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Abstract. Consider a large number n of neurons, each being connected to approximately N other ones, chosen at random. When a
neuron spikes, which occurs randomly at some rate depending on its electric potential, its potential is set to a minimum value vmin,
and this initiates, after a small delay, two fronts on the (linear) dendrites of all the neurons to which it is connected. Fronts move
at constant speed. When two fronts (on the dendrite of the same neuron) collide, they annihilate. When a front hits the soma of a
neuron, its potential is increased by a small value wn. Between jumps, the potentials of the neurons are assumed to drift in [vmin,∞),
according to some well-posed ODE. We prove the existence and uniqueness of a heuristically derived mean-field limit of the system
when n,N → ∞ with wn � N−1/2. We make use of some recent versions of the results of Deuschel and Zeitouni (Ann. Probab. 23
(1995) 852–878) concerning the size of the longest increasing subsequence of an i.i.d. collection of points in the plan. We also study,
in a very particular case, a slightly different model where the neurons spike when their potential reach some maximum value vmax, and
find an explicit formula for the (heuristic) mean-field limit.

Résumé. Considérons un grand nombre n de neurones, chacun étant connecté à environ N autres, choisis au hasard. Quand un neurone
décharge, ce qui se produit au hasard à un certain taux en fonction de son potentiel électrique, son potentiel est remis à une valeur
minimale vmin, ce qui déclenche, après un petit délai, deux fronts sur les dendrites (linéaires) de tous les neurones auxquels il est
connecté. Les fronts se déplacent à vitesse constante. Lorsque deux fronts (sur la dendrite du même neurone) entrent en collision,
ils s’annihilent. Lorsqu’un front touche le soma d’un neurone, son potentiel est augmenté d’une petite valeur wn. Entre les sauts, les
potentiels des neurones évoluent dans [vmin,∞), suivant une EDO. Nous prouvons l’existence et l’unicité d’une limite champ moyen
du système lorsque n,N → ∞ avec wn � N−1/2 obtenue de manière heuristique. Nous utilisons certaines versions récentes des
résultats de Deuschel et Zeitouni (Ann. Probab. 23 (1995) 852–878) concernant la taille de la sous-suite croissante la plus longue d’une
suite i.i.d. de points du plan. Nous étudions également, dans un cas très particulier, un modèle légèrement différent où les neurones
déchargent quand leur potentiel atteint une valeur maximale vmax. Nous trouvons heuristiquement une expression explicite pour la
limite de champ moyen.
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1. Introduction and motivation

Our goal is to establish the existence and uniqueness of the heuristically derived mean-field limits of two closely related
toy models of neurons interacting through their dendrites.

1.1. Description of the particle systems

We have n neurons, each has a linear dendrite with length L > 0 that is endowed with a soma at one of its two extremities.
We have some i.i.d. Bernoulli random variables (ξij )i,j∈{1,...,n} with parameter pn ∈ (0,1), as well as some i.i.d. [0,L]-
valued random variables (Xij )i,j∈{1,...,n} with probability density H on [0,L]. If ξij = 1, then the neuron i influences the
neuron j , and the link is located, on the dendrite of the j th neuron, at distance Xij of its soma.

We have a minimum potential vmin ∈ R, an excitation parameter wn > 0, a regular drift function F : [vmin,∞) �→ R

such that F(vmin) ≥ 0, a propagation velocity ρ > 0 and a delay θ ≥ 0.
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We denote by V
i,n
t the electric potential of the ith neuron at time t ≥ 0. We assume that initially, the random variables

(V
i,n
0 )i=1,...,n are i.i.d. with law f0 ∈ P([vmin,∞)).
Between jumps (corresponding to spike or excitation events), the membrane potentials of all the neurons satisfy the

ODE (V
i,n
t )′ = F(V

i,n
t ). Note that all the membrane potentials remain above vmin thanks to the condition F(vmin) ≥ 0.

When a neuron spikes (say, the neuron i, at time τ ), its potential is set to vmin (i.e. V i,n
τ = vmin) and, for all j such that

ξij = 1, two fronts start, after some delay θ (i.e. at time τ + θ ), on the dendrite of the j th neuron, at distance Xij of the
soma. Both fronts move with constant velocity ρ, one going down to the soma (such a front is called positive front), the
other one going away from the soma (such a front is called negative front).

On the dendrite of each neuron, we thus have fronts moving with velocity ρ. When a negative front reaches the
extremity of the dendrite, it disappears. When a positive front meets a negative front, they both disappear. When finally a
positive front hits the soma (say, of the j th neuron at time σ ), the potential of j is increased by wn, i.e. V

j,n
σ = V

j,n
σ− +wn

and the positive front disappears. Such an occurrence is called an excitation event.
We assume that at time 0, there is no front on any dendrite. This is not very natural, but considerably simplifies the

study.
It remains to describe the spiking events, for which we propose two models.
Soft model. We have an increasing regular rate function λ : [vmin,∞) �→ R+. Each neuron (say the ith one) spikes,

independently of the others, during [t, t + dt], with probability λ(V
i,n
t )dt .

Hard model. There is a maximum electric potential vmax > vmin. In such a case, we naturally assume that f0 is sup-
ported in [vmin, vmax]. A neuron spikes each time its potential reaches vmax. This can happen for two reasons, either due
to the drift (because it continuously drives V

i,n
t to vmax at some time τ , i.e. V

i,n
τ− = vmax), or due to an excitation event

(we have V
i,n
τ− < vmax, a positive front hits the soma of the ith neuron at time τ and V i,n

τ = V
i,n
τ− + wn ≥ vmax).

Observe that the hard model can be seen as the soft model with the choice λ(v) = ∞1{v≥vmax}. The soft model is thus a
way to regularize the spiking events by randomization. If, as we have in mind, λ looks like λ(v) = (max{v − v0,0}/(v1 −
v0))

p for some v1 > v0 > vmin and some large value of p ≥ 1, a neuron will never spike when its potential is in [vmin, v0]
and, since λ(v) is very small for v < v1 and very large for v > v1, it will spike with high probability each time its potential
is close to v1 and only in such a situation.

1.2. Biological background

Although the above particle systems are toy models, they are strongly inspired by biology.
General organization. A neuron is a specialized cell type of the central nervous system. It is composed of sub-cellular

domains which serve different functions, see Kandel [23]. More precisely, the neuron is comprised of a dendrite, a soma
(otherwise known as the cell body) and an axon. See Figure 1 for a schematic description. The neurons are connected with
synapses which are the interface between the axons and the dendrites. On Figure 1, the axon of the neuron i is connected,
through synapses, to the dendrites of the neurons j and k.

The neurons transmit information using electrical impulses. When the difference of electrical potential across the
membrane of the soma of one neuron is high enough, a sequence of action potentials (also called spikes) is produced at
the beginning of the axon, at the axon hillock and the potential of the somatic membrane is reset to an equilibrium value.

Fig. 1. Schematic description of the network organization.
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This sequence of action potentials is then transmitted, without alteration (shape or amplitude), to the axon terminals where
the excitatory connections (e.g. synapses) with other (target) neurons are located. We ignore inhibitory synapses in this
work. It takes some time for the action potential to reach a synapse and to cross it. The action potential propagates in every
branch of the axon. When an action potential reaches a synapse, it triggers a local increase of the membrane potential of
the dendrite of the target neuron. This electrical activity then propagates along the dendrite in both ways, (see Figure 3 in
Gorski et al. [18] for a simulation of this behaviour) i.e. to the soma and to the other dendrite extremity, interacting with
the other electrical activity of the dendrite. The dendritic current reaching the soma increases its potential.

Generation of spikes. We need to introduce a little bit of biophysics, see [23]. Consider a small patch of cellular
membrane (somatic, dendritic or axonic) which marks the boundary between the extra-cellular space and the intracellular
one. This piece of membrane contains different ion channel types which govern the flow of different ion types through
them. These ion channels (partly) affect the flow of charges locally, and thus the membrane potential. The ion channels
rates of opening and closing depend on the membrane potential V of the small patch under consideration. Hence the
time evolution of V is complicated, one needs to introduce a 4-dimensional ODE system, called the Hodgkin–Huxley
equations [20], see also Koch [24], involving other quantities related to ion channels. If V is large enough and if there
are enough channels, a specific cascade of opening/closing of ion channels occurs and this produces a spike. In the axon,
only one sort of spike is possible. For the dendrite, the situation is more complicated and only some types of neurons have
dendrites that are able to produce spikes.

Propagation/annihilation of spikes. The above description is local in space and we considered that the patch of mem-
brane under consideration was isolated. To treat a full membrane, for example a dendrite, a nonlinear PDE is generally
used, see e.g. Stuart, Spruston and Haüser [35] or Koch [24], to describe the membrane potential V (t, x) at location
x at time t ≥ 0 (and some other quantities related to the ion channels), with some source terms at the positions of the
synapses. Fronts are particular localized solutions of the form V (t, x) = ψ(x − ρt), see [24]. For tubular geometries, a
spike induced in the middle of the membrane will produce two fronts propagating in opposite directions. In the axon, the
fronts are produced only at one extremity (the soma) hence yielding only one propagating front.

Two fronts propagating in opposite directions, in a given dendrite, will cancel out when they collide, because after the
initiation of a spike, some ion channels deactivate and switch into a refractory state for a small time. Some consequences
of this annihilation effect, yet to be confirmed experimentally, were analyzed in Gorski et al. [18].

Instead of solving a nonlinear PDE for the front propagation/annihilation, we consider an abstract model which cap-
tures the basic phenomena. This enables us to have some formulas for the number of fronts reaching the soma even when
annihilations are considered. Note that the same rationale was used for the axon where we only retained the propaga-
tion delay as meaningful. Our last approximation concerns the dynamics of an isolated neuron, at the soma, between
the spikes. We replace the 4-dimensional ODE system for V , e.g. the Hodgkin–Huxley equations, by a simpler scalar
piecewise deterministic Markov process where the jumps represent the spiking times and the membrane potential evolves
as V̇ = F(V ) between the spikes.

The toy model. We are now in position to explain our toy model. Each action potential of an afferent neuron produces,
after a constant delay θ , two fronts in all the dendrites that are connected to the extremities of its axon. In each dendrite,
these fronts propagate and interact (by annihilation), and the ones reaching the soma increase its membrane potential by
a given amount wn. When the somatic membrane potential is high enough, an action potential is created. Observe that in
nature, several action potentials reaching a single synapse are required to produce fronts.

Let us stress one more time that the model we consider is highly schematic. Actually, dendrites are not linear segments
with constant length, but have a dense branching structure; dendritic spikes are not the only carriers of information;
inhibition (that we completely neglect) plays an important role; the delay needed for the information to cross the axon
and the synapse is far from being constant; the spatial structure of interaction is much more complicated than mean-field,
etc. However, it seems this is one of the first attempts to understand the effect of active dendrites in a neural network.

1.3. Heuristic scales and relevant quantities

(a) Roughly, each neuron is influenced by N = npn others and we naturally consider the asymptotic N → ∞.
(b) Using a recent version by Calder, Esedoglu and Hero [6] of some results of Deuschel and Zeitouni [15] concerning

the length of the longest increasing subsequence in a cloud of i.i.d. points in [0,1]2, we will deduce the following result.
Consider a single linear dendrite with length L, as well as a Poisson point process (Ti,Xi)i≥1 on [0,∞) × [0,L], with
intensity measure Ng(t)dtH(x)dx, H being the repartition density defined in Section 1.1 and g being the spiking rate
of one typical neuron in the network. For each i ≥ 1, one positive and one negative front start from Xi at time Ti . Make
the fronts move with velocity ρ > 0, apply the annihilation rules described in Section 1.1 and call LN(t) the number of
excitation events occurring during [0, t], i.e. the number of fronts hitting the soma before t . Under a few assumptions on
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H and g, in probability,

lim
N→∞

LN(t)√
N

= 	t(g),

where 	t(g) is deterministic and more or less explicit, see Definition 4. Of course, 	t(g) also depends on H , but H is
fixed in the whole paper so we do not indicate explicitly this dependence.

(c) We want to consider a regime in which each neuron spikes around once per unit of time. This implies that on
each dendrite, there are around N fronts starting per unit of time. Due to point (b), even if we are clearly not in a strict
Poissonian case, it seems reasonable to think that there will be around

√
N excitation events per unit of time (for each

neuron). Consequently, each neuron will see its potential increased by wn

√
N per unit of time and we naturally consider

the asymptotic wn

√
N → w ∈ (0,∞). Smaller values of wn would make negligible the influence of the excitation events,

while higher values of wn would lead to explosion (infinite frequency of spikes).
One could be surprised by this normalization N−1/2 (and not N−1 for example) which is the right scaling for the

electric current from the dendrite to the soma to be non trivial as the number of synapses goes to infinity.

1.4. Goal of the paper

Of course, the networks presented in Section 1.1 are interacting particle systems. However, the influence of a given
neuron (say, the one labeled 2) on another one (say, the one labeled 1) being small (because the neuron 2 produces only
a proportion 1/N 
 1 of the fronts influencing the neuron 1), we expect that some asymptotic independence should hold
true. Such a phenomenon is usually called propagation of chaos. Our aim is to prove that, assuming propagation of chaos,
as well as some conditions on the parameters of the models, there is a unique possible reasonable limit process, for each
model, in the regime N = npn → ∞ and wn

√
N → w ∈ (0,∞).

The soft model seems both easier and more realistic from a modeling point of view. However, we keep the hard model
because we are able to provide, in a very special case, a rather explicit limit, which is moreover in some sense periodic.

1.5. Informal description of the main result for the soft model

Consider one given neuron in the system (say, the one labeled 1), call V
1,n
t its potential at time t and denote by J

1,n
t

(resp. K
1,n
t ) its number of spike events (resp. excitation events) before time t . We hope that, by a law of large numbers,

for n very large, κn
t := wnK

1,n
t � wN−1/2K

1,n
t which represents the increase of electric potential before time t due to

excitation events, should resemble some deterministic quantity κt . The map t �→ κt should be non-decreasing, continuous
(because wn → 0, even if this is of course not a rigorous argument) and starting from 0. We thus should have V

1,n
t �

V
1,n
0 + ∫ t

0 F(V
1,n
s )ds + κt + ∑

s∈[0,t](vmin − V
1,n
s− )1

�J
1,n
s �=0, with furthermore J

1,n
t jumping at rate λ(V

1,n
t ). Moreover,

κt should also be obtained as the approximate value of wnK
1,n
t , where K

1,n
t is the number of excitation events before

time t , resulting from the influence of N = npn (informally) almost independent neurons, all behaving like the one under
study.

We thus formulate the following nonlinear problem. Fix an initial distribution f0 ∈ P([vmin,∞)) for V0. Can one
find a deterministic non-decreasing continuous function (κt )t≥0 starting from 0 such that, if considering the process
Vt = V0 + ∫ t

0 F(Vs)ds + κt + ∑
s∈[0,t](vmin − Vs−)1�Js �=0, with furthermore the counting process Jt jumping at rate

λ(Vt ) (all this can be properly written using Poisson measures), if denoting by (Tk)k≥1 its jumping times, if considering
an i.i.d. family (Xi)i=1,...,N with density H and an i.i.d. family ((T i

k )k≥1)i=1,...,N of copies of (Tk)k≥1, if making start,
on a single linear dendrite with length L, one positive front and one negative front from Xi (for all i = 1, . . . ,N ) at
each instant T i

k + θ (for all k ≥ 1), if making the fronts move with velocity ρ, if applying the annihilation procedure
described in Section 1.1 and, if denoting by KN

t the resulting number of excitation events occurring during [0, t], one has
limN→∞ wN−1/2KN

t = κt for all t ≥ 0?
Under a few conditions on f0, F , λ and H , we prove the existence of a unique solution (κt )t≥0 to the above

problem. Furthermore, the process (Vt )t≥0 solves a nonlinear Poisson-driven stochastic differential equation and κt =
	t((E[λ(Vs)])s≥0). Our conditions are very general when the delay θ is positive, and rather restrictive, at least from a
mathematical point of view, when θ = 0.

1.6. Informal description of the main result for the hard model

Similarly to the soft model, we formulate the following problem. Fix an initial distribution f0 ∈ P([vmin, vmax]) for V0.
Can one find a deterministic non-decreasing continuous function (κt )t≥0 starting from 0 such that, if considering the
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process Vt = V0 + ∫ t

0 F(Vs)ds + κt + (vmin − vmax)Jt , where Jt = ∑
s≤t 1{Vs−=vmax}, if denoting by (Tk)k≥1 its instants

of spike, if considering an i.i.d. family (Xi)i=1,...,N with density H and an i.i.d. family ((T i
k )k≥1)i=1,...,N of copies of

(Tk)k≥1, if making start, on a single linear dendrite with length L, one positive front and one negative front from Xi (for all
i = 1, . . . ,N ) at each instant T i

k + θ (for all k ≥ 1), if making the fronts move with velocity ρ, if applying the annihilation
procedure described in Section 1.1 and, if denoting by KN

t the resulting number of excitation events occurring during
[0, t], i.e. the number of fronts hitting the soma before t , one has limN→∞ wN−1/2KN

t = κt for all t ≥ 0?
As already mentioned, we restrict our study of the hard model to a special case for which we end up with an explicit

formula. Namely, we assume that the delay θ = 0, that the continuous repartition density H attains its maximum at 0,
that the drift F is constant and positive and that the initial distribution f0 has a regular density (on [vmin, vmax] seen as a
torus). We prove that, there is a unique C1-function (κt )t≥0 solving the above problem. Furthermore, (κt )t≥0 is explicit,
see Theorem 11.

The function (κ ′
t )t≥0 is periodic. Observe that κ ′

t is proportional to the number of excitation events (concerning a given
neuron) during [t, t + dt]. This suggests a synchronization phenomenon, or rather some stability of possible synchroniza-
tion, which is rather natural, since two neurons having initially the same potential spike simultaneously forever in this
model. Observe that such a periodic behavior cannot precisely hold true for the particle system (before taking the limit
N → ∞) because the dendrites are assumed to be empty at time 0, so that some time is needed before some (periodic)
equilibrium is reached.

1.7. Bibliographical comments

Kac [22] introduced the notion of propagation of chaos as a step toward the mathematical derivation of the Boltzmann
equation. Some important steps of the general theory were made by McKean [29] and Sznitman [36], see also Méléard
[30]. The main idea is to approximate the time evolution of one particle, interacting with a large number of other particles,
by the solution to a nonlinear equation. We mean nonlinear in the sense of McKean, i.e. that the law of the process is
involved in its dynamics. Here, our limit process (Vt )t≥0 indeed solves a nonlinear stochastic differential equation, at
least concerning the soft model, see Theorem 8. This nonlinear SDE is very original: the nonlinearity is given by the
functional 	(g(Vs)s≥0) quickly described in Section 1.3, arising as a scaling limit of the longest subsequence in an i.i.d.
cloud of points of which the distribution depends on a function g(Vs)s≥0 , which depends itself on the law of (Vs)s≥0.

The problem of computing the length LN of the longest increasing sequence in a random permutation of {1, . . . ,N}
was introduced by Ulam [37]. Hammersley [19] understood that a clever way to attack the problem is to note that LN

is also the length of the longest increasing sequence of a cloud composed of N i.i.d. points uniformly distributed in the
square [0,1]2, for the usual partial order in R

2. He also proved the existence of a constant c such that LN ∼ c
√

N as
N → ∞. Versik and Kerov [38] and Logan and Shepp [25] showed that c = 2. Simpler proofs and/or stronger results
were then found by Bollobás and Winkler [3], Aldous and Diaconis [1], Cator and Groeneboom [8], etc. Let us also
mention the recent work of Basdevant, Gerin, Gouéré and Singh [2].

As already mentioned in Section 1.3, we use the results of Calder, Esedoglu and Hero [6], that generalize those of
Deuschel and Zeitouni [15] and that concern the limit behavior of the longest ordered increasing sequence of a cloud
composed of N i.i.d. points with general smooth distribution g in the square [0,1]2 (or in a compact domain). These
results strongly rely on the fact that since g is smooth, it is almost constant on small squares. Hence, on any small square,
we can more or less apply the results of [25,38]. Of course, this is technically involved, but the main difficulty in all
this work was to understand the constant 2 (note that the value of the corresponding constant is still unknown in higher
dimension).

Of course, a little work is needed: we cannot apply directly the results of [6], because we are not in presence of an
i.i.d. cloud. However, as we will see, the situation is rather favorable.

The mean-field theory in networks of spiking neurons has been studied in the computational neuroscience commu-
nity, see e.g. Renart, Brunel and Wang [33], Ostojic, Brunel and Hakim [31] and the references therein. A mathematical
approach of mean-field effects in neuronal activity has also been developed. For instance, in Pakdaman, Thieullen and
Wainrib [32] and Riedler, Thieullen and Wainrib [34], a class of stochastic hybrid systems is rigorously proved to con-
verge to some fluid limit equations. In [4], Bossy, Faugeras, and Talay prove similar results and the propagation of chaos
property for networks of Hodgkin–Huxley type neurons with an additive white noise perturbation. The mean-field lim-
its of networks of spiking neurons modeled by Hawkes processes has been intensively studied recently by Chevallier,
Cáceres, Doumic and Reynaud-Bouret [10], Chevallier [9], Chevallier, Duarte, Löcherbach and Ost [11] and Ditlevsen
and Löcherbach [16]. Besides, in [26–28], Luçon and Stannat obtain asymptotic results for networks of interacting neu-
rons in random environment.

Finally, we conclude this short bibliography of mathematical mean-field models in neuroscience by some papers closer
to our setting: models of networks of spiking neurons with soft (see De Masi et al. [12] and Fournier and Löcherbach [17])
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or hard (see Cáceres, Carrillo and Perthame [5], Carrillo, Perthame, Salort and Smets [7], Delarue, Inglis, Rubenthaler
and Tanré [13,14] and Inglis and Talay [21]) bounds on the membrane potential have also been studied. In particular, in
[21] the authors introduced a model of propagation of membrane potentials along the dendrites but it is very different
from ours. In particular, it does not model the annihilation of fronts along the dendrites.

1.8. Perspectives

One important question remains open: does propagation of chaos hold true? This seems very difficult to prove rigorously.
Indeed, the dynamics of the membrane potential at the soma depends also on the state of its dendrite and on their laws.
Thus, the state space of the dendrite is not a classical Rd . Informally, the knowledge of the state of the dendrite is equiv-
alent to knowing the history of the membrane potential during time interval [t − L/ρ, t]. Such an intricate dependence
is present in many models for which one is able to prove propagation of chaos. However, in the present case, one would
have to extend the results of Deuschel and Zeitouni [15] or Calder, Esedoglu and Hero [6] to non-independent (although
approximately independent) clouds of random points, in order to understand how many excitation events occur for each
neuron, resulting from non-independent stimuli creating fronts on its dendrite. This seems extremely delicate, and we
found no notion of approximate independence sufficiently strong so that we can extend the results of [6,15] but weak
enough so that we can apply it to our particle system.

1.9. Plan of the paper

In the next section, we precisely state our main results. In Section 3, we relate deterministically the number of fronts
hitting a given soma to the length of the longest increasing (for some specific order) subsequence of the points (time and
space) from which these fronts start. In Section 4, which is very technical, we adapt to our context the result of Calder,
Esedoglu and Hero [6]. The proofs of our main results concerning the hard and soft models are handled in Sections 5
and 6. We informally discuss the existence and uniqueness/non-uniqueness of stationary solutions for the limit soft model
in Section 7. Finally, we present simulations, in Section 8, showing that the particle systems described in Section 1.1
indeed seem to be well-approached, when n is large, by the corresponding limiting processes.

2. Main result

Here we expose our notation, assumptions and results in details. The length L > 0, the speed ρ > 0 and the minimum
potential vmin are fixed.

2.1. The functional A

We first study the number of fronts hitting the soma of a linear dendrite. We recall that a nonnegative measure ν on
[0,∞) × [0,L] is Radon if ν(B) < ∞ for all compact subset B of [0,∞) × [0,L].

Definition 1. We introduce the partial order � on [0,∞) × [0,L] defined by (s, x) � (s′, x′) if |x − x′| ≤ ρ(s′ − s). We
say that (s, x) ≺ (s′, x′) if (s, x) � (s′, x′) and (s, x) �= (s′, x′).

For a Radon point measure ν = ∑
i∈I δMi

, the set Sν = {Mi : i ∈ I } consisting of distinct points of [0,∞)×[0,L], we
define A(ν) ∈ N∪{∞} as the length of the longest increasing subsequence of Sν . In other words, A(ν) = sup{k ≥ 0: there
exist i1, . . . , ik ∈ I such that Mi1 ≺ · · · ≺ Mik }. For t ≥ 0, we introduce Dt = {(s, x) ∈ [0,∞) × [0,L] : (s, x) � (t,0)}
and set At(ν) = A(ν|Dt ).

Note that (s, x) � (s′, x′) implies that s ≤ s′. The following fact, crucial to our study, is closely linked with Hammers-
ley’s lines, see e.g. Cator and Groeneboom [8].

Proposition 2. Consider a Radon point measure ν = ∑
i∈I δMi

, the set Sν = {Mi = (ti , xi) : i ∈ I } consisting of distinct
points of [0,∞) × [0,L]. Consider a linear dendrite, represented by the segment [0,L], with its soma located at 0. For
each i ∈ I , make start two fronts from xi at time ti , one positive front going toward the soma and one negative front going
away from the soma. Assume that all the fronts move with velocity ρ. When two fronts meet, they disappear. When a front
reaches one of the extremities of the dendrite, it disappears.

We assume that

for all i, j ∈ I with i �= j , |xj − xi | �= ρ|tj − ti |, (1)
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which implies that no front may start precisely from some (space/time) position where there is already a front. Hence we
do not need to prescribe what to do in such a situation.

The number of fronts hitting the soma is given by A(ν) and the number of fronts hitting the soma before time t is given
by At(ν).

This proposition is proved in Section 3. The following observation is obvious by definition (although not completely
obvious from the point of view of fronts).

Remark 3. Consider two Radon point measures ν and ν′ on [0,∞) × [0,L] such that ν ≤ ν′ (i.e. Sν ⊂ Sν′ ). Then
A(ν) ≤ A(ν′) and, for all t ≥ 0, At(ν) ≤ At(ν

′).

2.2. The functional 	

The role of 	 was explained roughly in Section 1.3, see Section 4 for more details. See Deuschel and Zeitouni [15] for
quite similar considerations.

Definition 4. Fix a continuous function H : [0,L] �→ R+. For g : [0,∞) �→R+ measurable and t ≥ 0, we set

	t(g) = sup
β∈Bt

It (g,β) where It (g,β) =
√

2

ρ

∫ t

0

√
H

(
β(s)

)
g(s)

[
ρ2 − (

β ′(s)
)2]ds,

Bt being the set of C1-functions β : [0, t] �→ [0,L] such that β(t) = 0 and sup[0,t] |β ′(s)| < ρ.

It is important, in the above definition, to require H to be continuous. Modifying the value of H at one single point
can change the value of 	t(g). The following observations are immediate.

Remark 5. (i) Consider β ∈ Bt . The condition that sup[0,t] |β ′(s)| < ρ implies that the map s �→ (s, β(s)) is increasing
for the order ≺. The conditions that β is [0,L]-valued and that β(t) = 0 imply that for all s ∈ [0, t], (s, β(s)) ∈ Dt .

(ii) If H(0) = max[0,L] H , then 	t(g) = √
2ρH(0)

∫ t

0

√
g(s)ds for all t ≥ 0.

Concerning (ii), it suffices to note that one maximizes It (g,β) with the choice β ≡ 0.

2.3. The soft model

We will impose some of the following conditions.
(S1): There are p ≥ 1 and C > 0 such that the initial distribution f0 ∈ P([vmin,∞)) satisfies

∫ ∞
vmin

(v −vmin)
pf0(dv) <

∞ and such that the continuous rate function λ : [vmin,∞) �→ R+ satisfies λ(v) ≤ C(1 + (v − vmin))
p for all v ≥ vmin,

C > 0 being a constant. Also, λ vanishes on a neighborhood of vmin, i.e. α = inf{v ≥ vmin : λ(v) > 0} ∈ (vmin,∞). The
drift F : [vmin,∞) �→ R is locally Lipschitz continuous, satisfies F(vmin) ≥ 0 and F(v) ≤ C(1 + (v − vmin)) for all
v ≥ vmin. The repartition density H of the connections is continuous on [0,L].

(S2): The initial distribution f0 is compactly supported, f0((α,∞)) > 0, F(α) ≥ 0 and λ is locally Lipschitz continu-
ous on [vmin,∞) and positive and non-decreasing on (α,∞).

Proposition 6. Assume (S1). Consider r : [0,∞) �→ R+ continuous, non-decreasing and such that r0 = 0. Let V0 be
f0-distributed and let π(dt,du) be a Poisson measure on [0,∞) × [0,∞) with intensity dt du, independent of V0. Let
Ft = σ({V0,π(A) : A ∈ B([0, t]×[0,∞))}). There is a pathwise unique càdlàg (Ft )t≥0-adapted process (V r

t )t≥0 solving

V r
t = V0 +

∫ t

0
F

(
V r

s

)
ds + rt +

∫ t

0

∫ ∞

0

(
vmin − V r

s−
)
1{u≤λ(V r

s−)}π(ds,du). (2)

It takes values in [vmin,∞) and satisfies E[sup[0,T ](V r
t − vmin)

p] < ∞ for all T > 0. We set J r
t = ∑

s≤t 1{�V r
s �=0} =∫ t

0

∫ ∞
0 1{u≤λ(V r

s−)}π(ds,du).

The process (V r
t )t≥0 represents the time evolution of the potential of one neuron, assuming that the excitation resulting

from the interaction with all the other neurons during [0, t] produces an increase of potential equal to rt , and J r
t stands for

its number of spikes during [0, t]. Indeed, between its spike instants, the electric potential V r
t evolves as V ′ = F(V )+ r ′

t .
The Poisson integral is precisely designed so that V r is reset to vmin (since V r

s− + (vmin − V r
s−) = vmin) at rate λ(V r

s−).
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Proposition 7. Assume (S1) and fix θ ≥ 0. Fix a non-decreasing continuous function r : [0,∞) �→ R+ with r0 = 0.
Consider an i.i.d. family ((J

r,i
t )t≥0)i≥1 of copies of (J r

t )t≥0. For each i ≥ 1, denote by (T i
k )k≥1 the jump instants of

(J
r,i
t )t≥0, written in the chronological order (i.e. T i

k < T i
k+1). Consider an i.i.d. family (Xi)i≥1 of random variables with

density H , independent of the family ((J
r,i
t )t≥0)i≥1. For N ≥ 1, let νr

N = ∑N
i=1

∑
k≥1 δ(T i

k +θ,Xi)
. Then for any t ≥ 0,

lim
N→∞N−1/2At

(
νr
N

) = 	t

(
hθ

r

)
a.s.,

where hr(t) = E[λ(V r
t )] and hθ

r (t) = hr(t − θ)1{t≥θ}.

Let us explain this result. If we have N independent neurons of which the electric potentials evolve as (V r
t )t≥0, of

which (J r
t )t≥0 counts the number of spikes, if all these spikes make start some fronts (after a delay θ) on the dendrite of

another neuron and that these fronts evolve and annihilate as described in Proposition 2, then the number of fronts hitting
the soma of the neuron under consideration between 0 and t equals At(ν

r
N). If each of these excitation events makes

increase the potential of the neuron by wN = wN−1/2 (with w > 0), then, at the limit, the electric potential of the neuron
will be increased, due to excitation, by w	t(h

θ
r ) during [0, t].

Theorem 8. Assume (S1) and fix w > 0 and θ ≥ 0.
(i) A non-decreasing continuous κ : [0,∞) �→ R+ such that κ0 = 0 solves w	t(h

θ
κ) = κt for all t ≥ 0 if and only if

κ = w	((E[λ(Vs−θ )]1{s≥θ})s≥0), for some [vmin,∞)-valued càdlàg (Ft )t≥0-adapted solution (Vt )t≥0 to the nonlinear
SDE (here V0, π and (Ft )t≥0 are as in Proposition 6)

Vt = V0 +
∫ t

0
F(Vs)ds + w	t

((
E

[
λ(Vs−θ )

]
1{s≥θ}

)
s≥0

) +
∫ t

0

∫ ∞

0
(vmin − Vs−)1{u≤λ(Vs−)}π(ds,du) (3)

satisfying E[sup[0,T ](Vt − vmin)
p] < ∞ for all T > 0.

(ii) Assume either that θ > 0 or (S2). Then there exists a unique [vmin,∞)-valued càdlàg (Ft )t≥0-adapted solution
(Vt )t≥0 to (3) such that for all T > 0, E[sup[0,T ](Vt − vmin)

p] < ∞.

Observe that if the repartition density H attains its maximum at 0, then (3) has a simpler form, since w	t((E[λ(Vs−θ )]×
1{s≥θ})s≥0) = ∫ (t−θ)∨0

0

√
γE[λ(Vs)]ds with γ = 2ρH(0)w2, see Remark 5. In this case (3) writes:

Vt = V0 +
∫ t

0
F(Vs)ds +

∫ (t−θ)∨0

0

√
γE

[
λ(Vs)

]
ds +

∫ t

0

∫ ∞

0
(vmin − Vs−)1{u≤λ(Vs−)}π(ds,du),

where the second term involves the non locally Lipschitz square root.
Consider the n-particle system described in Section 1.1 (soft model) and denote by (V

1,n
t )t≥0 the time-evolution of

the membrane potential of the first neuron and by (J
1,n
t )t≥0 the process counting its spikes. Theorem 8 tells us that, if

propagation of chaos holds true, under our assumptions, (V
1,n
t )t≥0 should tend in law (in the regime N = npn → ∞ and

wn = wN−1/2) to the unique solution (Vt )t≥0 of (3). See Section 1.5 for more explanations.
Assumption (S1) seems rather realistic. Our assumption that λ vanishes in a neighborhood of vmin actually implies

that a neuron cannot spike again immediately after one spike. Indeed, after being set to vmin, we observe a refractory
period corresponding to the time the potential needs to exceed α. In addition, it allows us to consider some time intervals
[ak, ak+1], in our proof of Proposition 7, such that the restriction of νr

N to [ak, ak+1] × [0,L] is more or less an i.i.d.
cloud of random points. This is crucial in order to use the results of Calder, Esedoglu and Hero [6], who deal with i.i.d.
clouds of random points. More precisely, the proof of Proposition 7 (as well as that of Proposition 10 below) relies on
Lemma 12, in which we show how to apply [6] (or rather its immediate consequence Lemma 13) to a possibly correlated
concatenation of i.i.d. clouds of random points.

The growth condition on F is one-sided and sufficiently general to our opinion, however, it is only here to prevent us
from explosion (we mean an infinite number of jumps during a finite time interval) and it should be possible to replace
it by weaker condition like F(v) ≤ (v − vmin)λ(v) + C(1 + (v − vmin)), at the price of more complicated proofs. So we
believe that when θ > 0, our assumptions are rather reasonable.

On the contrary, when θ = 0, our conditions are restrictive, at least from a mathematical point of view. This comes
from two problems when studying the nonlinear SDE (3). First, the term 	t((E[λ(Vs)])s≥0) involves something like∫ t

0

√
E[λ(Vs)]ds, and the square root is rather unpleasant. To solve this problem, we use that f0((α,∞)) > 0 and F(α) ≥

0 imply that s �→ E[λ(Vs)] is a priori bounded from below on each compact time interval. Since α is thought to be
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rather close to vmin, we believe these two conditions are not too restrictive in practice. Second, the coefficients of (3) are
only locally Lipschitz continuous, which is always a problem for nonlinear SDEs. Here we roughly solve the problem
by assuming that f0 is compactly supported, which propagates with time. Again, we believe this is not too restrictive
in practice, since F(v) should rather tend to −∞ as v → ∞ and in such a case, it should not be difficult to show that
any invariant distribution for (3) has a compact support. However, one may use the ideas of [17] to remove this compact
support assumption, here again, at the price of a much more complicated proof.

2.4. The hard model

This case is generally difficult, but under the following quite restrictive assumptions and when θ = 0, it has the advantage
to be explicitly solvable.

(H1): The initial distribution f0 ∈ P([vmin, vmax]) has a density, still denoted by f0, continuous on [vmin, vmax]. The
repartition density H is continuous on [0,L]. There is a constant I > 0 such that the drift F(v) = I for all v ∈ [vmin, vmax].

(H2): The density f0 satisfies f0(vmin) = f0(vmax), the repartition density H attains its maximum at x = 0 and, setting

σ = ρH(0)w2 the function G0 = σf0 +
√

σ 2f 2
0 + 2σIf0 is Lipschitz continuous on [vmin, vmax].

Note that if the density f0 is Lipschitz continuous and bounded from below by a positive constant, then G0 is also
Lipschitz continuous.

Proposition 9. Assume only that f0 ∈ P([vmin, vmax)) and consider a f0-distributed random variable V0. For a contin-
uous non-decreasing function r : [0,∞) �→ R+ with r0 = 0 there is a unique càdlàg process (V r

t , J r
t )t≥0, with values in

[vmin, vmax) ×N solving

V r
t = V0 + I t + rt + (vmin − vmax)J

r
t and J r

t =
∑
s≤t

1{V r
s−=vmax}.

Again, (V r
t )t≥0 represents the time-evolution of the potential of one neuron, assuming that the excitation resulting from

the interaction with all the other neurons during [0, t] produces, in the asymptotic where there are infinitely many neurons,
an increase of potential equal to rt . And of course, J r

t stands for the number of times the neuron under consideration spikes
during [0, t].

Proposition 10. Assume (H1) and fix a non-decreasing C1-function r : [0,∞) �→ R+ with r0 = 0. Consider an i.i.d.
family ((J

r,i
t )t≥0)i≥1 of copies of (J r

t )t≥0 as introduced in Proposition 9. For each i ≥ 1, denote by (T i
k )k≥1 the jump

instants of (J
r,i
t )t≥0, written in the chronological order. Consider an i.i.d. family (Xi)i≥1 of random variables with density

H , independent of the family ((J
r,i
t )t≥0)i≥1. For N ≥ 1, let νr

N = ∑N
i=1

∑
k≥1 δ(T i

k ,Xi)
. For any t ≥ 0,

lim
N→∞N−1/2At

(
νr
N

) = 	t(gr) a.s.,

with 	t introduced in Definition 4 and with gr defined on [0,∞) by

gr(t) =
∑
k≥0

f0
(
k(vmax − vmin) + vmax − I t − rt

)(
I + r ′

t

)
1{t∈[ak,ak+1)},

with ak uniquely defined by Iak + rak
= k(vmax − vmin) (observe that 0 = a0 < a1 < a2 < · · · ).

Assume that we have N independent neurons, of which the electric potentials evolve as (V r
t )t≥0 and that spike as

(J r
t )t≥0. If all these spikes make start, without delay, some fronts on the dendrite of another neuron and that these

fronts evolve and annihilate as described in Proposition 2, then the number of fronts hitting the soma (of the neuron
under consideration) equals At(ν

r
N ). If each of these excitation events makes increase the potential of the neuron by

wN = wN−1/2 (with w > 0), then, at the limit, the electric potential of the neuron will be increased, due to excitation, by
w	t(gr) during [0, t].

Theorem 11. Assume (H1)–(H2) and let w > 0. There exists a unique non-decreasing C1-function κ : [0,∞) �→ R+
such that κ0 = 0 and w	t(gκ) = κt for all t ≥ 0. Furthermore,

κt =
∑
k≥0

(
k(vmax − vmin) + vmax − I t − ϕ−1

0 (t − ka)
)
1{t∈[ka,(k+1)a)},
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where, with G0 was defined in (H2), we have set ϕ0(x) = ∫ vmax
x

dv/[G0(v)+I ] on [vmin, vmax] and a = ϕ0(vmin). Observe

that ϕ−1
0 is defined on [0, a], and that κ ′ is periodic with period a.

Consider the n-particle system described in Section 1.1 (hard model), under the conditions (H1)–(H2) and with θ = 0.
Denote by (V

1,n
t )t≥0 the time-evolution of the electric potential of the first neuron and by (J

1,n
t )t≥0 the process count-

ing its spikes. Theorem 11 tells us that, if propagation of chaos holds true, (V
1,n
t , J

1,n
t )t≥0 should tend in law (in the

regime N = npn → ∞ and wn = wN−1/2) to (V κ
t , J κ

t )t≥0 as defined in Proposition 9 and with the above explicit κ . See
Section 1.6 for a discussion, in particular concerning the noticeable fact that κ ′ is periodic.

The assumptions that θ = 0, that F(v) = I and that H(0) = max[0,L] H are crucial, at least to get an explicit formula.
It might be possible to study the case where F(v) = I − Av for some A > 0 (maybe with the condition I − Avmax > 0),
but it does not seem so friendly. On the contrary, we assumed for convenience that f0(vmin) = f0(vmax), which guarantees
that κ is of class C1. This assumption seems rather reasonable because the potentials directly jump from vmax to vmin so
are in some sense valued in the torus [vmin, vmax). However, it may be possible to relax it.

3. Annihilating fronts and longest subsequences

The goal of this section is to prove Proposition 2. We first introduce a few notation. For M = (r, y) ∈ [0,∞) × [0,L], we
denote by Ms = r its time coordinate and by Mx = y its space coordinate. We recall that M � N if |Mx − Nx | ≤ ρ(Ns −
Ms), which means that N belongs to the cone with apex M delimited by the half-lines {(r,Mx + ρ(r − Ms)) : r ≥ Ms}
and {(r,Mx − ρ(r − Ms)) : r ≥ Ms}; and that M ≺ N if M � N and M �= N . We say that M ⊥ N if M and N are not
comparable, i.e. if neither M � N nor N � M . Observe that M ⊥ N if and only if |Mx − Nx | > ρ|Ms − Ns |, whence in
particular Mx �= Nx and |Ms − Ns | ≤ L/ρ.

For M ∈ [0,∞) × [0,L], we introduce the four sets, see Figure 2,

M↓ = {
Q ∈ [0,∞) × [0,L] : Q ≺ M

}
, M↑ = {

Q ∈ [0,∞) × [0,L] : M ≺ Q
}
,

M+ = {
Q ∈ [0,∞) × [0,L] : Q ⊥ M,Qx > Mx

}
, M− = {

Q ∈ [0,∞) × [0,L] : Q ⊥ M,Qx < Mx

}
.

Proof of Proposition 2. Let ν = ∑
i∈I δMi

be Radon, the set Sν = {Mi = (ti , xi) : i ∈ I } consisting of distinct points of
[0,∞) × [0,L]. We assume that ν �= 0 (because otherwise the result is obvious) and (1). We recall that A(ν) ∈ N ∪ {∞}
and At(ν) ∈ N were introduced in Definition 1. We call B(ν) ∈ N ∪ {∞} the total number of fronts hitting the soma and
Bt(ν) ∈ N the number of fronts hitting the soma before t .

If two fronts start from M (i.e. start from Mx ∈ [0,L] at time Ms ≥ 0), the positive one is, if not previously annihilated,
at position Mx − ρ(r − Ms) at time r ∈ [Ms,Ms + Mx/ρ) and hits the soma at time Ms + Mx/ρ; the negative one is,
if not previously annihilated, at position Mx + ρ(r − Ms) at time r ∈ [Ms,Ms + (L − Mx)/ρ) and disappears at time
Ms + (L − Mx)/ρ.

We have the two following rules: for two distinct points M,N ∈ Sν ,
(a) if M ≺ N , i.e. M ∈ N↓ or, equivalently, N ∈ M↑, the fronts starting from M cannot meet those starting from N .

Indeed, M ≺ N and (1) imply that |Mx − Nx | < ρ(Ns − Ms) and a little study shows that for all r ≥ Ns , {Mx − ρ(r −
Ms),Mx + ρ(r − Ms)} ∩ {Nx − ρ(r − Ns),Nx + ρ(r − Ns)} =∅;

(b) if M ⊥ N and Mx < Nx (i.e. if M ∈ N− or, equivalently, N ∈ M+) the positive front starting from N meets the
negative front starting from M if none of these two fronts have been previously annihilated. More precisely, they meet at
[Nx + Mx + ρ(Ns − Ms)]/2 ∈ [0,L] at time (Nx − Mx + ρ(Ns + Ms))/(2ρ), which is greater than Ms ∨ Ns .

Step 1. Here we prove that A(ν) = B(ν).

Fig. 2. We have drawn the four sets M↓, M↑ , M+ and M− . The two oblique segments have slopes ρ and −ρ.
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Fig. 3. All the (broken) lines have the same slope ρ (or −ρ). The domain in gray is Dt . The positive fronts are those going down, the negative fronts
are those going up. Here we have G1 = {M1,M6,M12}, G2 = {M2,M9}, G3 = {M3,M7,M8}, G4 = {M5,M10,M13} and G5 = {M4,M11}. And
P1 = M6, P2 = M1 and P3 = M12.

Step 1.1. We introduce G1, the set of all minimal (for ≺) elements of Sν . See Figure 3. This set is non empty because
ν �= 0. It is also bounded (and thus finite since #(G1) = ν(G1) and since ν is Radon): fix M ∈ G1 and observe that
G1 ⊂ {M} ∪ M+ ∪ M− ⊂ [0,Ms + L/ρ] × [0,L]. We thus may write G1 = {P 1, . . . ,P k}, ordered in such a way that
P 1

x < P 2
x < · · · < P k

x .
We now show that all the fronts starting in G1 annihilate, except the positive one starting from P 1 (it reaches the soma

at time P 1
s + P 1

x /ρ) and the negative one starting from P k (it reaches the other extremity of the dendrite). See Figure 3.
• We first verify by contradiction that the positive front starting from P 1 hits the soma. If this is not the case, then, due

to the above rules (a)–(b), it has been annihilated by some front starting from some Q ∈ Sν ∩ P 1−. This is not possible,
because Sν ∩ P 1− =∅.

Indeed, assume that Sν ∩ P 1− �=∅ and consider a minimal (for ≺) element Q of Sν ∩ P 1−. Then Q is minimal in Sν

because else, we could find M ∈ Sν ∩ Q↓, whence M ∈ Sν ∩ Q↓ ∩ (P 1−)c (since Q is minimal in Sν ∩ P 1−) whence
M ≺ P 1 (because M ≺ Q, Q ∈ P 1− and M /∈ P 1− implies that M ≺ P 1), which is not possible because P 1 is minimal.
So Q is minimal in Sν , i.e. Q ∈ G1, and we furthermore have Qx < P 1

x . This contradicts the definition of P 1.
• Similarly, one verifies that the negative front starting from P k hits the other extremity (x = L) of the dendrite.
• We finally fix i ∈ {1, . . . , k − 1} and show by contradiction that the negative front starting from P i does meet the

positive front starting from P i+1. Assume for example that the negative front starting at P i is annihilated before it meets
the positive front starting from P i+1. Then there is a point Q ∈ Sν ∩ P i+ ∩ (P i+1− ∪ P i+1↓). Indeed, Q has to be in
P i+ so that the positive front starting from Q kills the negative front starting from P i , and Q has to be in P i+1− ∪P i+1↓
so that the killing occurs before the negative front starting from P i meets the positive front starting from P i+1. But
Sν ∩ P i+1↓ =∅, since P i+1 is minimal in Sν . Hence Q ∈ Sν ∩ P i+ ∩ P i+1−, so that Sν ∩ P i+ ∩ P i+1− is not empty.

We thus may consider a minimal (for ≺) element R ∈ Sν ∩ P i+ ∩ P i+1−. But then R is minimal in Sν because else,
we could find M ∈ Sν ∩ R↓ whence M ∈ Sν ∩ R↓ ∩ (P i+ ∩ P i+1−)c (since R is minimal in Sν ∩ P i+ ∩ P i+1−) whence
M ≺ P i or M ≺ P i+1 (because M ≺ R, R ∈ P i+ ∩ P i+1− and M /∈ P i+ ∩ P i+1− implies that M ≺ P i or M ≺ P i+1),
which is not possible because P i and P i+1 are minimal. At the end, we conclude that R is minimal in Sν , i.e. R ∈ G1,
with furthermore P i

x < Rx < P i+1
x , which contradicts the definition of P i and P i+1.

Step 1.2. If Sν \ G1 = ∅, we go directly to the concluding step. Otherwise, we introduce the (finite) set G2 of all the
minimal elements of S \ G1. The fronts starting from a point in G2 cannot be annihilated by those starting from a point
in G1 (because as seen in Step 1.1, all the fronts in G1 do annihilate together, except one that does hit the soma and one
that does hit the other extremity: the fronts starting in G1 do not interact with those starting in Sν \ G1). And one can
show, exactly as in Step 1.1, that all the fronts starting in G2 annihilate, except one positive front that hits the soma and
one negative front that hits the other extremity.

Step 1.3. If Sν \ (G1 ∪ G2) = ∅, we go directly to the concluding step. Otherwise, we introduce the (finite) set G3 of
all the minimal elements of S \ (G1 ∪ G2). As previously, the fronts starting from a point in G3 cannot be annihilated
by those starting from a point in G1 ∪ G2. And one can show, exactly as in Step 1.1, that all the fronts starting in G3
annihilate, except one positive front that hits the soma and one negative front that hits the other extremity.

Step 1.4. If Sν \ (G1 ∪ G2 ∪ G3) =∅, etc.
Concluding step. If the procedure stops after a finite number of steps, then there exists n ∈ N∗ such that Sν = ⋃n

k=1 Gk ,
where G1 is the set of all minimal elements of Sν and, for all k = 2, . . . , n, Gk is the set of all minimal elements of
Sν \(

⋃k−1
i=1 Gi). We have seen that for each k = 1, . . . , n, exactly one front starting from a point in Gk hits the soma, so that

B(ν) = n. And we also have A(ν) = n. Indeed, choose Qn ∈ Gn, there is necessarily Qn−1 ∈ Gn−1 such that Qn−1 ≺ Qn,
. . . , and there is necessarily Q1 ∈ G1 such that Q1 ≺ Q2. We end with an increasing sequence Q1 ≺ · · · ≺ Qn of points
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of Sν , whence A(ν) ≥ n. We also have A(ν) ≤ n because otherwise, we could find a sequence R1 ≺ · · · ≺ Rn+1 of points
of Sν , and Sν \ (

⋃n
k=1 Gk) would contain at least Rn+1 and thus would not be empty.

If the procedure never stops, we have A(ν) = B(ν) = ∞ in which case A(ν) = B(ν), as desired.
Step 2. We now fix t ≥ 0. By Step 1 applied to ν|Dt , we know that B(ν|Dt ) = A(ν|Dt ), which equals At(ν) by

definition. To conclude the proof, it thus only remains to check that Bt(ν) = B(ν|Dt ). This is clear when having a look at
Figure 3: removing the points M4,M11,M13 would not modify the number of fronts hitting the soma before t . Here are the
main arguments. We recall that for M ∈ [0,∞)×[0,L], we have M ∈ Dt if and only if M � (t,0) (i.e. Mx ≤ ρ(t −Ms)).

• A (positive) front hitting the soma does it before time t if and only if it starts from some point M ∈ Sν ∩Dt (because
such a front hits the soma at time Ms + Mx/ρ, which is smaller than t if and only if M � (t,0)).

• A positive front starting from some M ∈ Sν ∩ Dt always remains in Dt (because Mx ≤ ρ(t − Ms) implies that
Mx − ρ(r − Ms) ≤ ρ(t − r) for all r ∈ [Ms,Ms + Mx/ρ]).

• A front starting from some M ∈ Sν \ Dt always remains outside Dt (for e.g. the positive front starting from M ,
Mx > ρ(t − Ms) implies that Mx − ρ(r − Ms) > ρ(t − r) for all r ∈ [Ms,Ms + Mx/ρ]). �

4. Number of fronts in the piecewise i.i.d. case

The goal of this section is to check the following result, relying on [6].

Lemma 12. Let H be a continuous probability density on [0,L]. Fix 0 ≤ b0 < b1 < · · · and consider, for each k ≥ 0,
a probability density gk on [bk,∞), continuous on [bk, bk+1]. Consider an i.i.d. family (Xi)i≥1 of [0,L]-valued ran-
dom variables with density H and, for each k ≥ 0, an i.i.d. family (T i

k )i≥1 of [bk,∞)-valued random variables with
density gk . We assume that for each k ≥ 0, the family (Xi)i≥1 is independent of the family (T i

k )i≥1 (but the families
(Xi, T

i
k )i≥1 and (Xi, T

i
� )i≥1, with k �= �, are allowed to be correlated in any possible way). For each N ≥ 1, we set

νN = ∑N
i=1

∑
k≥0 1{T i

k ≤bk+1}δ(T i
k ,Xi)

. Then

lim
N→∞

At(νN)√
N

= 	t(g) a.s.

for each t ≥ 0, where g(s) = ∑
k≥0 gk(s)1{s∈[bk,bk+1]}.

This result will be applied, more or less directly, to prove our two main results, via Propositions 7 and 10. In both
cases, we will indeed be able to partition time in a family of intervals [bk, bk+1) during which the stimuli arrive in an i.i.d.
manner on the dendrite under consideration, even if the whole family of those stimuli is not independent. In the case of
the soft model, this uses crucially the fact that Assumption (S1) induces a refractory period: a neuron spiking at time t

cannot spike again during (t, t + δ] for some deterministic δ > 0 (depending on t ≥ 0 and on many other parameters).
This section is the most technical of the paper. We have to be very careful, because as already mentioned, 	t(g) is

rather sensitive. For example, modifying the density H at one point does of course not affect the empirical measure νN ,
while it may drastically modify the value of 	t(g) (recall that 	t(g) depends on H , see Definition 4).

In the whole section, the continuous density H on [0,L] is fixed. We first adapt the result of [6].

Lemma 13. Fix 0 ≤ a < b and a continuous density h on [a, b]. Consider an i.i.d. family (Zi)i≥1 of [a, b] × [0,L]-
valued random variables with density h(s)H(x). For N ≥ 1, define πN = ∑N

1 δZi
. For any bounded open domain B ⊂

[0,∞) × [0,L] with Lipschitz boundary,

lim
N→∞

A(πN |B)√
N

= �B(h) a.s.,

where �B(h) = supβ∈B JB(h,β), B being the set of C1-functions defined on a closed bounded interval Iβ ⊂ R into R

and satisfying sups∈Iβ
|β ′(s)| < ρ and, for β ∈ B,

JB(h,β) =
√

2

ρ

∫
Iβ

√
h(s)H

(
β(s)

)
1{s∈(a,b),β(s)∈(0,L)}1{(s,β(s))∈B}

[
ρ2 − (

β ′(s)
)2]ds.

Of course, we set h(s)H(x)1{s∈(a,b),x∈(0,L)} = 0 if (s, x) /∈ (a, b) × (0,L), even if h(s)H(x) is not defined.



On a toy network of neurons interacting through their dendrites 1053

Proof. We first recall a 2d version of [6, Theorem 1.2], which concerns the length of the longest increasing subsequence
(for the usual partial order � of R2) one can find in a cloud of N i.i.d. points with positive continuous density on a regular
domain O ⊂R

2. In a second step, we easily deduce the behavior of the length of the longest increasing subsequence (for
the same random variables and the same order) included in a subset G of O . It only remains to use a diffeomorphism that
maps the usual order � on R

2 onto our order ≺: we study how the density of the random variables is modified in Step 3,
and how this modifies the limit functional in Step 4.

For y = (y1, y2) and y′ = (y′
1, y

′
2) in R

2, we say that y � y′ if y1 ≤ y′
1 and y2 ≤ y′

2. We say that y � y′ if y � y′ and
y �= y′.

Step 1. Consider a bounded open subset O ⊂ R
2 with Lipschitz boundary, as well as a probability density φ on R

2,
vanishing outside O and uniformly continuous on O . Consider an i.i.d. family (Yi)i≥1 of random variables with density
φ. For N ≥ 1, denote by

LN = sup
{
k ≥ 1 : ∃i1, . . . , ik ∈ {1, . . . ,N} such that Yi1 � · · · � Yik

}
.

Then limN N−1/2LN = supγ∈AK(γ ) a.s., where K(γ ) = 2
∫ 1

0

√
φ(γ (r))γ ′

1(r)γ
′
2(r)dr and A consists of all C1-maps

γ = (γ1, γ2) from [0,1] into R
2 such that γ ′

1(r) ≥ 0 and γ ′
2(r) ≥ 0 for all r ∈ [0,1] (see [6]).

Step 2. Consider some bounded open G ⊂ R
2 with Lipschitz boundary. Adopt the same notation and conditions as in

Step 1. For each N ≥ 1, set

LN(G) = sup
{
k ≥ 0 : ∃i1, . . . , ik ∈ {1, . . . ,N} such that Yi1 � · · · � Yik and Yij ∈ G for all j

}
.

Then limN N−1/2LN(G) = supγ∈AKG(γ ) a.s., with KG(γ ) = 2
∫ 1

0

√
φ(γ (r))1{γ (r)∈G}γ ′

1(r)γ
′
2(r)dr .

Indeed, if cG = ∫
G

φ(y)dy = 0, both quantities equal 0 (because φ ≡ 0 on G ∩ O by continuity, and φ1G = 0 on Oc

by definition). Else, φG = c−1
G φ1G satisfies the assumptions of Step 1. For each N ≥ 1, we set SN = {i ∈ {1, . . . ,N} : Yi ∈

G}. Since the law of the sub-sample (Yi)i∈SN
knowing |SN | is that of a family of |SN | i.i.d. random variables with density

φG, we have limN |SN |−1/2LN(G) = supγ∈A 2
∫ 1

0

√
φG(γ (r))γ ′

1(r)γ
′
2(r)dr a.s. But limN N−1|SN | = cG a.s., whence

the conclusion.
Step 3. We now introduce the C∞-diffeomorphism ψ(s, x) = (ρs − x,ρs + x) from R

2 into itself. For all i ≥
1, we set Yi = ψ(Zi). The density φ of Y1 is given by φ(y) = R(ψ−1(y))/(2ρ), where we have set R(s, x) =
h(s)H(x)1{s∈(a,b),x∈(0,L)} for all (s, x) ∈ R

2. This density φ satisfies the conditions of Step 1, by continuity of h on
[a, b] and of H on [0,L], with O = ψ((a, b) × (0,L)).

We next observe that for any (s, x), (s′, x′) ∈ R
2, we have (s, x) ≺ (s′, x′) if and only if ψ(s, x) � ψ(s′, x′). Hence,

by Definition 1, we have A(πN |B) = LN(ψ(B)) (with the notation of Step 2 and the choice Yi = ψ(Zi)). Clearly, ψ(B)

is a bounded open domain of R2. By Step 2, we thus have limN N−1/2A(πN |B) = supγ∈AKψ(B)(γ ) a.s.
Step 4. It remains to verify that supγ∈AKψ(B)(γ ) = �B(h). Recall that for γ ∈ A,

Kψ(B)(γ ) =
√

2

ρ

∫ 1

0

√
R

(
ψ−1

(
γ (r)

))
1{γ (r)∈ψ(B)}γ ′

1(r)γ
′
2(r)dr.

One easily checks that γ ∈ A if and only if α = ψ−1 ◦ γ ∈ C and that Kψ(B)(γ ) = LB(α), where C is the set of all
C1-maps α : [0,1] �→ R

2 such that |α′
2(r)| ≤ ρα′

1(r) for all r ∈ [0,1] and

LB(α) =
√

2

ρ

∫ 1

0

√
R

(
α(r)

)
1{α(r)∈B}

[
ρ2

(
α′

1(r)
)2 − (

α′
2(r)

)2]dr.

But sup
α∈ ◦

C LB(α) = supα∈C LB(α), where
◦
C consists of the elements of C such that |α′

2(r)| < ρα′
1(r) on [0,1]. In-

deed, it suffices to approximate α ∈ C by αn(r) = (α1(r) + r/n,α2(r)), that belongs to
◦
C, and to observe that LB(α) ≤

lim infn LB(αn) by the Fatou Lemma and since R(α(r))1{α(r)∈B} ≤ lim infn R(αn(r))1{αn(r)∈B} for each r ∈ [0,1], be-
cause R1B = R1O∩B with R continuous on the open set O ∩ B .

Finally, one easily verifies that for α ∈ ◦
C, the map β = α2 ◦ α−1

1 (defined on the interval Iβ = [α1(0), α1(1)]) belongs
to B, with furthermore LB(α) = JB(h,β). And for β ∈ B (defined on Iβ = [a, b]), the map α = (α1, α2) defined on [0,1]
by α1(r) = a + r(b − a) and α2(r) = β(a + r(b − a)) belongs to

◦
C and we have LB(α) = JB(h,β).

All in all, supγ∈AKψ(B)(γ ) = supα∈C LB(α) = sup
α∈ ◦

C LB(α) = supβ∈B JB(h,β). �
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We can now give the

Proof of Lemma 12. Let us explain the main ideas of the proof. The main tool consists in applying Lemma 13 in any
reasonable subset of [bk, bk+1] × [0,L], for any k ≥ 0, which we do in Step 1 for a sufficiently large family of such
subsets. In Step 4, we prove that � ◦

Dt
(g) = limδ↓0 � ◦

Dt+δ
(g) = 	t(g), which is very natural but tedious. The lowerbound

lim infN N−1/2At(νN) ≥ 	t(g) is proved in Step 2: we consider some β ∈ B such that J ◦
Dt

(g,β) ≥ � ◦
Dt

(g)− ε, we intro-

duce a tube Bβ,δ around the path {(s, β(s)) : s ∈ [0, t]} and observe that J ◦
Dt

(g,β) = J ◦
Dt∩Bβ,δ

(g,β). Using Step 1, we de-

duce that in each Bβ,δ ∩ ([bk, bk+1]×[0,L]), we can find an increasing subsequence of points with the correct length, that
is, more or less, N1/2J ◦

Dt∩Bβ,δ∩([bk,bk+1]×[0,L])(g,β). We then concatenate these subsequences (with a small loss to be sure

the concatenation is fully increasing) and find that, very roughly, At(νN) ≥ N1/2 ∑
k≥1 J ◦

Dt∩Bβ,δ∩([bk,bk+1]×[0,L])(g,β) ≥
J ◦

Dt
(g,β) as desired. The upperbound is more complicated but uses similar ideas: if one could find an increasing sub-

sequence with length significantly greater than N1/2J ◦
Dt∩Bβ,δ∩([bk,bk+1]×[0,L])(g,β), this would mean that somewhere, in

some [bk, bk+1] × [0,L], there would be an increasing subsequence with length significantly greater than established in
Lemma 13.

Notation. Changing the value of gk on (bk+1,∞) does clearly not modify the definitions of g and of νN , since T i
k is not

taken into account if greater than bk+1. Hence we may (and will) assume that for each k ≥ 0, gk is a density, continuous
on [bk, bk+1 + 1] and vanishing outside [bk, bk+1 + 1].

We fix t > 0 and call k0 the integer such that t ∈ [bk0, bk0+1). We assume that k0 ≥ 1, the situation being much easier
when k0 = 0.

For β ∈ B and δ > 0, we define Bβ,δ = {(s, x) : s ∈ Iβ, x ∈ (β(s) − δ,β(s) + δ)}. For k = 0, . . . , k0 and a ≥ 0, we also
introduce Bk

β,a,δ = Bβ,δ ∩ ((bk, bk+1 − aδ) × R), with the convention that (x, y) = ∅ if x ≥ y. All these sets are open,

bounded and have a Lipschitz boundary because β is of class C1.
Step 1. For each k = 0, . . . , k0, we may apply Lemma 13, to the family (T i

k ,Xi)i≥1. Introducing πk
N = ∑N

i=1 δ(T i
k ,Xi)

,
we have, for any β ∈ B, any δ ∈ (0,1), any a ≥ 0, a.s.

lim
N

N−1/2A
(
πk

N |
Bk

β,a,δ∩
◦
Dt

) = �
Bk

β,a,δ∩
◦
Dt

(gk).

Observing now that νN |Bk
β,a,δ

= πk
N |Bk

β,a,δ
and g|Bk

β,a,δ
= gk|Bk

β,a,δ
, we also have a.s.

lim
N

N−1/2A(νN |
Bk

β,a,δ∩
◦
Dt

) = �
Bk

β,a,δ∩
◦
Dt

(g).

Step 2. Lowerbound. Here we prove that a.s., lim infN N−1/2At(νN) ≥ � ◦
Dt

(g). For ε ∈ (0,1), we can find β ∈ B such

that J ◦
Dt

(g,β) ≥ � ◦
Dt

(g) − ε. Let η ∈ (0,1) be such that supIβ
|β ′| ≤ (1 − η)ρ and let a = 2/(ρη).

We first claim that

0 ≤ k < � ≤ k0 and (s, x) ∈ Bk
β,a,δ and

(
s′, x′) ∈ B�

β,a,δ imply that (s, x) ≺ (
s′, x′). (4)

It suffices to check that for any (s, x), (s′, x′) ∈ Bβ,δ with s′ ≥ s + aδ, we have (s, x) ≺ (s′, x′). This follows from the
facts that |x −β(s)| < δ, |x′ −β(s′)| < δ and |β(s)−β(s′)| ≤ (1−η)ρ(s′ − s), whence |x −x′| < 2δ+ (1−η)ρ(s′ − s) ≤
ρ(s′ − s), because 2δ ≤ 2(s′ − s)/a = ρη(s′ − s).

Hence a.s., At(νN) = A(νN |Dt ) ≥ ∑k0
k=0 A(νN |

Bk
β,a,δ∩

◦
Dt

). Indeed, it suffices to recall Definition 1, to call SN the set

of points in the support of νN intersected with
◦

Dt , and to observe that thanks to (4), the concatenation of the longest
increasing (for ≺) subsequence of SN ∩ B0

β,a,δ with the longest increasing subsequence of SN ∩ B1
β,a,δ, . . . with the

longest increasing subsequence of SN ∩ B
k0
β,a,δ indeed produces an increasing subsequence of SN .

Due to Step 1, we conclude that a.s., for all δ > 0,

lim inf
N

N−1/2At(νN) ≥
k0∑

k=0

�
Bk

β,a,δ∩
◦
Dt

(g) ≥
k0∑

k=0

J
Bk

β,a,δ∩
◦
Dt

(g,β).
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But for all k = 0, . . . , k0, we have (s, β(s)) ∈ Bk
β,a,δ for all s ∈ Iβ ∩ [bk, (bk+1 − aδ)], whence

lim inf
N

N−1/2At(νN) ≥
k0∑

k=0

√
2

ρ

∫
Iβ∩(bk,bk+1−aδ)

√
g(s)H

(
β(s)

)
1{(s,β(s))∈ ◦

Dt }
[
ρ2 − (

β ′(s)
)2]ds.

Letting δ decrease to 0, we find that a.s.,

lim inf
N

N−1/2At(νN) ≥
√

2

ρ

∫
Iβ∩[b0,bk0+1]

√
g(s)H

(
β(s)

)
1{(s,β(s))∈ ◦

Dt }
[
ρ2 − (

β ′(s)
)2]ds = J ◦

Dt
(g,β),

the last inequality following from the fact that g(s)1{(s,β(s))∈ ◦
Dt } vanishes if s ∈ [b0, bk0+1]c ⊂ [b0, t]c . Recalling the

beginning of the step, lim infN N−1/2At(νN) ≥ � ◦
Dt

(g) − ε as desired.

Step 3. Upperbound. We next check that a.s., lim supN N−1/2At(νN) ≤ limδ↓0 � ◦
Dt+δ

(g). We introduce B[0,t] = {β ∈
B : Iβ = [0, t] and β([0, t]) ⊂ (0,L)}.

Step 3.1. Here we prove that for any δ ∈ (0,1), there is a finite subset Bδ
t ⊂ B[0,t] such that A(ν| ◦

Dt
) ≤

maxβ∈Bδ
t
A(ν|

Bβ,δ∩
◦
Dt

) for all Radon point measures ν on [0,∞) × [0,L].
For all Radon point measures ν on [0,∞) × [0,L], we have A(ν| ◦

Dt
) ≤ supβ∈B[0,t] A(ν|

Bβ,δ∩
◦
Dt

). Indeed, consider an

increasing subsequence (t1, x1) ≺ · · · ≺ (t�, x�) of points in the support of ν intersected with
◦

Dt such that � = At(ν).
Consider β0 : [0, t] �→ (0,L) of which the graph is the broken line linking (0, x1), (t1, x1), (t2, x2), . . . , (t�, x�) and
(t, x�). Then β0 is ρ-Lipschitz continuous (because the points are ordered for ≺). Hence it is not hard to find βδ ∈ B[0,t]
such that sup[0,t] |βδ(s) − β0(s)| < δ. And {(t1, x1), . . . , (t�, x�)} ⊂ Bβδ,δ , whence A(ν|

Bβδ,δ∩
◦
Dt

) ≥ � = A(ν| ◦
Dt

).

Next, B[0,t] is dense, for the uniform convergence topology, in B̄[0,t], the set of ρ-Lipschitz continuous functions from
[0, t] into [0,L]. We thus may write B̄[0,t] = ⋃

β∈B[0,t] V(β, δ), where V(β, δ) = {α ∈ B̄[0,t] : sup[0,t] |α(s)−β(s)| < δ/2}.
But B̄[0,t] is compact (still for the uniform convergence topology), so that there is a finite subset Bδ

t ⊂ B[0,t] such that
B[0,t] ⊂ B̄[0,t] = ⋃

β∈Bδ
t
V(β, δ). The conclusion follows, using the previous paragraph, since then for any ν, we have

A(ν| ◦
Dt

) ≤ supα∈B[0,t] A(ν|
Bα,δ/2∩

◦
Dt

) ≤ supβ∈Bδ
t
A(ν|

Bβ,δ∩
◦
Dt

) because for each α ∈ B[0,t], we can find β ∈ Bδ
t such that

sup[0,t] |α(s) − β(s)| < δ/2, which implies that Bα,δ/2 ⊂ Bβ,δ .

Step 3.2. For all β ∈ B[0,t], δ ∈ (0,1), lim supN N−1/2A(νN |
Bβ,δ∩

◦
Dt

) ≤ ∑k0
k=0 �

Bk
β,0,δ∩

◦
Dt

(g) a.s.

Indeed, recalling that Bβ,δ = ⋃k0
k=0 Bk

β,0,δ (up to a Lebesgue-null set in which our random variables a.s. never fall), we

a.s. have A(νN |
Bβ,δ∩

◦
Dt

) ≤ ∑k0
k=0 A(νN |

Bk
β,0,δ∩

◦
Dt

), because the longest increasing sequence of points in the support of νN

intercepted with Bβ,δ ∩ ◦
Dt is less long than the concatenation (for k = 0, . . . , k0) of the longest increasing sequences of

points in the support of νN intercepted with Bk
β,0,δ ∩ ◦

Dt . The conclusion follows from Step 1.
Step 3.3. Gathering Steps 3.1. and 3.2, we deduce that for all δ ∈ (0,1), a.s.,

lim sup
N

N−1/2At(νN) = lim sup
N

N−1/2A(νN | ◦
Dt

)

≤ lim sup
N

N−1/2 sup
β∈Bδ

t

A(νN |
Bβ,δ∩

◦
Dt

)

= sup
β∈Bδ

t

lim sup
N

N−1/2A(νN |
Bβ,δ∩

◦
Dt

)

≤ sup
β∈Bδ

t

k0∑
k=0

�
Bk

β,0,δ∩
◦
Dt

(g).

The first equality is obvious, because all our random variables have densities and thus a.s. never fall in Dt \ ◦
Dt . The

second equality uses that the set Bδ
t is finite.
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Step 3.4. We prove here the existence of a function ϕ : (0,1) �→ R+ and c > 0 such that limδ→0 ϕ(δ) = 0 and, for all
β ∈ B[0,t], all δ ∈ (0,1),

k0∑
k=0

�
Bk

β,0,δ∩
◦
Dt

(g) ≤ � ◦
Dt+cδ

(g) + ϕ(δ).

Let δ ∈ (0,1) and β ∈ B[0,t]. For each k = 0, . . . , k0, let αk ∈ B be such that J
Bk

β,0,δ∩
◦
Dt

(g,αk) ≥ �
Bk

β,0,δ∩
◦
Dt

(g) − δ.

It is tedious but not difficult to check that we can choose αk defined on Iαk
= [bk, bk+1 ∧ t] and such that (s, αk(s)) ∈

Bk
β,0,δ ∩ ◦

Dt for all s ∈ Iαk
. In particular, αk−1(bk) ∈ (β(bk) − δ,β(bk) + δ) and αk(bk) ∈ (β(bk) − δ,β(bk) + δ) for each

k = 1, . . . , k0.
We then define α on [0, t] as the following continuous concatenation of the functions αk : we put α(s) = α0(s) on

[b0, b1), α(s) = α1(s) + α0(b1) − α1(b1) on [b1, b2), etc, and α(s) = αk0(s) + ∑k0
�=1[α�−1(b�) − α�(b�)] on [bk0, t]. The

resulting α is ρ-Lipschitz continuous on [0, t], satisfies α′(s) = α′
k(s) for all k = 0, . . . , k0 and all s ∈ (bk, bk+1 ∧ t) and

sup
k=0,...,k0

sup
[bk,bk+1∧t)

∣∣α(s) − αk(s)
∣∣ ≤

k0∑
�=1

∣∣α�−1(b�) − α�(b�)
∣∣ ≤ 2k0δ,

since for each � = 1, . . . , k0, both α�−1(b�) and α�(b�) belong to (β(b�) − δ,β(b�) + δ).
Finally, we set γ (s) = [α(s) ∧ (L − δ)] ∨ δ for s ∈ [0, t]. It is ρ-Lipschitz continuous, satisfies that |γ ′(s)| ≤ |α′(s)| =

|α′
k(s)| for all k = 0, . . . , k0 and almost all s ∈ (bk, bk+1 ∧ t) and

sup
k=0,...,k0

sup
[bk,bk+1∧t)

∣∣γ (s) − αk(s)
∣∣ ≤ 2k0δ. (5)

Indeed, it suffices to note that x ∈ (0,L) and |y −x| < 2k0δ imply that |[y ∧ (L− δ)]∨ δ −x| < 2k0δ (apply this principle
to x = αk(s) and y = α(s)).

We have (s, γ (s)) ∈ ◦
Dt+cδ for all s ∈ [0, t], with c = 2k0/ρ, because γ (s) ∈ (0,L) and because for s ∈ [bk, bk+1 ∧ t),

γ (s) ≤ αk(s) + 2k0δ < ρ(t − s) + 2k0δ = ρ(t + cδ − s). We used that (s, αk(s)) ∈ ◦
Dt , whence αk(s) < ρ(t − s).

We thus may write, using that (s, αk(s)) ∈ Bk
β,0,δ ∩ ◦

Dt for all k = 0, . . . , k0 and all s ∈ [bk, bk+1 ∧ t),

k0∑
k=0

�
Bk

β,0,δ∩
◦
Dt

(g) ≤
k0∑

k=0

(
J

Bk
β,0,δ∩

◦
Dt

(g,αk) + δ
)

= (k0 + 1)δ +
√

2

ρ

k0∑
k=0

∫ bk+1∧t

bk

√
H

(
αk(s)

)
g(s)

[
ρ2 − (

α′
k(s)

)2]ds

≤ (k0 + 1)δ +
√

2

ρ

k0∑
k=0

∫ bk+1∧t

bk

√
H

(
αk(s)

)
g(s)

[
ρ2 − (

γ ′(s)
)2]ds,

because |γ ′(s)| ≤ |α′
k(s)| for a.e. s ∈ [bk, bk+1 ∧ t). We then set

ϕ(δ) = (k0 + 1)δ +
(√

2ρ

∫ t

0

√
g(s)ds

)
sup

x,y∈(0,L),|x−y|≤2k0δ

∣∣√H(x) − √
H(y)

∣∣,
which tends to 0 as δ → 0 because H is continuous on [0,L]. Recalling (5),

k0∑
k=0

�
Bk

β,0,δ∩
◦
Dt

(g) ≤ ϕ(δ) +
√

2

ρ

∫ t

0

√
H

(
γ (s)

)
g(s)

[
ρ2 − (

γ ′(s)
)2]ds

= ϕ(δ) +
√

2

ρ

∫ t

0

√
H

(
γ (s)

)
g(s)1{(s,γ (s))∈ ◦

Dt+cδ}
[
ρ2 − (

γ ′(s)
)2]

ds

= ϕ(δ) +J ◦
Dt+cδ

(g, γ )

≤ ϕ(δ) + � ◦
Dt+cδ

(g).
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There is a little work to prove the last inequality because γ /∈ B. Since γ is ρ-Lipschitz continuous, it is easily ap-
proximated by a family γ� of elements of B (with Iγ�

= [0, t]) in such a way that γ� tends to γ uniformly and γ ′
�

tends to γ ′ a.e. Using that H is continuous, that
◦

Dt+cδ is open and the Fatou lemma, we conclude that J ◦
Dt+cδ

(g, γ ) ≤
lim inf� J ◦

Dt+cδ
(g, γ�) ≤ � ◦

Dt+cδ
(g).

Step 3.5. Gathering Steps 3.3 and 3.4, we find that for all δ ∈ (0,1), lim supN N−1/2At(νN) ≤ � ◦
Dt+cδ(g)

+ ϕ(δ) a.s.

Letting δ decrease to 0 completes the step.
Step 4. Finally, we verify that � ◦

Dt
(g) = limδ↓0 � ◦

Dt+δ
(g) = 	t(g) and this will complete the proof. Recall that 	t(g) =

supβ∈Bt
It (g,β) was introduced in Definition 4, while �B(g) = supβ∈B JB(g,β) was defined in Lemma 13. We will

verify the four following inequalities, which is sufficient: 	t(g) ≤ � ◦
Dt

(g), � ◦
Dt

(g) ≤ 	t(g), � ◦
Dt

(g) ≤ limδ↓0 � ◦
Dt+δ

(g)

and limδ↓0 	t+δ(g) ≤ 	t(g).
We first check that 	t(g) ≤ � ◦

Dt
(g). We thus fix β ∈ Bt . For � ≥ 1, we introduce

β�(s) = β(s) + (t − s)/�

1 + 2 max{1/(ρ�), t/(L�)} ,

which still belongs to Bt (and thus to B, with Iβ�
= [0, t]), but additionally satisfies that (s, β�(s)) ∈ ◦

Dt (and in particular
β�(s) ∈ (0,L)) for all s ∈ (0, t), so that It (g,β�) = J ◦

Dt
(g,β�) ≤ � ◦

Dt
(g). And one immediately checks, by dominated

convergence and because H is continuous on [0,L], that It (g,β) = lim� It (g,β�).
We next verify that � ◦

Dt
(g) ≤ 	t(g). Fix β ∈ B, defined on some interval Iβ = [x, y]. We define β̄ as the restric-

tion/extension of β to [0, t] defined as follows: we set β̄(s) = β(s) for s ∈ [x ∨0, y ∧ t], β̄(s) = β(x ∨0) for s ∈ [0, x ∨0]
and β̄(s) = β(y ∧ t) for s ∈ [y ∧ t, t]. Clearly, J ◦

Dt
(g,β) ≤ J ◦

Dt
(g, β̄). Next, we set γ (s) = (0 ∨ β̄(s)) ∧ L ∧ (ρ(t − s))

for all s ∈ [0, t]. We then have J ◦
Dt

(g, β̄) = J ◦
Dt

(g, γ ), because β̄(s) = γ (s) and β̄ ′(s) = γ ′(s) for all s ∈ [0, t] such

that (s, β̄(s)) ∈ ◦
Dt and since (s, β̄(s)) ∈ ◦

Dt if and only if (s, γ (s)) ∈ ◦
Dt . And clearly, J ◦

Dt
(g, γ ) ≤ It (g, γ ). Finally,

It (g, γ ) ≤ 	t(g), because even if γ /∈ Bt , it is defined from [0, t] into [0,L], vanishes at t and is ρ-Lipschitz continuous.
Hence we can find a sequence (γ�)�≥1 of elements of Bt such that γ� → γ uniformly and γ ′

� → γ ′ a.e., which is sufficient
to ensure us that It (g, γ ) = lim� It (g, γ�) by dominated convergence.

We obviously have � ◦
Dt

(g) ≤ limδ↓0 � ◦
Dt+δ

(g).

It only remains to verify that limδ↓0 	t+δ(g) ≤ 	t(g). For β ∈ Bt+δ , we introduce the function βδ ∈ Bt defined by
βδ(s) = max{β(s) − ρδ,0}. It satisfies

It (g,βδ) ≥
√

2

ρ

∫ t

0

√
H

(
βδ(s)

)
g(s)

[
ρ2 − (

β ′(s)
)2]ds

because |β ′
δ(s)| ≤ |β ′(s)| a.e. Hence It (g,βδ) ≥ It+δ(g,β) − ψt(δ), where

ψt(δ) =√
2ρ

(∫ t

0

√
g(s)ds

)
sup

x,y∈[0,L],|x−y|≤ρδ

∣∣√H(x) − √
H(y)

∣∣ + √
2ρ‖H‖∞

∫ t+δ

t

√
g(s)ds,

which tends to 0 as δ ↓ 0, because H is continuous and g is locally bounded. Furthermore, βδ is ρ-Lipschitz continuous,
[0,L]-valued, and βδ(t) = 0 (because β(t + δ) = 0, whence β(t) ≤ δ since β is ρ-Lipschitz continuous). Hence, as a few
lines above, we can approximate βδ by a sequence of elements of Bt and deduce that 	t(g) ≥ It (βδ). Consequently, for
all β ∈ Bt+δ , we have It+δ(β) ≤ It (βδ) + ψt(δ) ≤ 	t(g) + ψt(δ), whence 	t+δ(g) ≤ 	t(g) + ψt(δ). �

5. The hard model

We first give the

Proof of Proposition 9. Let f0 ∈P([vmin, vmax)) and r : [0,∞) �→ R+, continuous, non-decreasing and such that r0 = 0.
Consider V0 ∼ f0. The process (V r

t , J r
t )t≥0 can be built as follows (and is unique because there is no choice in the

construction): set Z0
t = V0 + I t + rt (for all t ≥ 0) and S0 = inf{t ≥ 0 : Z0

t = vmax}, which is positive and finite, put
V r

t = Z0
t and J r

t = 0 for t ∈ [0, S0); set Z1
t = vmin + I (t − S0) + (rt − rS0) (for all t ≥ S0) and S1 = inf{t ≥ S0 :

Z1
t = vmax}, put V r

t = Z1
t and J r

t = 1 for t ∈ [S0, S1); set Z2
t = vmin + I (t − S1) + (rt − rS1) (for all t ≥ S1) and

S2 = inf{t ≥ S1 : Z2
t = vmax}, put V r

t = Z2
t and J r

t = 2 for t ∈ [S1, S2), etc.
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Observe that

V r
t = vmin + (vmax − vmin)

{
V0 + I t + rt − vmin

vmax − vmin

}
and J r

t =
⌊

V0 + I t + rt − vmin

vmax − vmin

⌋
(6)

for all t ≥ 0, where �x� and {x} stand for the integer and fractional part of x ∈ [0,∞). �

We next handle the

Proof of Proposition 10. We recall that a non-decreasing C1-function r : [0,∞) �→ [0,∞) with r0 = 0 is fixed, as well
as the density f0 on [vmin, vmax] of V0, and that V r

t = V0 + I t + rt + (vmin − vmax)J
r
t , where J r

t = ∑
s≤t 1{V r

s−=vmax}. We
recall that the increasing sequence (ak)k≥0 is defined by Iak + rak

= k(vmax − vmin).
Step 1. We first observe that for all k ≥ 0, V r

ak
= V0. This is immediate from (6), since

V r
ak

= vmin + (vmax − vmin)

{
V0 + k(vmax − vmin) − vmin

vmax − vmin

}
= vmin + (vmax − vmin)

{
V0 − vmin

vmax − vmin

}
,

which equals V0 since V0 ∈ [vmin, vmax) a.s.
Step 2. We denote by 0 ≤ S0 < S1 < S2 < · · · the instants of jump of (J r

t )t≥0 (so that Sk is the (k + 1)th instant of
jump). Here we prove by induction that for all k ≥ 1, Sk a.s. belongs to [ak, ak+1] and that its law has the density

hk(s) = f0
(
k(vmax − vmin) + vmax − Is − rs

)(
I + r ′

s

)
1{s∈[ak,ak+1]}.

To this end, we introduce the function m(t) = I t + rt (which increases from [0,∞) into itself), and its inverse function
m−1 : [0,∞) �→ [0,∞). We have m(ak) = k(vmax − vmin) for all k ≥ 0.

First, we have vmax = V r
S0− = V0 + IS0 + rS0 = V0 + m(S0), whence S0 = m−1(vmax − V0). But m−1 is increasing

and V0 ≥ vmin, so that S0 ≤ m−1(vmax − vmin) = a1. Thus S0 ∈ [a0, a1] a.s. (recall that a0 = 0) and a simple computation
shows that its density is given by h0(s) = f0(vmax − m(s))m′(s)1{s∈[a0,a1]} as desired.

We next fix k ≥ 1 and assume that Sk−1 ∈ [ak−1, ak] a.s. Then we write vmax = V r
Sk− = vmin + I (Sk − Sk−1) + rSk

−
rSk−1 = vmin + m(Sk) − m(Sk−1), so that m(Sk) = m(Sk−1) + vmax − vmin. Using that m(Sk−1) ∈ [m(ak−1),m(ak)] =
[(k − 1)(vmax − vmin), k(vmax − vmin)], we conclude that m(Sk) belongs to [k(vmax − vmin), (k + 1)(vmax − vmin)], which
precisely means that Sk ∈ [ak, ak+1].

We now write vmax = V r
Sk− = V r

ak
+ I (Sk − ak) + rSk

− rak
= V r

ak
+ m(Sk) − m(ak) = V0 + m(Sk) − k(vmax − vmin)

by Step 1, whence Sk = m−1(vmax + k(vmax − vmin) − V0), and a computation shows that the density of Sk is given by
hk(s) = f0(k(vmax − vmin) + vmax − m(s))m′(s)1{s∈[ak,ak+1]}.

Step 3. For each k ≥ 0, hk is continuous on [ak, ak+1], since r is of class C1 by assumption, since k(vmax − vmin) +
vmax − Is − rs takes values, during [ak, ak+1], in [vmin, vmax] and since f0 is continuous on [vmin, vmax] by (H1).

Step 4. We can apply Lemma 12, of which all the assumptions are satisfied, with bk = ak . Indeed, recalling the state-
ment, νr

N = ∑N
i=1

∑
k≥1 δ(T i

k ,Xi)
, which can be written as νr

N = ∑N
i=1

∑
k≥0 δ(Si

k,Xi)
= ∑n

i=1
∑

k≥0 1{Si
k≤bk+1}δ(Si

k,Xi)
,

since Si
k = T i

k+1 a.s. belongs to [bk, bk+1]. Since the density of Si
k is nothing but hk by Step 2 and since hk is

continuous on [bk, bk+1] by Step 3, we conclude that for all t ≥ 0, limN→∞ N−1/2At(ν
r
N ) = 	t(gr) a.s., where

gr(t) = ∑
k≥0 hk(t)1{t∈[bk,bk+1)}, as desired. �

We finally give the

Proof of Theorem 11. We fix w > 0. By (H2) and Remark 5, 	t(g) = √
2ρH(0)

∫ t

0

√
g(s)ds. We say that κ : [0,∞) �→

[0,∞) is a solution if it is of class C1, non-decreasing, if κ0 = 0 and if κt = w
√

2ρH(0)
∫ t

0

√
gκ(s)ds for all t ≥ 0, gκ

being defined in Proposition 10. To be as precise as possible, we indicate in superscript that (ak)k≥0 depends on κ . For
all k ≥ 0, aκ

k is thus defined by Iaκ
k + κaκ

k
= k(vmax − vmin). We always have aκ

0 = 0. We recall that σ = ρH(0)w2, that

G0 = σf0 +
√

σ 2f 2
0 + 2σIf0 : [vmin, vmax] �→ R+ and that ϕ0(x) = ∫ vmax

x
dv/[I + G0(v)] : [vmin, vmax] �→ [0, a], where

a = ϕ0(vmin).
Step 1. For any solution κ , it holds that aκ

1 = a and κt = vmax − I t − ϕ−1
0 (t) on [0, a].

Indeed, we have κ ′
t = w

√
2ρH(0)gκ(t) = √

2σf0(vmax − I t − κt )(I + κ ′
t ) on [0, aκ

1 ], from which κ ′
t = G0(vmax −

I t − κt ). Thanks to (H2), G0 is Lipschitz continuous, so that this ODE has a unique solution such that κ0 = 0, given by
κt = vmax − I t − ϕ−1

0 (t). We also deduce that necessarily, vmax − vmin = Iaκ
1 + κaκ

1
= Iaκ

1 + vmax − Iaκ
1 − ϕ−1

0 (aκ
1 ), i.e.

ϕ−1
0 (aκ

1 ) = vmin, whence aκ
1 = a.
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Step 2. For any solution κ , aκ
2 = 2a and κt = (vmax − vmin) + vmax − I t − ϕ−1

0 (t − a) on [a,2a].
Indeed, κ ′

t = w
√

2ρH(0)gκ(t) = √
2σf0((vmax − vmin) + vmax − I t − κt )(I + κ ′

t ) on [a, aκ
2 ]. This implies that κ ′

t =
G0((vmax − vmin)+ vmax − I t − κt ) on [a, aκ

2 ]. Since G0 is Lipschitz continuous by (H2), this ODE has a unique solution
such that κa = vmax − Ia − ϕ−1

0 (a) = vmax − vmin − Ia (we require that κ is continuous and κa− has been determined in
Step 1), which is given by κt = (vmax − vmin) + vmax − I t − ϕ−1

0 (t − a) (observe that ϕ−1
0 (0) = vmax). Also, we deduce

that aκ
2 = 2a, because 2(vmax − vmin) = Iaκ

2 + κaκ
2

= (vmax − vmin) + vmax − ϕ−1
0 (aκ

2 − a), i.e. ϕ−1
0 (aκ

2 − a) = vmin,
whence aκ

2 − a = a.
Step 3. Iterating the procedure, we conclude that for any solution, we have aκ

k = ka for all k ≥ 0 and κt = k(vmax −
vmin) + vmax − I t − ϕ−1

0 (t − ka) on [ka, (k + 1)a]. Thus uniqueness is checked, and we only have to verify that this
function is indeed a solution. It is continuous by construction, it is of course C1 and non-decreasing on each interval
(ka, (k + 1)a), because κ ′

t = −I − (ϕ−1
0 )′(t − ka) = G0(ϕ

−1
0 (t − ka)) ≥ 0. It is actually C1 on [0,∞) because for each

k ≥ 1, we have κ ′
ka+ = κ ′

ka−. Indeed, κ ′
ka+ = G0(ϕ

−1
0 (0)) = G0(vmax), while κ ′

ka− = G0(ϕ
−1
0 (a)) = G0(vmin), and the

two values coincide because f0(vmax) = f0(vmin) by (H2).
Finally, we have κt = w

√
2ρH(0)

∫ t

0

√
gκ(s)ds for all t ≥ 0, since κ is continuous, starts from 0, since κ ′

t =
w

√
2ρH(0)

√
gκ(t) for all t ∈ R+ \ {ka : k ≥ 1} by construction and since both κ ′ and gκ are continuous. Recalling the

definition of gκ , this last assertion easily follows from the facts that κ ∈ C1([0,∞)), that f0 is continuous on [vmin, vmax],
that f0(vmax) = f0(vmin) and that for all k ≥ 1, ak = ka and κ ′

ka+ = κ ′
ka−. �

6. The soft model

We start with the

Proof of Proposition 6. The existence of a pathwise unique solution (V r
t )t≥0 to (2), with values in [vmin,∞), is classical

and relies on the following main arguments (here the continuity of λ is not required, one could assume only that λ :
[vmin,∞) �→ R+ is measurable and locally bounded).

• Extend F to a locally Lipschitz continuous function on R and λ to a locally bounded function on R. There is
obviously local existence of a pathwise unique solution to (2). The only problem is to check non-explosion (i.e. to check
that a.s., sup[0,T ] |V r

t | < ∞ for all T > 0).
• Any solution remains in [vmin,∞), because (a) rt is non-decreasing, (b) F is locally Lipschitz continuous and

F(vmin) ≥ 0 and (c) each jump sends the solution to vmin.
• Since F(v) ≤ C(1 + (v − vmin)) and since all the jumps are negative, any solution (V r

t )t≥0 satisfies V r
t ≤ V0 +

rt + C
∫ t

0 (1 + (V r
s − vmin))ds for all t ≥ 0, whence, sup[0,T ](V r

t − vmin) ≤ (V0 − vmin + CT + rT )eCT by the Gronwall
lemma.

• The two previous points prevent us from explosion, so that the pathwise unique solution is global. Furthermore,
E[sup[0,T ](V r

t − vmin)
p] < ∞ because E[(V0 − vmin)

p] < ∞ by assumption. �

We next give the

Proof of Proposition 7. We recall that a non-decreasing continuous function r : [0,∞) �→ 0 with r0 = 0 is fixed, as well
as the initial distribution f0 on [vmin,∞) of V0, that (V r

t )t≥0 is the unique solution to (2) and that J r
t = ∑

s≤t 1{�V r
s−�=0}.

Step 1. For t0 ≥ 0 and v0 ≥ vmin we define (zt0,v0(t))t≥t0 as the unique solution to zt0,v0(t) = v0 + ∫ t

t0
F(zt0,v0(s))ds +

rt − rt0 . It is valued in [vmin,∞) because F(vmin) ≥ 0 (and r is non-decreasing). For all t0 < t1 ≤ t , we have zt1,vmin(t) ≤
zt0,vmin(t). This follows from the comparison theorem, because zt1,vmin(t1) = vmin ≤ zt0,vmin(t1) and since (zt1,vmin(t))t≥t1

and (zt0,vmin(t))t≥t1 solve the same Volterra equation (with different initial conditions). Also, since F(v) ≤ C(1 + (v −
vmin)), we have zt0,v0(t) − vmin ≤ [v0 − vmin + rt − rt0 + C(t − t0)] exp(C(t − t0)) for all t ≥ t0, all v0 ≥ vmin.

Step 2. By (S1), we have λ(v) = 0 on [vmin, α], with α > vmin. We claim that there is an increasing sequence (ak)k≥0
such that limk ak = ∞ and a.s., for all k ≥ 0, J r

ak+1
− J r

ak
∈ {0,1}.

We introduce the increasing sequence (ak)k≥0 defined recursively by a0 = 0 and, for k ≥ 0, ak+1 = inf{t ≥ ak :
zak,vmin(t) ≥ α} ∧ (ak + 1), with the convention that inf∅ = ∞.

Fix k ≥ 0, denote by τ1 < τ2 the first and second instants of jump of V r after ak . If τ1 > ak+1, then J r
ak+1

− J r
ak

= 0.
Otherwise, we have V r

τ1
= vmin and, during [τ1, τ2), we have V r

t = zτ1,vmin(t), whence V r
t ≤ zak,vmin(t) by Step 1 and

since τ1 ≥ ak , and thus V r
t ≤ α during [τ1, τ2 ∧ ak+1). Thus the rate of jump λ(V r

t ) = 0 during [τ1, τ2 ∧ ak+1), so that
τ2 > ak+1 and J r

ak+1
− J r

ak
= 1.

It remains to verify that limk ak = ∞. We fix η ∈ (0,1) such that vmin + CηeCη ≤ (vmin + α)/2 and we set ε = (α −
vmin)e

−Cη/2. We claim that for all k ≥ 0, we have either ak+1 − ak ≥ η or rak+1 − rak
≥ ε. Indeed, if ak+1 − ak < η ≤ 1,
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then ak+1 = inf{t ≥ ak : zak,vmin(t) ≥ α}, whence α = zak,vmin(ak+1) ≤ vmin + (rak+1 − rak
+ C(ak+1 − ak))e

C(ak+1−ak) by
Step 1. Hence α ≤ vmin + (rak+1 − rak

)eCη + CηeCη ≤ (vmin + α)/2 + (rak+1 − rak
)eCη , whence rak+1 − rak

≥ ε.
One easily concludes that limk ak = ∞: if a∞ = limk ak < ∞, then there is k0 such that ak+1 − ak < η (and thus

rak+1 − rak
≥ ε) for all k ≥ k0, whence ra∞ = ∑

k≥0(rak+1 − rak
) = ∞. This is not possible since r is R+-valued.

Step 3. For k ≥ 0, let Sk = inf{t ≥ ak : �V r
t �= 0} = inf{t ≥ ak : �Jr

t = 1}. The law of Sk has a continuous density gk

on [ak,∞).
Since V r

t = zak,V
r
ak

(t) during [ak, Sk) and since V r jumps, at time t , at rate λ(V r
t−), we have P(Sk ≥ t |V r

ak
) =

exp(− ∫ t

ak
λ(zak,V

r
ak

(s))ds) for t ≥ ak , whence

P(Sk ≥ t) = E

[
exp

(
−

∫ t

ak

λ
(
zak,V

r
ak

(s)
)

ds

)]
.

But t �→ λ(zak,V
r
ak

(t)) is a.s. continuous on R+. Furthermore, E[sup[ak,T ] λ(zak,V
r
ak

(t))] < ∞ for all T > ak : by (S1)
and Step 1, sup[ak,T ] λ(zak,V

r
ak

(t)) ≤ C(1 + sup[0,T ](zak,V
r
ak

(t) − vmin)
p) ≤ C(1 + [V r

ak
− vmin + rT − rak

+ C(T −
ak))e

C(T −ak)]p), which has a finite expectation because E[(V r
ak

− vmin)
p] < ∞ by Proposition 6. We easily deduce that

indeed, Sk has the continuous density gk(t) = E[λ(zak,V
r
ak

(t)) exp(− ∫ t

ak
λ(zak,V

r
ak

(s))ds)] on [ak,∞).
Step 4. Setting hr(t) = ∑

k≥0 gk(t)1{t∈[ak,ak+1)}, it holds that hr(t) = E[λ(V r
t )] for a.e. t ≥ 0.

On the one hand, we have J r
t = ∫ t

0

∫ ∞
0 1{u≤λ(V r

s−)}π(ds,du), so that E[J r
t ] = ∫ t

0 E[λ(V r
s )]ds. On the other hand,

since V r has at most one jump in each time interval [ak, ak+1), one easily checks that J r
t = ∑

k≥0 1{Sk≤t,Sk<ak+1}.
Hence E[J r

t ] = ∑
k≥0 P(Sk ≤ t ∧ ak+1), so that E[J r

t ] = ∫ t

0 (
∑

k≥0 gk(s)1{s≤ak+1})ds = ∫ t

0 hr(s)ds. We thus have∫ t

0 E[λ(V r
s )]ds = ∫ t

0 hr(s)ds for all t ≥ 0, which completes the step.
Step 5. Observe that for T1 < T2 < · · · the successive instants of jump of (V r

t )t≥0, we have∑
�≥1

δT�+θ =
∑
k≥1

δSk+θ1{Sk+θ<ak+1+θ},

because for each k ≥ 1, Sk is the first instant of jump of (V r
t )t≥0 after ak and since (V r

t )t≥0 has at most one jump during
[ak, ak+1).

Hence, coming back to the notation of the statement,

νr
N =

N∑
i=1

∑
k≥1

δ(T i
k +θ,Xi)

=
N∑

i=1

∑
k≥0

1{Si
k+θ<bk+1}δ(Si

k+θ,Xi)
,

with bk = ak + θ . We thus can directly apply Lemma 12 to conclude that indeed, for any t ≥ 0, limN→∞ N−1/2At(ν
r
N ) =

	t(h
θ
r ) a.s., where hθ

r (t) = ∑
k≥0 gk(t − θ)1{t∈[ak+θ,ak+1+θ)} (observe that the density of Si

k + θ is gk(t − θ)1{t≥θ} =
gk(t − θ)1{t≥ak+θ}), whence indeed hθ

r (t) = E[λ(V r
t−θ )]1{t≥θ} by Step 4. �

Before concluding, we need a few preliminaries on the functional 	.

Lemma 14. For any measurable locally bounded g, g̃ : [0,∞) �→R+ and all t ≥ 0,

	t(g) ≤ √
2ρ‖H‖∞

∫ t

0

√
g(s)ds,

∣∣	t(g) − 	t(g̃)
∣∣ ≤ √

2ρ‖H‖∞
∫ t

0

∣∣√g(s) − √
g̃(s)

∣∣ds,

and, for 0 ≤ t ≤ t + δ,

0 ≤ 	t+δ(g) − 	t(g) ≤ √
2ρ

(∫ t

0

√
g(s)ds

)
sup

x,y∈[0,L],|x−y|≤ρδ

∣∣√H(x) − √
H(y)

∣∣
+ √

2ρ‖H‖∞
∫ t+δ

t

√
g(s)ds.

Proof. The two first inequalities follow from the facts that for all β ∈ Bt , we have It (g,β) ≤ √
2ρ‖H‖∞

∫ t

0

√
g(s)ds and

|It (g,β) − It (g̃, β)| ≤ √
2ρ‖H‖∞

∫ t

0 |√g(s) − √
g̃(s)|ds, both facts being obvious by definition of It , see Definition 4.

The last one has already been verified at the end of the proof of Lemma 12. �
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We finally provide the

Proof of Theorem 8. Point (i). First assume that we have κ : [0,∞) �→ [0,∞) continuous, non-decreasing, starting from
0 and such that κt = w	t((h

θ
κ(s))s≥0) for all t ≥ 0, where hθ

κ(t) = E[λ(V κ
t−θ )]1{t≥θ}, (V κ

t )t≥0 being the unique solution to
(2) with r = κ . Then (V κ

t )t≥0 is obviously a solution to (3). It is [vmin,∞)-valued and satisfies E[sup[0,T ](V κ
t −vmin)

p] <

∞ for all T > 0 by Proposition 6, and we indeed have κt = w	t((E[λ(V κ
s−θ )]1{s≥θ})s≥0).

Consider a [vmin,∞)-valued solution (Vt )t≥0 to (3) such that E[sup[0,T ](Vt − vmin)
p] < ∞ for all T > 0 (so that

(E[λ(Vs−θ )]1{s≥θ})s≥0 is locally bounded thanks to (S1)) and define κt = w	t((E[λ(Vs−θ )]1{s≥θ})s≥0), which is non-
decreasing and continuous by Lemma 14 (because H is continuous by (S1)). Then (Vt )t≥0 solves (2) with r = κ , so that
(Vt )t≥0 = (V κ

t )t≥0. Consequently, κt = w	t((E[λ(V κ
s−θ )]1{s≥θ})s≥0) for all t ≥ 0 as desired.

Point (ii) when θ > 0. We first recall, see Definition 4, that for any g : [0,∞) �→ R+, any t ≥ 0, 	t(g) ac-
tually depends only on (g(s))s∈[0,t]. Moreover, 	t(g) = 0 if g(s) = 0 for all s ∈ [0, T ]. Consequently, κt =
w	t((E[λ(Vs−θ )]1{s≥θ})s≥0) = 0 for all t ∈ [0, θ ] and (3) rewrites, during [0, θ ],

Vt = V0 +
∫ t

0
F(Vs)ds +

∫ t

0

∫ ∞

0
(vmin − Vs−)1{u≤λ(Vs−)}π(ds,du).

This equation has a pathwise unique solution, see Proposition 6, which is furthermore [vmin,∞)-valued and we have
E[sup[0,θ](Vt − vmin)

p] < ∞. This determines E[λ(Vs)] for all s ∈ [0, θ ], and this quantity is well-defined and bounded,
since λ(v) ≤ C(1 + (v − vmin))

p for all v ≥ vmin.
Hence κt = w	t((E[λ(Vs−θ )]1{s≥θ})s≥0) is entirely determined for all t ∈ [θ,2θ ]. It is furthermore non-decreasing

and continuous (by Lemma 14, since H is continuous and since E[λ(Vs)] is bounded on [0, θ ]). And (3) rewrites, on
[θ,2θ ],

Vt = Vθ +
∫ t

θ

F (Vs)ds + (κt − κθ ) +
∫ t

θ

∫ ∞

0
(vmin − Vs−)1{u≤λ(Vs−)}π(ds,du).

This equation has a pathwise unique solution, see Proposition 6, which is furthermore [vmin,∞)-valued and we have
E[sup[θ,2θ ](Vt − vmin)

p] < ∞. This determines E[λ(Vs)] for all s ∈ [θ,2θ ] (and this quantity is well-defined and
bounded).

Hence κt = w	t((E[λ(Vs−θ )]1{s≥θ})s≥0) is entirely determined for all t ∈ [2θ,3θ ]. It is furthermore non-decreasing
and continuous. And (3) rewrites, on [2θ,3θ ],

Vt = V2θ +
∫ t

2θ

F (Vs)ds + (κt − κ2θ ) +
∫ t

2θ

∫ ∞

0
(vmin − Vs−)1{u≤λ(Vs−)}π(ds,du).

This equation has a pathwise unique solution, see Proposition 6, etc.
Working recursively on the time intervals [kθ, (k + 1)θ ], we see that there is a pathwise unique (Vt )t≥0 solving (3), it

is [vmin,∞)-valued and satisfies E[sup[0,T ](Vt − vmin)
p] < ∞ for all T > 0.

Point (ii) when θ = 0 under (S2). We fix T > 0 and work on [0, T ].
First, for any solution (Vt )t≥0 to (3) such that E[sup[0,T ](Vt − vmin)

p] < ∞, there exists M > 0 such that a.s.,
sup[0,T ] Vt ≤ M . Indeed, we observe that K = sup[0,T ] 	t(E[λ(Vs)])s≥0) < ∞ by Lemma 14 and since λ(v) ≤ C(1 +
(v − vmin))

p . Hence, Vt ≤ V0 + K + C
∫ t

0 (1 + (Vs − vmin))ds by (S1). Since V0 is bounded by (S2), the conclusion
follows from the Gronwall Lemma.

Next, we prove that for any solution (Vt )t≥0 to (3) such that E[sup[0,T ](Vt − vmin)
p] < ∞, there exists c > 0 such that

inf[0,T ]E[λ(Vt )] ≥ c. To this end, we consider M such that a.s., Vt ∈ (vmin,M] for all t ∈ [0, T ], we set K = max[vmin,M] λ
and we introduce

�T = {
V0 > α and π

([0, T ] × [0,K]) = 0
}
.

By assumption, P(�T ) = e−KT f0((α,∞)) > 0. And on �T ,
∫ T

0

∫ ∞
0 Vs−1{u≤λ(Vs−)}π(ds, du) = 0, since λ(Vs−) ≤ K

a.s. for all s ∈ (0, T ]. Consequently, still on �T ,

Vt = V0 +
∫ t

0
F(Vs)ds + w	t

((
E

[
λ(Vs)

])
s≥0

) ≥ V0 +
∫ t

0
F(Vs)ds

for all t ∈ [0, T ]. Since V0 > α and since F(α) ≥ 0 by (S2), we conclude that, on �T , inf[0,T ] Vt > α a.s. The conclusion
follows, since λ is continuous, increasing and strictly positive on (α,∞): inf[0,T ] E[λ(Vt )] ≥ E[1�T

λ(inf[0,T ] Vt)] > 0.
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We now prove uniqueness. For two [vmin,∞)-valued solutions (Vt )t≥0 and (Ṽt )t≥0 to (3) such that E[sup[0,T ]((Vt −
vmin)

p + (Ṽt − vmin)
p] < ∞, we consider M > 0 such that both Vt and Ṽt a.s. belong to [vmin,M] for all t ∈ [0, T ] and

c > 0 such that both E[λ(Vt )] ≥ c and E[λ(Ṽt )] ≥ c for all t ∈ [0, T ]. We write E[|Vt − Ṽt |] ≤ I 1
t + I 2

t + I 3
t , where

I 1
t = E

[∫ t

0

∣∣F(Vs) − F(Ṽs)
∣∣ds

]
, I 2

t = w
∣∣	t

((
E

[
λ(Vs)

])
s≥0

) − 	t

((
E

[
λ(Ṽs)

])
s≥0

)∣∣,
I 3
t = E

[∫ t

0

∫ ∞

0

∣∣(vmin − Vs−)1{u≤λ(Vs−)} − (vmin − Ṽs−)1{u≤λ(Ṽs−)}
∣∣π(ds,du)

]
.

Since F is globally Lipschitz on [vmin,M] by (S1), I 1
t ≤ C

∫ t

0 E[|Vs − Ṽs |]ds. By Lemma 14, I 2
t ≤ C

∫ t

0 |E[λ(Vs)]1/2 −
E[λ(Ṽs)]1/2|ds ≤ C

∫ t

0 |E[λ(Vs)] − E[λ(Ṽs)]|ds, since x �→ √
x is Lipschitz continuous on [c,∞). Hence I 2

t ≤
C

∫ t

0 E[|Vs − Ṽs |]ds, since λ is globally Lipschitz on [vmin,M] by (S2). Finally, for all t ∈ [0, T ],

I 3
t ≤

∫ t

0
E

[(
λ(Vs) ∧ λ(Ṽs)

)|Vs − Ṽs | +
∣∣λ(Vs) − λ(Ṽs)

∣∣((Vs − vmin) + (Ṽs − vmin)
)]

ds

≤ C

∫ t

0
E

[|Vs − Ṽs |
]

ds,

since λ is bounded and globally Lipschitz on [vmin,M]. All in all, E[|Vt − Ṽt |] ≤ C
∫ t

0 E[|Vs − Ṽs |]ds, and pathwise
uniqueness follows from the Gronwall lemma.

To prove existence, we fix K > 0 and we set λK = λ(· ∧ K). Using a Picard iteration, it is not too difficult to prove
existence of a [vmin,∞)-valued and bounded (by a deterministic constant) solution (V K

t )t∈[0,T ] to

V K
t = V0 +

∫ t

0
F

(
V K

s

)
ds + 	t

((
E

[
λK

(
V K

s

)])
s≥0

)
) +

∫ t

0

∫ ∞

0

(
vmin − V K

s−
)
1{u≤λK(V K

s−)}π(ds,du).

The main steps are as follows: we set V
K,0
t = V0 for all t ∈ [0, T ] and, for k ≥ 0, and t ∈ [0, T ], we consider the unique so-

lution to V
K,k+1
t = V0 + ∫ t

0 F(V
K,k+1
s )ds + 	t((E[λK(V

K,k
s )])s≥0))+ ∫ t

0

∫ ∞
0 (vmin − V

K,k+1
s− )1{u≤λK(V

K,k+1
s− )}π(ds,du).

Using that V0 is bounded, that λK is bounded, that F(vmin) ≥ 0 and that F(v) ≤ C(1 + (v − vmin)), one easily verifies
that V

K,k
t ≥ vmin a.s. for all t ∈ [0, T ] and all k ≥ 0 and that, for some constant MK > 0, sup[0,T ] supk≥0 V

K,k
t ≤ MK

a.s. Then, one easily deduces, as a few lines above, that there is cK > 0 such that inf[0,T ] infk≥0 E[λ(V
K,k
t )] ≥ cK . The

conclusion then follows by classical arguments using the same computation as in the proof of uniqueness.
We next prove that there is M > 0 such that a.s., supK≥1 sup[0,T ] V K

t ≤ M . We start from

E
[
V K

t

] = E[V0] +
∫ t

0
E

[
F

(
V K

s

)]
ds + 	t

((
E

[
λK

(
V K

s

)])
s≥0

) +
∫ t

0
E

[(
vmin − V K

s

)
λK

(
V K

s

)]
ds

≤ E[V0] +
∫ t

0

(
CE

[
1 + (

V K
s − vmin

)] + C

√
E

[
λK

(
V K

s

)] +E
[(

vmin − V K
s

)
λK

(
V K

s

)])
ds.

We used that F(v) ≤ C(1 + (v − vmin)) and Lemma 14. But, the value of C (not depending on K) being allowed to vary,

C

√
E

[
λK

(
V K

s

)] +E
[(

vmin − V K
s

)
λK

(
V K

s

)] ≤ C + CE
[
λK

(
V K

s

)] −E
[(

V K
s − vmin

)
λK

(
V K

s

)]
≤ C −E

[
λK

(
V K

s

)]
.

For the last inequality, it suffices to note that there is a constant A > 0 (still denoted by C) such that φk(v) = CλK(v) −
(v − vmin)λK(v) ≤ A − λK(v) for all v ∈ [vmin,∞). Indeed, ϕK(v) = φK(v) + λK(v) = (vmin + C + 1 − v)λK(v) is
bounded from above on [vmin,∞), because ϕK(v) ≤ 0 if v ≥ vmin + C + 1 and ϕK(v) ≤ (vmin + C + 1) sup[0,vmin+C+1] λ
else.

All in all, we have checked that for all K ≥ 1, all t ∈ [0, T ],

E
[
V K

t

] ≤ E[V0] +
∫ t

0

(
CE

[
1 + (

V K
s − vmin

)] −E
[
λK

(
V K

s

)])
ds. (7)
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In particular, E[V K
t ] ≤ E[V0]+

∫ t

0 CE[1+(V K
s −vmin)]ds, whence supK≥1 sup[0,T ] E[V K

t ] < ∞ by the Gronwall lemma.
But then, we use (7) again to write

∫ T

0
E

[
λK

(
V K

s

)]
ds ≤ E[V0] −E

[
V K

T

] + C

∫ T

0
E

[
1 + (

V K
s − vmin

)]
ds

Since −E[V K
T ] ≤ −vmin, we find that supK≥1

∫ T

0 E[λK(V K
s )]ds < ∞. By Lemma 14, we conclude that D =

supK≥1 sup[0,T ] 	t((E[λK(V K
s )])s≥0) < ∞. Consequently, for all K ≥ 1, all t ∈ [0, T ], we have V K

t ≤ V0 + C
∫ t

0 (1 +
(V K

s −vmin))ds +D (because F(v) ≤ C(1+ (v −vmin))). Using that V0 is bounded and the Gronwall lemma, we deduce
that there is a deterministic constant M such that a.s., supK≥1 sup[0,T ] V K

t ≤ M as desired.
Finally, we conclude the existence proof: for any K > M , we a.s. have λK(V K

t ) = λ(V K
t ) on [0, T ], so that (V K

t )t∈[0,T ]
solves (3). Furthermore, (V K

t )t∈[0,T ] is [vmin,∞)-valued and bounded, whence a fortiori E[sup[0,T ](V K
t − vmin)

p] <

∞. �

7. On stationary solutions for the limit soft model

The goal of this section is to show, with the help of some numerical computations, that, depending on the parameters,
there may generically be 1 or 3 stationary solutions for the limit soft model (and sometimes 2 in some critical cases). In
the whole section, we assume that F(v) = I − v for some I > 0. We also assume for simplicity that θ = 0 (no delay),
that vmin = 0 and that H(0) = max[0,1] H , so that the nonlinear SDE (3) rewrites

Vt = V0 +
∫ t

0

(
I − Vs +

√
γE

[
λ(Vt )

])
ds −

∫ t

0

∫ ∞

0
Vs−1{u≤λ(Vs−)}π(ds,du), (8)

where γ = 2ρH(0)w2 > 0. Finally, although such an explicit form is necessary only at the end of the section, we assume
that λ(v) = (v −α)

p
+ for some α > 0 and some p ∈N∗. Assumptions (S1) and (S2) are satisfied (for a large class of initial

conditions) if I ≥ α, but we may also study stationary solutions when I ∈ (0, α).

Definition 15. We say that g ∈ P([0,∞)) is an invariant distribution for (8) if, setting m = ∫ ∞
0 λ(v)g(dv) and a =

I + √
γm, the solution (V a

t )t≥0 to

V a
t = V0 +

∫ t

0

(
a − V a

s

)
ds −

∫ t

0

∫ ∞

0
V a

s−1{u≤λ(V a
s−)}π(ds,du) (9)

starting from some g-distributed V0 is such that L(V a
t ) = g for all t ≥ 0.

For a > 0, we define the constant

Ka =
∫ a

0

1

v − a
exp

(
−

∫ v

0

λ(x)

a − x
dx

)
dv.

We clearly have Ka = ∞ if a ∈ (0, α], because λ = 0 on [0, α], and Ka ∈ (0,∞) for all a > α (because λ is continuous
and λ(a) > 0). As in [17, Proposition 21], we have the following result.

Proposition 16. Fix a > 0. The linear SDE (9) has a pathwise unique solution (for any initial condition V0 ≥ 0), and has
a unique invariant probability measure ga ∈P([0,∞)), given by

ga = δa if a ∈ (0, α] and ga(dv) = 1

Ka(v − a)
exp

(
−

∫ v

0

λ(x)

a − x
dx

)
1{v∈[0,a)} dv if a > α.

Furthermore, we have
∫ ∞

0 λ(v)ga(dv) = K−1
a (with the convention that 1/∞ = 0 when a ∈ (0, α]).

The conditions are slightly different from those of [17, Proposition 21] (mainly because α = 0 there), but the extension
is straightforward.
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Remark 17. (i) g ∈ P([0,∞)) is an invariant distribution for (8) if and only if there is a > 0 such that g = ga and
ϕγ (a) = I , where ϕγ (a) = a − √

γ /Ka .
(ii) For any fixed γ > 0, the function ϕγ is continuous on [0,∞), one has ϕγ (0) = 0 and lima→∞ ϕγ (a) = ∞, so

that for any I > 0, (8) has at least one invariant distribution g, which is non-trivial if I > α (because g = ga for some
a ≥ ϕγ (a) = I > α).

Proof. Point (i) follows from Definition 15 and Proposition 16. Concerning point (ii), let us first rewrite, using the
substitutions v = au and x = ay,

Ka =
∫ 1

0

1

1 − u
exp

(
−

∫ u

0

λ(ay)

1 − y
dy

)
du.

It is then easy to prove that a �→ Ka is continuous (and decreasing) on (α,∞) and that lima↓α Ka = ∫ 1
0 (1−u)−1 du = ∞,

so that a �→ K
−1/2
a (and thus ϕγ ) is continuous on [0,∞). We obviously have ϕγ (0) = 0, while lim∞ ϕγ = ∞ follows

from the fact that Ka ≥ e−λ(1)a−1 for all a ≥ 2. Indeed, since λ is non-decreasing and since
∫ 1/a

0 (1−y)−1 dy ≤ ∫ 1/2
0 (1−

y)−1 dy = log 2 ≤ 1, we find

Ka ≥
∫ 1

0
exp

(
−λ(au)

∫ u

0

dy

1 − y

)
du ≥

∫ 1/a

0
exp

(−λ(au)
)

du ≥ e−λ(1)

a

as desired. �

Concerning the uniqueness/non-uniqueness of this invariant distribution, the theoretical computations seem quite in-
volved and we did not succeed. We thus decided to compute numerically a �→ ϕγ (a) in a few situations.

Let us first compute a little, recalling that λ(v) = (v −α)
p
+ with p ∈N∗. Let us define gp(x) = x + x2/2 + · · ·+ xp/p

and observe that
∫ z

0 (1 − x)−1xp dx = − log(1 − z) − gp(z) for all z ∈ [0,1). Separating the cases u ≤ α/a and u > α/a

and using, in the latter case, the substitution x = (ay − α)/(a − α), one verifies that, for all u ∈ (0,1),∫ u

0

λ(ay)

1 − y
dy = −(a − α)p

[
log

(
a

a − α
(1 − u)

)
+ gp

(
au − α

a − α

)]
1{u>α/a}.

Then, a few computations (using the substitution z = (au − α)/(a − α)) show that, for all a > α,

Ka =
∫ α/a

0

du

1 − u
+

∫ 1

α/a

du

1 − u

(
a

a − α
(1 − u)

)(a−α)p

exp

(
(a − α)pgp

(
au − α

a − α

))
,

Ka = log
a

a − α
+

∫ 1

0

dz

1 − z
(1 − z)(a−α)p exp

(
(a − α)pgp(z)

)
.

(10)

Naive methods to compute Ka numerically do not work well, because with a = α (actually, the problem is when a−α > 0
is very small), one has to approximate

∫ 1
0 (1 −u)−1 du: a Monte-Carlo method with i.i.d. uniform random variables Ui on

[0,1] gives n−1 ∑n
1(1−Ui)

−1 � 15 when n = 106, while a Riemann approximation gives
∑n

1 n−1(1− (i/n))−1 � 14.39
with n = 106. Both values are very far from the true one, which is ∞. One possibility is to proceed to the substitution
z = 1 − e−r/(a−α)p , which gives

Ka = log
a

a − α
+ 1

(a − α)p

∫ ∞

0
exp

(−r + (a − α)pgp

(
1 − e−r/(a−α)p

))
dr. (11)

But this expression has other defaults. The numerical computations below use a Monte-Carlo method based on (11) (with
exponential random variables with parameter 1) when a ∈ (α,α + 1) and based on (10) (with uniform random variables
on [0,1]) when a ≥ α + 1.

Let us comment on Figure 4. Recall that for γ > 0 and I > 0, each stationary solution to (8) corresponds to one
solution a to ϕγ (a) = 1.

• If λ(v) = v2, for any γ > 0, the equation ϕγ (a) = I (with I > 0 fixed) seems to have exactly one solution, for all
I > 0.

• If λ(v) = (v − 1)2+, λ(v) = v4 or λ(v) = (v − 1)4+, it seems that there are 0 < γ1 < γ2 (e.g., γ1 � 1.5 and γ2 � 12
when λ(v) = (v − 1)4+) such that
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Fig. 4. Plots of a �→ ϕγ (a) for different values of γ , when λ(v) = v2 (up left), λ(v) = (v − 1)2+ (up right), λ(v) = v4 (down left), λ(v) = (v − 1)4+
(down right).

(a) if γ ∈ (0, γ1), then for all I > 0, ϕγ (a) = I has exactly one solution,
(b) if γ ∈ (γ1, γ2), then there are 0 < Jγ < Iγ such that, if I ∈ (0, Jγ ), ϕγ (a) = I has exactly one solution, if I ∈

(Jγ , Iγ ), ϕγ (a) = I has exactly three solutions and if I > Iγ , ϕγ (a) = I has exactly one solution,
(c) if γ ∈ (γ2,∞), then there is Iγ > 0 such that for all I ∈ (0, Iγ ), ϕγ (a) = I has exactly three solutions and if I > Iγ ,

ϕγ (a) = I has exactly one solution (which is nontrivial).

8. Simulations

In all the simulations below, we have chosen the following values: the minimum potential is vmin = 0, the length of the
dendrites is L = 1, the repartition density is H(x) = 2(1 − x) on [0,1], the front velocity is ρ = 1 and the excitation
parameter is w = 1. Concerning the particle systems presented in Section 1.1, we consider a fully mean-field interaction,
i.e. pn = 1 and N = n.

The code we use to simulate the soft particles system presented in Section 1.1 relies on a rejection method. The only
difficulty concerns the treatment of the dendrites, that we need to incrementally update with new fronts. This is based on
the recent algorithm of Yakupov and Buzdalov [39].

8.1. An isolated dendrite with i.i.d. impulses

We will observe in the next subsections a small temporal shift between the particle system and its mean-field limit. To
explain this phenomenon, we consider a single dendrite with length 1, on which two fronts start from each Xi at time Ti

(for i = 1, . . . , n), where the family (Ti,Xi)i≥1 is i.i.d. with density 1{t∈[0,1]} dtH(x)dx. The situation is thus very simple
and, as seen in Proposition 2, At(

∑n
i=1 δ(Ti ,Xi)) represents the number of fronts hitting the soma of the dendrite before

time t . By Lemma 12, Yn
t = n−1/2At(

∑n
i=1 δ(Ti ,Xi)) goes to yt = 	t((1{s∈[0,1]})s≥0) as n → ∞. By Remark 5, we have

yt = √
2ρH(0)

∫ t

0
1{s∈[0,1]} ds = 2 min(t,1).
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Fig. 5. Isolated dendrite.

We want to show that there is a systematic bias. So, we fix K = 10,000, we simulate K i.i.d. copies (Y
i,n
t )t∈[0,2] of the

process (Y n
t )t∈[0,2], for different values of n, namely n = 10,000, n = 40,000 and n = 80,000. On Figure 5, we plot, as a

function of time t ∈ [0,2], the average values K−1 ∑K
i=1 Y

i,n
t − yt . We observe a systematic negative bias, which remains

important for large values of n. For example at time 1 we have a bias around −0.14 (i.e. 7%) when n = 10,000 and −0.08
(i.e. 4%) when n = 80,000.

We see that a few late fronts arrive after time 1 (while the limiting value stops increasing at time 1) and this slightly
makes decrease the bias.

8.2. The soft model without delay

Here we consider the soft model with the following parameters: the delay is θ = 0, the rate function is λ(v) = max(v −
0.2,0)8, the drift function is F(v) = 1 − 0.1v and the initial distribution is f0(v) = 1{v∈[0,1]}. On Figure 6.a, we plot
on the first picture the maps t �→ n−1 ∑n

i=1 λ(V
i,n
t ), for the particle system (soft model) described in Section 1.1 with

n = 40,000 particles, as well as t �→ E[λ(Vt )], for (Vt )t≥0 the unique solution to the nonlinear SDE (3). We observe that
the two curves are very similar, but there is a small temporal shift. This is related to what we explained in Section 8.1.
The second picture represents (g(t, v))t≥0,v≥0, where g(t, ·) is the density of the law of Vt . The third picture represents
(gn(t, v))t≥0,v≥0, still with n = 40,000, where gn(t, ·) is a smooth version of the empirical measure n−1 ∑n

i=1 δ
V

i,n
t

.
Here again, the second and third pictures seem rather close, up to a small temporal shift. On Figure 6.b, the first picture
represents v �→ g(t, v) (with t = 0.5) and v �→ gn(t, v) (with t = 0.526). So, we took into account the temporal shift to
make the histogram fit the continuous curve as well as possible. The second picture is similar, with t = 1 and t = 1.046.
Finally, Figure 6.c contains a plot of t �→ E[λ(Vt )] and of t �→ n−1 ∑n

i=1 λ(V
i,n
t ) for different values of n. We see that

the temporal shift decreases as n increases, but the convergence seems to be rather slow.
Let us mention that g(t, v) is computed here by solving numerically the PDE associated to the nonlinear SDE (3),

using an Euler scheme relying on finite differences in t and in v, with a regular grid. There is a source term at vmin = 0
involving the integral

∫ ∞
0 λ(v)g(t, v)dv, that is incorporated in the spatial finite difference at the extremity v = 0 of the

space-grid. We take absolute values and normalize at each time step to ensure the positivity of the solution and that its
total mass equals 1. All the figures involving this scheme were compared to a simple interacting particle system (see the
next subsection) and we found very similar results.

8.3. The soft model with delay

Here we proceed exactly as in Section 8.2, with the same parameters, except that the delay θ = 0.4. The results are
presented in Figure 7. The unpleasant temporal shift is slightly smaller.

Let us mention that we use here a different scheme to approximate the law g(t, ·) of Vt , based on a simple in-
teracting particle system (V̄

i,K
t )i=1,...,K,t≥0, with K = 106 particles. Indeed, the scheme of the previous section was

not stable with a nonzero delay. Roughly, each particle solves the same SDE as (3) (with i.i.d. initial conditions and
driving Poisson measures), but with the nonlinear term

∫ (t−θ)∨0
0 (γE[λ(Vs)])1/2 ds replaced by its empirical version∫ (t−θ)∨0

0 (γK−1 ∑K
i=1 λ(V̄

i,K
s ))1/2 ds. Of course, we also have to proceed to a time discretization.
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Fig. 6. Soft model, θ = 0, λ(v) = (v − 0.2)8+ , F(v) = 1 − 0.1v, f0(v) = 1[0,1](v).

8.4. The soft model with another rate function

Here again, we proceed exactly as in Section 8.2, with the same parameters (in particular θ = 0), except that the rate
function λ(v) = v8 does not satisfy our assumptions, since α = inf{v ≥ vmin : λ(v) > 0} = vmin (recall that vmin = 0). The
results are presented in Figure 8 and are not less convincing than those of the previous subsections. It thus seems that our
assumption that α > vmin is not necessary.

8.5. The hard model

Concerning the hard model, we did not code the particle system described in Section 1.1. However, we would like to
validate numerically the explicit formula of Theorem 11. We consider the following set of parameters: F(v) = I = 0.5,
θ = 0, vmin = 0, vmax = 1.2, and

f0(v) =
[

1

2vmax
+ π

4vmax
sin

πv

vmax

]
1[0,vmax](v).

We compute numerically (κt )t≥0 by solving the ODE κ ′
t = G0(vmax − I t − κt ) (with κ0 = 0), using an Euler scheme,

until time a > 0 such that κa + Ia = vmax and by using that κ ′ is a-periodic, see the proof of Theorem 11. On Figure 9,
we plot in red (most regular) the curve t �→ κ ′

t . Recall that κ ′
t represents the excitation rate, i.e. the increase of potential

of the neurons, during [t, t + dt], due to excitation.
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Fig. 7. Soft model, θ = 0.4, λ(v) = (v − 0.2)8+ , F(v) = 1 − 0.1v, f0(v) = 1[0,1](v).

Next, the hard model can be seen as the soft model with the choice λ(v) = ∞1{v>vmax}, that we approximate by
λ(v) = max(v−0.2,0)300. We then the mean-field particle system introduced in Section 8.3) with K = 200,000 particles,
to approximate numerically t �→ E[λ(Vt )], (Vt )t≥0 being the solution to the nonlinear SDE (3). And we plot, in blue (less
regular), the approximation of t �→ 2

√
E[λ(Vt )], which also represents the excitation rate, since it is the derivative of

t �→ 	t((E[λ(Vs)])s≥0) = 2
∫ t

0

√
E[λ(Vs)]ds, see Remark 5 and recall that H(0) = 2.

The two curves are close to each other and this is rather convincing concerning our explicit formula. However the
precision is not high, which is not surprising due to the (numerical) singular behavior of λ around v = vmax.
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Fig. 8. Soft model, θ = 0, λ(v) = v8, F(v) = 1 − 0.1v, f0(v) = 1[0,1](v).

Fig. 9. Soft and hard models with θ = 0, F ≡ 0.5, vmax = 1.2, λ(v) = (v − 0.2)300+ and f0(v) = [ 1
2vmax

+ π
4vmax

sin πv
vmax

]1[0,vmax](v).
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