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The two-type Richardson model describes the growth of two competing
infection types on the two or higher dimensional integer lattice. For types that
spread with the same intensity, it is known that there is a positive probability
for infinite coexistence, while for types with different intensities, it is con-
jectured that infinite coexistence is not possible. In this paper we study the
two-type Richardson model in the upper half-plane Z × Z+, and prove that
coexistence of two types starting on the horizontal axis has positive probabil-
ity if and only if the types have the same intensity.

1. Introduction. In 1998, Häggström and Pemantle [8] introduced a model for compet-
ing growth on Z

2 known as the two-type Richardson model. Two competing entities, here
referred to as type 1 and type 2 infection, initially occupy one site each of the Z

2 nearest-
neighbor lattice. As time evolves each uninfected site is occupied by type i at rate λi times
the number of type i neighbors. An infected site remains in its state forever, implying that the
model indeed defines a competition scheme between the types.

Regardless of the values of the intensities, both types clearly have a positive probability of
winning by surrounding the other type at an early stage. Attention hence focuses on the event
C that both types simultaneously grow to occupy infinitely many sites; this is referred to as
coexistence of the two types. Deciding whether or not C has positive probability is nontrivial
since it cannot be achieved on any finite part of the lattice. By time-scaling and symmetry
we may restrict to the case λ1 = 1 and λ2 = λ > 1. The conjecture, due to Häggström and
Pemantle [8], then is that C has positive probability if and only if λ = 1. The if -direction of
the conjecture was proved in [8], and extended to higher dimensions independently by Garet
and Marchand [6] and Hoffman [10], using different methods. As for the only if -direction,
Häggström and Pemantle [9] showed in 2000 that coexistence is possible for at most count-
ably many values of λ. Ruling out coexistence for all λ > 1 remains a seemingly challenging
open problem.

In this paper we study the analogous problem in the upper half-plane Z × Z+ = {(x, y) :
y ≥ 0} with (0,0) initially occupied by type 1 and (1,0) initially occupied by type 2, and
show that coexistence has positive probability if and only if λ = 1. That coexistence is pos-
sible for λ = 1 follows from similar arguments as in the full plane, so the novelty lies in
proving the only if -direction.

THEOREM 1. Consider the two-type Richardson model on Z×Z+ with (0,0) and (1,0)

initially of type 1 and 2, respectively. Then we have that P(C ) > 0 if and only if λ = 1.

Some readers might suspect that the arguments used to prove this result could be adaptable
to settle the Häggström–Pemantle conjecture in the full plane. This however is most likely
not the case. It is known that, on the event of coexistence in the full plane, the speed of
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the growth is determined by the weaker type; see, for example, [9], Proposition 2.2. This
means that, in order not to grow too fast, the stronger type must survive by maintaining a
meandering path surrounded by the weaker type. In fact, it can be shown that the fraction
of the infected sites occupied by the stronger type is vanishing; see [7]. The crucial point
in our half-plane argument is that infinite survival for the stronger type implies that it must
occupy all sites along the positive horizontal axis. We use this to show that it will thereby
grow fast enough to eventually surround the weaker type. Note that the role of the initial
configuration is important for this argument. We have not been able to adapt the argument
to rule out coexistence in the half-plane when the initial position of the stronger type is not
connected to the horizontal axis. Indeed, working with general initial configurations seems
to make the problem as hard as in the full plane. We remark that, in the full plane, it is shown
in [5] that the initial configuration is irrelevant for the possibility of infinite coexistence, but
that argument does not apply here.

One way of constructing the two-type process is by independently assigning a unit expo-
nential random weight τ(e) to each nearest-neighbor edge e of the lattice. The time required
for type 1 to traverse an edge e is then given by the associated weight τ(e), and the time for
type 2 is λ−1τ(e). Indeed, this construction provides a coupling of the two-type models for
all λ ≥ 1 simultaneously. The curious partial result of [9] is derived based on this coupling
by showing that, in the probability measure underlying the coupling, there is almost surely at
most one value of λ for which coexistence may occur. That coexistence occurs with positive
probability for at most countably many λ ≥ 1 is an easy consequence of this.

There are a number of proofs of coexistence for the case when the types have the same
intensities, and (at least some of) these arguments can be adapted to prove the if -direction
of Theorem 1. We shall however offer an alternative proof, since it is a simple by-product of
the arguments required to prove the only if -direction of the theorem. To rule out coexistence
for λ > 1, we shall develop an argument inspired by the work of Blair-Stahn [4], and that
incorporates elements of Busemann functions introduced by Hoffman [10, 11]. Nevertheless,
the proof will be a self-contained and elementary deduction from standard results in first-
passage percolation.

The two-type Richardson model can be viewed as a two-type version of first passage per-
colation with exponential edge weights. One of the most fundamental results for first passage
percolation is the shape theorem, asserting that the infected set at time t converges on the
scale t−1 to a deterministic convex set A. In order to describe the structure of the proof of
Theorem 1, let θ denote the maximal angle between any supporting line of A in the first coor-
dinate direction and the vertical supporting line in the same coordinate direction; see Figure 1
(left picture). Then θ equals zero in case the shape is differentiable in the coordinate direc-
tions, and θ is at most π/4, which occurs if the shape is a diamond. Given ε > 0 and n ∈ Z, we
partition the upper half-plane Z×Z+ into two regions Lε(n) and Rε(n) as follows: Consider
the semi-infinite line through (n − 1/2,0) with angle θ + ε to the vertical line through the
same point (see Figure 1, right picture), and write Lε(n) for the part of the upper half-plane

FIG. 1. Illustration of θ and the regions Lε(n) and Rε(n) in the case that the shape is an octagon. The shape
and the region Rε(n) are shaded.
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to the left of this line, excluding points on the line, and Rε(n) for the part to the right of the
line, including points on the line. Finally, define the strips Sk := {(x, y) ∈ Z

2 : 0 ≤ y ≤ k}.
The proof of the only if -direction of Theorem 1 can roughly be divided into three steps,

where the first one may be considered the most fundamental:

Step (i) Show that, for every λ ≥ 1 and ε > 0, if type 2 survives indefinitely, then almost
surely type 2 reaches Rε(n) before type 1 for infinitely many n ≥ 1.

Step (ii) Show that, for every λ > 1 there exists ε > 0 such that, if type 2 comes first to
Rε(n), then for each each k ≥ 1 there is a positive probability (uniform in n) that type 2
occupies all vertices in Sk ∩Rε(n).

Step (iii) Show that, if type 2 conquers all but finitely many vertices in Sk ∩ Rε(0) for k

large, then it will eventually almost surely defeat type 1.

Combining steps (i) and (ii) (or in fact a slight rephrasing of these claims) one obtains that,
if type 2 survives indefinitely, then for all k ≥ 1 it will almost surely conquer all but finitely
many sites in the strip S+

k along the horizontal axis. According to step (iii), this means that
type 1 will eventually become surrounded by type 2, ruling out coexistence.

The angle θ used to define the region Rε(n) can be motivated as follows: On one hand
the claim in step (ii), which will be a consequence of the shape theorem, cannot hold for
any angle larger than θ . On the other hand, while the claim in step (i) certainly could be
correct also for angles smaller than θ (assuming that θ > 0), proving such a thing would
require detailed understanding of the structure of infinite one-sided geodesics in the half-
plane setting. The information needed would go beyond our current understanding for the
analogous objects in the full-plane. Of course, since we believe that the shape is differentiable
(at least in coordinate directions) we consequently believe that θ = 0, and in this case we
cannot do better that having Rε(n) defined by an ε-tilted vertical line.

The rest of the paper is organized so that relevant background on one-type first passage
percolation is given in Section 2. In Section 3 we use Busemann functions to control the
evolution of the one-type process to obtain a statement that will establish step (i). Section 4
is devoted to step (ii), which is essentially a consequence of the shape theorem. Finally, the
proof of Theorem 1 is completed in Section 5, where step (iii) is established by an adaption
of an argument from [9].

2. Preliminaries. In standard first passage percolation each edge e of some underly-
ing graph is independently equipped with a nonnegative random variable τ(e) from some
common distribution. Throughout this paper, we shall assume that the underlying graph is
the upper half-plane Z × Z+, equipped with edges between nearest-neighbors, and that the
weights {τ(e)} are unit exponentials. Note that {λ−1τ(e)} are then exponentials with param-
eter λ. Given a path �, we let Tλ(�) := ∑

e∈� λ−1τ(e) and define the passage time between
two sets �,	 ⊂ Z×Z+ in the environment {λ−1τ(e)} as

Tλ(�,	) := inf
{
Tλ(�) : � is a path in Z×Z+ connecting � to 	

}
.

To simplify the notation, we write T1(�) = T (�), T1(�,	) = T (�,	), and Tλ(x, y) for the
passage time between {x} and {y} for x, y ∈ Z

2. It is immediate from the construction that
Tλ(�,	) = λ−1T (�,	) for all λ ≥ 1.

The above construction gives rise to a simultaneous coupling of the two-type processes for
all λ ≥ 1, where type 1 requires time τ(e) to traverse an edge e while type 2 requires time
λ−1τ(e). The passage time T (0, z) then denotes the time at which type 1 arrives at the site
z, unless z is already reached by type 2 by then, and Tλ(1, z) similarly denotes the time it
would take type 2 to reach z, unless impeded by type 1 along the way.1 In the case that λ = 1,

1Throughout the paper, we shall let bold letters like n be short for the horizontal vectors (n,0).
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whether or not a site z is eventually occupied by type 2 can be read out directly from T ; it will
in the case that T (1, z) < T (0, z). Understanding the evolution in the two-type Richardson
model thus leads us to recall some basic results for one-type first-passage percolation. Due
to the relation Tλ(x, y) = λ−1T (x, y), we focus in the remainder of this section on the case
λ = 1; corresponding results for λ > 1 are obtained by a simple scaling argument.

Although first passage percolation in half-planes has been studied before, for example, in
[1, 3, 16], the vast majority of the literature is concerned with the two and higher dimensional
nearest-neighbor lattices. It will be convenient to survey some of the results here. In analogy
with the notation in the half-plane, we shall denote by T (�,	) the passage time between the
two sets �,	 ⊂ Z

2, where the infimum is now taken over paths in Z
2 connecting � and 	 .

A first crucial observation is that T defines a metric on Z
2. In particular, it is subadditive

in the sense that

T (x, y) ≤ T (x, z) + T (z, y) for all x, y, z ∈ Z
2.

Using subadditive ergodic theory [13, 14], one can establish the existence of a time constant
μ ∈ (0,∞) specifying the asymptotic inverse speed of the growth along the axes. Specifically,
we have that

lim
n→∞

T (0,n)

n
= μ almost surely and in L1.

This can be extended to an arbitrary direction in the first octant, and hence by symmetry of
Z

2, to any arbitrary direction: For α ∈ [0, π/4], let uα denote a unit vector with angle α to
the x-axis, that is, uα = (cosα, sinα). Also, for x, y ∈ R

2, define T (x, y) := T (x′, y′), where
x′ and y′ are the points in Z

2 closest to x and y, respectively. Then there exists a directional
time constant μα ∈ (0,∞) such that

(1) lim
n→∞

T (0, nuα)

n
= μα almost surely and in L1.

By definition, we have μ0 = μ.
Since T defines a (random) metric on Z

2 it is natural to investigate the shape of large balls
in this metric. The fundamental shape theorem, dating back to the work of Richardson [12,
15], states that the set of sites that can be reached from the origin within time t converges
almost surely on the scale t−1 to a deterministic shape A, that is, with probability one, we
have for every ε > 0 that W(t) := {x ∈ R

2 : T (0, x) ≤ t} satisfies

(1 − ε)A ⊂ W(t)

t
⊂ (1 + ε)A for all large t.

The asymptotic shape A can be characterized as the unit ball in the norm defined by μ(x) =
limn→∞ 1

n
T (0, nx) for x ∈ R

2. It is thus known to be compact and convex, with nonempty
interior, and it inherits all symmetries of Z2. Apart from this, very little is known about the
properties of the shape. It has been studied by aid of simulations in [2], where the results
indicate that it is close to, but not identical to, a Euclidean disk. We remark that there is no
theoretical support for A being a Euclidean disk, and in large dimension it is known not to be
a Euclidean ball. We further mention that, as a consequence of the shape theorem, passage
times to lines rather than single points obey similar asymptotics. For instance, with �̄(n)

denoting the vertical line through n, we have that 1
n
T (0, �̄(n)) converges to μ almost surely.

When restricting the growth to the strip Sk = {(x, y) ∈ Z
2 : 0 ≤ y ≤ k} for some k ≥ 1,

the speed of progression decreases. However, the thicker the strip, the smaller is the effect.
To be precise, let T (k)(�,	) denote the passage time between � ⊂ Sk and 	 ⊂ Sk , where
the infimum is taken over paths � ⊂ Sk connecting � and 	 . Again, the subadditive ergodic
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theorem shows that 1
n
T (k)(0,n) converges (almost surely and in L1) to some constant μ(k) ∈

(0,∞). Moreover,

(2) μ(k) ↘ μ as k → ∞;
see, for example, [1], Proposition 8. A similar statement holds for directions other than the
axes directions. As a consequence, one can show that a shape theorem holds also for first
passage percolation in the upper half-plane Z × Z+, and that the asymptotic shape in this
case is the half-plane restriction of the shape A arising in the full-plane growth; see [1],
Proposition 15.

We shall occasionally need a stronger version of the half-plane shape theorem. Somewhat
vaguely, the stronger version says that not only is a large ball in the metric T centered around
the origin well approximated by the asymptotic shape, but for every y ∈ Z × Z+ the ball
{z ∈ Z× Z+ : T (y, z) ≤ t} centered around y is well approximated by the asymptotic shape,
at least for t larger than a small multiple of |y|. The precise statement can be formulated as
follows: For every ε > 0 we have, almost surely, for all but finitely many pairs of vertices
(y, z) in Z×Z+ that

(3)
∣∣T (y, z) − μ(z − y)

∣∣ < ε max
{|y|, |z − y|},

where μ is the time constant as determined by T . The stronger version of the shape theorem
can, for instance, be obtained as a consequence of [1], Theorem 9, which in the current setting
shows that for every ε > 0 there exists M < ∞ such that

(4) P
(∣∣T (y, z) − μ(z − y)

∣∣ > t
)
< M/t100 for all t > ε|z − y|.

We remark that in [1], Theorem 9, the tail bound in (4) is stated for y and z in the interior
of Z × Z+. However, due to the exponentially decaying tails of the weight distribution, it is
easily extended to allow y and z on the boundary. A double summation argument and (4) will
then show that the expected number of pairs (y, z) for which (3) fails is finite, so the stronger
shape theorem follows via the Borel–Cantelli lemma.

3. A one-type lemma. The aim of this section is to take the first and most fundamental
step towards a proof of our main theorem. It will be crucial for ruling out coexistence in the
case when λ > 1, but we will use it also to give a short proof of coexistence in the case when
λ = 1. The result is a statement for the one-type process on Z×Z+.

LEMMA 2. For every ε > 0 there exists γ > 0 such that

P
(
T (−n,0) < T

(−n,Rε(0) \ {0}) for all n ≥ 1
)
> γ.

Key to the proof of the lemma will be the notion of Busemann functions. Define, for all
n ≥ 1 and sites u, v in the half-plane, the Busemann-like function

Bn(u, v) := T (−n, u) − T (−n, v).

We note that Lemma 2 can be rephrased to say that with positive probability Bn(0, v) < 0 for
all v ∈ Rε(0) \ {0} and n ≥ 1. We shall show that, almost surely, Bn(0, v) < 0 may fail for
some n for at most finitely many v. A local modification argument will then show that with
positive probability it does not.

The first crucial observation is that, for fixed m ≥ 1, the sequence {Bn(0,m)}n≥1 is almost
surely increasing. This is an immediate consequence of the fact that the geodesics between
−(n + 1) and 0, and −n and m, must cross; see Figure 2. As a consequence, the limit

(5) B(0,m) := lim
n→∞Bn(0,m)
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FIG. 2. Crossing geodesics between −(n + 1) and 0, and −n and m.

exists almost surely. As it turns out, the limit exists for all u and v (see [3]) but we shall not
need to use this fact.

For the reader accustomed to Busemann functions, we next offer a heuristic explanation
of Lemma 2: We would expect that B(0, v) = ρ(v) + o(|v|) for some deterministic linear
functional ρ : R2 → R. The gradient of this functional should be normal to some supporting
line to the asymptotic shape A in the negative direction of the horizontal axis. This would
imply that the set {v ∈ Z× Z+ : B(0, v) ≥ 0}, consisting of points “at least as close to −∞”
as the origin, will have a finite intersection with Rε(0).

A first step towards confirming this heuristic was made in [3]. While we do not know
how to fully confirm the heuristic, we will also not need to. Apart from a local modification
argument, all that we shall need is existence of the limit in (5), and Lemmas 3 and 4 below.

LEMMA 3. For all m ≥ 1, we have that E[B(0,m)] = −μ · m, and

lim
m→∞

1

m
B(0,m) = −μ almost surely.

PROOF. A useful property of Bn is that it is additive. The additivity carries over in the
limit as n → ∞, and for B this implies that

(6)
1

m
B(0,m) = 1

m

m−1∑
j=0

B(j, j + 1),

where B(j, j + 1) := limn→∞ Bn(j, j + 1). Due to invariance with respect to horizontal shifts,
sending m to infinity in (6), the ergodic theorem yields the almost sure limit E[B(0,1)]. By
additivity, it only remains to identify E[B(0,1)] with −μ.

To this end, we rephrase B(0,1) as a limit of partial averages, and obtain

E
[
B(0,1)

] = E

[
lim

n→∞
1

n

n−1∑
j=0

Bj(0,1)

]
= lim

n→∞
1

n

n−1∑
j=0

E
[
Bj(0,1)

]
,

where extraction of the limit is allowed by dominated convergence, since |Bj(0,1)| ≤
T (0,1). Due to invariance with respect to horizontal shifts, we have further that

E
[
B(0,1)

] = lim
n→∞

1

n

n−1∑
j=0

E
[
T (0, j) − T (0, j + 1)

] = lim
n→∞

1

n
E

[−T (0,n)
] = −μ,

as required. �

Let ∂Rε(n) denote the set of sites in Rε(n) that have at least one neighbor in Lε(n).

LEMMA 4. There exists δ > 0 such that, with probability one, for all but finitely many
v ∈ ∂Rε(0), we have that

sup
n≥1

Bn(0, v) < −δ|v|.
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FIG. 3. Geometry in the proof of Lemma 4. The left picture illustrates how m can be chosen as a function of v

when the shape is an octagon. The right picture shows a graphical definition of Bn(0, v).

PROOF. Note that, by convexity of the shape and the definition of θ , there exists δ > 0
such that for all v ∈ ∂Rε(0) sufficiently large there exists m = m(v) such that

μ(v − m) ≤ (1 − δ)μ(m);
see Figure 3. Indeed, this holds for m = �c|v|� for some c > 0. Together with the strong
version of the shape theorem stated in (3), it follows that almost surely for all but finitely
many v ∈ ∂Rε(0) we have that

(7) T (m, v) ≤ (1 + δ)μ(v − m) ≤ (
1 − δ2)

μ(m).

Moreover, by Lemma 3 we have, almost surely, for all large m that

(8) B(0,m) ≤ −(
1 − δ2/2

)
μ(m).

Subadditivity gives that Bn(m, v) ≤ T (m, v) for all n ≥ 1, and Bn(0,m) is increasing in n.
Hence, combining (7) and (8) we conclude that almost surely, for all n ≥ 1 and all but finitely
many v ∈ ∂Rε(0), we have that

Bn(0, v) = Bn(0,m) + Bn(m, v) ≤ −(
δ2/2

)
μ(m) < 0.

Since μ > 0 and m is set to �c|v|� for some c > 0, the lemma follows. �

PROOF OF LEMMA 2. Let (xn, yn) be the point in Rε(0) with the smallest passage time
to −n. It follows from Lemma 4 that the sequence (yn)n≥1 is almost surely bounded. Fix �

large so that, with probability at least 3/4, we have yn ≤ � for all n. Then pick some finite
path �, connecting the origin to a point in ∂Rε(0) of the form (x, � + 1), which except for
its endpoints is contained in Lε(0); see Figure 4. Next, take t large so that, with probability
at least 3/4, the total passage time T (�) is at most t . Note that any path contained in Lε(0)

connecting −n to a point (x, y) ∈ ∂Rε(0) with 1 ≤ y ≤ � must cross � before reaching
(x, y). Given n ≥ 1, let vn be the site on � at minimal distance from −n, and let �′ denote
the concatenation of the time minimizing path from −n to vn and the segment of � from vn

to the origin (see Figure 4). We then have for all n ≥ 1, on the intersection of the above two
events, that

(9) T (−n,0) ≤ T
(
�′) ≤ T

(−n,Rε(0)
) + T (�) ≤ T

(−n,Rε(0)
) + t.

FIG. 4. Geometry in the proof of Lemma 2.
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Write U�′ for the set of sites (x, y) ∈ ∂Rε(0) with y ≥ �′. Due to Lemma 4, we may pick
�′ ≥ � such that T (−n,U�′) ≥ T (−n,0) + 2t for all n ≥ 1 with probability at least 3/4.
Define C to be the intersection of all three events above. That is, let

C := {yn ≤ � for all n} ∩ {
T (�) ≤ t

} ∩ {
T (−n,U�′) ≥ T (−n,0) + 2t for all n

}
,

and note that P(C) ≥ 1/4.
Let ��′ denote the set of edges connecting sites (x, y) ∈ ∂Rε(0) \ {0} with y ≤ �′ to sites

in Lε(0); see Figure 4 (shaded area on the right). We complete the proof by arguing that,
on the event C, a configuration where the origin is the closest point in ∂Rε(0) to −n for all
n ≥ 1 is obtained by increasing the weight of all edges in ��′ by the amount 2t . Indeed, since
T (�′) is unaffected by the raise, it follows by (9) that the time minimizing path from −n to
Rε(0) will then not hit a point (x, y) ∈ Rε(0) for y = 1, . . . , �. It will also not hit Rε(0) for
y ≥ �+ 1, since it will take at least time 2t from the moment when � is hit to reach that level,
whereas the origin is reached in time t .

To formalize this, we define another i.i.d. family of edge weights {τ̂ (e)}, where τ̂ (e) = τ(e)

for e /∈ ��′ and where τ̂ (e) is sampled independently of τ(e) for e ∈ ��′ . Let Q denote the
event that {τ(e) ≤ s for all e ∈ ��′ }, and fix s ≥ t so that P(C ∩ Q) ≥ 1/8. Moreover, let Q̂

denote the event {τ̂ (e) > 3s for all e ∈ ��′ }, and denote distances with respect to {τ̂ (e)} by T̂ .
The above reasoning gives that

P
(
T̂ (−n,0) < T̂

(−n,Rε(0) \ {0}) for all n ≥ 1
) ≥ P(C ∩ Q ∩ Q̂) = P(C ∩ Q)P(Q̂),

due to independence of the two configurations on ��′ . The right-hand side is clearly nonzero,
and since the two configurations are equal in distribution, the lemma follows. �

4. A two-type lemma. The next lemma concerns the two-type process with an un-
bounded initial configuration. It applies when type 2 is strictly stronger than type 1, and
is derived as a geometric consequence of the shape theorem. Define S+

k = {(x, y) ∈ Z
2 : x ≥

0,0 ≤ y ≤ k}. Note also that for small enough values of ε > 0, the origin is the only site on
the horizontal axis contained in ∂Rε(0).

LEMMA 5. For every λ > 1 there is ε > 0 such that if initially 0 is occupied by type 2
and all sites in ∂Rε(0) \ {0} are occupied by type 1, then, for every k ≥ 1, there is a positive
probability that type 2 occupies all initially uninfected sites in the half-strip S+

k .

PROOF. Fix λ > 1. Note that it suffices to prove the lemma for large k, since if type 2
occupies all uninfected sites in S+

k , then this is trivially the case also for all k′ ≤ k. By (2) we
thus pick k large so that

λ−1μ ≤ λ−1μ(k) < μ.

Let δ = (μ − λ−1μ(k))/5 and set ρ = λ−1μ(k) + 2δ.
Due to convexity of the shape and the definition of Rε(0), for ε > 0 small we have

inf
{
μ

(
v − (n, k)

) : v ∈ ∂Rε(0)
}
> (μ − δ)n

for all large n; see Figure 5 (left). Fix ε > 0 accordingly. It follows from the half-plane shape
theorem (the version stated in (3)) that, almost surely, for all large n we have

T
(
∂Rε(0), (n, k)

)
> (μ − 2δ)n = (ρ + δ)n.

Moreover, almost surely, we have for all large n that

T
(k)

λ

(
0, (n, k)

)
< (ρ − δ)n.
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FIG. 5. For small ε > 0, the distance from (n, k) to ∂Rε(0) is not much shorter than the distance to the origin
(left). The regions �m (shaded) and �′

m (right).

Finally, write T̃
(k)

λ (0, (n, k)) for the above passage time in the process based on {λ−1τ(e)},
when sites in ∂Rε(0) cannot be used, and note that this clearly obeys the same asymptotics.
(We may without restriction assume that ε > 0 is small enough so that the origin is the only
site on the axis contained in ∂Rε(0), implying that T̃

(k)

λ (0, (n, k)) is well-defined and finite
for all n.)

For m ≥ 1 now define

Dm := {
T

(
∂Rε(0), (n, k)

)
> (ρ + δ)n for all n ≥ m

}
,

D′
m := {

T̃
(k)

λ

(
0, (n, k)

)
< (ρ − δ)n for all n ≥ m

}
,

and pick m large so that P(Dm ∩D′
m) > 3/4. Let �m denote the set of edges consisting of all

edges connecting an initially type 1 infected site to a neighbor in S+
k , and all vertical edges

connecting a site (j, k + 1) in Rε(0) with j ≤ m to (j, k). Hence �m consists of all edges up
to the level x = m through which type 1 can enter the strip; see Figure 5 (right). Also, let �′

m

denote the set of edges connecting initially uninfected sites in S+
k up to level x = m, and note

that �m and �′
m are disjoint.

Next, let

Em,t := {
τ(e) > tkm for all e ∈ �m

}
,

E′
m,t := {

λ−1τ(e) < t for all e ∈ �′
m

}
.

Since P(E′
m,t ) → 1 as t → ∞, we can pick t large so that P(Dm ∩ D′

m ∩ E′
m,t ) > 1/2. We

claim that, on Dm ∩ D′
m ∩ Em,t ∩ E′

m,t , type 2 occupies all initially uninfected sites in S+
k .

To see this, note that on Em,t ∩ E′
m,t type 1 cannot reach sites in the strip through an edge of

�m, since any such site can be reached from the origin by a path in �′
m with weight at most

mkt . The event Dm ∩ D′
m then guarantees that type 1 cannot enter the strip at a site (j, k)

with j ≥ m, since type 2 is faster to all such sites once it has access to the initial piece of the
strip.

It remains to prove that P(Dm ∩ D′
m ∩ Em,t ∩ E′

m,t ) > 0 for some m and t . We will again
adopt a local modification argument, and introduce an i.i.d. family {τ̂ (e)}, where τ̂ (e) = τ(e)

for e /∈ �m and let τ̂ (e) be sampled independently of τ(e) for e ∈ �m. Let

Êm,t := {
τ̂ (e) > tkm for all e ∈ �m

}
,

E′′
m,t := {

τ(e) < t for all e ∈ �m

}
.

We may, as before, assume that t is such that P(Dm ∩ D′
m ∩ E′

m,t ∩ E′′
m,t ) > 1/2. Since the

events D′
m and E′

m,t involve only edges in �′
m, and since Dm is increasing with respect to the

edges in �m, allowing a slight abuse of notation, it follows that Dm∩D′
m∩E′

m,t ∩E′′
m,t ∩Êm,t

implies the occurrence of Dm ∩D′
m ∩Em,t ∩E′

m,t for the family {τ̂ (e)}. More precisely, since
the two configurations are equal in distribution and independent on �m, we have that

P
(
Dm ∩ D′

m ∩ Em,t ∩ E′
m,t

) ≥ P
(
Dm ∩ D′

m ∩ E′
m,t ∩ E′′

m,t

)
P(Êm,t ).

The desired conclusion follows by noting that P(Êm,t ) > 0 since �m is finite and t fixed. �
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5. Proof of Theorem 1. In this section we prove Theorem 1. As mentioned, there are
a number of proofs in the literature showing that coexistence is possible on Z

2 when λ = 1,
and some of these are easily adapted to show the same statement in the half-plane. However,
this can also be obtained by a short argument based on Lemma 2.

PROOF OF THE if -DIRECTION OF THEOREM 1. Take λ = 1. Let F denote the event
in Lemma 2, and let F̄ denote its reflection in the vertical axis. Let further F̄m denote the
translate of F̄ along the vector m. We observe that, on F , type 1 will be first to all sites along
the negative horizontal axis. Similarly, on F̄1, type 2 will be first to all sites along the positive
horizontal axis. Although there is no guarantee that the intersection of the two events occurs
with positive probability, since F̄m occurs with a density (due to the ergodic theorem), we
may fix m ≥ 1 so that P(F ∩ F̄m) > 0. To guarantee coexistence, it then remains to show
that, on F ∩ F̄m, there is positive probability for type 2 to reach (m,0) before type 1 reaches
Rε(m).

Let O denote the event that each edge adjacent to the origin has weight at least δ, and note
that P(F ∩ F̄m ∩ O) > 0 for small δ > 0. Let O ′ denote the event that the sum of the weights
on the edges along the axis connecting 1 to m is at most δ/2. Note that, on O ∩ O ′, type 2
will reach m before type 1 takes its first step. Since F , F̄m and O are independent of the state
of the edges defining O ′, it follows that

P(C ) ≥ P
(
F ∩ F̄m ∩ O ∩ O ′) = P(F ∩ F̄m ∩ O)P

(
O ′) > 0,

as required. �

We proceed with the only if -direction, and start by combining Lemmas 2 and 5 into a
statement for the two-type process.

LEMMA 6. For every λ > 1 and k ≥ 1, if type 2 occupies infinitely many sites in the two-
type model on Z×Z

+, then type 2 will almost surely occupy all but finitely many vertices in
S+

k .

PROOF. Fix λ > 1 and k ≥ 1. Write F for the event in Lemma 2, and let Fm denote the
translate of F along the vector m. Also, let G denote the event in Lemma 5, and let Gm

denote the translate of G along the vector (m,0). Each of the two events F and G occur with
positive probability. Moreover, F is determined by edges between sites in Lε(0) ∪ ∂Rε(0)

involving at least one site in Lε(0), while G is determined by edges between pairs of sites in
Rε(0). Hence, the two events are independent and P(F ∩ G) > 0. By the ergodic theorem,
Fm ∩ Gm will occur for infinitely many m ≥ 1, almost surely.

It remains to prove that, on the event Fm ∩ Gm ∩ {type 2 survives}, where m ≥ 1, type 2
occupies all but finitely many vertices in S+

k . For this, clearly it suffices to see that, if type 2
survives indefinitely, then Fm implies that type 2 reaches m before any other site in ∂Rε(m)

is reached by type 1. To this end, let � denote the time minimizing path from the origin to m.
Note that, if type 2 survives indefinitely, then m must be occupied by type 2 in the two-type
process. Let v denote the first (in time) point on the path � that is occupied by type 2 in the
two-type process. The fastest way to get from v to Rε(m) is to follow � and, doing this, type
2 will arrive at m before any other site in Rε(m) is infected, as desired. �

The last ingredient we need in order to prove the only if -direction of Theorem 1 is a half-
plane version of a result from [9], Proposition 2.2. More precisely, we need to show that, if
type 2 conquers a wide half-strip, then type 2 will end up surrounding type 1. The argument
will be similar to that of [9], but the geometric construction is easier in our case and the proof
consists of applying the ideas in Lemmas 5 and 6 in nonaxis directions. We shall therefore be
brief.
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LEMMA 7. For every λ > 1, there is k ≥ 1 such that, if type 2 occupies all but finitely
many sites in S+

k , then almost surely type 1 will occupy only finitely many sites.

PROOF. If type 2 occupies all but finitely many sites in the half-strip S+
k for k sufficiently

large, then the type 2 speed along the axis in S+
k will be strictly larger than the speed of type 1.

As we shall see, type 2 will then be strictly faster than type 1 also in direction α, for some
small α > 0. This can be used to show that type 2 occupies all but finitely many vertices in
an α-cone. By repeating the argument we then show that type 2 will also occupy almost all
sites in a 2α-cone, etc.

Recall the definition, in (1), of the time constant μα in direction α based on unit rate
exponential edge weights. The time constant in direction α based on exponential edge weights
with parameter λ is then given by λ−1μα . As is well known, the directional time constant μα

is Lipschitz continuous, since μ defines a norm. In particular, there exists a constant c > 0
such that, for any α0, α ∈ [0,2π ], we have that

μα0+α ≤ μα0(1 + cα).

It follows that, uniformly in the choice of α0, we have λ−1μα0+α ≤ μα0 if α is sufficiently
small. By picking α even smaller, we further obtain that λ−1μα0+α < μα0 cosα. For the
remainder of this proof we fix α > 0 so that for all α0 ∈ [0,2π ] we have

(10) λ−1μα0+2α < μα0 cos(2α).

Let �α(0) denote the semi-infinite line starting at the origin with angle α to the horizontal
axis. In a first step, we argue that if type 2 occupies all sites in a thick strip, then type 2 will
almost surely occupy all but finitely many sites below the line �α(0). Pick k large so that
λ−1μ(k) < μ, which is possible by (2). Let Hm be the event that type 2 eventually occupies
the site (m, k), and that at the time at which this occurs type 1 has not yet reached the vertical
line L(m) = {(x, y) ∈ Z

2 : x = m}. The choice of k assures that, given that type 2 captures
all but finitely many sites in the strip S+

k , the probability of Hm tends to one as m tends to
infinity.

Write �2α(m, k) for the semi-infinite line starting at the point (m, k) with angel 2α to the
horizontal line through (m, k). By (10), we have that λ−1μ2α < μ cos(2α), and hence that
the asymptotic type 2 time from (m, k) to a point on �2α(m, k) far from (m, k) is strictly
smaller than the type 1 passage time from L(m) to the same point; see Figure 6. (Here, we
say that a point z ∈ R

2 is infected when the closest point in Z
2 is infected.) Let G2α

m denote
the event that, starting from a configuration in which (m, k) is of type 2 and the rest of the
line L(m) is of type 1, every point along the line �2α(m, k) is eventually captured by type 2.
A similar argument as that used to prove Lemma 5 then shows that G2α

m occurs with positive
probability. The ergodic theorem implies that G2α

m occur for a positive density of all m ≥ 1,
almost surely, and since the conditional probability that Hm occurs, given that type 2 takes

FIG. 6. The line �2α(m,k).
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FIG. 7. Lines through the point vm.

the strip, tends to one, their intersection will occur for some (large) value of m almost surely.
The occurrence of Hm ∩ G2α

m guarantees that type 2 captures the whole line �2α(m, k), and
consequently that the whole area below the line �2α(m, k) is captured by type 2. Since �α(0)

eventually enters this region, we conclude that if type 2 captures all but finitely many sites in
S+

k (and k is large), then almost surely type 2 captures all but finitely many sites in the cone
below the line �α(0).

In a second step we show that for any α0 > 0, if type 2 occupies all but finitely many
vertices in the α0-cone below the line �α0(0), then the same is true for the (α0 + α)-cone
below the line �α0+α(0), almost surely. Since α0 is arbitrary, this will complete the proof of
the lemma. We repeat the argument above, and let vm denote the point on �α0(0) at distance m

from the origin, write �
α0
2α(m) for the semi-infinite line starting at vm with angel 2α to �α0(0),

and let �̄α0(m) be the line through vm that is orthogonal to �α0(0); see Figure 7. Now, if type
2 occupies all but finitely many vertices in the α0-cone, then its asymptotic speed in direction
α0 is determined by λ−1μα0 . Hence, if type 2 occupies all but finitely many vertices in the
α0-cone, then the event H

α0
m that type 1 has not yet reached �̄α0(m) when type 2 reaches vm

has probability tending to one as m → ∞.
Furthermore, by (10) it again follows that the type 2 time from vm to a point far along the

line �
α0
2α(m) is with high probability strictly smaller than the type 1 passage time from �̄α0(m)

to the same point. Again repeating the argument in the proof of Lemma 5, we may show
that the event G

α0,2α

m that the whole line �
α0
2α(m) is captured by type 2, when starting from a

configuration where vm is of type 2 and the rest of the sites on or to the left of the line �̄α0(m)

is of type 1, occurs with positive probability. Appealing to the ergodic theorem we again find
that, given that type 2 takes all but finitely many sites in the α0-cone, the event H

α0
m ∩ G

α0,2α
m

will occur for some (large) m, almost surely, and so type 2 will occupy all but finitely many
sites in the (α0 + α)-cone below the line �α0+α(0). Since α0 was arbitrary, this completes the
proof. �

PROOF OF only if -DIRECTION OF THEOREM 1. The only if -direction of Theorem 1 is
an immediate consequence of Lemmas 6 and 7. �

Acknowledgments. This work was supported in part by grant 2016-04442 (DA) and
2014-4948 (MD) from the Swedish Research Council.

REFERENCES

[1] AHLBERG, D. (2015). Convergence towards an asymptotic shape in first-passage percolation on cone-like
subgraphs of the integer lattice. J. Theoret. Probab. 28 198–222. MR3320965 https://doi.org/10.1007/
s10959-013-0521-0

[2] ALM, S. E. and DEIJFEN, M. (2015). First passage percolation on Z
2: A simulation study. J. Stat. Phys.

161 657–678. MR3406703 https://doi.org/10.1007/s10955-015-1356-0

http://www.ams.org/mathscinet-getitem?mr=3320965
https://doi.org/10.1007/s10959-013-0521-0
http://www.ams.org/mathscinet-getitem?mr=3406703
https://doi.org/10.1007/s10955-015-1356-0
https://doi.org/10.1007/s10959-013-0521-0


THE TWO-TYPE RICHARDSON MODEL 2273

[3] AUFFINGER, A., DAMRON, M. and HANSON, J. (2015). Limiting geodesics for first-passage percolation
on subsets of Z2. Ann. Appl. Probab. 25 373–405. MR3297776 https://doi.org/10.1214/13-AAP999

[4] BLAIR-STAHN, N. D. (2012). A geometric perspective on first-passage percolation. Ph.D. Dissertation in
Mathematics, University of Washington. Available at arXiv:1212.6254. MR3152445

[5] DEIJFEN, M. and HÄGGSTRÖM, O. (2006). The initial configuration is irrelevant for the possibility of
mutual unbounded growth in the two-type Richardson model. Combin. Probab. Comput. 15 345–353.
MR2216472 https://doi.org/10.1017/S0963548305007315

[6] GARET, O. and MARCHAND, R. (2005). Coexistence in two-type first-passage percolation models. Ann.
Appl. Probab. 15 298–330. MR2115045 https://doi.org/10.1214/105051604000000503

[7] GARET, O. and MARCHAND, R. (2008). First-passage competition with different speeds: Positive density
for both species is impossible. Electron. J. Probab. 13 2118–2159. MR2461538 https://doi.org/10.
1214/EJP.v13-581

[8] HÄGGSTRÖM, O. and PEMANTLE, R. (1998). First passage percolation and a model for competing spatial
growth. J. Appl. Probab. 35 683–692. MR1659548 https://doi.org/10.1239/jap/1032265216

[9] HÄGGSTRÖM, O. and PEMANTLE, R. (2000). Absence of mutual unbounded growth for almost all pa-
rameter values in the two-type Richardson model. Stochastic Process. Appl. 90 207–222. MR1794536
https://doi.org/10.1016/S0304-4149(00)00042-9

[10] HOFFMAN, C. (2005). Coexistence for Richardson type competing spatial growth models. Ann. Appl.
Probab. 15 739–747. MR2114988 https://doi.org/10.1214/105051604000000729

[11] HOFFMAN, C. (2008). Geodesics in first passage percolation. Ann. Appl. Probab. 18 1944–1969.
MR2462555 https://doi.org/10.1214/07-AAP510

[12] KESTEN, H. (1973). Discussion contribution. Ann. Probab. 1 903.
[13] KINGMAN, J. F. C. (1968). The ergodic theory of subadditive stochastic processes. J. Roy. Statist. Soc. Ser.

B 30 499–510. MR0254907
[14] LIGGETT, T. M. (1985). An improved subadditive ergodic theorem. Ann. Probab. 13 1279–1285.

MR0806224
[15] RICHARDSON, D. (1973). Random growth in a tessellation. Proc. Camb. Philos. Soc. 74 515–528.

MR0329079 https://doi.org/10.1017/s0305004100077288
[16] WEHR, J. and WOO, J. (1998). Absence of geodesics in first-passage percolation on a half-plane. Ann.

Probab. 26 358–367. MR1617053 https://doi.org/10.1214/aop/1022855423

http://www.ams.org/mathscinet-getitem?mr=3297776
https://doi.org/10.1214/13-AAP999
http://arxiv.org/abs/arXiv:1212.6254
http://www.ams.org/mathscinet-getitem?mr=3152445
http://www.ams.org/mathscinet-getitem?mr=2216472
https://doi.org/10.1017/S0963548305007315
http://www.ams.org/mathscinet-getitem?mr=2115045
https://doi.org/10.1214/105051604000000503
http://www.ams.org/mathscinet-getitem?mr=2461538
https://doi.org/10.1214/EJP.v13-581
http://www.ams.org/mathscinet-getitem?mr=1659548
https://doi.org/10.1239/jap/1032265216
http://www.ams.org/mathscinet-getitem?mr=1794536
https://doi.org/10.1016/S0304-4149(00)00042-9
http://www.ams.org/mathscinet-getitem?mr=2114988
https://doi.org/10.1214/105051604000000729
http://www.ams.org/mathscinet-getitem?mr=2462555
https://doi.org/10.1214/07-AAP510
http://www.ams.org/mathscinet-getitem?mr=0254907
http://www.ams.org/mathscinet-getitem?mr=0806224
http://www.ams.org/mathscinet-getitem?mr=0329079
https://doi.org/10.1017/s0305004100077288
http://www.ams.org/mathscinet-getitem?mr=1617053
https://doi.org/10.1214/aop/1022855423
https://doi.org/10.1214/EJP.v13-581

	Introduction
	Preliminaries
	A one-type lemma
	A two-type lemma
	Proof of Theorem 1
	Acknowledgments
	References

