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Abstract. We consider the statistical inverse problem to recover f from noisy measurements Y = Tf +σξ where ξ is Gaussian white
noise and T a compact operator between Hilbert spaces. Considering general reconstruction methods of the form f̂α = qα(T ∗T )T ∗Y
with an ordered filter qα , we investigate the choice of the regularization parameter α by minimizing an unbiased estimate of the pre-
dictive risk E[‖Tf −T f̂α‖2]. The corresponding parameter αpred and its usage are well-known in the literature, but oracle inequalities
and optimality results in this general setting are unknown. We prove a (generalized) oracle inequality, which relates the direct risk
E[‖f − f̂αpred‖2] with the oracle prediction risk infα>0 E[‖Tf − T f̂α‖2]. From this oracle inequality we are then able to conclude
that the investigated parameter choice rule is of optimal order in the minimax sense.

Finally we also present numerical simulations, which support the order optimality of the method and the quality of the parameter
choice in finite sample situations.

Résumé. Nous considérons le problème inverse stochastique de reconstruire f à partir de données bruitées Y = Tf + σξ où ξ est
un bruite blanc et T un opérateur compact entre espaces de Hilbert. Considérant des méthodes de reconstruction générales de la
forme f̂α = qα(T ∗T )T ∗Y avec un filtre ordonné qα , nous examinons le choix du paramètre de régularisation α en minimisant un
estimateur non biaisé du risque prédictif E[‖Tf − T f̂α‖2]. Le paramètre correspondant αpred et son utilisation sont bien connus dans
la littérature mais les inégalites oracles et les résultats d’optimalité dans ce cadre général sont inconnus. Nous prouvons une inégalité
oracle (généralisée), qui relie le risque direct E[‖f − f̂αpred‖2] au risque de l’oracle de prédiction infα>0 E[‖Tf − T f̂α‖2]. A partir
de cette inégalité oracle nous sommes alors capable de conclure que la règle de choix du paramètre examiné est d’ordre optimale au
sens minimax.

Finalement nous présentons aussi des simulations numériques qui confirment l’optimalité de l’ordre de la méthode et la qualité du
choix du paramètre dans des situations discrètes.
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1. Introduction

Suppose we want to recover an unknown function f ∈X from noisy measurements

Y = Tf + σξ, (1)

where T : X → Y is an operator between Hilbert spaces X and Y , ξ is a standard Gaussian white noise process and
σ > 0 denotes the noise level. In fact, model (1) has to be understood in a weak sense as ξ /∈ Y , i.e. for each y ∈ Y we
have access to observations of the form

Yy := 〈Tf,y〉Y + σ 〈ξ, y〉Y∗×Y ,

where 〈ξ, y〉Y∗×Y ∼N (0,‖y‖2
Y ) and E[〈ξ, y1〉Y∗×Y 〈ξ, y2〉Y∗×Y ] = 〈y1, y2〉Y for all y1, y2 ∈ Y . Models of the form (1)

underly a plenitude of applications, see e.g. O’Sullivan [51], and have been considered by Mathé and Pereverzev [46],
Bissantz et al. [8], Ingster et al. [31,32] and Werner [61].
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Throughout the paper we will assume that the operator T is injective, compact and Hilbert–Schmidt, i.e. the squares
of its singular values are summable. Especially, this implies that its singular values tend to 0 and hence the inversion of
T is unstable, i.e. the problem to recover f from (1) is ill-posed and regularization is needed, see Cavalier [11], Engl
et al. [22] and the references therein. In the literature many different approaches for the estimation of f can be found,
including methods based on a singular value decomposition (SVD) of T (see e.g. [13,33,34,42]), wavelet-vaguelette [21]
and vaguelette-wavelet methods [1], and Galerkin-type methods [16].

In this paper we follow a common paradigm and consider regularization methods written in terms of an ordered filter
qα : [0,‖T ∗T ‖]→ R parametrized by α > 0 (see e.g. Definition 1 for the precise requirements on qα), meaning that the
regularized solution is given by

f̂α := qα

(
T ∗T

)
T ∗Y. (2)

Regularization methods of the form (2) include famous examples like spectral cut-off and Tikhonov regularization, and
have been studied extensively in the literature, see Engl et al. [22] and the references therein, and Bissantz et al. [8].

Choosing an appropriate parameter α in (2) is an important problem in regularization theory as it dramatically influ-
ences the performance of the estimator f̂α . Bissantz et al. [8] show that estimators of the form (2) are order-optimal
over certain smoothness classes W ⊂ X , if the parameter α = α∗ is chosen in a reasonable a-priori way (depend-
ing on properties of W). This means that f̂α∗ achieves the best possible rate of convergence w.r.t. the direct risk
R(α,f ) := E[‖f̂α − f ‖2

X ] in these classes. In practice, the parameter α has to be chosen without any knowledge of
f (and hence of W), which makes a-priori parameter choice rules useless. Therefore, a-posteriori parameter choice rules
are of interest, as they make only use of the data Y and the noise level σ > 0. As a-posteriori parameter choice rules have
to adapt to the unknown properties of W (and hence of f ), this issue is also known as adaptivity. For simplicity, we will
assume here that σ is known. In practice, the parameter σ can typically be estimated sufficiently fast from the data or the
measurement setting (see e.g. [19,29,53]). We will discuss this situation in more detail in Section 6.

A variety of a-posteriori parameter choice rules have been proposed in the literature, including the discrepancy prin-
ciple [9,17,41,49], generalized cross-validation [24,40,59], the Lepskiı̆-type balancing principle [36,44,48,63] and many
more. We refer to Bauer and Lukas [4] for a recent overview and numerical comparison. General adaptivity in statistical
inverse problems has also been treated in Goldenshluger [23], Tsybakov [56] and Cavalier et al. [14].

In this paper we deal with a specific method based on empirical risk minimization originally introduced by Mallows
[43] for model selection in linear regression and therefore known as Mallow’s CL. Consider the prediction risk r(α,f ) :=
E[‖T (f̂α − f )‖2

Y ]. Following Stein [55], we find that an (up to a constant independent of α) unbiased estimator for this
quantity is given by

r̂(α,Y ) := ‖T f̂α‖2
Y − 2〈Y,T f̂α〉Y∗×Y + 2σ 2 Trace

(
T ∗T qα

(
T ∗T

))
. (3)

Now the idea is to choose α as a minimizer of r̂(α,Y ), i.e.

αpred ∈ argmin
α>0

r̂(α,Y ).

Note that the functional (3) penalizes the misfit between the model f̂α and the data Y , and furthermore 2σ 2×
Trace(T ∗T qα(T ∗T )) penalizes the number of degrees of freedom of the model. We refer to Birgé and Massart [6,7]
for details and a discussion of other possible penalty terms in (3).

It is known that choosing α = αpred in combination with certain regularization schemes leads to an order optimal
method w.r.t. the prediction risk r(α,f ), see e.g. Li [37], Vogel [57] and Lukas [40]. A very precise result about its
performance, which is also a central ingredient of this paper, can be found in the seminal paper by Kneip [35], who
proves exponential deviation bounds for r(αpred, f ).

Due to ill-posedness, optimality w.r.t. the prediction risk is however a very weak statement, and consequently we are
interested in order optimality w.r.t. the direct risk. This question has hardly been touched in the literature, and to the
authors’ best knowledge the only result is due to Chernousova and Golubev [15] who restrict to finite dimensional spaces
and spectral cut-off regularization. Nevertheless, the choice α = αpred has successfully been applied in image denoising
applications (see e.g. [10,18,39,60]). Moreover, the distributional behavior of αpred has recently been studied by Lucka
et al. [38]. There it has been argued that the choice αpred and choices based on unbiased risk minimization in general do
not seem suitable for inverse problems. Besides, it remains one of the most popular parameter selection rules, due to its
favorable practical performance (cf. [4,15]). In this spirit, we will prove an oracle inequality of the form

R(ᾱ, f )≤�
(

min
α>0

r(α,f )
)

(4)
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for all f ∈W as σ ↘ 0 where � is some (explicit) functional and W ⊂ X some smoothness class. More specifically,
the functional � will be such that we can derive order optimality of f̂αpred under weak assumptions over many classes
W ⊂X . Moreover, we provide a general strategy to prove estimates of the form (4) which is of independent interest and
might be used for the analysis of other a-posteriori parameter choice rules as well. This makes our analytical methodology
substantially different from that in Chernousova and Golubev [15], since the crucial techniques (such as optional stopping
of martingales) there do not apply to general regularization schemes. For more details on oracle inequalities in statistical
inverse problems we refer to Cavalier et al. [12] and Blanchard et al. [9].

The rest of this paper is organized as follows. In the next section we introduce ordered filter based regularization meth-
ods and the empirical parameter choice rule via unbiased prediction risk minimization. The convergence analysis of such
a rule is established by means of an oracle inequality in Section 3 with corresponding conclusions on order optimality. In
Section 4 we present a general methodology for proving oracle inequalities of the form (4) and apply this methodology
for proving the results from Section 3. The performance, as well as the convergence behavior, of the analyzed parameter
choice rule is examined by comparison with other empirical parameter choice rules in a simulation study in Section 5.
We end this paper with some conclusions in Section 6. Some technical details are deferred to Appendices A and B.

2. Filter based regularization and empirical risk minimization

2.1. Ordered filter based regularization methods

Suppose that X and Y are Hilbert spaces, T :X → Y is an injective and compact Hilbert–Schmidt operator, and ξ in (1) is
a standard Gaussian white noise process as described in the Introduction. To simplify the notation we will always assume
that dim(X )=∞, but stress that the case of finite dimensional X (and Y) can be treated similarly. By assumption, there
exists a singular value decomposition (SVD) {(√λk, ek, gk)}k∈N of T where λ1 ≥ λ2 ≥ · · · > 0 are the eigenvalues of
T ∗T , e1, e2, . . . are the corresponding normalized eigenvectors, and gk = λ

−1/2
k T ek for k = 1,2, . . . . By introducing the

notation Yk := 〈gk,Y 〉, ξk := 〈gk, ξ 〉 and fk = 〈f, ek〉, we equivalently transform the model (1) to the Gaussian sequence
model

Yk =
√

λkfk + σξk, k = 1,2, . . . ,with ξk
i.i.d.∼ N (0,1). (5)

As mentioned in the Introduction, we focus on regularization methods of the form (2), which by means of (5) can be
equivalently formulated as

(f̂α)k =
√

λkqα(λk)Yk, k ∈N. (6)

Remark 1. Note that T being Hilbert–Schmidt implies that
∑∞

k=1 λk < ∞, and hence T ∗Y can be interpreted as a
random variable with values in X as

E
[∥∥T ∗ξ

∥∥2
X

]= E

[ ∞∑
k=1

〈ξ, T ek〉2Y
]
=

∞∑
k=1

λkE
[〈ξ, gk〉2Y

]
<∞.

Consequently, f̂α as in (2) is well-defined.

Estimators of the form (2) or (6) can be understood as stable approximations of the well-known least squares estimate
f̂ := (T ∗T )−1T ∗Y (or f̂k = Yk/

√
λk) in the sense of replacing (·)−1 with a function qα(·). To obtain a well-defined and

reasonable regularization method, the functions qα(·) should satisfy proper conditions. We are particularly interested in
case that qα(·) is an ordered filter.

Definition 1. Let qα : [0, λ1] → R, indexed by α ∈ A ⊂ R+, be a sequence of functions. We always assume that A is
bounded and closed, equipped with the subspace topology inherited from R+, and that 0 ∈A.

(i) The family qα,α ∈ A, is called a filter, if there exist constants C′
q,C′′

q > 0 such that for every α ∈ A and every
λ ∈ [0, λ1]

α
∣∣qα(λ)

∣∣≤ C′
q and λ

∣∣qα(λ)
∣∣≤ C′′

q .
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Table 1
Examples of ordered filters

Method qα(λ) C′q C′′q v0 Cv SVD required

Spectral cut-off 1
λ

1[α,∞)(λ) 1 1 ∞ 1 Yes

Tikhonov 1
λ+α 1 1 1 vv(1− v)1−v No

m-iterated Tikhonov (λ+α)m−αm

λ(λ+α)m
m 1 m (v/m)v(1− v/m)m−v No

Landweber (‖T ‖ ≤ 1)
∑�1/α�−1

j=0 (1− λ)j 1 1 ∞ (v/e)v No

Showalter
1−exp(− λ

α )

λ 1 1 ∞ (v/e)v No

(ii) The filter qα,α ∈A, is called ordered, if further the sequence {qα(λk)}∞k=1 is strictly monotone, i.e.

α1 > α2 ⇒ ∀k ∈N: qα1(λk)≤ qα2(λk) and ∃k0 ∈N: qα1(λk0) < qα2(λk0),

and continuous as A � α �→ {qα(λk)}∞k=1 ∈ �2.

The requirement of an ordered filter is rather weak, as it is satisfied by various regularization methods. In Table 1
we give several examples of such. Note that for spectral cut-off regularization, the set A has to be chosen as {λk : k =
1,2, . . .} ∪ {0} in order to guarantee the strict monotonicity and the continuity required by condition (ii) in Definition 1.
In Table 1 we also indicate whether the method can be implemented without SVD. This property is extremely crucial
in practice, especially for large-scale applications, where the computation of an SVD is often impossible given limited
time and resources. The implementation of Showalter’s method, for instance, can avoid SVD by employing Runge–Kutta
schemes, see e.g. Rieder [54]. For a further discussion of these and other methods we refer to the monograph by Engl et
al. [22].

In this paper, we focus on the asymptotic properties of ordered filter based regularization methods as the noise level σ

goes to zero. As noticed by Bakushinskiı̆ [2], the convergence rate of any regularization method can be arbitrarily slow if
the underlying problem is ill-posed. In order to derive convergence rates we need to assume some smoothness about the
unknown truth f . Typically, the smoothness of f is measured relative to the smoothing properties of the forward operator
T in terms of a source condition, i.e. we assume that

f ∈Wφ(ρ) := {
f ∈X : f = φ

(
T ∗T

)
w,‖w‖X ≤ ρ

}
for some constant ρ, (7)

where φ : R+ → R+ is a so-called index function, i.e. φ is continuous, strictly increasing, and φ(0)= 0. For any f ∈ X
there exist a function φ̃ and a constant ρ̃ such that f ∈Wφ̃(ρ̃), cf. Mathé and Hofmann [45].

To take advantage of (7) we furthermore assume that φ is a qualification of the filter qα , this is

sup
λ∈[0,λ1]

φ(λ)
∣∣1− λqα(λ)

∣∣≤ Cφφ(α) for all α ∈A, (8)

with Cφ being a constant depending only on φ. For further details on general source conditions and corresponding
qualifications we refer to Mathé and Pereverzev [47]. As an example consider φ(t)= tv , which is known as Hölder type
source condition of order v > 0:

Wv(ρ) := {
f ∈X : f = (

T ∗T
)v

w,‖w‖X ≤ ρ
}
. (9)

The function φ(t)= tv is a qualification of the filter qα if

sup
λ∈[0,λ1]

λv
∣∣1− λqα(λ)

∣∣≤ Cvα
v for all α ∈A. (10)

In this case, the largest possible v such that (10) is satisfied, is called the classical or polynomial qualification index v0 of
the ordered filter qα . For the methods discussed in Table 1, v0 as well as Cv is also depicted.

For further reference, we collect the assumed properties of f and qα as follows:

Assumption 1.

(i) The true solution f satisfies f ∈Wφ(ρ) as in (7).
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(ii) The function φ is a qualification of the filter qα as in (8).
(iii) The function ψ(x) := xφ−1(

√
x), with φ−1 being the inverse function of φ, is convex.

Remark 2. We stress that, being a standard assumption for convergence analysis, Assumption 1(iii) actually imposes
no restriction, since one can always work on a slightly larger source set Wφ̃ with another index function φ̃ for which
Assumption 1(iii) is satisfied. Note that the function ψ is strictly increasing, and its range is R+.

2.2. Empirical prediction risk minimization

As discussed in the Introduction, the optimal regularization parameter α will in general depend on Y , σ and f , but the
latter is unknown and hence this α cannot be realized in practice. Recall that we always assume σ > 0 to be known. By
means of the prediction risk r(α,f ), the optimal α ∈A is given by

αo = argmin
α∈A

r(α,f ), (11)

which is well-defined by similar arguments as in Appendix A. As a common remedy, we will try to estimate αo from the
observations Y in (1) by minimizing an unbiased estimator of r(α,f ), which can be derived as follows. Let us introduce
the shorthand notation

sα(λ) := λqα(λ).

Then we have

r(α,f )= E
[∥∥T

(
qα

(
T ∗T

)
T ∗(Tf + σξ)− f

)∥∥2
Y

]
= ∥∥(

I − T qα

(
T ∗T

)
T ∗)Tf

∥∥2
Y + σ 2

E
[∥∥T qα

(
T ∗T

)
T ∗ξ

∥∥2
Y

]
=

∞∑
k=1

λk

(
1− sα(λk)

)2
f 2

k + σ 2
∞∑

k=1

sα(λk)
2, (12)

and furthermore

E
[‖T f̂α‖2

Y − 2〈Y,T f̂α〉Y∗×Y
]

= E
[∥∥T qα

(
T ∗T

)
T ∗(Tf + σξ)

∥∥2
Y − 2

〈
Tf + σξ,T qα

(
T ∗T

)
T ∗(Tf + σξ)

〉
Y∗×Y

]
=

∞∑
k=1

λk

(
1− sα(λk)

)2
f 2

k −
∞∑

k=1

λkf
2
k + σ 2

∞∑
k=1

sα(λk)
2 − 2σ 2

∞∑
k=1

sα(λk).

Consequently for r̂(α,Y ) as in (3) we have

E
[
r̂(α,Y )

]= r(α,f )−
∞∑

k=1

λkf
2
k ,

i.e. up to a constant independent of α, r̂(α,Y ) is an unbiased estimator of r(α,f ). Hence we define

αpred = argmin
α∈A

r̂(α,Y ). (13)

Note that αpred is measurable and almost surely well-defined, see Appendix A for details.

Remark 3. For the clarity of our notation, we stress that α �→ r(α,f ) is a deterministic function, whereas α �→ r̂(α,Y )

is a random function and consequently, αpred ≡ αpred(Y ) as in (13) is a random variable. By E[·] we always denote the
expectation with respect to the data Y or equivalently the noise ξ . To obtain bounds for the estimator f̂αpred we will also
need bounds for r(αpred, f ), i.e. a deterministic function evaluated at a random variable. In particular, we stress that
E[r(αpred, f )] �= E[‖T f̂αpred − Tf ‖2

Y ].
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Note that αpred is computable in practice as it only relies on the data, the forward operator and the noise level (which is
assumed to be known, see Section 6 for estimated noise levels). As discussed in the Introduction, there are many results
available for the performance of f̂αpred measured by the prediction risk, among which the most precise one is due to Kneip
[35] given below.

Theorem 2.1 (Deviation bound of prediction risk [35]). Assume the model (1). Let f̂α = qα(T ∗T )T ∗Y with an ordered
filter qα , αo as in (11), and αpred as in (13). Then there exist universal positive constants C′

ξ , C′′
ξ such that for all x ≥ 0

and for all f ∈X ,

P

{
1

σ 2
‖T f̂αpred − Tf ‖2

Y −
1

σ 2
‖T f̂αo − Tf ‖2

Y ≥ x

}
≤C′

ξ exp

(
−C′′

ξ min

{√
x,

x√
r(αo, f )/σ 2

})
,

which remains true when replacing 1
σ 2 ‖T f̂αpred − Tf ‖2

Y − 1
σ 2 ‖T f̂αo − Tf ‖2

Y by 1
σ 2 r(αpred, f )− 1

σ 2 r(αo, f ).

Proof. Recall that dimX =∞, which, together with the injectivity of T , implies dimY =∞. In fact, the assertion for
finite dimensional Y follows directly from Proposition 1(i) and Theorem 1 in [35] by chasing the dependency of the
constants on the noise level σ . Concerning the key technical tools in Kneip’s proof, we note that the Lemma 2 there
actually holds for infinite sequences a ∈ �2 and bounded linear trace operators A : �2 → �2, and that the Lemma 3 there
can be extended to infinite dimensional ordered linear smoothers, as long as they are Hilbert–Schmidt. Thus, the proof by
Kneip [35] carries over to the case that dimY =∞. �

The above theorem, in particular, implies (cf. [15, Theorem 1])

E
[‖T f̂αpred − Tf ‖2

Y
]≤ r(αo, f )+Cσ

√
r(αo, f ) for every f ∈X ,

which guarantees the order optimality of f̂αpred in terms of the prediction risk.

3. MISE estimates

The section is devoted to the convergence analysis of f̂α = qα(T ∗T )T ∗Y with α = αpred as in (13). In what follows, we
will prove that f̂αpred also possesses an optimality property in terms of the direct risk, i.e. the mean integrated square error
(MISE).

3.1. Assumptions and merit discussions

We start with some technical assumptions. As we have already seen in the previous section, many calculations involve
summations over {λk}∞k=1, which can be formulated as Lebesgue–Stieltjes integrals with respect to

�(x) := #{k : λk ≥ x}.

Following Bissantz et al. [8], we assume that � can be approximated by a smooth function S to avoid the difficulty caused
by the non-smoothness of �:

Assumption 2.

(i) There exists a surrogate function S ∈ C2((0,∞)) of � satisfying

lim
α↘0

S(α)/�(α)= 1,

S′(α) < 0 for all α > 0,

lim
α↗∞S(α)= lim

α↗∞S′(α)= 0,

lim
α↘0

αS(α)= 0.
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(ii) There exist constants α1 ∈ (0, λ1] and CS > 0 such that

1

α

∫ α

0
S(t)dt ≤CSS(α) for all α ∈ (0, α1].

(iii) There exists a constant Cq > 0 such that∫ ∞

1
� ′(Cqx) exp

(
−C′′

ξ

√
x

2

)
dx <∞ with �(x) := x

(S−1(x))2
.

Here C′′
ξ is as in Theorem 2.1.

Remark 4. Note that Assumption 2(ii) holds true if there exists some C̃S ∈ (0,2) such that

−αS′(α) is integrable on (0, α1], and
S′′(α)

−S′(α)
≤ C̃S

α
for all α ∈ (0, α1],

see Lemma 12 in [8] for a proof. Thus, Assumption 2(i) and (ii) are slightly weaker than Assumption 2 in [8] with a proper
extension of S to a larger domain (0,∞). We stress that these are rather weak requirements, and cover a wide range of
situations (see e.g. [8, Section 5]). The additional Assumption 2(iii) is needed to control certain general moments of
r(αpred, f ) with the help of Theorem 2.1.

The next assumption concerns the choice of regularization parameter α for (ordered) filters qα .

Assumption 3.

(i) For α ∈A, the function λ �→ sα(λ) is non-decreasing.
(ii) There exists cq > C

−1/2
q with Cq as in Assumption 2(iii) such that

sα(α)= αqα(α)≥ cq as α↘ 0. (14)

Remark 5. It is easy to see that the above condition with some cq > 0 is satisfied by all the regularization methods
in Table 1, which indicates that Assumption 3 is fairly general. In particular, Assumption 3(ii) can be understood as a
parametrization condition. For instance, the Tikhonov method with re-parametrization α �→√

α, i.e. qα(λ)= 1/(
√

α+λ),
still defines an ordered filter, but does not satisfy (14) anymore. The condition cq > C

−1/2
q requires some compatibility of

the ill-posedness with the parametrization of the filter. Note that the qualification condition (8) implies that sα(α)≤ 1 for
α > 0, so if Cq > 1 then the relation cq > C

−1/2
q is automatically satisfied.

Under these assumptions, upper bounds for f̂α with an a-priori choice of α have been proven by Bissantz et al. [8]:

Theorem 3.1 (A-priori parameter choice [8]). Consider the model (1), and let f̂α := qα(T ∗T )T ∗Y with a filter qα , and
suppose that Assumption 2(i)–(ii) holds true. Let also α∗ satisfy

α∗φ(α∗)2 = σ 2S(α∗). (15)

(i) If Assumption 1(ii) holds, there is a constant C1 depending only on ρ, Cφ , C′
q , C′′

q and CS such that

sup
f∈Wφ(ρ)

E
[‖f̂α∗ − f ‖2

X
]≤ C1φ(α∗)2 = C1σ

2 S(α∗)
α∗

as σ ↘ 0.

(ii) If φ̃(t) := √tφ(t) is a qualification of the filter qα , namely,

sup
λ∈[0,λ1]

φ̃(λ)
∣∣1− λqα(λ)

∣∣≤ Cφ̃φ̃(α) for all α ∈A, (16)

then there is a constant C2 depending only on ρ, Cφ̃ , C′
q , C′′

q and CS such that

sup
f∈Wφ(ρ)

E
[‖T f̂α∗ − Tf ‖2

Y
]≤ C2α∗φ(α∗)2 = C2σ

2S(α∗) as σ ↘ 0.
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Remark 6. Actually, the upper bounds on the risk in Theorem 3.1 consist of a bias part and a variance part. The front
constant in the bias part depends only on ρ and Cφ (or Cφ̃), while that in the variance part depends only on C′

q , C′′
q and

CS . Moreover, it is worth noting that (16) in particular implies (8), i.e., whenever φ̃(t) := √tφ(t) is a qualification of the
filter qα , then also φ is a qualification of the filter qα and Assumption 1(ii) is satisfied.

3.2. Oracle inequality

We are now in position to derive an oracle inequality in the general form of (4) for the empirical parameter choice
α = αpred.

Theorem 3.2 (Oracle inequality). Assume the model (1). Let f̂α := qα(T ∗T )T ∗Y with an ordered filter qα , and As-
sumptions 1, 2 and 3 hold. Let also αo be given by (11), and αpred by (13). Then there are positive constants C1, C2 and
C3, independent of f , α and σ , such that

E
[‖f̂αpred − f ‖2

X
]≤ ρ2ψ−1

(
σ 2

(
2

ρ2
γσ +C1

))
+ σ 2C3

(
γσ +√γσ

S−1(2Cqγσ )
+C2

)
with γσ := r(αo, f )

σ 2
. (17)

Remark 7. Despite the fact that (17) is not an oracle inequality in the strict sense as discussed e.g. by [12], we still call
(17) an oracle inequality as it relates the direct risk under αpred with the weak oracle risk r(αo, f ). We emphasize that this
is in line with [15] and refer to [62] for further discussion. Moreover, we point out that constants C1, C2 in Theorem 3.2
are in fact universal, while C3 depends only on C′

q , C′′
q , Cq , CS , cq and the operator T .

The proof of Theorem 3.2 is based on a general strategy together with technical lemmata, and is postponed to Section 4.
To ease the understanding of this paper, we will now start with conclusions from Theorem 3.2.

3.3. Convergence rates and examples

The derived oracle inequality in Theorem 3.2 readily provides error estimates for the estimator f̂αpred given proper upper
bounds of the oracle prediction risk r(αo, f ) as in Theorem 3.1.

Theorem 3.3 (Convergence rates). Assume the same setting as in Theorem 3.2, and additionally that φ̃(t)=√tφ(t) is
a qualification of the filter qα . Let α∗ be given by (15). Then as σ ↘ 0 we have

sup
f∈Wφ(ρ)

E
[‖f̂αpred − f ‖2

X
]≤ C1φ(α∗)2 +C3

α∗φ(α∗)2

S−1(C2Cq
α∗φ(α∗)2

σ 2 )
= C1σ

2 S(α∗)
α∗

+C3
σ 2S(α∗)

S−1(C2CqS(α∗))

for some constants C1,C2,C3 > 0 independent of σ .

Proof. From Theorem 3.2, it follows that

sup
f∈Wφ(ρ)

E
[‖f̂αpred − f ‖2

X
]≤ sup

f∈Wφ(ρ)

(
ρ2ψ−1

(
2

ρ2
r(αo, f )+C1σ

2
)
+C3

(
r(αo, f )+ σ

√
r(αo, f )

S−1(2Cq
r(αo,f )

σ 2 )
+C2σ

2
))

,

where C1, C2 are universal, and C3 depends only on C′
q , C′′

q , Cq , CS , cq and the operator T . By Theorem 3.1(ii), there is

a constant C4 ≥ ρ2 depending only on ρ, Cφ̃ , C′
q , C′′

q and CS such that

sup
f∈Wφ(ρ)

r(αo, f )≤ sup
f∈Wφ(ρ)

r(α∗, f )≤ C4α∗φ(α∗)2 = C4σ
2S(α∗) for sufficiently small σ.

Note that by definition α∗ ↘ 0 as σ ↘ 0, so

α∗φ(α∗)2

σ 2
= S(α∗)↗∞ as σ ↘ 0.
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Recall that ψ(x) = xφ−1(
√

x) is strictly increasing and convex, and ψ(0) = 0. Thus, ψ−1 is strictly increasing, and
ψ−1(cx)≤ cψ−1(x) for any c ≥ 1. Note also that S−1 is strictly decreasing. Thus, for small enough σ

ρ2ψ−1
(

2

ρ2
r(αo, f )+C1σ

2
)
+C3

(
r(αo, f )+ σ

√
r(αo, f )

S−1(2Cq
r(αo,f )

σ 2 )
+C2σ

2
)

≤ ρ2ψ−1
(

3

ρ2
C4α∗φ(α∗)2

)
+ 2C3C4α∗φ(α∗)2

S−1(2CqC4
α∗φ(α∗)2

σ 2 )

≤ 3C4ψ
−1(α∗φ(α∗)2)+ 2C3C4α∗φ(α∗)2

S−1(2CqC4
α∗φ(α∗)2

σ 2 )
= 3C4φ(α∗)2 + 2C3C4α∗φ(α∗)2

S−1(2CqC4
α∗φ(α∗)2

σ 2 )
,

which holds uniformly over f ∈Wφ(ρ), and thus concludes the proof. �

Remark 8. If, in addition, there is a constant C̃ > 0 such that

S(C̃x)≥C2CqS(x) for all x > 0,

then it follows from Theorem 3.3 that

sup
f∈Wφ(ρ)

E
[‖f̂αpred − f ‖2

X
]≤ Cφ(α∗)2 = Cσ 2 S(α∗)

α∗

with some C > 0 independent of α∗ and σ . This coincides with the convergence rate we obtain under an a-priori parameter
choice in Theorem 3.1, which turns out to be order optimal in most cases, see e.g. Section 3.3.1 and Bissantz et al. [8].

We note that there are two additional important assumptions for a-posteriori parameter choice αpred compared to
the a-priori choice (cf. Theorem 3.1(i) and Theorem 3.3). The one is Assumption 2(iii), which concerns the control of
general moments of r(αpred, f ), due to the randomness of αpred. The other is that not only φ but also φ̃(t) = √

tφ(t)

is a qualification of the filter qα . The latter seems to be typical for parameter choice rule relying on residuals in image
space, as e.g. for the discrepancy principle in case of deterministic inverse problems, see Engl et al. [22, Section 4.3] and
Mathé and Pereverzev [48], or for generalized cross-validation (GCV), see Lukas [40] and Vogel [58]. Still we stress that
the qualification assumption plays no role in the proof of the oracle inequality (Theorem 3.2), and it only kicks in for
the derivation of convergence rates for f̂αpred through r(αo, f ) in the convergence analysis under the a-priori parameter
choice.

3.3.1. Mildly ill-posed problems
We now consider a particular mildly ill-posed problem. More precisely, we assume

Assumption 4.

(i) Polynomial decay of eigenvalues of T ∗T

λk = Cak
−a, k = 1,2, . . . with some a > 1 and Ca > 0.

(ii) Smoothness of the truth

f ∈ Sb :=
{

f ∈X :
∞∑

k=1

wkf
2
k ≤ 1

}
with wk = Cbk

b, k = 1,2, . . . ,

for some positive constants b and Cb.

In the above assumption, the requirement of a > 1 is to ensure that the forward operator T is Hilbert–Schmidt,
and the smoothness class Sb is equivalent to the Hölder type source condition of order b/(2a), more precisely,
Sb ≡Wb/(2a)(C

−b/a
a C−1

b ) in (9).
In this simple setting the convergence rates of ordered filter based methods with empirical parameter choice αpred can

be explicitly computed.
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Corollary 3.4 (Order optimality). Assume the model (1). Let f̂α := qα(T ∗T )T ∗Y with an ordered filter qα , and Assump-
tions 3 and 4 with any cq > 0 hold. If the qualification index v0 in (10) of the ordered filter satisfies v0 ≥ b/(2a)+ 1/2,
then there are positive constants C1 and C2 independent of σ such that

sup
f∈Sb

E
[‖f̂αpred − f ‖2

X
]≤ C1 inf

f̂

sup
f∈Sb

E
[‖f̂ − f ‖2

X
]≤C2σ

2b
a+b+1 as σ ↘ 0.

The infimum above is taken over all possible estimators f̂ (including both linear and nonlinear ones).

Proof. Note that φ(x) = xb/(2a) and then ψ(x) = xφ−1(
√

x) = x(a+b)/b , so Assumption 1 is satisfied. Define S(α) :=
(α/Ca)

−1/a . Elementary calculation shows that S(α) satisfies Assumption 2(i) and (ii). Since �(x) = x/(S−1(x))2 =
C−2

a x1+2a , Assumption 2(iii) clearly holds. By definition (15), it follows that α∗ = C
1/(1+a+b)
a σ 2a/(1+a+b). Thus, by

Theorem 3.3 and Remark 8, we have

sup
f∈Sb

E
[‖f̂αpred − f ‖2

X
]≤ C1φ(α∗)2 = C1C

b
a(1+a+b)
a

(
σ 2) b

1+a+b as σ ↘ 0,

for some positive constant C1.
Further, it is well-known (see e.g. [20,25,52])

inf
f̂

sup
f∈Sb

E
[‖f̂ − f ‖2

X
]≥ C2

(
σ 2) b

a+b+1 for some C2 > 0.

This concludes the proof. �

Remark 9. The above proposition in particular implies that all the methods in Table 1 are order optimal with α = αpred
when b/(2a) + 1/2 ≤ v0 in the minimax sense. This reproduces the result in Chernousova and Golubev [15] for the
spectral cut-off method as a special case.

Note that the parameter choice αpred depends only on the data, and is completely independent of the unknown truth.
Thus, the ordered filter based regularization methods with αpred automatically adapt to the unknown smoothness of the
truth, and achieve the best possible rates up to a constant. In other words, the ordered filter based regularization meth-
ods with parameter choice αpred are adaptively minimax optimal (cf. [52]) over a range of smoothness classes, and the
adaptation range is determined by the qualification index of the filter and the smoothing property of the forward operator.
Importantly, we point out that the order optimality here is in sharp contrast to the Lepskiı̆-type balancing principle [36],
where one typically loses a log-factor in the asymptotic convergence rates.

In addition, we stress again the price we pay for a-posteriori parameter choice αpred is a stronger qualification assump-
tion b/(2a)+ 1/2≤ v0, as the convergence rates of direct risk for a-priori parameter choice only asks for b/(2a)≤ v0 by
Theorem 3.1(i), see also Remark 8.

3.3.2. Exponentially ill-posed problems
Next we consider an exponentially ill-posed setting: The eigenvalues of T ∗T satisfy

λk � exp
(−μka

)
, k = 1,2, . . . for some a,μ > 0,

and the smoothness of the truth is characterized by (7) with

φ(x) := xb(− logx)c for some b > 0, c ∈R,or b= 0, c > 0.

That is, we assume that the truth lies in {f ∈X :∑∞
k=1 wkf

2
k ≤ 1} with wk � k−2ac exp(2μbka).

It is easy to see that the assumptions of Theorem 3.2 are satisfied for all the regularization methods listed in Table 1
provided that 0 < a < 1/2, or a = 1/2 and μ is sufficiently small. Hence, if in addition b + 1/2 < v0, or b = v0, c ≤ 0
(recall that v0 is the qualification index), we can obtain certain error bounds by means of Theorem 3.3. However, it turns
out that our bounds are too rough to guarantee order optimality. In fact, in case of b= 0, the error bound on the right-hand
side of (17) even diverges as the noise level σ tends to 0. In summary, our oracle inequality is applicable for exponentially
ill-posed problems as discussed here, but is not strong enough to derive rates of convergence or even show optimality of
the investigated parameter choice αpred. We refer to [62] for numerical simulations in exponentially ill-posed examples,
in the view of which it seems questionable if the parameter choice rule under investigation still yields optimal results,
being in line with the findings by Lucka et al. [38].
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4. A general methodology for proving the oracle inequality

To prove our oracle inequality (17), we will proceed as follows. First, we obtain bounds for general moments of the
prediction risk (cf. Corollary 4.1). Secondly, we proceed with a standard estimate for the (deterministic) bias of the
estimator f̂α under the smoothness Assumption 1 (cf. Lemma 4.2). Finally, we prove a comparison lemma on the variance
terms (cf. Lemma 4.3). Putting these three ingredients together, the proof of Theorem 3.2 is then straightforward. More
importantly, we stress that, if these three ingredients are given for some parameter choice rule ᾱ, an oracle inequality
similar to (17) can be derived.

4.1. Main ingredients

We start with bounds for general moments of the prediction risk.

Corollary 4.1 (General moments of prediction risk). Assume the same setting as Theorem 2.1, and let � :R+ → R+
be an increasing and continuously differentiable function with �(0)= 0 such that

Cψ := C′
ξ

∫ ∞

0
� ′(x) exp

(
−C′′

ξ

√
x

2

)
dx <∞ (18)

with C′
ξ , C′′

ξ being the same as in Theorem 2.1. Then

E

[
�

(
r(αpred, f )

σ 2

)]
≤�

(
2r(αo, f )

σ 2

)
+C� for all f ∈X .

Proof. Let γσ := r(αo, f )/σ 2 as in (17). Then

E

[
�

(
r(αpred, f )

σ 2

)]
=

∫ ∞

0
� ′(x)P

{
r(αpred, f )

σ 2
≥ x

}
dx [by Fubini’s theorem]

≤
∫ 2γσ

0
� ′(x)dx +C′

ξ

∫ ∞

2γσ

� ′(x) exp
(−C′′

ξ

√
x − γσ

)
dx [by Theorem 2.1]

≤�(2γσ )+C′
ξ

∫ ∞

2γσ

� ′(x) exp

(
−C′′

ξ

√
x

2

)
dx

≤�

(
2r(αo, f )

σ 2

)
+C�.

This concludes the proof. �

Remark 10. A simple example is �(x) := xθ for some θ > 0. By Corollary 4.1, it leads to

E
[
r(αpred, f )θ

]≤ 2θ r(αo, f )θ +Cθσ
2θ ,

where the second term on the right hand side is typically negligible compared to the first as σ tends to 0. Note that
condition (18) only requires∫ ∞

c

� ′(x) exp

(
−C′′

ξ

√
x

2

)
dx <∞ for some contant c > 0.

Based on the smoothness Assumption 1, we can prove the following estimate for the bias of f̂α :

Lemma 4.2 (Source condition). Under Assumption 1(i) and (iii), it holds that

∞∑
k=1

(
1− sα(λk)

)2
f 2

k ≤ ρ2ψ−1

(
1

ρ2

∞∑
k=1

λk

(
1− sα(λk)

)2
f 2

k

)
,

with ρ as in (7).
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Proof. Based on spectral analysis, condition (7) can be equivalently written as

fk = φ(λk)wk, k = 1,2, . . . ,with
∞∑

k=1

w2
k ≤ ρ2.

Thus, f 2
k ≤ ρ2φ(λk)

2 and then φ−1(

√
ρ−2f 2

k ) ≤ λk . Note that ψ(0) = 0 and ψ(cx) ≥ cψ(x) for any c ≥ 1. By the
convexity of ψ and Jensen’s inequality, we have for any n ∈N

ψ

(
n∑

k=1

ρ−2f 2
k

(
1− sα(λk)

)2

)
≤ψ

(
n∑

k=1

ρ−2f 2
k

(1− sα(λk))
2

1+∑n
i=1(1− sα(λi))2

)(
1+

n∑
i=1

(
1− sα(λi)

)2

)

≤
n∑

k=1

ψ
(
ρ−2f 2

k

) (1− sα(λk))
2

1+∑n
i=1(1− sα(λi))2

(
1+

n∑
i=1

(
1− sα(λi)

)2

)

=
n∑

k=1

ψ
(
ρ−2f 2

k

)(
1− sα(λk)

)2 ≤ ρ−2
n∑

k=1

λkf
2
k

(
1− sα(λk)

)2

≤ ρ−2
∞∑

k=1

λkf
2
k

(
1− sα(λk)

)2
.

The assertion follows by applying ψ−1 to the above inequality and letting n↗∞. �

Finally, we need certain comparison relations, which are used for bounding the variance part of the risk:

Lemma 4.3 (Comparison). Let qα be a filter, and Assumptions 2 and 3 hold. Then there are positive constants C1 and
C2, depending only on C′

q , C′′
q , Cq , CS , cq and the operator T , such that for every α ∈A

∞∑
k=1

λkqα(λk)
2 ≤ C1�1

(
Cq

∞∑
k=1

sα(λk)
2

)
and

∞∑
k=1

λ2
kqα(λk)

4 ≤ C2�2

(
Cq

∞∑
k=1

sα(λk)
2

)
,

with C′
q , C′′

q in Definition 1, Cq , CS in Assumption 2, cq in Assumption 3, and functions �1 and �2 by

�1(x) := x

S−1(x)
, �2(x) := x

(S−1(x))2
, for every x > 0. (19)

Proof. By Assumptions 2(i) and 3(ii), and c2
qCq > 1, there are α0, α0 ∈ (0,min{1, α1}), with α1 in Assumption 2(ii), and

some constant δ ∈ (0,1) such that for every α ≤ α0 it holds that

sα(α)≥ δcq, and
1

δ2c2
qCq

≤ �(α)

S(α)
≤ 2. (20)

We consider two separate cases:
Case I: α ≤ α0. Then

∞∑
k=1

sα(λk)
2 =−

∫ ∞

0
t2qα(t)2 d�(t)≥−

∫ ∞

α

t2qα(t)2 d�(t)

≥−
∫ ∞

α

α2qα(α)2 d�(t) [by Assumption 3(i)]

≥−δ2c2
q

∫ ∞

α

d�(t)= δ2c2
q�(α) [by (20)]

≥ 1

Cq

S(α). [by (20)] (21)
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Denote C̃q :=max{C′
q,C′′

q }. Then

∞∑
k=1

λkqα(λk)
2 =−

∫ ∞

0
tqα(t)2 d�(t)

≤ C̃2
q

(
−

∫ α

0

t

α2
d�(t)−

∫ ∞

α

1

t
d�(t)

)
[by Definition 1(i)]

≤ C̃2
q

(
− t

α2
�(t)

∣∣∣∣α
0
+ 1

α2

∫ α

0
�(t)dt + 1

α
�(α)

)
= C̃2

q

α2

∫ α

0
�(t)dt

≤ 2C̃2
q

α2

∫ α

0
S(t)dt [by (20)]

≤ 2C̃2
qCS

S(α)

α
, [by Assumption 2(ii)]

and similarly

∞∑
k=1

λ2
kqα(λk)

4 =−
∫ ∞

0
t2qα(t)4 d�(t)

≤ C̃4
q

(
−

∫ α

0

t2

α4
d�(t)−

∫ ∞

α

1

t2
d�(t)

)
[by Definition 1(i)]

≤ C̃4
q

(
− t2

α4
�(t)

∣∣∣∣α
0
+ 1

α4

∫ α

0
2t�(t)dt + 1

α2
�(α)

)

≤ 2C̃4
q

α3

∫ α

0
�(t)dt ≤ 4C̃4

q

α3

∫ α

0
S(t)dt [by (20)]

≤ 4C̃4
qCS

S(α)

α2
. [by Assumption 2(ii)]

These together with (21) prove the assertion if α ≤ α0.
Case II: α > α0.Then by Assumption 3 it holds that

∞∑
k=1

sα(λk)
2 ≥

∞∑
k=1

sα0(λk)
2, a constant ∈R+.

By Definition 1(i) we have

∞∑
k=1

λkqα(λk)
2 ≤ (C′

q)2

α2

∞∑
k=1

λk ≤
(C′

q)2

α2
0

Trace
(
T ∗T

)
, and

∞∑
k=1

λ2
kqα(λk)

4 ≤ C′′
q (C′

q)3

α3

∞∑
k=1

λk ≤
C′′

q (C′
q)3

α3
0

Trace
(
T ∗T

)
,

where both upper bounds are constants in R+. Thus, the assertion clearly holds for α > α0.
Combining the above two cases concludes the proof. �

4.2. Proof of Theorem 3.2

Now we are in position to prove Theorem 3.2. To obtain bounds, we will split the variance part by exploiting a technique
from Golubev [27] dealing with ordered processes:
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Lemma 4.4 (Ordered processes [27]). Assume that we are given a sequence of functions ck :A→R, k = 1,2, . . . , with
A⊆R+, satisfying

∑∞
k=1 |ck(α)|<∞ and

κ(α) :=
( ∞∑

k=1

ck(α)2

)1/2

<∞ for α ∈A,

and that κ is continuous and strictly monotone on A. Define (x)+ :=max{x,0} and

ζ(α) :=
∞∑

k=1

ck(α)
(
ξ2
k − 1

)
with ξk

i.i.d.∼ N (0,1).

Then there exists a universal constant Cξ such that

E

[
sup
α∈A

(
ζ(α)− xκ(α)2)

+
]
≤ Cξ

x
for all x > 0.

Proof. Note that ζ(α) is almost surely finite by means of Chebyshev’s inequality and the fact that Var[ζ(α)] = 2κ(α) <

∞ (or alternatively, by Kolmogorov’s three-series theorem). In the terminology of Golubev [27], ζ(α) is an ordered
process. The assertion can be proven in exactly the same way as Lemmata 1 and 2 by [27]. �

Proof of Theorem 3.2. Consider the bias-variance decomposition

E
[‖f̂αpred − f ‖2

X
]≤ 2E

[∥∥(
qαpred

(
T ∗T

)
T ∗T − I

)
f

∥∥2
X

]+ 2σ 2
E

[∥∥qαpred

(
T ∗T

)
T ∗ξ

∥∥2
X

]
= 2E

[ ∞∑
k=1

(
1− sαpred(λk)

)2
f 2

k

]
+ 2σ 2

E

[ ∞∑
k=1

λkqαpred(λk)
2ξ2

k

]
. (22)

For the first term (i.e. bias part) in (22), we have for all f ∈Wφ(ρ)

E

[ ∞∑
k=1

f 2
k

(
1− sαpred(λk)

)2

]
≤ C1E

[
ψ−1

(
1

C1

∞∑
k=1

λk

(
1− sαpred(λk)

)2
f 2

k

)]
[by Lemma 4.2]

≤ C1E

[
ψ−1

(
1

C1
r(αpred, f )

)]
[by (12)]

≤ C1ψ
−1

(
1

C1
E

[
r(αpred, f )

])
[by Jensen’s inequality]

≤ C1ψ
−1

(
2

C1
r(αo, f )+C2σ

2
)

, [by Remark 10]

where C1 := ρ2 with ρ in (7), and C2 is a universal constant.
For the second term (i.e. variance part) in (22), we further split it into two terms

σ 2
E

[ ∞∑
k=1

λkqαpred(λk)
2ξ2

k

]
= σ 2

E

[ ∞∑
k=1

λkqαpred(λk)
2

]
+ σ 2

E

[ ∞∑
k=1

λkqαpred(λk)
2(ξ2

k − 1
)]

. (23)

Note that � ′
1(x)≤ S−1(x)� ′

2(x) for functions �1 and �2 in (19), so by monotonicity of S and Assumption 2(iii), condi-
tion (18) is satisfied with �(x)=�1(Cqx) as well. Then, for the first term in (23), it holds that

σ 2
E

[ ∞∑
k=1

λkqαpred(λk)
2

]
≤ C3σ

2
E

[
�1

(
Cq

∞∑
k=1

sαpred(λk)
2

)]
[by Lemma 4.3]

≤ C3σ
2
E

[
�1

(
Cq

r(αpred, f )

σ 2

)]
[by (12)]
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≤ C3σ
2
(

�1

(
2Cq

r(αo, f )

σ 2

)
+C4

)
[by Corollary 4.1]

= 2C3Cq

r(αo, f )

S−1(2Cq
r(αo,f )

σ 2 )
+C3C4σ

2,

where constant C3 depends only on C′
q , C′′

q , Cq , CS , cq and the operator T , and constant C4 is universal.

For the second term in (23), we apply Lemma 4.4 with ck(α)= λkqα(λk)
2, which leads to

σ 2
E

[ ∞∑
k=1

λkqαpred(λk)
2(ξ2

k − 1
)]≤ σ 2

E
[(

ζ(αpred)− xκ(αpred)
2)
+
]+ σ 2

E
[
xκ(αpred)

2]
≤ σ 2

E

[
sup
α∈A

(
ζ(α)− xκ(α)2)

+
]
+ σ 2

E
[
xκ(αpred)

2]
≤ σ 2 C5

x
+ xσ 2

E

[ ∞∑
k=1

λ2
kqαpred(λk)

4

]
for all x > 0,

where C5 is a universal constant, and ζ and κ are defined in Lemma 4.4.
We minimize the right hand side of the above equation over x > 0, and then obtain

σ 2
E

[ ∞∑
k=1

λkqαpred(λk)
2(ξ2

k − 1
)]≤ 2σ 2

(
C5E

[ ∞∑
k=1

λ2
kqαpred(λk)

4

])1/2

≤ C6σ
2

(
E

[
�2

(
Cq

∞∑
k=1

sαpred(λk)
2

)])1/2

[by Lemma 4.3]

≤ C6σ
2
(
E

[
�2

(
Cq

r(αpred, f )

σ 2

)])1/2

[by (12)]

≤ C6σ
2
(

�2

(
2Cq

r(αo, f )

σ 2

)
+C7

)1/2

[by Corollary 4.1]

≤ C6(2Cq)1/2 σ
√

r(αo, f )

S−1(2Cq
r(αo,f )

σ 2 )
+C6(C7)

1/2σ 2,

where constant C6 depends only on C′
q , C′′

q , Cq , CS , cq and the operator T , and constant C7 is universal.
Combining all these estimates concludes the proof. �

5. Numerical simulations

In this section, we will investigate the behavior of the following parameter choice methods by means of a simulation
study:

(i) The oracle parameter choice αor = argminα∈AE[‖f̂α − f †‖2
X ], which is not available in practice and evaluated here

for comparison only,
(ii) the a-posteriori parameter choice rule which is studied in this paper, given by αpred = argminα∈A r̂(α,Y ) with r̂(α,Y )

as in (3),
(iii) and the Lepskiı̆-type balancing principle originally introduced by Lepskiı̆ [36], and was further developed for usage

in statistical inverse problems by Bauer and Hohage [3], Mathé [44], Mathé and Pereverzev [48], and Werner and
Hohage [63]. It consists in choosing

αLEP =max
{
α ∈A|‖f̂α̃ − f̂α‖X ≤ 4σ

√
Trace

(
qα̃

(
T ∗T

)2
T ∗T

)
for all α̃ ≤ α, α̃ ∈A

}
. (24)

Note that the term σ
√

Trace(qα(T ∗T )T ∗) is in fact an upper bound for the standard deviation of f̂α . For an explana-
tory derivation of this choice we refer to Mathé [44]. Unfortunately, the computation of αLEP is expensive (see e.g.
our simulations below).
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Fig. 1. The function α �→ r̂(α,Y ) for different noise levels: σ = 10−2 ( ), σ = 10−4 ( ), σ = 10−6 ( ). We also depict zooms (not to
scale) of the regions around the actual minima, which are always marked by red crosses. The operator T is as in Section 5.1, and f is as in Example 1.
The chosen regularization method is Tikhonov regularization.

In all above methods, for the computational purpose, we consider a discretized version of A instead by

Ar =
{
σ 2 · rk

∣∣ k = 0,1, . . . ,
⌊(

log(r)
)−1 log

(
σ−2

∥∥T ∗T
∥∥)⌋}

(25)

for some r > 1, i.e. it discretizes the range of possible α’s [σ 2,‖T ∗T ‖] in a logarithmically equispaced way. In our
simulations we use r = 1.2. We also tried different values of r which did not influence the results significantly. Note
that it can readily be seen from the error decomposition (12) that the discrete parameter set Ar is – under appropriate
conditions on the filter which are satisfied by all filters in Table 1 – able to resemble the optimal behavior of a continuous
parameter set σ 2 ≤ α <∞ up to a constant depending on r .

Let us briefly comment on the implementation of the parameter choice rule αpred. Even though the minimization is
not performed over the continuum α ∈ A but over a discrete set Ar here, the computation of αpred can be numerically
challenging. In Figure 1 we depict the function α �→ r̂(α,Y ) in an example using Tikhonov regularization, which shows
that the function is relatively flat around its absolute minimum. We observed this behavior in many situations, especially
if σ is not too small. However, around the minimum the function is not completely flat, and the minimum seems well-
defined as visible in the zooms of Figure 1. This ensures that we will be able to find the minimum up to a discretization
error determined by the value r in (25). Finally we mention that the evaluation of the trace operator in r̂(α,Y ) can be
expensive, but this can be overcome by different techniques, cf. Engl et al. [22, Section 9.4] or Vogel [58, Section 7.1].

5.1. Convergence rates

At first we investigate the empirical rate of convergence in a mildly ill-posed situation. Therefore, we consider the linear
integral operator T : L2([0,1])→ L2([0,1]) defined by

(Tf )(x)=
∫ 1

0
k(x, y)f (y)dy, x ∈ [0,1]

with kernel k(x, y)= min{x · (1− y), y · (1− x)}, x, y ∈ [0,1], i.e. (Tf )′′ = −f for all f ∈ L2([0,1]). Obviously, the
eigenvalues λk of T ∗T satisfy λk ∼ k−4.

We discretize T by choosing equidistant points x1 = 1
2n

, x2 = 3
2n

, . . . , xn = 2n−1
2n

and using the composite midpoint
rule

(Tf )(x)=
∫ 1

0
k(x, y)f (y)dy ≈ 1

n

n∑
i=1

k(x, xi)f (xi)
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on the grid points x = xj , 1≤ j ≤ n. To avoid an inverse crime, the exact data Tf is always calculated analytically. The
discretization parameter n is set to 1024.

We consider two different scenarios varying in the smoothness of the unknown solution f :

Example 1. As the first example, we consider the continuous function

f (x)=
{

x if 0≤ x ≤ 1
2 ,

1− x if 1
2 ≤ x ≤ 1.

It can readily be seen by straightforward computations that the Fourier coefficients fk of f are given by

fk = (−1)k − 1

4π3k2
.

Consequently f ∈ S3−ε and we obtain O(σ
3
4−ε) as rate of convergence for any ε > 0, see Corollary 3.4.

Example 2. In the second example we choose

f (x)=
{

1 if 1
4 ≤ x ≤ 3

4 ,

0 else.

As this function can be written as the derivative of functions as in the first example, it is clear that f ∈H
1
2−ε([0,1]) for

any ε > 0. This is also evident by the fact that the Fourier coefficients fk of f are given by

fk = (−1)k sin(πk
2 )

2π2k
.

Consequently, f ∈ S1−ε and we obtain O(σ
1
3−ε) as rate of convergence for any ε > 0, see Corollary 3.4.

Remark 11. In the present setting, it follows from results by Hohage and Weidling [30] that one can obtain a rate

of convergence O(σp) for a function f if and only if f ∈ B

5p
4−2p

2,∞ the L2-based Besov-space Bs
2,∞ with smoothness

index s and fine index ∞. Consequently, in the above mentioned Examples 1 and 2, one finds that the minimax rates of

convergence are O(σ
3
4 ) and O(σ

1
3 ) respectively.

In Figure 2 we plot several empirical risks against the noise level σ ∈ {2−15, . . . ,2−25}. The optimal rate of conver-
gence taking into account Remark 11 is also indicated. We consider spectral cut-off (cf. Figure 2(a)), Tikhonov reg-
ularization (cf. Figure 2(b)), and Showalter regularization (cf. Figure 2(c)). Using Monte Carlo simulations with 104

experiments per noise level we compute empirical versions of the oracle risk Ror(σ ) := E[‖f̂αor − f †‖2
2], the prediction

risk Rpred(σ ) := E[‖f̂αpred − f †‖2
2], and the Lepskiı̆ risk RLEP(σ ) := E[‖f̂αLEP − f †‖2

2].
In all plots we find a good agreement of our theoretical predictions and the empirical results. Compared with the

Lepskiı̆-type balancing principle, it seems that αpred performs order-optimal with a slightly smaller constant. The loss of a
log-factor by using αLEP cannot be visible in such a small simulation study. We furthermore estimated the empirical rates
from the simulations depicted in Figure 2 and compared them by means of statistical testing with the minimax rate of
convergence. In all cases, the hypothesis test described in Appendix B accepts the hypothesis that the empirical prediction
risk rate is at least the minimax rate with significance level 10%. In view of Remark 11, a faster rate of convergence is
impossible. From this point of view, our simulations strongly support the theory.

5.2. Efficiency simulations

Besides the convergence rate simulations above we also want to numerically infer on the constant in the oracle inequality
which will be done by efficiency simulations. Therefore (inspired by [4,15]) we consider the following setup. The forward
operator is a 300×300 diagonal matrix with singular values λ(k)= k−a with a fixed parameter a > 0. Then we repeat the
following experiment 104 times: Given a parameter ν we generate a random ground truth f ∈R

300 by f (k)=±k−ν · (1+
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Fig. 2. Simulation results for various regularization methods: the oracle risk Ror ( ), the prediction risk Rpred ( ), the Lepskiı̆ risk RLEP

( ), and the optimal rates of convergence σ 3/4 and σ 1/3 respectively ( ) as functions of σ for the two considered examples.

N (0,0.12)) where the sign is independent and uniformly distributed for each component. From this ground truth, data is
generated according to Y(k)= λ(k) · f (k)+N (0, σ 2) where the noise is again independent in each component. Based
on the data we compute empirical versions of the oracle risk Ror(σ ), the prediction risk Rpred(σ ), and the Lepskiı̆ risk
RLEP(σ ) for Tikhonov regularization. In Figure 3 we depict the fractions of the oracle risk with the different a-posteriori
risks for various parameters ν and a to compare the average behavior of these parameter choice methods.

In conclusion we empirically find that both choices αpred and αLEP seem to satisfy an oracle inequality. Comparing the
performance of αpred and αLEP it seems that αLEP behaves worse for small values of σ , which is in good agreement with
Figure 2. Furthermore, the computational effort for αpred is significantly smaller: in our efficiency simulations around
90% of the computation time were spent for computing αLEP in (24).
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Fig. 3. Efficiency simulations for Tikhonov regularization with different smoothness parameters a and ν: Ror/Rpred ( ), Ror/RLEP ( ).

6. Conclusion and outlook

In this study we have analyzed a parameter choice method for filter-based regularization methods applied to linear statis-
tical inverse problems. Therefore we have proven an oracle inequality, which generalizes the one from Chernousova and
Golubev [15] to general ordered filters satisfying weak assumptions (cf. Definition 1 and Assumption 3). From this oracle
inequality we derived convergence rates of the investigated parameter choice, which are actually order optimal in a wide
range of cases.

We point out that our techniques do not seem to be limited to the specific choice of α investigated here. Quite the
contrary, we provide a general strategy to prove an oracle inequality, which might be used for other choices as well. If
one would consider a different parameter choice rule, then an oracle inequality can be carried out the same way as in this
study provided the following ingredients are available:

• general moment bounds for the prediction risk as in Corollary 4.1 (in our case based on the exponential bounds proven
by Kneip [35]),

• a deterministic optimality result as in Lemma 4.2,
• estimates for the behavior of the regularization algorithm as in Lemma 4.3.

Note that the latter two assumptions do not rely on the parameter choice rule at all but only on the interplay of the operator,
the regularization method, and the source condition. Consequently, whenever the general moments can be bounded, the
analysis can basically be carried over from standard results, see e.g. Bellec and Tsybakov [5] for a useful deviation
inequality for regularization methods with convex penalties.

Even though we have always assume that the noise level σ is known, the generalization to unknown σ is straight-
forward. For the choice of parameter αpred, we simply replace σ by a proper estimator σ̂ in (3) and (13). The only
affected part in our argumentation is the Kneip’s deviation bound in Theorem 2.1, which still holds if we further as-
sume the smoothness of Tf (this is usually the case due to the blessing of ill-posedness). More precisely, one could
consider estimators of the form σ̂ 2 := 〈Y,�σ Y 〉Y∗×Y for some linear operator �σ such that E[〈ξ,�σ ξ 〉Y∗×Y ] = 1 and
Trace(�∗

σ �σ )≤ C <∞. In this case, under additional smoothness assumption that |〈Tf,�σ Tf 〉Y | ≤ C̃σ 2, the assertion
of Theorem 2.1 still holds, with constants C′

ξ , C′′
ξ there depending only on C and C̃, see [28] for a possible choice of �σ ,

and Section 6 in [35] for further details.
Another possible generalization concerns the errors in (1). If ξ is such that the ξk’s in (5) are independent sub-Gaussian

errors, then there are two crucial parts of the proofs which have to be generalized: Theorem 2.1 and Lemma 4.4. In fact
it turns out that both also hold for independent sub-Gaussian errors (see [27,35]), so the whole analytical methodology
remains valid in such a case as well.

The general analytical strategy advocated in this paper, of course, has its own limitations, as the resulting oracle
inequality might turn out to be inadequate or even trivial in certain cases (see Section 3.3.2 for instance). For exponentially
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ill-posed problems, we expect that the parameter choice rule under investigation has to be modified suitably, as examined
in the seminal papers [13,26]. Future questions include generalizations to nonlinear problems and noise models with
heavier tails.

Appendix A: Properties of αpred

We first show that almost surely the infimum of r̂(α,Y ) in (13) over α in A is attainable, and such a minimizer is unique.
The existence of minimizers follow immediately from the continuous dependence of qα(λ) on α and the closedness of A.
For the uniqueness, we focus on the case that Yk �= 0 for every k ∈N, which holds with probability 1. Define r̃ : �∞→R

as

r̃(x)=
∞∑

k=1

λ2
kY

2
k x2

k − 2
∞∑

k=1

λkY
2
k xk + 2σ 2

∞∑
k=1

λkxk for every x = {xk}k∈N ∈ �∞.

It is easy to see that r̃(·) is strictly convex. Note that r̂(α,Y ) = r̃(x) with x = {qα(λk)}k∈N. This, together with the fact
that qα is strictly increasing over α, implies the uniqueness of argminα∈A r̂(α,Y ). Thus, αpred is well-defined.

Next we consider the measurability of αpred. Due to its uniqueness, we have for any x ∈R

{αpred < x} =
{

min
α∈A

r(α,Y ) < min
α∈A,α≥x

r(α,Y )
}
=

⋃
z∈Q

({
min
α∈A

r(α,Y ) < z
}
∩

{
min

α∈A,α≥x
r(α,Y ) > z

})
.

By the continuity of qα with respect to α, it holds that {minα∈A r(α,Y ) < z} and {minα∈A,α≥x r(α,Y ) > z} are measur-
able. Then {αpred < x} is measurable, and thus αpred is measurable.

Appendix B: Hypothesis testing for rates of convergence

In our simulations, we fix a test function f , select a sequence of noise levels {σi : i = 1, . . . , n}, and for each σi we
compute estimators f̂σi ,j of f from independent realizations of Y for every j = 1, . . . ,m. This gives rise to an empirical
estimate ēi :=∑m

j=1 ei,j /m of the risk E[‖f̂σi
− f ‖2

X ] with ei,j := ‖f̂σi ,j − f ‖2
X . To estimate the convergence order ϑ

in E[‖f̂σi
− f ‖2

X ] ≈ Cσϑ , we assume the model

log ēi = ϑ logσi + �+ εi with εi ∼N
(
0, δ2

i

)
independently, i = 1, . . . , n. (26)

Here ϑ , and � are unknown, and we assume for the moment that standard deviations δi of perturbation are known in
advance. Note that it is not possible to achieve faster convergence rates than the optimal one. In order to investigate the
discrepancy between the convergence rate of f̂σ and the optimal one, it is sufficient to test whether it is no slower than
the optimal rate or not. To be precise, we consider the test

H0 : ϑ ≥ ϑo against H1 : ϑ < ϑo,

where ϑo is the optimal order of convergence for test function f .
From linear model theory (e.g. [50]), a classical testing statistics (based on the MLE estimator of ϑo) for the above test

is

T := (ϑ̂ − ϑo)

(
(
∑n

i=1 δ−2
i )(

∑n
i=1 δ−2

i log2 σi)− (
∑n

i=1 δ−2
i logσi)

2∑n
i=1 δ−2

i

)1/2

with ϑ̂ = (
∑n

i=1 δ−2
i )(

∑n
i=1 δ−2

i logσi log ēi )− (
∑n

i=1 δ−2
i logσi)(

∑n
i=1 δ−2

i log ēi )

(
∑n

i=1 δ−2
i )(

∑n
i=1 δ−2

i log2 σi)− (
∑n

i=1 δ−2
i logσi)2

. (27)

The corresponding rejection region of significance level α ∈ (0,1) is Rα := {T < z1−α}, and the corresponding p-value is
�(T), where z1−α and � are the (1−α) quantile and the distribution function of the standard normal distribution, respec-
tively. In reality, the standard deviations δi are unknown, but can be easily estimated from the sample variance of {ei,j }mj=1

by means of delta methods. More precisely, the central limit theorem implies
√

m(ēi − E[ei,j ]) D→N (0,Var[ei,j ]), and
via delta methods we obtain

√
m

(
log ēi − logE[ei,j ]

) D→N
(
0,E[ei,j ]−2 Var[ei,j ]

)
.
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Then Var[log ēi] ≈m−1
E[ei,j ]−2 Var[ei,j ]. Based on such an approximation, we derive an estimator of δi as

δ̂i := 1√
m|ēi |

(
m∑

j=1

(ei,j − ēi )
2

)1/2

.

The final procedure is given by (27) with δi replaced by δ̂i , which is exactly the testing procedure used in Section 5.
We note that one can justify the model (26) and the estimation of δi by using a large m.
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