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The gold standard for identifying causal relationships is a random-
ized controlled experiment. In many applications in the social sciences and
medicine, the researcher does not control the assignment mechanism and in-
stead may rely upon natural experiments or matching methods as a substitute
to experimental randomization. The standard testable implication of random
assignment is covariate balance between the treated and control units. Co-
variate balance is commonly used to validate the claim of as good as random
assignment. We propose a new nonparametric test of covariate balance. Our
Classification Permutation Test (CPT) is based on a combination of classifica-
tion methods (e.g., random forests) with Fisherian permutation inference. We
revisit four real data examples and present Monte Carlo power simulations to
demonstrate the applicability of the CPT relative to other nonparametric tests
of equality of multivariate distributions.

1. Introduction. Many applications in the social sciences, economics, bio-
statistics and medicine argue for “as good as random” assignment of units to
treatment regimes. Examples include natural experiments, regression discontinuity
designs and matching. To support a claim of as good as random assignment, re-
searchers typically demonstrate that the observed covariates are balanced between
treatment and control units. Typically it is required to show that pre-treatment char-
acteristics cannot predict future treatment status.

This paper develops a nonparametric test that formalizes the question of whether
the covariates can predict treatment status. The test makes use of classification
methods and permutation inference, and we name it the Classification Permutation
Test (CPT). The CPT trains a classifier (e.g., logistic regression, random forests) to
distinguish treated units from control units. Then, using permutation inference, the
CPT tests whether the classifier is in fact able to predict treated units from control
units more accurately than would be expected by chance.

The CPT may be viewed as a test for equality of multivariate distributions. Be-
cause the CPT employs permutation inference, it tests the sharp null that treatment
assignment is entirely independent of the covariates, as opposed to testing only
whether the covariates are balanced on average. That is, the CPT tests whether the
joint distribution of the covariates is the same in both the treatment and control
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groups. Several other nonparametric tests for equality of multivariate distributions
have been proposed in the past. Rosenbaum (2005) developed the Cross-Match
test which compares two multivariate distributions using a matching algorithm.
First, the observations are matched into pairs, using a distance metric computed
from the covariates (treatment status is ignored). The Cross-Match test statistic
is then the number of matched pairs containing one observation from the treat-
ment group and one from the control group; high values of the test statistic imply
covariate balance, and for low values the null hypothesis of random assignment
is rejected. Applications and extensions of the Cross-Match test are described in
Heller, Rosenbaum and Small (2010) and Heller et al. (2010). Székely and Rizzo
(2009a, 2009b) developed the energy test, another nonparametric test for equal-
ity of multivariate distributions. Still other methods include Hansen and Bowers
(2008), Heller, Heller and Gorfine (2013), Cattaneo, Frandsen and Titiunik (2015),
Chen and Small (2016), Ludwig, Mullainathan and Spiess (2017), Gretton et al.
(2012), Romano (1989), and Taskinen, Oja and Randles (2005).

The CPT offers several practical advantages to researchers. First, the CPT can
be used as a complementary analysis tool to the classic balance table. A com-
mon method of examining whether treatment and control groups are comparable
in observable characteristics is to use a balance table that reports the mean of each
characteristic in each of the groups and the p-value from a ¢-test (or Wilcoxon
Rank Sum Test) for inference. Balance tables are highly informative but they also
suffer from a multiple testing problem. The CPT, however, provides a single joint
test for balance in all the characteristics at once, and can therefore complement a
balance table by providing an overall measure of imbalance. Second, the CPT can
be quite sensitive. Using both simulated and real data applications, we find that
the CPT is often able to detect covariate imbalance where existing nonparametric
methods do not. Third, the CPT can be used also in testing whether a continuous
treatment (e.g., dose) is assigned at random relative to observable characteristics.
For a continuous treatment, the classification problem is replaced by a regression
problem. In contrast, other existing methods only compare observable characteris-
tics across 2 or K discrete treatment groups. We demonstrate the use of the CPT in
this context using data from Green and Winik (2010). Fourth, the CPT has a clear
and intuitive interpretation. The test statistic is a direct measure of the ability of the
covariates to predict treatment assignment. One advantage of this is that, if covari-
ate imbalance is detected, regular methods of covariate importance (e.g., variable
importance plots) can be used to assess which of the covariates or their interactions
are causing the imbalances. Moreover, the CPT relates equality of multivariate dis-
tributions to the propensity score (Rosenbaum and Rubin (1983)). Rejection of the
null hypothesis implies the covariates are predictive of treatment assignment, and
can therefore be directly interpreted as a difference in the the distribution of the
propensity score across the treatment and control groups. Finally, the CPT offers
considerable flexibility, in that it can be used with any classifier. Thus, for example,
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if the covariates are high dimensional, a classifier can be chosen that is appropriate
to that setting, for example, the elastic net (Zou and Hastie (2005)).

The paper is organized as follows. Section 2 discusses the method, Section 3
examines the performance of the CPT on simulated data and Section 4 looks at
four real-life data applications. Section 5 concludes.

2. Method. Suppose there are n units, indexed by i, and m treatment groups.
For each unit there is a treatment assignment 7; and a vector of observed covari-
ates Z; € R?. Presumably there is an outcome variable as well, but it is irrelevant
for our purposes. For discrete treatments, in which each unit is assigned to one of
m treatment groups, 7; is a vector in {0, 1}’ such that T;; =1 if unit { is in treat-
ment group k and T;; = 0 otherwise. For continuous treatments such as drug dose,
T; € R. We focus first on discrete treatments, and minor modifications to allow for
continuous treatments are discussed below.

Let T be the n x m matrix whose ith row is 7; and let Z be the n x p matrix
whose ith row is Z;. We wish to test whether 7|l Z or whether treatment assign-
ment is independent of the observed covariates. The CPT proceeds as follows.
First, we train a classifier to predict 7' from Z. The classifier can be anything—
logistic regression, a random forest, K-nearest neighbors, etc. We only require
that the classifier provide us with a n x m matrix T of “predicted” treatment as-
signments such that 7; € {0, 1} and hIy T = 1 for all i. We then define the
in-sample classification accuracy rate R as

n m
(2.1) R=122Tikﬁk
M im1k=1
and use R as our test statistic; intuitively, R should be high only if Z is predictive
of T', implying that Z and T are not independent.

To determine statistical significance, we use permutation inference. We ran-
domly permute the rows of T (but not Z) B times. Each time we retrain the clas-
sifier and recalculate the classification accuracy rate, which we denote Rg, where
1 <b < B. We then calculate our p-value as

1 B
P=— I{R > R}

where I{R > R}} is the indicator function for whether R > R}.

A few comments: (1) Because B is finite, P is only an approximation to the
true permutation test p-value; however the approximation can be made arbitrarily
good by increasing B. (2) Ignoring the previous comment, the CPT is guaranteed
to control the type-I error rate under the sharp null 71l Z, even in finite samples,
no matter what classifier we use, because of the fact we use permutation inference.
(3) In particular, the CPT will properly control the type-I error rate despite the fact
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that we use the in-sample classification accuracy rate R as the test statistic. Over-
fitting may occur, causing R to be quite high, perhaps misleadingly so. However,
overfitting would cause the R} to be high as well; thus, any overfitting problem
is also manifested in the null distribution, and thereby effectively accounted for.
(4) The choice of classifier does affect the power of the test; the CPT will only
have power if the classifier is able to distinguish the distribution of the covariates
in one treatment group from the distribution of the covariates in the other treatment
groups. In this paper we focus primarily on random forests and logistic regression
with all pairwise interaction terms included in the design matrix. We select these
classifiers because they are able to detect differences in the joint distribution of the
covariates, as opposed to merely differences in the marginal distributions.

In addition to the CPT as it is described above, we also consider various modifi-
cations. One modification is to consider alternative metrics of classification ac-
curacy. Many classification algorithms provide not only predicted assignments
f}k € {0, 1} but also estimated “probabilities” of assignment p;; € [0, 1], where
> i Pix = 1 for all i. In other words, the p;x are not constrained to be 0 or 1, and
may therefore carry more information than the f", k- We may therefore replace the
accuracy rate R in (2.1) with the alternative test statistic

n m
22) S== 33 Tulog(pi)
nisik=1
which is commonly referred to as the logarithmic score; previous work suggests
that this test statistic should have greater power (Lerch et al. (2017), Gneiting and
Raftery (2007)).

A second modification allows for continuous treatment assignments, rather than
discrete treatment groups. In this case, 7; € R and we use a regression algorithm
to predict 7; rather than a classification algorithm (thus T; € R as well). Mean
squared error may be used as the accuracy metric. We consider such a scenario in
Section 4.2.

A third modification is to allow for multiple classifiers, which may increase the
power of the test over a wider range of alternatives. We consider two ways of incor-
porating multiple classifiers. The first is to simply construct an ensemble classifier
out of the constituent classifiers; the ensemble classifier may then be used in the
CPT like any other classifier. One way to construct an ensemble classifier is to av-
erage the assignment probabilities of the constituent classifiers. More specifically,
given g constituent classifiers, indexed by ¢, with assignment probabilities pj.,
we define the ensemble classifier probabilities as p;x = ZZZI Dike/q. Other ap-
proaches are possible, such as having the constituent classifiers vote. The second
way of incorporating multiple classifiers is to run the CPT separately for each of
the classifiers, obtaining a p-value from each test, and then combine the individual
p-values into an overall p-value. Our approach is to combine the p-values using
Fisher’s method, that is, we define x2 = —2 ZZ:] In(P.) where P, is the p-value
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of the cth test. However, because the individual tests are not independent, we do
not obtain our overall p-value by comparing our x?2 statistic to the standard X22q
distribution. Rather, we again use permutation inference, ensuring the validity of
the test. Note that Tang, Chen and Alekseyenko (2016) use a similar permutation-
based approach to combine p-values from multiple tests, but take the minimum
p-value (over all tests) instead of using Fisher’s method.

A final modification of the CPT is considered in Section 4.4, where we consider
a scenario in which the experimental units are blocked. We implement a variant of
the CPT in which we permute treatment assignment only within blocks.

3. Simulations. We use simple simulations to study the power of the CPT, the
Cross-Match test (Rosenbaum (2005)), the energy test (Székely and Rizzo (2009a,
2009b)) and Hotelling’s T -test.

In the first simulation we generate n = 100 observations; 50 are in treatment and
50 in control. For each observation i we generate a vector Z; of p = 3 covariates.
In the control group, the covariates are drawn from a N (0, I3x3) distribution, and
in the treatment group from a N (u, I3x3) distribution, where u = (8, 8, 0) and 8
is a specified parameter. Thus the first two covariates are predictive of treatment
assignment, and the third is just noise. Note, importantly, that imbalance of the
covariates between the treatment and control groups is apparent in the marginal
distributions of the covariates. We refer to this as the “marginal imbalance” simu-
lation.

The second simulation is similar to the first simulation, except that the covari-
ates in the treatment group are drawn from a N (0, X,) distribution where

L p p
Ypo=p 1 p
p p 1

and p is a specified parameter. Note that in this case, the marginal distributions
of the covariates are identical between the treatment and control groups. The only
difference is the correlation. We refer to this as the “marginal balance” simulation.

We run each of the two simulations 400 times at each of several different val-
ues of the parameters (8 or p, respectively). In each simulation run, we apply
Hotelling’s T -test, the Cross-Match test, the energy test and several variants of
the CPT: (1) logistic regression classifier; (2) logistic regression classifier with all
two-way interactions included in the design matrix (“logistic2” for short); (3) ran-
dom forest classifier; (4) ensemble classifier, with (1)—(3) as constituent classifiers;
(5) a combined result, combining the p-values of (1)—(4) using Fisher’s method as
described in Section 2. We then estimate the power of the methods by calculating
the fraction of times they reject (x-level 0.05).

Some details on implementation: All code is in R, and scripts to reproduce the
analysis are provided in Supplement B (Gagnon-Bartsch and Shem-Tov (2019));
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the CPT itself is implemented in the R package cpt, available on CRAN. Within
the cpt package, the logistic regression classifiers are implemented using the
multinom function in the nnet package (in order to allow more than two treat-
ment groups). The random forests are implemented using the randomForest
package; importantly, in the case of the random forest classifier, the out-of-bag
estimates are used. When running the CPT we use B = 500 permutations. The
test statistic is a slightly modified version of the logarithmic score given in (2.2);
because p;; can sometimes be 0, a constant value of 0.0001 is added to the p;j
before taking the logarithm. The cpt package offers a choice of ensemble clas-
sifiers; here we use the default option, which averages the p;; of the constituent
classifiers, as described in Section 2.

Results are shown in the top two plots of Figure 1. As expected, Hotelling’s
T -test performs very well when there is marginal imbalance. Notably, the CPT
using logistic regression (without interactions) appears to perform just as well as
Hotelling’s T-test in this scenario. However, both of these tests perform poorly
when the marginal distributions are balanced.

The other variants of the the CPT are sensitive to imbalances in both the
marginal and joint distributions, and perform well in both simulations. In the
“marginal balance” simulation, the “logistic2” variant of the CPT performs best.
Notably, the “combined” method performs nearly as well as the best performing
method in both the “marginal balance” and “marginal imbalance” scenarios.

Like the CPT, the energy and Cross-Match tests both test the null hypothesis
that treatment assignment is independent of the covariates, and are sensitive to
imbalances in both marginal and joint distributions. The energy test appears to be
very sensitive to imbalances in the marginal distributions, but considerably less
sensitive to imbalances that are only apparent in the joint distribution. The Cross-
Match test appears to be moderately sensitive to both types of imbalance.

As noted previously, with the CPT we have used the logistic score as the test
statistic. Figure 9 in Supplement A (Gagnon-Bartsch and Shem-Tov (2019)) shows
results using the classification accuracy rate as the test statistic. The logistic score
performs best, and is our recommended choice. We use this test statistic in the
remainder of our examples in this paper.

Next, we run two additional simulations to investigate the performance of these
tests in a high dimensional setting. The first simulation is similar to the marginal
imbalance simulation, except that instead of having two predictive covariates and
one noise covariate, we have two predictive covariates and 48 noise covariates. We
refer to this as the “50 covariates” simulation. The fourth simulation is similar but
with 998 noise covariates, and we refer to this as the “1000 covariates” simulation.
In these simulations we replace the logistic regression variants of the CPT with
one that uses the elastic net (Zou and Hastie (2005)). This variant is also imple-
mented within the cpt R package, using the cv.glmnet function. Hotelling’s
test and the Cross-Match test are not run in the 1000 covariates simulation, since
the number of covariates is greater than the number of samples.
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FI1G. 1. Estimated power of the CPT, Cross-Match test, energy test and Hotelling’s T -test on sim-
ulated data.

Results are shown in the bottom two plots of Figure 1. Interestingly, the energy
test and all variants of the CPT outperform Hotelling’s test in the “50 covariates”
simulation, demonstrating the value of these methods in even moderately high
dimensional settings. The Cross-Match test has comparatively low power. Among
the variants of the CPT, the “combined” and “ensemble” methods perform the
best. In the “1000 covariates™ simulation, all variants of the CPT outperform the
energy test. Encouragingly, the “combined” and “ensemble” variants once again
have the highest power. This suggests that in practice, it is not critical to choose
the one “right” classifier for a given dataset, and that a collection of classifiers may
perform as well or better than any individual classifier.
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One important weakness of the CPT concerns computational efficiency. With
n = 100 samples and p = 3 covariates, the run times of the Cross-Match, energy
and Hotelling tests are on the order of 1072 seconds or less on a modern desktop
PC. The runtime of the CPT with a logistic regression classifier however is a full
second, and roughly 20 seconds with a random forest. Moreover, for n = 500 and
p = 3 the runtime of the random forest CPT increases to two minutes; for n = 100
and p = 1000 it is 10 minutes, and for n = 500 and p = 1000 it is approximately
one hour. Thus for very large datasets, it may be necessary to choose a more com-
putationally efficient classifier.

4. Applications.

4.1. Indiscriminate violence in Chechnya. Lyall (2009) investigates the effect
of indiscriminate violence, specifically the bombing of villages in Chechnya, on
insurgent attacks. Villages are the unit of analysis, the treatment variable is bomb-
ing status, the outcome of interest is the number insurgent attacks, and covariates
include population, elevation, distance to neighboring village, etc. One of the iden-
tification strategies is a matching procedure that yields almost perfectly balanced
treatment and control groups in all the marginal distributions; see Table 1. Lyall
also presents a balance table similar to Table 1 and uses it to support the claim of
covariate balance.

The CPT finds significant evidence of covariate imbalance between the treat-
ment and control groups, however, when using either a random forest classifier or
logistic regression with two-way interactions. Figure 2 shows the distribution of
the CPT test statistic under the null and the observed value of the test statistic.
The null hypothesis of random assignment is clearly rejected. This illustrates that

TABLE 1
Covariate balance between treatment and control villages in Lyall (2009)

P-value
Ave. Treat Ave. Control T -test Wilcoxon KS
Log-Population 7.830 7.759 0.699 0.952 0.569
Poverty 2.321 2.239 0.245 0.301 0.988
Tariqa 0.050 0.057 0.804 0.805 1.000
Log-Elevation 5.834 5.766 0.424 0.651 0.260
Isolation 3.767 3.836 0.802 0.656 0.569
Log distance to Neighbor 0.896 0.882 0.854 0.839 0.569
Garrison 0.258 0.283 0.615 0.615 1.000
Rebel 0.585 0.522 0.261 0.260 0912

Notes: The table shows balance on each covariate separately. p-values are calculated with the t-test,
Wilcoxon rank sum test and Kolmogorov—Smirnov (KS) test. The table replicates parts of Table 1 in
Lyall (2009).
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Classifier: Logistic regression with interactions Classifier: Random forest

Observed test statistic
Observed test statistic

-0.65 -0.60 -0.55 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5

Test statistic under the null Test statistic under the null

FI1G. 2. Distribution of the CPT test statistic under the null hypothesis. Notes: The figure shows the
distribution of the CPT test statistic under the null hypothesis of random treatment assignment, and
the vertical bar shows the observed test statistic. Results are shown for both logistic regression with
all two-way interactions, and for random forests.

assessing balance using only the marginal distributions of the covariates is not suf-
ficient as imbalances can be hidden in the joint distribution. Similarly, an Hotelling
T -test finds no statistically significant difference (P = 0.81), again because the im-
balances are in the joint distribution of Z, while the marginal distributions of Z are
balanced. The Cross-Match test is sensitive to differences in the joint distribution
and rejects the null of random assignment (P < 0.0001). In principle, the energy
test is also sensitive to differences in the joint distribution (this is confirmed in
the simulation studies), but interestingly, in this example the energy test does not
reject the null (P = 0.28).

One practical advantage of the CPT is that the classifier used to perform the test
can often also be used to investigate which variables are responsible for any imbal-
ance. For example, if one uses the CPT with random forests and detects an imbal-
ance, one could also use a variable importance plot to explore which covariates are
most responsible for the imbalance. One could also fit and plot a classification tree
to further investigate the nature of the imbalance, and in particular which interac-
tions are important. Figure 3 shows a variable importance plot and also a plot of a
tree. The variable importance plot suggests that log-Population, log-Elevation and
log-Distance to neighbor are the most predictive of treatment assignment. The tree
suggests specifically that the joint distribution of elevation and distance to nearest
village is imbalanced, especially when interacted with population size. Figure 10
in Supplement A (Gagnon-Bartsch and Shem-Tov (2019)) presents contour plots
which show the joint distribution of these covariates in greater detail. These fig-
ures complement each other and re-enforce our conclusion of imbalance in the
joint distribution of the covariates.

Similarly, when using the CPT with logistic regression, one could inspect the
results of the regression to investigate the nature of any imbalance. Table 2 reports
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F1G. 3. Exploring the imbalanced covariates. The top panel shows a variable importance plot. The
bottom panel shows an individual tree.

regression results that show that although each of the marginal distributions of the
above covariates are not predictive, the interactions are predictive. Figure 3 and
Table 2 complement the CPT’s results presented in Figure 2.

4.2. Random assignment of defendants to judge calendars. Green and Winik
(2010) studied the effect of incarceration length and probation length on recidi-
vism. They argue that defendants are assigned in a quasi-random procedure to
different judge calendars, and that judges vary in punishment propensities. The
data consist of a sample of 1003 felony drug defendants that are assumed to be
randomly allocated between nine different judge calendars. See Table 4 in Sup-
plement A (Gagnon-Bartsch and Shem-Tov (2019)) for a list of all the observed
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TABLE 2
Testing the impact of adding interactions to balance tests

Dependent variable: Treatment group

Log distance to Neighbor x Log-Elevation 0.687*** 0.767***
(0.233) (0.265)
Log distance to Neighbor x Log-Elevation x 0.118%**
Log-Population (0.029)
Log-Elevation 0.282 —0.211 —0.764**
(0.201) (0.258) (0.308)
Log-Population 0.095 0.155 —0.359**
(0.091) (0.095) (0.160)
Log distance to Neighbor 0.075 —4.003*** —9.590***
(0.188) (1.395) (2.179)
Constant —2.444 0.191 7.193%**
(1.693) (1.899) (2.685)
Observations 318 318 318

Note: *p <0.1; **p < 0.05; ***p < 0.01.

covariates. In this example we test Green and Winik’s claim of random assignment.
We also show that a simple analysis of propensity scores could be misleading, and
that logistic regression p-values can be anti-conservative. Finally, we demonstrate
how the CPT can be used to test for covariate balance across multiple (greater
than two) treatment groups, and also to cases in which the treatment of interest is
continuous.

One intuitive method to check for covariate balance that we have not yet dis-
cussed is to plot fitted propensity score (e(Z)) values. However, this method can be
sensitive to over-fitting issues. Consider a binary indicator for whether defendant i
was assigned to one specific judge calendar. (Below, we look at judge calendar 1;
the choice of calendar 1 is arbitrary.) We fit e(Z) using logistic regression and in
Figure 4 we plot the fitted values é(Z) separately for the treated (assigned to judge
calendar 1) and the controls (assigned to any other calendar). There appears to be
some imbalance in the estimated propensity scores, especially when interactions
are included. However, this apparent imbalance could either be the result of real
imbalances between the treated and control units, or of over-fitting of the logistic
regression model to the observed data.

We used the CPT to test this apparent imbalance. Since the CPT re-estimates the
logistic regression in each permutation it accounts for any over-fitting. The CPT
does not find any difference in the observable characteristics between defendants
assigned to judge calendar 1 and the other defendants. The CPT p-value using a
logistic regression classifier with all two-way interactions is 0.25.



THE CLASSIFICATION PERMUTATION TEST 1475

Main effects only All two-way interactions

0.0 0.1 0.2 0.3 0.4 0.00 0.25 0.50 0.75 1.00
P-score P-score

Calendar: [Jl] Not Judge 1[]Judge 1 Calendar: [Jli] Not Judge 1[JJudge 1

FI1G. 4. The distribution of the estimated propensity score using both a main effects model and a
model with all two-way interactions.

The standard likelihood ratio test (LRT) from a logistic regression is a common
alternative to the CPT or other permutation based tests. We fit a logistic regression
(both with and without interactions) for each judge calendar and computed the LRT
p-values under the null hypothesis that all coefficients are zero. Results are shown
in Table 3. Several of the p-values appear significant when the interactions are
included; for example, the p-value for judge calendar 1 is 0.001. However, these
p-values are not reliable as the LRT can be anti-conservative in finite samples. To
demonstrate this we randomly permuted the treatment indicator and re-computed
the p-values 1000 times in order to estimate the actual type-I error rate when the

TABLE 3
The Likelihood Ratio Test p-values and Type-I error rates for each judge calendar

Main effects only All two-way interactions

(20 coefficients) (169 coefficients)
Judge calendar p-value Type-I1 p-value Type-1
1 0.062 0.069 0.001 0.766
2 0.088 0.051 0.000 0.791
3 0.329 0.060 0.001 0.744
4 0.834 0.073 0.000 0.765
5 0.269 0.057 0.002 0.775
6 0.760 0.062 0.163 0.850
7 0.122 0.071 0.000 0.791
8 0.859 0.065 0.058 0.818
9 0.505 0.061 0.000 0.781
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F1G. 5. Small sample logistic regression simulations: Overfitting of propensity scores and anti—
conservative bias of the likelihood ratio test. Simulation details: Sample size varies but the number
of covariates is fixed at 20. For all sample sizes, half of the units are in treatment and half in control.
All covariates are IID standard normal; there is no imbalance between treatment and control. We
ran 10,000 simulations at each sample size. The blue line shows the true type-1 error rate over the
10,000 simulations when the nominal rate is 0.05. The green and red dashed lines show the mean
fitted propensity scores in the treatment and control groups, respectively.

nominal rate is 5%; results are in Table 3. Figure 11 in Supplement A (Gagnon-
Bartsch and Shem-Tov (2019)) shows the entire distribution of the LRT p-values
under this scenario in which the null hypothesis of random assignment is correct.
It is clear that the finite sample distribution of the LRT p-value has incorrect Type-
I error rates. To investigate whether this might be due to some unusual aspect
of the distribution of the covariates in this particular dataset, we also performed
simple simulation analyses with IID standard normal covariates. Results are in
Figure 5. The over-fitting problem of the LRT in finite samples has been previously
documented in the literature (Hansen and Bowers (2008)).

Many empirical studies that assume the random assignment of individuals to
judges (or examiners) also assume that the judges differ in their degrees of harsh-
ness. In Green and Winik (2010), for example, the judges differ in their likeli-
hood to sentence an individual to a term of imprisonment. The judges’ “punish-
ment propensities” are then used as a continuous treatment variable (or instru-
ment). The punishment propensities must be estimated from the data; a common
approach in the literature is to use the leave-one-out (henceforth LOO) mean sen-
tence length of each judge (Doyle (2007), Doyle (2008), Aizer and Doyle (2015),
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Bhuller et al. (2016), Dobbie, Goldin and Yang (2016), Stevenson (2016)). Specif-
ically, suppose defendant i is assigned to judge calendar j(i), where j(i) is a
mapping of defendants to judge calendars, j(i) : {1,..., N} — {1,...,9}. Let
I[j() = j(@i)] € {0, 1} be an indicator for whether defendants i and / are assigned
to the same calendar. Let S; denote the sentence length of defendant i. The LOO
mean, which is used as the estimated punishment propensity, is defined as

_ 1

7LOO _
! nj@i)—1

N N
oS-I =j)] wheren;(@)=> I[j)=j®)]
I#i l

Importantly, it is assumed that TiLOO
of defendant i.

We can use a modified version of the CPT to test the assumption that
independent of the observed covariates Z;. As before, we will attempt to predict
Tl.LOO using Z;. However, since TiLOO is a continuous variable, the prediction prob-
lem is now a regression problem rather than a classification problem. We choose
to use a random forest for the regression, and use the root mean squared predic-
tion error as the test statistic. Figure 6 shows the permutation null distribution of
the RMSE as well as the observed value. It is clear from the figure that we can-
not reject the null of random assignment. Note that neither the Energy test nor the
Cross-Match test can be used in this example, as they do not support continuous
treatment variables.

is independent of the observed characteristics

TiLOO is

Observed test statistic

0.085 0.090 0.095 0.100

RMSE

FIG. 6. The distribution of the random forest prediction RMSE under the null hypothesis of random
assignment.
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Finally, to further test the claims of Green and Winik, we ran a variant of the
CPT in which we regard each judge as a separate treatment, and test for imbal-
ance across the nine treatment groups simultaneously. Specifically, we used both
a multinomial logistic regression without interactions and a random forest classi-
fier to classify each observation as coming from one of the nine calendars. The
p-values are 0.30 (logistic) and 0.22 (forest). We also ran the energy test, which
allows for multiple treatment groups; the p-value was 0.46. Note that the Cross-
Match test could not be used, because it can only be used when there are two
groups.

4.3. MPs for sale. Eggers and Hainmueller (2009) (henceforth EH) studied
the effect of membership in the UK parliament on personal wealth. EH use a re-
gression discontinuity design (RDD) in which candidates for parliament who just
barely won an election are compared to candidates who just barely lost. It is com-
mon for applied researchers to argue that the observations just above and just below
a RDD threshold are roughly comparable, with similar distributions of covariates
(Caughey and Sekhon (2011)). Importantly, the distributions of covariates above
and below the threshold are not assumed to be identical, but merely similar (for
any finite window size). The aim of this data application is to use a RDD design,
in which we expect only a small degree of covariate imbalance, to test the sensi-
tivity of different methods to detect this imbalance. Note that this application is
not meant to argue that the CPT should be used to validate a RDD, but rather only
to use real empirical data to benchmark the power of the CPT relative to other
nonparametric tests.

In Figure 7 we compare the Energy test, Cross-Match test and the CPT over a
grid of different window sizes. The horizontal axis reports the number of obser-
vations included in each window and the vertical axis reports the p-value of each
of the tests. The results show that the CPT is able to detect imbalances at substan-
tially smaller sample sizes than the Energy and Cross-Match tests. Even with only
34 observations, the CPT finds significant (P < 0.01) differences.

Note that in Figure 7 we use a random forest as the classifier, because logistic
regression with all two-way interactions has more parameters than observations.
This highlights another practical advantage of the CPT, specifically that it can be
used even on very high dimensional data when used in conjunction with an appro-
priate high dimensional classification algorithm such as a random forest.

4.4. The effect of community college on educational attainment. Rouse (1995)
studied the educational attainment of students who started in a two-year college
to that of students at a four-year college. Heller, Rosenbaum and Small (2010)
used this data to demonstrate the use of the Cross-Match test for testing imbalance
between multivariate distributions. We use this data to demonstrate methodological
issues in conducting inference after matching, and not to make any inference or



THE CLASSIFICATION PERMUTATION TEST 1479

1.00 EH choosen window

0.75

0.50

P-value

0.25

-0-630— 000000000 SN D00 NN B0 WIN-00-0- 000

100 200 300
Number of Obs. in window

Test type: - CPT CrossMatch Energy

F1G. 7. P-values of each of the multivariate balance test at different window sizes. Notes: For
smaller window sizes the Cross-Match test statistic is not well defined (and the R function does not
run). In the main RD treatment effect estimation, EH used several different window sizes, depending
on the specification, containing between 164 to 223 observations; see Table 4 in EH.

analysis on the effects of two-year college on educational attainment relative to
four-year college.

In a matching design it is common to use Fisherian inference after conducting
the matching procedure; see Rosenbaum (2010). A key question is whether after
matching the researcher should imagine that units have been randomized within
matched blocks, or whether the units have been randomized ignoring the block
structure. In other words, in the hypothetical experiment that the matching design
is meant to mimic, is the hypothetical experimental design a block-randomized de-
sign, or is it one of complete randomization? In this example we show it is essential
to specify the treatment assignment model, because the two may lead to opposite
conclusions when conducting balance diagnostics. This issue is especially impor-
tant when using permutation inference as the researcher is required to permute the
labels of treated and control units at the level in which treatment was assigned.

In Rouse’s data, prior to conducting matching there is clear imbalance in the ob-
servable characteristics of students who started at a two-year college and those who
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Matching without replacement Matching with replacement

Observed test statistic Observed test statistic

-0.575 -0.600 -0.625 -0.650 -0.675 -0.575 -0.600 -0.625 -0.650
Test statistic under the null hypothesis Test statistic under the null hypothesis
Randomization structure: . Across blocks D Within blocks Randomization structure: . Across blocks D Within blocks

F1G. 8. The distribution of the test statistic under the null according to randomization within blocks
and across blocks for matching designs with and without replacement. Notes: The difference between
the left and right panels is whether the matching was done with replacement or without, and as can
be seen from the figure the matching procedure has no effect on our conclusions concerning within
versus across block randomization.

started at a four-year college (see Figure 12 in Supplement A (Gagnon-Bartsch
and Shem-Tov (2019))). After matching, with or without replacement, the bal-
ance tables comparing the treated (two-year) and control (four-year) units show
the groups are comparable in the observed characteristics and suggest the match-
ing procedure worked well. To test whether there is imbalance in the joint distri-
bution of the covariates we use two variants of the CPT: one in which treatment
labels are permuted within blocks (matched pairs), and another in which treatment
labels are permuted across all units. Figure 8 shows the results, and yields opposite
conclusions depending on the randomization structure that is used. When the ran-
domization structure is across blocks the observed test statistic is to the left of the
null distribution, implying more balance than would have been likely under ran-
dom assignment. When the randomization structure is within blocks the observed
test statistic is to the right of the null distribution, implying the covariates can pre-
dict the treatment assignment better than under random assignment. The difference
between the left and right plots in Figure 8 is the matching method—with or with-
out replacement—and as can be seen the matching procedure has no effect on our
discussion of within versus across block randomization.

5. Discussion. The CPT combines classification methods with Fisherian per-
mutation inference. We illustrate the power of the method relative to existing pro-
cedures using simulations as well as four real data applications. We hope the CPT
will illustrate the gains of using machine learning tools for the construction of pow-
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erful new test statistics, and Fisherian inference for conducting hypothesis testing
and inference.

This paper emphasizes the importance of examining the joint distribution in
addition to the marginal distributions. We also emphasize the advantage of the CPT
as an omnibus test that does not suffer from multiple testing concerns. However,
importantly, the CPT is not a substitute for standard methods such as a balance
table that test for differences in the means of each pre-treatment characteristic
separately. Rather, the CPT is targeted to complement a balance table and provide
a summary measure of the covariates’ imbalance.

When using the CPT one must first select a classifier. Flexibility in the selec-
tion of the classifier has the advantage of allowing one to choose a classifier that
is appropriate to a given dataset. An especially helpful guide to selecting a classi-
fier can be found in Section 10.7 of Hastie, Tibshirani and Friedman (2009), and
in particular Table 10.1. Key considerations include dimensionality, the presence
of mixed datatypes (quantitative and categorical), presence of outliers or skewed
distributions, and computational efficiency. In addition, the CPT allows for com-
bining multiple classifiers, each of which may be more or less sensitive to specific
types of imbalance (e.g., in the marginal or joint distributions). This may be a par-
ticularly attractive option in practice, since it lessens the need to select one “right”
classifier. Moreover, as noted in the simulations, an ensemble classifier may per-
form better than any individual classifier. The primary drawback to this approach
is computational efficiency. Indeed, for very large sample sizes, computational ef-
ficiency may be the overriding concern when selecting a classifier.

While flexibility in the choice of classifier is a strength of the CPT, it also opens
the door to data snooping. In the context of testing for covariate imbalance, we feel
that data snooping is less of a concern than it is in many other contexts. Rather,
we feel that failing to detect a true imbalance is a greater concern. Nonetheless,
to minimize concerns of data snooping, we recommend the following. First, that
as a default, researchers report the result of a “combined” classifier (as described
in Sections 2 and 3) consisting of two constituent classifiers: (1) a random forest,
and (2) either ordinary logistic regression (if p < n) or the elastic net regularized
logistic regression (if p > n). As demonstrated in the simulations, this combina-
tion of classifiers should be sensitive to a wide range of alternatives. Second, we
recommend that researchers simply report the results of any other variants they
run.

Finally, the CPT is also flexible in that it can be easily generalized. As we show
in the empirical applications, the CPT can be applied to paired or blocked designs.
In addition, it can accommodate discrete treatments with multiple levels as well
as continuous treatments. This flexibility, combined with exact finite sample infer-
ence, allows researchers to verify random assignment to treatment in a variety of
situations. The four empirical applications aim to illustrate the applicability and
implementation of the method to different situations that arise in applied research.
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SUPPLEMENTARY MATERIAL

Supplement A: Online appendix (DOI: 10.1214/19-A0AS1241SUPPA; .pdf).
Supplementary figures and tables referenced in the main text.

Supplement B: Code and data (DOI: 10.1214/19-AOAS1241SUPPB; .zip).
R scripts and data to reproduce the analyses in this paper. Note that this code and
data are also available on GitHub (username johanngb) and on Docker Hub
(username johanngb), and that the R package is available on CRAN (package
name cpt).
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