur ∈ M K , (15) implies μ̃new ∈ M K as well. Additionally,
the update in (15) preserves the ascent property of the EM algorithm. By con-
cavity of the log function, Qk

2 is concave, so that Qk
2(μ̃

new
k ) ≥ γkQ

k
2(μ

new
k ) +

(1−γk)Q
k
2(μ

cur
k ) ≥ Qk

2(μ
cur
k ). When μnew

k �= μcur
k , the inequalities are strict. Since

Q1(η|θcur) + Q2(μ|θcur) minorizes �pen(θ), any increase in the value of Q2 im-
plies an increase in the value of �pen(θ).

3.3. Stochastic approximation. To update θ , we devise a stochastic approxi-
mation procedure θnew = θcur + g(θcur), where

(17) g
(
θcur)= g

([
ηcur

vec
(
μcur)])=

⎡⎢⎣c−1 ∂Q1(η|θcur)

∂η

∣∣∣∣
η=ηcur

vec
(
μ̃new)− vec

(
μcur)

⎤⎥⎦
and g(θ) is to be estimated based on MCMC samples. Stochastic approximation
approaches are useful when the function g(·) is difficult or impossible to evaluate,
but g(·) can be approximated by an estimate G(θ, z), where z is a random variable
drawn from a distribution πθ , such that πθ and G(·, ·) satisfy, for each θ ,

(18)
∫

G(θ, z)πθ (dz) = g(θ)

(see, e.g., Benveniste, Métivier and Priouret (1990), Kushner and Yin (1997),
Robbins and Monro (1951)).
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The update in (17) is a combination of a gradient ascent update for η and a
short-step update for μ, from which an iterate sequence may be constructed in
the following way. Starting from an initial parameter θ(0) and initial z(0), we ob-
tain draws z(t+1) from πθ(t)(·) and set θ(t+1) = θ(t) + ε(t+1)G(θ(t), z(t+1)). The
sequence of stepsizes {ε(t)} is deterministic and generally satisfies conditions such
as ε(t) ↓ 0,

∑∞
t=1(ε

(t))2 < ∞ and
∑∞

t=1 ε(t) = ∞ (see, e.g., Benveniste, Métivier
and Priouret (1990), Kushner and Yin (1997)). Here, we use ε(t) = t−1.

From (11) the gradient of Q1(η|θcur), and hence the gradient of the observed
log likelihood, with respect to the η parameter can be computed based on the dif-
ference of two expectations of T (z). The first expectation is taken with respect to
the conditional distribution p(z|y, θcur), and the second expectation is taken with
respect to the marginal distribution p(z|ηcur), while the gradient of the logistic
prior ρ1(η) can be computed analytically. The μ update μ̃new − μcur in (15) can
be computed by taking the expectation of the function

Hα

(
μcur, z

)
mk

= (α − 1)(1 − Mμcur
mk) +∑n

i=1 I {zi = k}(ymi − qiμ
cur
mk)

M(α − 1) +∑n
i=1 qi

,
(19)

with respect to p(z|y, θ). Thus, the update g(θcur) in (17) can be written as an
integration with respect to the density

(20) πθcur(z) = p
(
z1|y, θcur)p(z2|ηcur),

where z = (z1, z2) denotes an ordered pair of configurations z1, z2 ∈ �. From (20)
z1 and z2 are drawn independently under πθcur(·). The probability density πθcur(·)
takes as its argument an element z of the sample space �2 = � × �.

Since integrals with respect to πθ(·) require intractable sums over all possible
type configurations z1 and z2, we estimate g(θ) based on approximate draws from
πθ(·). While it is difficult to sample directly from p(z1|y, θ) and p(z2|η) due to
the spatial correlation between the types zi , it is possible to use Markov chain tran-
sition kernels (specifically, Gibbs sampling kernels) to approximate draws from
these distributions (Geman and Geman (1984)). Due to the conditional indepen-
dence between grid cells in the conditional distribution p(y|z,μ), both p(z|y, θ)

and p(z|η) are Markov random field densities with simple conditional distribu-
tions at each cell given the rest of the cells. Thus, it is possible to construct Gibbs
sampling transition kernels P1,θ (·, ·) : � × � → [0,1] and P2,θ (·, ·) : � × � →
[0,1], so that the stationary distributions of P1,θ (·, ·) and P2,θ (·, ·) are p(z|y, θ)

and p(z|η), respectively. In order to approximately sample from πθ , we run a
Markov chain using the transition kernel Pθ(z, z′) : �2 × �2 → [0,1] defined by
Pθ(z, z′) = P1,θ (z1, z′

1)P2,θ (z2, z′
2). Detailed formulas for the Gibbs samplers are

given in Section A.1 of the Supplementary Material (Berg et al. (2019)) (see also,
e.g., Gaetan and Guyon (2010)). From the definition of Pθ(·, ·), we see that the
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Algorithm 1: Stochastic modified EM

Initialize parameter θ0 ∈ �, configuration z0 ∈ �2, number of iterations T
for t = 1 to T do

Draw zt ∈ �2 according to Pθt−1(zt−1, ·)
εt = t−1

θt = θt−1 + εtG(θt−1, zt )

Return θT

updates to the Markov chain for the conditional distribution p(z|y, θ) are indepen-
dent from the updates to the Markov chain for the marginal distribution p(z|η).

In our stochastic modified EM procedure we choose a stepsize c and define the
function G(·, ·) : � × �2 → � by

(21) G(θ, z) = G

([
η

vec(μ)

]
, z
)

=
⎡⎣c

{
∂ρ1(η)

∂η
+ T (z1) − T (z2)

}
Hα(μ, z1)

⎤⎦ .

Then, we find parameters θ̂ maximizing the penalized likelihood �pen(θ) via the
procedure given in Algorithm 1.

Implementation details, including a discussion of the choice of the stepsize c,
are given in Section A.2 of the Supplementary Material (Berg et al. (2019)).

4. Case study: Historical forest communities based on public land survey
data. The Wisconsin PLS dataset is a historical survey of trees, conducted pri-
marily from 1832 to 1866 (Schulte and Mladenoff (2001)). The dataset has been
commonly used in ecological studies of forest composition prior to and concur-
rent with Euro-American settlement. As described in the Introduction, surveyors
from the PLS walked along a 1 mile by 1 mile grid-like pattern across the state
and recorded the species of 2–4 representative trees at survey points every half-
mile (Figure 1). The dataset is large, both in terms of the number of trees observed
(328,499), distributed roughly uniformly across the state, as well as in terms of
the spatial extent (145,000 square kilometers). Additionally, the tree species count
data at each grid cell are highly multivariate, and for small enough grid cells most
tree species counts are 0, since only 2–4 trees were observed at each survey point
and the survey points are at least half a mile away from each other.

For data analysis a spatial grid of cells is first overlaid on the survey region
(the state of Wisconsin). For each grid cell i, a count vector yi , of length M = 33
species, is constructed from the trees observed at survey points within that cell.
Grid cells are not required to contain any trees. For our spatially correlated model
the forest community type probability at any cell takes into account tree informa-
tion from nearby adjacent and nonadjacent grid cells containing trees. We compare
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three grid resolutions—4 km by 4 km, 2 km by 2 km and 1 km by 1 km grid cells,
resulting in 9469 cells, 37,134 cells and 146,851 cells, respectively. For each grid
resolution each cell is assumed to have a single forest community type. We use a
first-order spatial neighborhood structure with up to four nearest neighbors. That
is, two points with integer lattice coordinates (i, j) and (i ′, j ′) are neighbors when
|i − i ′| + |j − j ′| = 1. Next, we fit the spatially correlated multinomial mixture
models via the stochastic modified EM procedure in Algorithm 1. For comparison
we fit spatially independent multinomial mixture models via the standard EM algo-
rithm, a derivation of which is given in Section B.1 of the Supplementary Material
(Berg et al. (2019)).

4.1. Choice of K and model validation. We use a cross-validation procedure
to determine the number of forest community types to use and to assess the qual-
ity of the spatially correlated mixture models relative to the spatially independent
mixture models. In particular we generate a testing dataset by randomly select-
ing 20 percent of the trees from the full set of surveyed trees. The remaining 80
percent of the trees are placed in a training dataset. We then create training and
testing datasets ytrain and ytest for each grid resolution (1 km, 2 km and 4 km) from
these training and testing trees. We also consider five total numbers of forest com-
munity types K = 8,12,16,20, or 24. For each combination of grid resolution
and number of forest community types, we fit each of the models on the training
dataset ytrain, starting from three random initial parameter values to mitigate the
multimodality of the likelihood.

We examine two log-likelihood based measures of prediction performance, us-
ing the same training and testing datasets across models fit for different grid reso-
lutions and numbers of forest community types to ensure the likelihoods are com-
parable among different models. We first compute, for each of the fitted models at
each grid resolution, a holdout log likelihood

(22) �holdout(θ̂) = log
{∑

z∈�

p(ytest|z, θ̂)p(z|θ̂ )

}
.

We focus our model assessment on holdout log likelihoods rather than on the errors
of estimated coefficients, because the true data-generating parameters are unknown
for the real data. Next, we compute a predictive log likelihood

�pred(θ̂) = log
{
p(ytest|ytrain, θ̂ )

}= log
{∑

z∈�

p(ytest|z, θ̂)p(z|ytrain, θ̂ )

}
.(23)

In contrast to the holdout log likelihood �holdout(θ̂) that is marginal on the testing
dataset, the predictive log likelihood �pred(θ̂) measures the quality of predictions of
the testing dataset, conditional on the training dataset. Since our maps of the study
area are ultimately based on the conditional distribution p(z|y, θ̂ ), the predictive
log likelihood is a relevant performance metric. To ensure that these likelihoods
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are comparable across different grid resolutions, we drop the grid-resolution de-
pendent factors Ci in (3). The log likelihoods without the constants Ci are equal
to the log likelihoods of the individual trees, before being aggregated into counts.
Unlike the tree species counts yi for each cell, which vary by the grid resolution,
the log likelihood of the collection of individual trees has the same interpretation
across grid resolutions.

For the spatially correlated models the holdout log likelihood in (22) is difficult
to compute, and we use path integration, also known as thermodynamic integra-
tion or path sampling (Gelman and Meng (1998), Neal (1993)). We describe the
path integration procedure in Section A.3 of the Supplementary Material (Berg et
al. (2019)). The predictive log likelihood (23) is also difficult to compute for the
spatially correlated models. By the fact that

log
{
p(ytest|ytrain, θ̂)

}= log
{
p(ytrain,ytest|θ̂ )

}− log
{
p(ytrain|θ̂ )

}
= log

{
p(y|θ̂ )

}− log
{
p(ytrain|θ̂ )

}
,

(24)

we write �pred(θ̂) as the difference between the two marginal likelihoods in (24)
and use path integration to compute these two marginal log likelihoods separately.

Table 1 displays the holdout and predictive log likelihoods obtained from the
spatial and independent models for the different grid resolutions and numbers of
forest community types. Intuitively, we expect it to be easier to predict the held
out trees after having seen spatially nearby training trees. A comparison of the

TABLE 1
Values of holdout log likelihood (�holdout) and predictive log likelihood (�pred) for the Wisconsin
Public Land Survey case study for either spatially independent models or the spatially correlated
models, different numbers of forest community types (K), and the grid resolution (1 km, 2 km or
4 km), averaged over three runs from random initial starting parameters, and normalized by the

number of trees in the testing dataset

�holdout(θ̂) �pred(θ̂)

Model K 1 km 2 km 4 km 1 km 2 km 4 km

Independent 8 −2.77 −2.6 −2.37 −2.11 −2.15 −2.18
12 −2.76 −2.58 −2.35 −2.04 −2.09 −2.13
16 −2.76 −2.57 −2.33 −2 −2.06 −2.1
20 −2.75 −2.57 −2.32 −1.98 −2.03 −2.08
24 −2.75 −2.57 −2.32 −1.96 −2.02 −2.07

Spatial 8 −2.23 −2.21 −2.22 −2.03 −2.13 −2.19
12 −2.18 −2.16 −2.2 −1.96 −2.08 −2.17
16 −2.15 −2.15 −2.2 −1.91 −2.05 −2.15
20 −2.15 −2.15 −2.18 −1.9 −2.03 −2.14
24 −2.15 −2.15 −2.18 −1.88 −2.04 −2.14
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marginal and conditional log likelihoods in Table 1 bears this out; the predictive log
likelihoods �pred(θ̂) are always larger than the holdout log likelihoods �holdout(θ̂).

At all grid resolutions and numbers of forest community types, the spatial model
performs better based on holdout log likelihood than the corresponding spatially
independent model. Additionally, the highest (best) spatially independent holdout
log likelihood is lower than the holdout log likelihood from even the worst spatially
correlated model. For the spatially independent models the holdout log likelihoods
for models with fixed numbers of forest community types decrease as the grid
resolution becomes finer, while the holdout log likelihoods for the spatial models
with fixed number of forest community types are more similar across the grid
resolutions.

In contrast to the holdout log likelihoods, the predictive log likelihoods for both
the spatially correlated and independent models improve as the grid resolution
becomes finer. Additionally, the predictive log likelihoods increase monotonically
at each grid resolution as more forest community types are added to the model. The
largest (best) predictive log likelihood is obtained for a 1 km spatial model with
24 forest community types. The spatially independent models sometimes achieve
higher predictive log likelihoods at the 2 km and 4 km grid resolutions, but the
best predictive log likelihoods out of all the models are attained by spatial models
at the 1 km resolution.

Finally, model fits from different initializations on the PLS dataset, where the
true data generating mechanism is unknown, were qualitatively similar with some
variability in the fitted forest communities. For a fixed number of forest commu-
nity types, the correlation parameter estimates are typically similar across the grid
resolutions. For example, for the 16-community models, the smallest spatial cor-
relation parameter estimates are 1.615, 1.610 and 1.549, whereas the largest are
1.631, 1.619 and 1.596, for the grid resolutions 1 km, 2 km and 4 km, respec-
tively.

4.2. Ecological interpretation. After model fitting, the forest community clas-
sifications at each grid cell are determined from sitewise maximum a posteriori
(MAP) estimates using Gibbs sampling. Maps of these classifications are shown
in Figures 2–3, which indicate that the spatially correlated models tend to produce
more spatially smooth classification maps than the spatially independent models,
particularly for the smaller grid resolutions, as is expected. A key to the tree species
abbreviations in these figures is given in Table 2.

The predictive log likelihoods for both the spatially correlated and independent
models improve as the grid resolution decreases from 4 km to 1 km (Table 1),
which suggests that the tree data are more likely to come from the same forest
community type within smaller grid cells, and that the larger grid cells aggregate
trees from multiple forest community types. This pattern is consistent with eco-
logical observations of forest patch size in the region (Mladenoff et al. (1993)).
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FIG. 2. Forest community classifications for the public land survey case study from the 16-com-
munity spatially correlated (left) and spatially independent (right) models with the highest holdout
log likelihoods which occurred at the 1 km and 4 km grid resolutions, respectively. A key to the tree
species abbreviations is given in Table 2.

We focus our ecological interpretation on the spatially correlated model with 1
km grid resolution and 16 forest community types which has the highest holdout
log likelihood out of the 1 km models. This model also has the highest holdout
log likelihood for the 16 forest community models across grid resolutions. Ta-
ble 3 summarizes the forest communities for this model and indicates that species
associations within these 16 forest communities are consistent with ecological ex-

FIG. 3. A comparison of 16-community spatial and independent models over a 40 km by 40 km
subsection of the Wisconsin survey region for grid resolutions 4 km, 2 km and 1 km. A key to the tree
species abbreviations is given in Table 2.
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TABLE 2
The tree species abbreviations, names, and counts for the Wisconsin Public Land Survey case study

Abbreviation Name Count

AL Alder 100
AS Aspen 12,029
BA Black ash 5957
BE American beech 7586
BO Bur oak 34,065
BU Butternut 534
BW Black walnut 113
CE White cedar 8297
CH Black cherry 454
CO Eastern cottonwood 122
EL Elm 11,090
FI Balsam fir 4441
HE Eastern hemlock 26,369
HI Shagbark hickory 1198
IR Ironwood 4076
JO Black & northern pin oak 26,058
JP Jack pine 11,004

Abbreviation Name Count

LI American basswood 7520
RM Red maple 1475
RO Red oak 5228
RP Red pine 9925
SO Swamp white oak 207
SP Spruce 6048
SU Sugar maple 32,718
TA Tamarack 19,741
WA White ash 2119
WB Paper birch 11,770
WI Willow 346
WM Silver maple 550
WO White oak 33,170
WP Eastern white pine 21,717
YB Yellow birch 22,008
ZZ No trees 464

TABLE 3
Summaries of the 16 estimated forest community types for the Wisconsin Public Land Survey case
study under the model selected based on cross validation, including the counts of grid cells which

are classified as each forest community type, the top four tree species in each forest community and
the corresponding four largest estimated species probabilities. A key to the tree species

abbreviations is given in Table 2

Forest type Count Top Species Species Probabilities

1 23,174 HE, YB, SU, WB 0.352, 0.223, 0.154, 0.048
2 19,373 BO, JO, WO, RO 0.72, 0.137, 0.117, 0.007
3 16,121 WO, JO, BO, HI 0.478, 0.267, 0.209, 0.013
4 12,380 SU, EL, WO, LI 0.282, 0.151, 0.131, 0.121
5 10,746 SU, YB, WP, WB 0.342, 0.201, 0.089, 0.071
6 8427 BE, SU, HE, BA 0.39, 0.138, 0.096, 0.065
7 7370 JO, WO, BO, AS 0.643, 0.177, 0.091, 0.031
8 7219 CE, HE, TA, YB 0.283, 0.175, 0.133, 0.094
9 7075 SP, WP, WB, TA 0.179, 0.167, 0.161, 0.146

10 6013 RP, WP, AS, JP 0.489, 0.19, 0.077, 0.061
11 5720 WP, SU, TA, WB 0.66, 0.055, 0.046, 0.042
12 5506 TA, WP, SP, WB 0.821, 0.036, 0.026, 0.015
13 5420 JP, RP, JO, WP 0.753, 0.087, 0.052, 0.024
14 4865 WO, RO, AS, BO 0.484, 0.221, 0.069, 0.067
15 4256 AS, WB, WO, WP 0.62, 0.063, 0.045, 0.043
16 3186 BA, EL, WB, WA 0.236, 0.161, 0.073, 0.064
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pectation for the survey region (Curtis (1959)). Similarly, the maps of the most
likely forest community for each grid cell generally meet expectations (Curtis
(1959), Finley (1976)). Although one of the models at the 2 km grid resolution
has a higher holdout log likelihood than the model we discuss here; the differ-
ence in holdout likelihoods was small (−2.143 for the 2 km model vs. −2.144 for
the 1 km model), while the improvement in predictive log likelihood from 2 km
to 1 km is more substantial (−2.04 for the 2 km model, vs. −1.91 for the 1 km
model).

Among the oak communities, bur oak (BO) is the highest probability species in
the community (forest community type 2 in Table 3) that is most likely to occur in
the region that was historically oak savanna, mainly in topographically gentle sites
(Curtis (1959)). While all oak species in the survey region are fire adapted, bur
oak is the most fire tolerant (Peterson and Reich (2001)). Its dominance in flatter
areas could be due to increased frequencies of prairie fires passing through (Shea,
Schulte and Palik (2014), Stambaugh and Guyette (2008)). A more mixed oak
community (forest community type 3), dominated by white oak (WO) with a high
probability of black/jack oak (JO) and bur oak, was most likely to occur in a more
topographically diverse, historically savanna region; the topography likely allowed
for more diverse fire patterns and species assemblages (Shea, Schulte and Palik
(2014)). The community dominated by black/jack oak (forest community type 7)
had highest probability in regions with dry soils; of the oak species in Wisconsin,
black and jack oak are the most drought tolerant, so their dominance on these sites
is ecologically sensible (Curtis (1959), Shea, Schulte and Palik (2014)). While the
other oak species likely were restricted to sunny savannas, the white oak-red oak
(RO) community (forest community type 14) may have existed as a closed canopy
community in southern Wisconsin. White oak and red oak are the more shade
tolerant oaks (Curtis (1959)).

The three pine species in Wisconsin occur in several communities; three of
which are each dominated by the three species. The separation of the three species
is expected, because while they are all associated with drier site conditions (Curtis
(1959)), they are each differently adapted to drought and fire and, especially for
jack pine (JP) and red pine (RP), often form monospecific stands depending on
fire frequency (Burns and Honkala (1990), Radeloff et al. (1999)). White pine
(WP) has greater than 0.1 probability in the red pine dominated community (forest
community type 10) as well as in a community (forest community type 9) with
similar probabilities of spruce (SP), paper birch (WB) and tamarack (TA). Com-
pared to the other pine species, white pine grows on a range of sites including
those with richer soil and has intermediate shade tolerance which allows it occur
on a variety of sites and even intergrade with northern mesic forest community
types (Burns and Honkala (1990), Curtis (1959), Fahey, Lorimer and Mladenoff
(2012)). Given the widespread nature of white pine, it is not surprising that it has
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high probability of occurring in more than one community, including forest com-
munity type 9 which has species combinations that are possible on sites with re-
cent disturbance or sites that are refuges from fire (Fahey, Lorimer and Mladenoff
(2012)).

In northern Wisconsin, mesic forest occurs on sites with rich and moist, but
well drained, soils and is mainly dominated by eastern hemlock (HE), sugar maple
(SU), yellow birch (YB) and American beech (BE) (Curtis (1959)). The cluster re-
sults separate this forest type into four communities, and probabilities of each for-
est community type seem to vary geographically, depending on the range bound-
aries of several species (Curtis (1959), Davis, Schwartz and Woods (1991)). Beech
dominates one community; sugar maple and hemlock are other high-probability
species in the community (forest community type 6) which is most likely to occur
east of beech’s range boundary in eastern Wisconsin.

In northern Wisconsin, forest community type 8 is the most likely community,
where hemlock has the highest probability along with white cedar, yellow birch
and sugar maple. White cedar (CE) is most abundant in far northern Wisconsin
(Curtis (1959)). South of that a different community is more likely to occur (for-
est community type 1) with high probability of hemlock, yellow birch and sugar
maple. West and south of the range of hemlock, forest community type 5 is most
likely to occur; in that community hemlock is absent, and sugar maple and yellow
birch dominate.

The remaining communities also align with expected forest types. In south-
ern Wisconsin community type 4 is southern mesic forest which is most likely in
known closed forest areas as expected (Curtis, 1959, Mladenoff et al.). Commu-
nity type 16 is wet-mesic forest in both north and south (Curtis (1959)). Forest
community type 13 is a tamarack wetland, and forest community type 15 is north-
ern dry/dry-mesic sites that are recently disturbed and dominated by aspen (AS)
(Curtis (1959)).

4.3. Model diagnostic and implementation validation. In addition to the log
likelihoods, we consider an absolute deviation measure of discrepancy between
the observed and predicted proportions of tree species. To compute this measure of
discrepancy, we overlay a grid of n 20 km by 20 km cells on the state of Wisconsin
and compute the discrepancy

D = (Mn)−1
n∑

i=1

M∑
m=1

|p̄mi − p̂mi |,

where i indexes the 20 km by 20 km grid cells, p̄mi = ymi,test/q
test
i denotes the

empirical proportion of testing species m trees in the ith grid cell and p̂mi denotes
the corresponding predicted proportion under a given model. The discrepancy D

measures the average difference between the observed and predicted proportions
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TABLE 4
Values of �1 discrepancy (D) on the testing dataset on a 20 km by 20 km grid for the spatially

independent and dependent models with different numbers of forest community types (K) and grid
resolutions (1 km, 2 km, 4 km) in the Wisconsin Public Land Survey case study

Model K 1 km 2 km 4 km

Independent 8 0.0153 0.0136 0.013
12 0.014 0.0118 0.012
16 0.0132 0.0111 0.0111
20 0.013 0.0107 0.0108
24 0.0129 0.0104 0.0103

Spatial 8 0.0125 0.0132 0.014
12 0.011 0.0115 0.0131
16 0.00994 0.011 0.0127
20 0.00957 0.0106 0.0123
24 0.00933 0.0106 0.0123

in the 20-km by 20-km grid cells. For the mixture models the predicted species
proportions for the ith grid cell p̂mi are

p̂mi = ∑
z∈�

p(z|y, θ̂ )

K∑
k=1

I (zi = k)μ̂mk.

We compute these predicted species probabilities analytically for the spatially in-
dependent models but via MCMC for the spatially correlated models.

From Table 4, the overall differences between the predicted and observed
species proportions are small, indicating good fit between the observed and pre-
dicted species proportions. The best performing models with respect to the mea-
sure D achieve an average absolute deviation of about 0.01 between the observed
and predicted proportion for each of the 33 species. The deviations for the spa-
tially correlated models decrease as the grid resolution becomes finer, in contrast
to the deviations for the spatially independent models which increase as the grid
resolution becomes finer. The overall pattern for the absolute deviations, as the
number of categories and the grid resolutions change, is similar to the pattern for
the predictive log likelihoods in Table 1.

For the spatial models, we also investigate an intuitive approximation of
p(ytest|ytrain, θ̂ ) which allows us to validate our path integration implementation.
Under the assumption

p(z|ytrain, θ̂ ) ≈
n∏

i=1

p(zi |ytrain, θ̂ ),
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TABLE 5
Predictive log likelihood values on the testing dataset for the spatially correlated model, computed
using path integration and the approximate method of (25), for the Wisconsin Public Land Survey
case study with different numbers of forest community types (K) and grid resolutions (1 km, 2 km,

4 km)

Method K 1 km 2 km 4 km

Path integral 8 −2.03 −2.13 −2.19
12 −1.96 −2.08 −2.17
16 −1.91 −2.05 −2.15
20 −1.9 −2.03 −2.14
24 −1.88 −2.04 −2.14

Approximate 8 −2.03 −2.14 −2.19
12 −1.96 −2.08 −2.17
16 −1.91 −2.05 −2.15
20 −1.9 −2.03 −2.14
24 −1.88 −2.04 −2.14

we have

log
{
p(ytest|ytrain)

}= log
{∑

z∈�

p(ytest|z, θ̂)p(z|ytrain, θ̂ )

}

≈
n∑

i=1

log

{
K∑

k=1

p{ytest|zi, θ̂}p(zi = k|ytrain, θ̂ )

}
.

(25)

Using this approximation combined with MCMC draws from p(z|ytrain, θ̂ ) to ob-
tain empirical estimates of p(zi = k|ytrain, θ̂ ), we compute an approximation of
the true predictive log likelihood �pred(θ̂), denoted as �

approx
pred (θ̂). Table 5 sug-

gests that the results from this approximate procedure agree very well with the
results obtained via path integration in spite of the mostly different implementa-
tion details, providing evidence for the correctness of our path integral implemen-
tation.

5. Simulation study. We conduct a simulation study to evaluate the method-
ology applied to the PLS case study in Sections 2–4. We consider g × g grids of
cells, where the grid size is g = 50,100,200 or 400 corresponding to n = 2500,
10,000, 40,000 or 160,000 grid cells, respectively. We also consider the effect of
observing larger and smaller numbers of trees within each cell by conducting sim-
ulations at q = 3 or six trees observed per cell. For each combination of grid size
(g) and number of trees per cell (q), 100 simulations are performed. There are
K = 8 true forest community types, with associated probabilities given in the μ
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matrix below where the K = 8 columns of μ each sum to 1.

μ =

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0.186 0.126 0.049 0.264 0.036 0.212 0.031 0.403
0.228 0.177 0.086 0.139 0.465 0.016 0.015 0.057
0.016 0.015 0.016 0.026 0.064 0.022 0.016 0.054
0.089 0.016 0.035 0.299 0.022 0.041 0.235 0.021
0.026 0.018 0.015 0.024 0.134 0.016 0.220 0.015
0.019 0.092 0.103 0.016 0.016 0.065 0.045 0.027
0.044 0.015 0.015 0.016 0.016 0.016 0.016 0.125
0.015 0.195 0.016 0.016 0.111 0.021 0.019 0.062
0.028 0.133 0.199 0.059 0.040 0.109 0.049 0.018
0.036 0.015 0.025 0.015 0.016 0.360 0.025 0.021
0.017 0.017 0.016 0.046 0.015 0.057 0.026 0.021
0.039 0.016 0.017 0.030 0.015 0.017 0.016 0.015
0.223 0.094 0.015 0.015 0.016 0.016 0.016 0.016
0.016 0.016 0.374 0.016 0.018 0.016 0.016 0.027
0.017 0.054 0.017 0.018 0.016 0.019 0.257 0.117

The simulated vectors of forest community types z have density

p(z|η) = exp
{
ηT T (z) − ξ(η)

}
,

where η = [−0.060,−0.055,−0.039,−0.037,−0.024,−0.057,−0.004,1.2]T
and T (z) is defined as in (2). That is, the spatial correlation parameter ηK = 1.2.
Given the forest community types Z = z, the tree count vectors Yi are independent
multinomials with sample sizes q = 3 or q = 6 trees at each grid cell. Since the
regularized likelihood is invariant to permutations of the mixture categories, we
use the permutation of categories that minimizes the mean squared errors (MSE),

MSE =
8∑

k=1

15∑
m=1

(μ̂mk − μmk)
2/(MK),

for each simulation when assessing the estimation error. The MSE for the μ ma-
trix are reported in Table 6 for the stochastic modified EM algorithm described in
Algorithm 1 (“Modified EM”), in comparison to the spatially independent model
fit via the EM algorithm (“Independent EM”), the ordinary stochastic gradient as
described in Younes (1989) (“Ordinary SG”) and a version of stochastic gradi-
ent with differently scaled stepsizes for the η and μ parameter (“Rescaled SG”).
Implementation details for ordinary and rescaled stochastic gradient are given in
Section B.3 of the Supplementary Material (Berg et al. (2019)).

Table 6 suggests that the modified EM algorithm performs best at every set-
ting, followed by independent EM. When only q = 3 trees are included in each
cell, the MSEs for the μ parameter from the spatially independent model are over



MARKOV RANDOM FIELDS FOR CLASSIFYING FOREST COMMUNITIES 2335

TABLE 6
Simulation mean squared error (MSE) for the species probability parameter matrix μ using different

algorithms for q = 3,6 simulated trees per grid cell and for different numbers of grid cells n

Method Trees per cell n = 502 n = 1002 n = 2002 n = 4002

Modified EM q = 3 2e−04 4e−05 1e−05 2e−06
q = 6 5e−05 1e−05 3e−06 7e−07

Independent EM q = 3 4e−04 8e−05 2e−05 6e−06
q = 6 2e−04 4e−05 2e−05 8e−07

Rescaled SG q = 3 7e−04 5e−04 4e−04 5e−04
q = 6 4e−04 4e−04 4e−04 3e−04

Ordinary SG q = 3 0.003 0.003 0.003 0.003
q = 6 0.002 0.002 0.002 0.002

twice that of the spatially correlated. When q = 6 trees are included at each cell,
the performance of the spatially correlated and independent models are more sim-
ilar, although the spatially correlated model still always performs better than the
spatially independent model. For both models the MSE at each grid size is, as ex-
pected, lower when q = 6 trees are included than when q = 3 trees are included.
For both the spatially correlated and independent models, the parameter estimates
μ̂ appear to be converging to the truth at about the rate of

√
n. The convergence

occurs in spite of the fact that the likelihood is multimodal, while the fitting al-
gorithms were randomly initialized. This suggests that the estimation procedure is
robust to the choice of initialization. Interestingly, the rescaled stochastic gradient
performs better than ordinary stochastic gradient but still performs worse than the
independent EM algorithm.

The spatially independent model does not include the spatial correlation param-
eter ηK , so that Table 7 compares the bias, variance and mean squared errors for
the spatial correlation parameter ηK only for the stochastic modified EM, ordinary
stochastic gradient and rescaled stochastic gradient algorithms. Again, the stochas-
tic modified EM algorithm performs better than either rescaled stochastic gradient
or ordinary stochastic gradient. This difference is particularly pronounced for the
larger grid sizes. For g = 400 and q = 6, the MSE for the stochastic modified
EM algorithm is approximately 100 times smaller than the MSE for the rescaled
stochastic gradient algorithm. As can be seen from Table 7, the component of MSE
due to bias for the stochastic modified EM algorithm is very small relative to the
component of MSE due to variance. Additionally, the MSE decreases monoton-
ically as the grid size increases, as well as when more trees are observed within
each cell. This suggests that our algorithm accurately recovers the spatial correla-
tion parameter in the Potts distribution.

Since the spatially independent model does not include the spatial correlation
parameter ηK , the estimates for ηk when k < K (Table 8) for the independence
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TABLE 7
Simulation bias, variance, and mean squared error (MSE) for the spatial correlation parameter ηK using different algorithms for q = 3, six simulated

trees per grid cell and for different numbers of grid cells n

n = 502 n = 502 n = 1002 n = 1002 n = 2002 n = 2002 n = 4002 n = 4002

Method Error q = 3 q = 6 q = 3 q = 6 q = 3 q = 6 q = 3 q = 6

Modified EM Bias −0.002 −0.009 −0.002 −0.002 −0.001 −1e−05 −0.002 −6e−04
Variance 9e−04 6e−04 2e−04 1e−04 4e−05 3e−05 8e−06 7e−06
MSE 9e−04 7e−04 2e−04 1e−04 4e−05 3e−05 1e−05 7e−06

Rescaled SG Bias −0.03 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02
Variance 0.002 0.001 5e−04 4e−04 2e−04 3e−04 2e−04 3e−04
MSE 0.003 0.002 0.001 8e−04 7e−04 6e−04 6e−04 6e−04

Ordinary SG Bias −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2
Variance 0.005 0.006 0.005 0.006 0.005 0.007 0.005 0.005
MSE 0.04 0.03 0.04 0.03 0.05 0.03 0.05 0.03
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TABLE 8
Simulation mean squared error (MSE) for the ηk parameters when k < K using different algorithms

for q = 3,6 simulated trees per grid cell and for different numbers of grid cells n

Method Trees per cell n = 502 n = 1002 n = 2002 n = 4002

Modified EM q = 3 0.0031 0.00082 0.00017 5.9e−05
q = 6 0.0031 0.00053 0.00011 2.6e−05

Independent EM q = 3 0.24 0.066 0.041 0.03
q = 6 0.082 0.041 0.027 0.026

Rescaled SG q = 3 0.0099 0.0083 0.0089 0.0085
q = 6 0.044 0.043 0.041 0.035

Ordinary SG q = 3 0.62 0.66 0.69 0.61
q = 6 1 1 1.2 1.1

model are expected to be biased relative to the true data generating ηk parameters,
so that comparisons between the correlated and uncorrelated model estimates are
less meaningful for these parameters. The stochastic modified EM algorithm per-
forms best out of all the methods for every combination of grid size and number
of trees per grid cell.

Finally, in our simulation study, the minimum number of trees in a dataset is
7500, while in the PLS case study, over 300,000 trees were observed. Thus, the
“prior sample sizes” of trees from each forest community type are much smaller
than the observed sample size, and we do not expect the prior penalties to sub-
stantially bias the estimation procedure. The simulation study results bear this out.
Additionally, the η parameters are estimated in simulation with very little bias due
to the regularization.

6. Conclusions and discussion. In this work we have modeled forest com-
munities on a landscape via a latent Markov random field model. The spatially
correlated model outperformed the spatially independent model for parameter es-
timation in a simulation study and for prediction on the historical Wisconsin PLS
dataset. The fitted models were sensible relative to prior ecological literature, and
we provided ecological interpretation of the fitted models on the PLS dataset. We
also proposed a stochastic approximation procedure for jointly estimating the for-
est community species compositions and the spatial correlation strength in our
latent Markov random field model.

In Forbes et al. (2013), the spatial correlation structure includes additional
parameters to allow the interaction strength to depend on the forest types. We
achieved adequate results with a single spatial correlation parameter and leave the
investigation of more sophisticated spatial correlation structures to future work. It
would also be interesting to relate the forest community classifications to environ-
mental covariates across the PLS survey area. Furthermore, in a spatial-temporal
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setting with forest successional dynamics, for example, the layout of the grid cells
could include neighbors in space and time, and one might include additional cor-
relation parameters to account for possible temporal dependence, as well as spa-
tiotemporal interactions that differ by forest communities. Finally, our computa-
tional method can be used for conditional distributions different from the multi-
nomial distribution. While we provide a computationally feasible method in this
work, parameter estimation for noisily observed Markov random fields is still com-
putationally challenging. We leave these for future research as well.

Acknowledgments. We thank the Editor, an anonymous Associate Editor and
an anonymous referee for their insightful and constructive comments that have
helped improve the manuscript.

SUPPLEMENTARY MATERIAL

Supplement to “A latent discrete Markov random field approach to iden-
tifying and classifying historical forest communities based on spatial multi-
variate tree species counts” (DOI: 10.1214/19-AOAS1259SUPP; .pdf). Contains
additional description of computational methods.
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