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In this article we study imaginary Gaussian multiplicative chaos—
namely a family of random generalized functions which can formally be writ-
ten as eiX(x), where X is a log-correlated real-valued Gaussian field on Rd ,
that is, it has a logarithmic singularity on the diagonal of its covariance. We
study basic analytic properties of these random generalized functions, such
as what spaces of distributions these objects live in, along with their basic
stochastic properties, such as moment and tail estimates.

After this, we discuss connections between imaginary multiplicative
chaos and the critical planar Ising model, namely that the scaling limit of the
spin field of the critical planar XOR-Ising model can be expressed in terms
of the cosine of the Gaussian free field, that is, the real part of an imaginary
multiplicative chaos distribution. Moreover, if one adds a magnetic perturba-
tion to the XOR-Ising model, then the scaling limit of the spin field can be
expressed in terms of the cosine of the sine-Gordon field, which can also be
viewed as the real part of an imaginary multiplicative chaos distribution.

The first sections of the article have been written in the style of a review,
and we hope that the text will also serve as an introduction to imaginary chaos
for an uninitiated reader.
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1. Introduction. We begin this introduction with Section 1.1, where we informally re-
view what log-correlated fields and multiplicative chaos are as well as their role in modern
probability theory and applications. Then in Section 1.2, we state our main results concerning
the existence and basic properties of imaginary multiplicative chaos. After this, we move to
Section 1.3, where we discuss our results concerning the Ising model. Finally in Section 1.4,
we give an outline of the remainder of the article.

1.1. Background on log-correlated fields and multiplicative chaos. Log-correlated
fields—namely real-valued random generalized functions on Rd with a logarithmic singular-
ity on the diagonal of the covariance kernel1—have emerged as an important class of objects
playing a central role in various probabilistic models. For example, one encounters them
when studying the statistical behavior of the Riemann zeta function on the critical line [3,
36, 64, 71], characteristic polynomials of large random matrices [37, 43, 70], combinatorial
models for random partitions of integers [46], certain models of mathematical finance [69],
Section 5, lattice models of statistical mechanics [51], construction of conformally invariant
random planar curves such as Stochastic Loewner evolution [5, 73], the random geometry of
two-dimensional quantum gravity and scaling limits of random planar maps [21, 29, 52, 63],
growth models [12], and statistical properties of disordered systems [16]. A typical exam-
ple of a log-correlated field is the two-dimensional Gaussian free field, namely the centered
Gaussian process on a planar domain with covariance given by the Green’s function of the
domain with some prescribed boundary conditions. In the planar case, a log-correlated field
can be seen as a model for a generic random surface.

In many of the above cases, a central goal is to understand geometric properties of the
object described in terms of the log-correlated field. One might, for example, be interested
in understanding how the maximum of the field behaves or one might be interested in the
Hausdorff dimensions of level sets of the field. As the field is a rough object—a random gen-
eralized function instead of a random function—it is not obvious that any of these notions
make sense. Nevertheless, in some specific situations, precise sense can be made of such
questions—for such studies, see, for example, [2, 3, 16, 18, 26, 35, 36, 54, 55, 59, 64, 68].
In some approaches to such geometric questions, an important role is played by a family of
random measures which can be formally written as the exponential of the log-correlated field
multiplied by a real parameter: eβX(x) dx, where X is the log-correlated field and β > 0. The
rigorous construction of these measures requires a regularization and renormalization pro-
cedure since a priori, one can not exponentiate a generalized function. The theory of these
random measures goes under the name of multiplicative chaos and its foundations were laid
by Kahane [49]; see also [69] for a recent review of the theory and [9] for an elegant and
concise construction of the family of measures. The connection between multiplicative chaos
and the geometry of the field can be seen, for example, in [69] or the approach of [9], Sec-
tion 4. In addition to being of importance in geometric studies, multiplicative chaos measures
also play an important role in a rigorous definition of the so-called Liouville field theory—an
example of a quantum field theory with certain symmetries under conformal transformations;
for details, see, for example, [21, 52].

1For precise definitions in the Gaussian setting, see Section 2.
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The importance of these multiplicative chaos measures suggests posing the question of
whether one can make sense of similar objects for complex values of the parameter β in the
definition of eβX(x), or more generally can one consider similar objects for complex log-
correlated fields.2 Moreover, if one can make sense of such objects, what properties do they
have, where do they arise, and do they perhaps say something about the geometry of the field
X? Indeed, such objects have been studied—see, for example, [6, 53]—and also show up
naturally when studying the statistics of the Riemann zeta function on the critical line and
characteristic polynomials of random matrices—see [71]. We also point out that, at least on
a formal level, the situation where the parameter β is purely imaginary plays a central role in
the study of so-called imaginary geometry—see [62].

The purpose of this article is to study in more detail a particular case of such complex
multiplicative chaos in that we consider the situation where the relevant parameter is purely
imaginary: we consider objects formally written as eiβX(x), where β ∈ R, and X is a real-
valued Gaussian log-correlated field—imaginary Gaussian multiplicative chaos. We have two
primary goals for this article. The first one is to study the basic properties of these objects as
random generalized functions. Thus we investigate their analytic properties—namely show
that the relevant objects exist as certain random generalized functions and study their smooth-
ness properties—and also their basic probabilistic properties—namely provide moment and
tail estimates for relevant quantities built from this imaginary chaos. In this latter part the
main novelty of our results is that they deal with general log-correlated fields, contrary to
previous studies dealing with the Gaussian free field, as it turns out that the general case re-
quires new tools. Our second goal is to prove that imaginary multiplicative chaos is a class of
probabilistic objects arising naturally, for example, in models of statistical mechanics.3 In ad-
dition to these primary goals, we use an example from random matrix theory to illustrate that
there are some subtleties in constructing multiplicative chaos, both in the real and imaginary
case.

As we suspect that imaginary multiplicative chaos will play a prominent role in different
types of probabilistic models, we have tried to write this article in a format similar to a
survey article. In particular, we review basic properties of imaginary multiplicative chaos and
discuss different types of results in a style which is hopefully accessible to readers of various
backgrounds and interests.

We now turn to discussing more precisely our main results.

1.2. Main results on basic properties of imaginary multiplicative chaos. Naturally the
starting point in discussing basic properties of imaginary multiplicative chaos is the question
of its existence. That is, given a centered Gaussian process X taking values in some space of
generalized functions, and (formally) having a covariance kernel of the form

(1.1) CX(x, y) = EX(x)X(y) = log |x − y|−1 + g(x, y),

where g is say locally bounded (see Section 2 for details), we want to make sense of eiβX(x)

in some way. Some results of this flavor actually exist already—see, for example, [6, 53],4

but there are many natural questions that remain unanswered about these objects. More pre-
cisely, [6, 53] impose some assumptions on the function g, that one would expect to be rather

2That is random fields whose real and imaginary parts are real-valued log-correlated fields.
3On a possibly related issue, we remark that we suspect that as suggested in the theoretical physics literature,

imaginary multiplicative chaos can be used to give a rigorous definition of the Coulomb gas formulation of some
conformal field theories, though we do not discuss this further here.

4In the setting of the Gaussian free field, a very similar question though with a different emphasis has been
considered already in [33]; a study related to the sine-Gordon model—see Section 1.3 for further discussion about
the sine-Gordon model and its relationship to imaginary chaos.
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unnecessary, and based on their results, very little can be said about the analytic properties
of the objects eiβX(x) —are they possibly random smooth functions, are they random com-
plex measures, or are they random generalized functions? Also probabilistic properties such
as precise tail estimates are not studied in [6, 53], though we do refer to [57], Appendix A,
where such questions are studied in the setting of the Gaussian free field. Hence, one of our
main goals is to address these issues, namely to study imaginary chaos for a rather general
class of covariances CX , to describe nearly optimal regularity results, as well as probabilistic
results such a moment and tail estimates.

We now describe the setting of our first result concerning existence and uniqueness of
imaginary chaos for rather general covariances CX . As X is a random generalized function
instead of an honest function, eiβX(x) can not be constructed in a naive way. Instead, one
must construct it through a regularization and limiting procedure. More precisely, we intro-
duce suitable approximations to X, which are honest functions and which we call standard
approximations Xn—see Definition 2.7 for a precise definition. Standard approximations al-
ways exist—a typical example of a standard approximation is convolving X with a smooth
bump function; see Lemma 2.8 for details. One would then expect that the correct way to con-

struct eiβX(x) is as a limit of the sequence eiβXn(x)+ β2

2 E[Xn(x)2]. This turns out to be partially
true—as proven in [53] under some further assumptions on CX and for a rather particular ap-
proximation, this sequence has a nontrivial limit for5 0 < β <

√
d . For larger β , it was shown

in [53] (once again under certain assumptions on CX) that one can multiply eiβXn(x) by a
suitable deterministic n-dependent factor to obtain convergence to complex white noise. As
white noise is a well understood object, we have chosen to focus on the regime 0 < β <

√
d in

this article. In addition to being able to construct eiβX(x) as a limit of eiβXn(x)+ β2

2 EXn(x)2
, one

might hope that the limiting object would not depend very much on how we approximated
X—this is indeed confirmed by one of our results. Finally, as mentioned in the previous sec-
tion, the limiting object is rather rough; a generalized function instead of an honest function
so we formulate convergence in a suitable Sobolev space of generalized functions—we refer
the reader wishing to recall the definition of the Sobolev space Hs(Rd) to the beginning of
Section 2.2. The precise statement concerning all these issues is the following theorem.

THEOREM 1.1. Let (Xn)n≥1 be a standard approximation of a given log-correlated field
X on a domain U ⊂ Rd satisfying the assumptions (2.1) and (2.2) (see also Definition 2.7
for a precise definition of a standard approximation). When 0 < β <

√
d , the functions

μn(x) = eiβXn(x)+ β2

2 E[Xn(x)2],

understood as zero outside of U , converge in probability in Hs(Rd) for s < −d
2 . The limit μ

is a nontrivial random element of Hs(Rd), supported on U .
Moreover, suppose that Xn and X̃n are two sequences of standard approximations of the

same log-correlated field X (satisfying assumptions (2.1) and (2.2) below), living on the same
probability space, and satisfying

(1.2) lim
n→∞EXn(x)X̃n(y) = CX(x, y),

where convergence takes place in measure on U × U . Then the corresponding imaginary
chaoses μ and μ̃ are equal almost surely.

5Note that as we are dealing with a centered Gaussian field, −X
d= X so results for −√

d < β < 0 can be

obtained from the 0 < β <
√

d case.
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Our proof of this theorem, which does not rely on martingale theory as in [6, 53], is a
rather basic probabilistic argument involving calculating second moments of objects such
as

∫
f (x)μn(x) dx for suitable f —the proof is the main content of Section 3.1. We wish

to point out here that one can show that different convolution approximations satisfy the
condition (1.2) so this theorem shows that the limiting random variable μ is indeed unique at
least if one restricts one’s attention to convolution approximations.

As discussed earlier, one of our main goals in this article is to understand (essentially
optimal) regularity properties of the object μ. While convergence in the space Hs(Rd) with
s < −d

2 means that μ cannot be terribly rough, it does not say that μ isn’t say a C∞-function.
The following result, which is our main result concerning analytic properties of imaginary
multiplicative chaos, rules out this kind of possibility, or even the possibility that μ would be
a complex measure. As this means that μ is a true generalized function, we also study more
extensively to which spaces of generalized functions μ belongs to and essentially extract
its optimal regularity. For a reminder of the relevant spaces of generalized functions: Bs

p,q ,
Triebel spaces, etc., along with their uses, we refer the reader again to Section 2.2.

THEOREM 1.2. Let μ be the imaginary multiplicative chaos given by Theorem 1.1 and
let 1 ≤ p,q ≤∞. Then the following are true.

(i) μ is almost surely not a complex measure.

(ii) We have almost surely μ ∈ Bs
p,q,loc(U) when s < −β2

2 and μ /∈ Bs
p,q,loc(U) when

s > −β2

2 .
(iii) Assume moreover that the function g from (1.1) satisfies g ∈ L∞(U ×U) or that X is

the GFF with zero boundary conditions—see Example 2.6. Then almost surely μ ∈ Bs
p,q(Rd)

when s < −β2

2 .
(iv) Analogous statements hold for Triebel spaces with p,q ∈ [1,∞).

For obtaining upper bounds on regularity, our proof of this theorem relies on estimat-
ing low order moments of μ(fk) for a suitable sequence of (random) test functions, while
for lower bounds we combine the Fourier-analytic definition of Besov spaces with moment
estimates of μ(f ) for general deterministic f —the details of the proof are presented in Sec-
tion 3.3.

Having described our main results concerning analytic properties of imaginary multiplica-
tive chaos, we move onto basic probabilistic properties of it. The main question we wish to

answer is what can be said about the law of μ(f ) = limn→∞
∫

eiβXn(x)+ β2

2 E[Xn(x)2]f (x) dx

for a given f ∈ C∞
c (U). Our study of this question is through analysis of moments of μ(f ).

The existence of all positive moments is one of the main properties that makes imaginary mul-
tiplicative chaos special compared to real or general complex chaos. More precisely, if one
considers general complex multiplicative chaos, formally written as eβX(x) with Re(β) 	= 0,
then it is known that generically E| ∫ f (x)eβX(x)|k will be finite only for 0 ≤ k ≤ k0 for
some finite k0. We will show that for purely imaginary chaos, all moments exist. Moreover,
as we will see, the moments grow slowly enough for the law of the random variable μ(f )

to be characterized by the moments Eμ(f )kμ(f )
l
, with k, l nonnegative integers. A simi-

lar phenomenon has been observed for a particular model of what might be called signed
multiplicative chaos—see [7].

The fact that the moments μ(f ) grow slowly enough to determine the distribution for a
particular variant of the Gaussian free field (corresponding to g = 0 in (1.1)) follows from the
work in [41, 57]. Interesting related estimates in connection with the sine-Gordon model are
obtained in [42]. However, the case of general g in (1.1) leads to surprising complications.
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Our analysis of moments is based on variants and generalizations of a famous inequality
originally due to Onsager [67], that is often called Onsager’s lemma (see, e.g., [31]), or the
electrostatic inequality (see, e.g., [41]), as it involves the Green’s function of the Laplacian in
its original form. As we are not focusing on the Green’s function, we find it more suitable to
simply refer to our inequalities as Onsager (type) inequalities. As these Onsager inequalities
are not directly properties of multiplicative chaos, we don’t record them in this introduction,
but refer the reader to Section 3.2—see Proposition 3.6, Theorem 3.8, and Proposition 3.9. Of
these results, we prove in Section 3.2 Proposition 3.6 and Proposition 3.9 which apply in the
case d = 2. We prove Theorem 3.8, which applies for d 	= 2, in a separate article [48]. There
the proof of Theorem 3.8 is based on a nontrivial decomposition result for log-correlated
fields, which has several other applications as well, and we hence find it more suited for a
separate publication. While one might argue that the most interesting log-correlated fields are
variants of the Gaussian free field in two dimensions, we chose to present results for general
d as there are natural one-dimensional log-correlated fields arising, for example, in random
matrix theory [37, 43] and also four-dimensional ones arising in the study of the uniform
spanning forest—see [56].

Given our Onsager inequalities, we may then deduce that all positive integer moments of
imaginary multiplicative chaos are finite, and in fact grow slowly enough to determine the law
of imaginary chaos—which can be seen as another kind of uniqueness result. More precisely,
we have the following result, which requires some further regularity from the covariance of
our log-correlated field.

THEOREM 1.3. Let X be a log-correlated field on U ⊂ Rd satisfying the conditions
(2.1) and (2.2). Let 0 < β <

√
d and μ be the random generalized function provided by

Theorem 1.1. Then for f ∈ C∞
c (U), E|μ(f )|k < ∞ for all k > 0. Assume that the function

g from (2.1) satisfies g ∈ Hd+ε
loc (U × U) for some ε > 0.6 For d = 2, this can be replaced by

the alternative assumption g ∈ C2(U × U). Then there exists a constant C > 0 independent
of f and N such that for N ∈ Z+

E|μ(f )|2N ≤ ‖f ‖2N∞ CNN
β2

d
N .

In particular, the law of μ(f ) is determined by the moments Eμ(f )kμ(f )
l

with l, k nonneg-
ative integers and Eeλ|μ(f )| < ∞ for all λ > 0.

We suggest that a reader puzzled by the different looking conditions for d = 2 and d 	= 2
turns to the discussion following Thoerem 3.8, where we touch on the matter briefly.

In the special case of d = 2, f = 1,7 and g = 0, such moments can in fact be interpreted as
the canonical partition function of the so-called two-dimensional two-component plasma or
neutral Coulomb gas. The connection between this model and imaginary multiplicative chaos
was noted in [57], Appendix A, where using the main results of [57], very precise asymptotics
for these moments were derived. Moreover, using these precise asymptotics, precise estimates
for the tail of the distribution of the random variable one might formally write as |μ(1)| were
derived. In this spirit, we combine Theorem 1.3 and Proposition 3.14 to obtain similar but
slightly weaker results for general d,g,f :

6For the definition of the Sobolev space Hd+ε
loc (U × U), see Section 2.2.

7Note that we require test functions to have compact support so in our setting f = 1 is not strictly speaking
a valid test function for μ, but if one were not interested in realizing μ as a random generalized function, one
could simply consider the sequence of random variables μn(1), which are perfectly well defined, and show that
these converge to something nontrivial. Such a phenomenon of being able to make sense of a random generalized
function acting on a single test function which is not a priori a valid test function is common, and occurs e.g., for
white noise.
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THEOREM 1.4. Let X be a log-correlated field on U satisfying the conditions (2.1) and
(2.2). Assume further that the function g from (2.1) satisfies the following condition: if d = 2,
g ∈ C2(U ×U) and if d 	= 2, g ∈ Hd+ε

loc (U ×U) for some ε > 0. Now let 0 < β <
√

d and μ

be the random generalized function from Theorem 1.1. Then for f ∈ C∞
c (U)

lim sup
λ→∞

logP(|μ(f )| > λ)

λ
2d

β2

< 0.

Let us now assume further that f ≥ 0 and f is not identically zero. Then for any ε > 0 we
have

lim inf
λ→∞

logP(|μ(f )| > λ)

λ
2d

β2 +ε
> −∞.

We also point out that in [65], Proposition 17, similar tail bounds in the setting of the
Gaussian free field (or more precisely, g = 0) were used to establish a Lee–Yang property for
imaginary multiplicative chaos.

Proving the results discussed here is the main content of Section 3. In addition to these
results, we also consider what we call universality properties of imaginary chaos in Sec-
tion 3.4, where we show that through a similar regularization/renormalization scheme, one
can make sense of H(X) for a large class of periodic functions H , and the relevant object can
be expressed in general in terms of imaginary multiplicative chaos—see Theorem 3.18. In
Section 3.5, we study how the objects μ behave in the vicinity of the critical point β =√

d .
More precisely, we prove in Theorem 3.20 that once one multiplies μ = μβ by a suitable de-
terministic quantity tending to zero as β ↗√

d , one has convergence to a weighted complex
white noise.

This concludes the summary of our results concerning the basic analytic and probabilistic
properties of imaginary multiplicative chaos. We now turn to the connection between the
Ising model and the random generalized functions μ of Theorem 1.1.

1.3. Main results on the Ising model and multiplicative chaos. In this section we re-
view our basic results concerning the Ising model and imaginary chaos, beginning with some
background to the problem we study. The Ising model is one of the most studied models
of statistical mechanics, where the object of interest is a random spin configuration on some
graph, or in other words, a random function defined on say the vertices of the graph and taking
values ±1. The model is known to describe certain aspects of ferromagnets—for its defini-
tion (in two dimensions and + boundary conditions), see Section 4.1 and for an extensive
introduction to it, see, for example, [8]. A particularly important property of the Ising model
on say Zd with d ≥ 2, is that at a certain temperature, known as the critical temperature, the
model undergoes a phase transition, and the behavior of the correlation functions of the spin
configuration change abruptly. It has been recently proven in [17] that for d = 2 and pre-
cisely at this critical temperature, these correlation functions have a nontrivial scaling limit
and this scaling limit possesses certain conformal symmetries—see Theorem 4.1 where we
recall this result. Indeed, physicists know that quite generically, models of statistical physics
at their critical points8 have scaling limits which can be described by quantum field theories
behaving nicely under conformal transformations. While rigorously proving such statements
has turned out to be very challenging for mathematicians, there has been rather spectacular
progress in this direction in the case of the two-dimensional Ising model over the past two
decades.

8Namely at a point of a phase transition where e.g., the correlation lengths of quantities of interest diverge.
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A particularly successful method for making precise mathematical sense of quantum field
theories has been constructing probability measures on suitable spaces of generalized func-
tions and proving that the relevant quantum field theory can be constructed from these ran-
dom generalized functions—we refer the interested reader to [39] for further details about
this construction. This kind of procedure has in fact more or less been carried out for the
critical planar Ising model: in [14], the authors proved that the scaling limit of the random
spin configuration of a critical Ising model on Z2 can be described by a random generalized
function (whose correlation functions are closely related to those of [17]), and it more or
less follows that this gives rise to an operator and Hilbert space representation of the cor-
responding quantum field theory. This being said, as a probabilistic object, the scaling limit
constructed in [14] is perhaps slightly poorly understood. Essentially no other characterisa-
tion for it is known besides being the scaling limit of the critical Ising model, or equivalently
the unique random generalized function whose correlation functions are the scaling limit of
the Ising ones. For example, if one wished to simulate it, to our knowledge, the easiest way
is to simply simulate an Ising model on a domain with a fine mesh.

One of our goals is to show that if we change the model slightly, then one ends up with
a random generalized function which can be constructed also in other ways—in particular,
simulating it boils down to simulating a sequence of independent standard Gaussian random
variables. The model we consider is the so-called XOR-Ising model (see, e.g., [13, 80] and
references therein for studies related to it), whose spin configuration is a pointwise product of
two independent Ising spin configurations. Our main result concerning the XOR-Ising model
is that for d = 2 and at the critical point, the spin configuration has a scaling limit which
is the real part of an imaginary multiplicative chaos. The precise result is the following (for
relevant definitions and notation concerning the XOR-Ising model, see Section 4.2 and for
the Gaussian free field, see Example 2.6).

THEOREM 1.5. Let X be the zero boundary condition Gaussian free field on a simply
connected bounded planar domain U ⊂ R2 and let Sδ denote the spin field9 of the XOR-Ising
model on a lattice approximation of U with δ-mesh and + boundary conditions. Then for any
f ∈ C∞

c (U),

δ−1/4
∫
U

f (x)Sδ(x) dx
d→ C2

∫
U

f (x)

(
2|ϕ′(x)|
Imϕ(x)

)1/4
cos

(
2−1/2X(x)

)
dx

as δ → 0, where C = 25/48e
3
2 ζ ′(−1) (ζ being the Riemann zeta function), ϕ is any conformal

bijection from U to the upper half plane, and cos 1√
2
X(x) denotes the real part of the ran-

dom generalized function μ constructed in Theorem 1.1 from convolution approximations of
the random generalized function X with β = 1√

2
, and the integral on the right hand side is

formal notation meaning that we pair this random generalized function with the test function
f (x)(

2|ϕ′(x)|
Imϕ(x)

)1/4.

We prove this theorem in Section 4.3. The proof follows rather easily from the strong
results of [17], some rather rough estimates following arguments in [34], and the method
of moments which is justified by Theorem 1.3. Rather interestingly, we note that our proof
doesn’t rely on anything converging to the GFF.

9We find it convenient to define spin configurations as functions on faces of the lattice δZ2, or alternatively on

the dual graph of δZ2, and by a spin field, we mean a function defined on U which is constant on these lattice
faces and in each face, it agrees with the value of the spin configuration on that face.
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We emphasize here that the interpretation of Theorem 1.5 that one should have in mind is
that if σδ(x) and σ̃δ(x) are the spin fields of two independent critical Ising realizations, then

δ−1/4σδ(x)σ̃δ(x)
d≈ C2

(
2|ϕ′(x)|
Imϕ(x)

)1/4
cos

(
2−1/2X(x)

)
.

While studying the XOR-Ising model might seem like an artificial idea at first, it is in fact
a model both physicists and mathematicians have studied and used to derive the scaling limit
of the correlation functions of the critical Ising model and is referred to as bosonization of the
Ising model. More precisely, in the physics literature, a connection between squared full plane
Ising correlation functions and correlation functions of the cosine of the GFF were observed
in [45]—for a review of later developments and more on the conformal field theory of the
Ising model, see, for example, [24], Chapter 12. This connection was given a rigorous basis in
[27] where the author proved an exact identity between squares of Ising correlation functions
and suitable correlation functions of the dimer model and then performed asymptotic analysis
of these correlation functions. Intuitively, the connection to the free field comes from the fact
that the relevant dimer correlation functions can be expressed in terms of the height function
of the dimer model and it is known that this converges to the free field in the fine mesh limit.

Admittedly, for readers interested purely in the critical Ising model, our Theorem 1.5 is
perhaps not much more than a curiosity showing that this notion of bosonization also makes
rigorous probabilistic sense on the level of the scaling limit. This being said, we hope that
from the perspective of better understanding scaling limits of critical models of statistical
mechanics, Theorem 1.5 might be of some use, in that the cosine of the free field, interpreted
in terms of imaginary multiplicative chaos, is a rather concrete object which might serve as a
test case where proving some conjectured properties of scaling limits might be simpler than
for other models—even the Ising model—as everything is constructed in terms of Gaussian
random variables. Although, we do concede that analytic and probabilistic results similar
to those discussed in Section 1.2 have largely been proven for the critical Ising model; see
[14, 15, 34]. Simulation on the other hand is certainly simpler for the scaling limit of the
XOR-Ising model: see Figure 1 for a simulation of cos(2−1/2X(x)) in the unit square.

We now discuss an application of Theorem 1.5 to a model which is a perturbation of the
critical XOR-Ising model. In addition to the connection between scaling limits of critical
models of statistical physics and conformal field theory, physicists have argued that in two

FIG. 1. Left: A simulation of the Gaussian free field in the unit square with zero boundary conditions. The
approximation is obtained by truncating the expansion in terms of Laplacian eigenfunctions at level 2002—see
Example 2.6.10 Right: A simulation of the cosine of the GFF obtained from the realization of the GFF in the left
figure (with parameter β = 1/

√
2)—see Lemma 3.5.

10More precisely, the eigenfunctions are of the form sin(kπx) sin(
πy), k, 
 ≥ 1, and we have used those for
which 1 ≤ k, 
 ≤ 200.
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dimensions, suitable perturbations of such models should still have scaling limits described
by quantum field theories which have an integrable structure despite loosing the conformal
one. For example, there exist fantastic conjectures concerning the scaling limit of the criti-
cal Ising model perturbed by a small magnetic field—see, for example, [81]. Another model
where this type of structure is believed to exist is the so-called sine-Gordon model, which has
been studied extensively in the physics literature (see, e.g., [20, 58, 82]) and in the mathemat-
ical physics literature (see, e.g., [25, 33, 66]). Formally, the probabilistic representation of
the sine-Gordon model is a probability distribution on a suitable space of random generalized
functions which is absolutely continuous with respect to the law of the full plane Gaussian
free field X, with Radon–Nikodym derivative 1

Zβ,μ
eμ

∫
cos(βX(x)) dx ,11 where μ,β ∈ R and

Zβ,μ is a normalizing constant. The conjectural integrable structure of this model is evident,
for example, in [58], where it is conjectured that if XsG(β,μ) is distributed according to this
law, then (formally—a rigorous statement would involve regularizing and taking a limit) for
0 < β < 2 and |Re(α)| < 2/β .

EeiαXsG(β,μ)(x)+ α2
2 E[XsG(β,μ)(x)2]

=
(

μπ�(1 − β2/4)

2�(β2/4)

) α2

4−β2
e

∫ ∞
0 [ sinh2 αβt

2

2 sinh β2t
4 sinh t cosh[1− β2

4 ]t
− α2

2 e−2t ] dt
t

.

Note that here truly one has 0 < β < 2 instead of β <
√

2 as one would expect from, for
example, Theorem 1.1. This is due to the fact that one can make sense of the sine-Gordon
model also in this regime; the partition function Zβ,μ diverges, but correlation functions
should be finite. We note that while slightly related to the convergence of imaginary chaos to
white noise outside of the L2-regime, this is a more delicate issue. At β = 2, there is a far
more interesting transition for the sine-Gordon model than this L2-boundary at β = √

2 for
imaginary chaos. This transition is known as the Kosterlitz–Thouless transition. We refer to
[25, 66] and references therein for further information. We also point out that the condition
|Re(α)| < 2/β is simply the condition that the integral above converges.

While it currently seems that proving results of this flavor, or perhaps ones involving more
complicated correlation functions are out of reach, we point out that this is surprisingly sim-
ilar to quantities arising in Liouville field theory where significant progress has been made
recently—compare, for example, with quantities appearing in the so-called DOZZ-formula
in [52].

Our contribution to questions about near critical models of statistical mechanics and inte-
grable quantum field theories is rather modest. First of all, we point out in Section 4.4, that in
a finite domain and for suitable values of α,β , using results from Section 1.2, one can make

sense of objects defined in the spirit of eiαXsG(μ,β)(x)+ α2
2 E[XsG(μ,β)(x)2]—note that as the field

XsG(μ,β) is non-Gaussian, this is an instance of non-Gaussian imaginary multiplicative chaos
appearing naturally in a model of mathematical physics. After this, we observe that if one
adds a (nonuniform) magnetic perturbation12 to the critical planar XOR-Ising model—see

11The precise definition of this is slightly delicate as the whole plane Gaussian free field is well defined only
up to a random additive constant. Moreover, it is by no means clear that the “integral” here is convergent, or
more precisely that the constant function one is a valid test function for the distribution, but as we are reviewing
nonrigorous results due to physicists, we ignore this issue. A rigorous construction would involve first restricting
to a bounded domain and then trying to take an infinite volume limit.

12As can be seen from the definition in Section 4.2, adding a magnetic perturbation to the XOR-Ising model is
different from taking pointwise products of two independent magnetically perturbed Ising models. Thus in this
near critical case, one can’t expect e.g., the correlation functions of the magnetically perturbed XOR-Ising model
to be related to the original Ising model in any simple way.
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Section 4.2 for proper definitions—then the spin field converges to the cosine of the sine-
Gordon field in the scaling limit. More precisely, we have the following theorem (for proper
definitions, see Section 4.2 and Section 4.4).

THEOREM 1.6. Let U be a bounded and simply connected domain and f,ψ ∈ C∞
c (U).

Let Sδ be distributed according to the magnetically perturbed critical XOR-Ising model with
magnetic field ψ on a lattice approximation of U with mesh δ and + boundary conditions.
Also write

ψ̃(x) = C2
(

2|ϕ′(x)|
Imϕ(x)

)1/4
ψ(x),

where C and ϕ are as in Theorem 1.5, and let XsG(ψ̃,1/
√

2)
be distributed according to the

sine-Gordon measure on U , written formally as

1

Zψ̃,β

e
∫
U ψ̃(x) cos[2−1/2X(x)]dx

PGFF(dX),

where PGFF(dX) denotes the law of the zero boundary condition Gaussian free field on U

interpreted as a probability measure on H−ε(Rd) for some ε > 0.
Then as δ → 0, δ−1/4 ∫

U Sδ(x)f (x) dx converges in law to a random variable written
formally as

C2
∫
U

f (x)

(
2|ϕ′(x)|
Imϕ(x)

)1/4
cos

(
2−1/2XsG(ψ̃,1/

√
2)

(x)
)
dx.

We prove this theorem in Section 4.5. The proof follows rather easily from Theorem 1.5
and standard probabilistic arguments. The result is not very surprising given Theorem 1.5
and is certainly known in the physics literature,13 but we do point out that it seems difficult to
prove a result of this flavor only from knowledge of the scaling limit of the critical correlation
functions. Again our hope is that this type of result could be interesting as it provides a rather
concrete case of a near critical model of statistical mechanics which has a scaling limit,
conjectured to have an integrable structure and which is concrete enough that one might hope
to be able to prove results that might be out of reach in more general models or, for example
for the scaling limit of the magnetically perturbed Ising model.

Finally we conclude this introduction with an outline of the remainder of the article.

1.4. Outline of the article and acknowledgements. In Section 2, we discuss some back-
ground material concerning log-correlated fields and their approximations and remind the
reader about some basic definitions and properties of spaces of generalized functions. Then
in Section 3, we prove our results from Section 1.2 concerning basic properties of imaginary
multiplicative chaos. In Section 4, we prove our results on the Ising model while in Sec-
tion 5, we describe briefly how imaginary multiplicative chaos arises in a model of random
matrix theory and use this example to illustrate some of the subtleties of multiplicative chaos.
In the Appendix, we record some basic moment bounds for imaginary chaos as well as a
combinatorial counting argument we make use of in Section 3.

13We also note that perhaps slightly curiously, if one perturbs the temperature of the critical XOR-Ising model
suitably, then again physicists expect a connection to the sine-Gordon model—see [45].
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2. Preliminaries: Introduction to log-correlated fields. In this section we give a pre-
cise definition of log-correlated Gaussian fields as random generalized functions, and dis-
cuss the type of approximations or regularizations of them that we shall use to construct our
imaginary multiplicative chaos. More precisely, we realize log-correlated fields as random
elements of suitable Sobolev spaces of generalized functions and define a class of approxima-
tions, containing, for example, convolution approximations, that are convenient for proving
the existence of imaginary multiplicative chaos. The results of this section will probably look
familiar to readers acquainted with basic facts about the Gaussian free field, as discussed,
for example, in [28] or [72], Section 4, but unfortunately the definition and study of gen-
eral log-correlated fields requires slightly heavier analysis than the GFF, especially in view
of applications to imaginary chaos. In addition to discussing basic facts about log-correlated
fields, we review in Section 2.2 the basic definitions and properties of spaces of generalized
functions that we will need in this article. We have intended this section as an introduction
to log-correlated fields for readers interested in generalities. Readers interested only in multi-
plicative chaos constructed from the Gaussian free field can skip the technical details of this
section rather safely.

2.1. Log-correlated fields. Intuitively, we wish to construct a centered Gaussian process
X on a domain U ⊂ Rd with covariance (kernel)

(2.1) CX(x, y) = EX(x)X(y) = log |x − y|−1 + g(x, y),

where we make the basic assumptions (used throughout the paper unless otherwise stated)
that {

g ∈ L1(U × U) ∩C(U × U), g is bounded from above in U × U, and

U ⊂ Rd is a simply connected and bounded domain.
(2.2)

These assumptions cover some of the most common examples of log-correlated fields, but
we expect that many of our results hold more generally too—in particular, one might hope
to be able to relax the assumption of g being bounded from above to some degree. To avoid
discussing in great detail generalized functions on domains with boundaries, we find it con-
venient to extend CX(x, y) to Rd × Rd by setting CX(x, y) = 0 whenever (x, y) /∈ U × U .
In addition, we also need to of course require that CX is a covariance kernel, namely that it
is symmetric and positive semi-definite: CX(x, y) = CX(y, x) and∫

CX(x, y)f (x)f (y) dx dy ≥ 0

for all f ∈ C∞
c (Rd). When a result needs more regularity to be assumed on g or U , this will

be stated separately.
We note first that actually our conditions on CX imply much stronger integrability of the

covariance—we will make use of this to realize our process X as a random element in a
suitable Sobolev space.

LEMMA 2.1. Assume that CX is a covariance kernel satisfying (2.1) and (2.2). Then
CX ∈ Lp(U × U) for all p < ∞.

PROOF. Let ψε := ε−dψ(·/ε), where ψ ∈ C∞
c (Rd) is a standard smooth, nonnegative

bump function with integral 1. We denote the mollified covariance by

CXε(x, y) :=
∫

R2d
ψε

(
x − x′)ψε

(
y − y′)CX

(
x′, y′)dx′ dy′.



IMAGINARY MULTIPLICATIVE CHAOS AND THE ISING MODEL 2111

From the definition of CX , it easily follows that CXε is a smooth honest covariance function
(it will actually turn out to be the covariance of the mollified field ψε ∗ X, but we do not
need this here). By smoothness, for any integer p ≥ 1 also the power (CXε)

p is a covariance,
as is seen by considering products of independent copies of corresponding Gaussian fields.
We apply the covariance condition on a smooth test function that is 1 on U + B(0,1) and
obtain for ε ∈ (0,1) and any integer p ≥ 1 the inequality

∫
R2d (CXε(x, y))p dx dy ≥ 0. By

decomposing the covariance CXε into its positive and negative part: CXε = (CXε)+− (CXε)−
it follows that for any positive odd integer p∫

R2d

[
(CXε)−(x, y)

]p
dx dy ≤

∫
R2d

[
(CXε)+(x, y)

]p
dx dy ≤

∫
R2d

[(
(CX)+

)
ε(x, y)

]p
dx dy

≤
∫

R2d

[
(CX)+(x, y)

]p
dx dy =: cp < ∞,

where the first step follows from noting that C+ · C− = 0 so since p is odd, 0 ≤ ∫
(C+ −

C−)p = ∫
C

p
+ − ∫

C
p
−; the second step follows from noting that (CXε)+ ≤ [(CX)+]ε; the

third step follows, for example, from Young’s convolution inequality; the last step follows by
Minkowski’s inequality and the assumption that g is bounded from above. Since CXε → CX

almost everywhere as ε → 0+, we also see that almost everywhere, (CXε)− → (CX)−, and
we may use Fatou’s lemma to deduce that

∫
R2d ((CX)−(x, y))p dx dy ≤ cp < ∞. Again, since

g is bounded from above, Minkowski’s inequality implies now that CX ∈ Lp(U × U) for
arbitrary positive odd integers p and hence for all real p ≥ 1. �

REMARK 2.2. Using our assumption that (CX)+(x, y) ≤ c0 + log(1/|x − y|), the
moment bound obtained in the proof may be used to deduce the stronger integrability
e(d−ε)|CX| ∈ L1(U × U) for every ε > 0.

The previous lemma verifies in particular that (x, y) �→ CX(x, y) ∈ L2(Rd ×Rd), whence
the operator CX : L2(Rd) → L2(Rd) with the integral kernel CX(x, y) is Hilbert–Schmidt.
In particular, it is symmetric and compact, so by the spectral theorem there exists a sequence
λ1 ≥ λ2 ≥ · · · > 0 of strictly positive eigenvalues and corresponding eigenfunctions ϕn, that
together with those eigenfunctions that correspond to the eigenvalue 0 form an orthonormal
basis for L2(Rd). We will now formally define X via the (generalized) Karhunen–Loève
expansion

(2.3) X(x) :=
∞∑

n=1

An

√
λnϕn(x), x ∈ Rd,

where An are i.i.d. N(0,1) random variables. Note that the functions ϕn are supported
on U . Let us now show that this sum converges in a suitable Sobolev space of general-
ized functions—we refer the reader to Section 2.2 for the definition of the L2-based standard
Sobolev spaces Hs(Rd). While this result is well known for the GFF, and probably not very
surprising to readers familiar with log-correlated fields, we choose to give a detailed proof of
it here as it does not seem to appear in the literature.

PROPOSITION 2.3. Assuming CX satisfies (2.1) and (2.2), the series on the right-hand
side of (2.3) converges almost surely in H−ε(Rd) for any ε > 0 to a H−ε(Rd)-valued Gaus-
sian random variable with covariance kernel CX .

PROOF. We start by showing that the series converges in H−d/2−ε(Rd) for any ε > 0.
Let Xn(x) := ∑n

k=1 Ak

√
λkϕk(x) denote the nth partial sum of (2.3). Then Xn form a
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H−d/2−ε(Rd)-valued martingale. As H−d/2−ε(Rd) is a Hilbert space, it is enough to show
that

(2.4) sup
n≥1

E‖Xn‖2
H−d/2−ε < ∞

in view of the almost sure convergence of Hilbert space valued L2-bounded martingales (see,
e.g. [44], Theorem 3.61, Theorem 1.95). For f ∈ L1(Rd) we denote its Fourier transform
by f̂ (ξ) := ∫

Rd f (x)e−2πiξ ·x dx. Using elementary bounds along with orthogonality of the
eigenfunctions, we may compute

E‖Xn‖2
H−d/2−ε =

∫
Rd

E|X̂n(ξ)|2
(1 + |ξ |2)d/2+ε

dξ ≤
∫

Rd

∫
U×U |EXn(x)Xn(y)|dx dy

(1 + |ξ |2)d/2+ε
dξ

≤ Cε

∫
U×U

∣∣∣∣∣
n∑

k=1

λkϕk(x)ϕk(y)

∣∣∣∣∣dx dy

≤ Cε|U |
(∫

Rd×Rd

∣∣∣∣∣
n∑

k=1

λkϕk(x)ϕk(y)

∣∣∣∣∣
2

dx dy

)1/2

= Cε|U |
√√√√ n∑

k=1

λ2
k ≤ Cε|U |‖CX‖HS < ∞

for some constant Cε > 0 and ‖CX‖HS denoting the Hilbert–Schmidt norm of CX . This
proves (2.4).

Next we show that X actually takes values almost surely in H−ε(Rd). We denote by Xδ :=
ψδ ∗X a standard mollification of the field X (here ψδ is as in the proof of Lemma 2.1) whose
covariance satisfies CXδ ∈ C∞

c (R2d). Moreover, writing aδ(x) := ∫
Rd CXδ(u,u − x)du we

have aδ ∈ C∞
c (Rd) and

E
∣∣X̂δ(ξ)

∣∣2 =
∫

R2d
CXδ(x, y)e2πiξ ·(y−x) dx dy = âδ(ξ).

We compute for large enough p and small enough δ > 0 that

E‖Xδ‖2
H−ε(Rd )

=
∫

Rd

E|X̂δ(ξ)|2
(1 + |ξ |2)ε dξ ≤

∫
Rd

E|X̂δ(ξ)|2
|ξ |2ε

dξ

=
∫

Rd

âδ(ξ)

|ξ |2ε
dξ = cε

∫
Rd

aδ(x)

|x|d−2ε
dx = cε

∫
U ′2

CXδ(x, y)

|x − y|d−2ε
dx dy

≤ c′ε,p‖CXδ‖Lp(U ′2) ≤ c′ε,p‖CX‖Lp(U2) < ∞,

where the last inequality is due to Lemma 2.1 and the second to last from Young’s convolution
inequality. Above U ′ = U + B(0,1) and we used the fact that (cε| · |−d+2ε)̂ = | · |−2ε . We
then obtain

E‖X‖2
H−ε(Rd )

= E lim
δ→0

‖Xδ‖2
H−ε(Rd )

≤ lim inf
δ→0

E‖Xδ‖2
H−ε(Rd )

≤ c′ε,p‖CX‖Lp(U2) < ∞.

Finally, we lift the convergence Xn → X from H−d/2−ε(Rd) to H−ε(Rd). By the previous
argument and by construction, the H−ε(Rd)-valued random variables Xn and X − Xn are
symmetric, independent, and their norms have finite variance. By considering H−ε(Rd) as a
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real Hilbert space, the symmetry and independence yield for any n ≥ 1

E‖X‖2
H−ε(Rd )

= E‖X −Xn‖2
H−ε(Rd )

+ 2E〈X −Xn,Xn〉H−ε(Rd ) +E‖Xn‖2
H−ε(Rd )

≥ E‖Xn‖2
H−ε(Rd )

.

Thus (Xn) is a L2-bounded H−ε(Rd)-valued martingale, which again yields the stated con-
vergence. �

REMARK 2.4. The existence of X as a random tempered distribution could also be de-
duced by many other ways, for example, it is a rather direct consequence of Bochner–Minlos’
theorem (see, e.g., [74], Theorem 2.3). However, we wanted to avoid this more abstract frame-
work and obtain directly the optimal Sobolev regularity.

To give the reader a sharper picture of what kind of objects log-correlated fields are, we
discuss a bit further their smoothness properties. It is well known and easy to show that the
field X is almost surely not a Borel measure. However, it only barely fails being one, or even
a function, since an arbitrarily small degree of smoothing makes X a continuous function. In
order to make this precise, we recall that given δ ∈ R there is a standard δ-lift operator I δ that
smoothes a given tempered distribution “by an amount of δ”, see (2.20) below. Here is the
exact statement concerning X being nearly a continuous function:

LEMMA 2.5. Let us assume that CX is as in (2.1) and (2.2). For any δ > 0 there is
an ε > 0 so that almost surely I δX ∈ Cε(Rd)—the space of ε-Hölder continuous functions.
A fortiori, X ∈ C−ε(Rd) for any ε > 0.

PROOF. We assume that δ ∈ (0,1). The covariance of I δX is given by Cδ := (Gδ ⊗Gδ)∗
CX , where Gδ is the so-called Bessel kernel, which is the integral kernel of the operator
(I − �)−δ/2—see (2.20)—and for f,g : Rd → R, we write f ⊗ g : Rd × Rd → R,
(f ⊗g)(x, y) = f (x)g(y). Classical representations (see [4], (3,1)–(3,5), (4,1)) of the Bessel-
kernel Gδ imply that

Gδ(x − y) = |x − y|δ−dH
(|x − y|),

where H is an entire analytic function (as a side remark one may note that the main term in
the resulting asymptotics has the same behaviour as the Riesz potential). Using this repre-
sentation one can verify that given any δ > 0, there is a p0(δ) > 1 and α > 0 such that for
p ∈ (1,p0(δ)) it holds that∥∥(Gδ ⊗ Gδ)(· − x)− (Gδ ⊗Gδ)(·)

∥∥
Lp(B×B) � |x|α

for any ball B ⊂ Rd and x ∈ B×B . When this is combined with the fact that CX has compact
support and CX ∈ Lq(R2d) for all q < ∞ by Lemma 2.1, one obtains by Hölder’s inequality
that the Gaussian field I δX has a Hölder-continuous covariance. In turn, this is well known
[1], Theorem 1.4.1, to imply that the realizations of I δX can be taken to be Hölder continu-
ous.

The final statement then follows from basic properties of the operator I δ , see the discussion
around (2.20). �

Compared to Proposition 2.3, Lemma 2.5 gives more precise information about the regu-
larity of X—informally, it states that X barely fails to be a Hölder continuous function, while
Proposition 2.3 implies that X barely fails to be a L2-function. However, Lemma 2.5 does
not say anything about the convergence of the Karhunen–Loève expansion in Hölder type
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spaces—to our knowledge, this is an open question. Nevertheless, once the limiting object X

is constructed (as an element of C−ε), one can readily verify that, for example, convolution
approximations of it converge almost surely in such spaces—see the discussion surrounding
(2.21).

We now point out two examples of log-correlated Gaussian fields which will also play a
role in our applications later on.

EXAMPLE 2.6. Most common examples of log-correlated fields involve the two-
dimensional Gaussian free field. While there are many related examples, we will consider
the following two as they will be important in our applications to the Ising model and ran-
dom matrices.

1. Let U ⊂ R2 be a bounded simply connected domain. Then the Gaussian free field on U

with zero boundary conditions is the D′(R2)-valued Gaussian random field with covariance

(2.5) CX(x, y) = GU(x, y) = log
∣∣∣∣1 − ϕ(x)ϕ(y)

ϕ(x) − ϕ(y)

∣∣∣∣,
where GU is the Green’s function of the Laplacian in U with zero Dirichlet boundary con-
ditions, and ϕ : U →D is any conformal bijection. We could equivalently write GU(x, y) =
log |ψ(x)−ψ(y)

ψ(x)−ψ(y)
|, where now ψ : U → H

+ is any conformal bijection from U to the upper
half-pane. The generalized Karhunen–Loève expansion obtained in Proposition 2.3 lets us
write

X(x) =
∞∑

k=1

1√
λk

Akϕk(x)

with convergence in H−ε(Rd) in the norm-topology. Here (λk)
∞
k=1 are the eigenvalues of

−�, ϕk the associated eigenfunctions with unit L2-norm (interpreted as zero outside of U ),
and (Ak)

∞
k=1 i.i.d. standard Gaussians.

The covariance given by the Green’s function GU satisfies condition (2.2) which may be
seen by applying the standard comparison 0 ≤ GU(z,w) ≤ GU ′(z,w), where U ′ ⊃ U is any
larger simply connected domain and z,w ∈ U . The integrability and the needed upper bound
are obtained via this inequality by picking a ball B such that U ⊂ B and setting U ′ = 2B ,
where 2B stands for the ball with the same center as B , but twice the radius.

2. The trace of the whole plane Gaussian free field on the unit circle T is the D′(T)-valued
Gaussian random variable with covariance

CX(z,w) =− log |z −w|
with |z| = |w| = 1. Again X can be expressed in terms of a sum. Let (Wk)

∞
k=1 be i.i.d.

standard complex Gaussian random variables, that is, Wk = 1√
2
Ak + i 1√

2
Bk with Ak,Bk ∼

N(0,1) and i.i.d.. Then one has

X(z) =√
2 Re

∞∑
k=1

1√
k
zkWk,

where the sum converges pointwise almost surely in D′(T) (again actually in H−ε(T) with
respect to the norm topology for any ε > 0).

While the unit circle T is not an open subset of Rd , we can say write z = eix and take
x ∈ (−π,π) or something similar and see that the conditions (2.1) and (2.2) can be verified
with various interpretations.



IMAGINARY MULTIPLICATIVE CHAOS AND THE ISING MODEL 2115

As X is a random generalized function and not an honest function, we need to define
the exponential eiβX in terms of a renormalization procedure, where we smooth X into a
function, exponentiate and then remove the smoothing. We will require our smoothing to
have particular properties that are usually satisfied by most natural approximations of log-
correlated fields (and are typical in the general theory of multiplicative chaos). We will call
this type of an approximation a standard approximation:

DEFINITION 2.7 (Standard approximation). Let the covariance CX be as in (2.1) and
(2.2). We say that a sequence (Xn)n≥1 of continuous jointly Gaussian centered fields on U is
a standard approximation of X if:

(i) One has

lim
(m,n)→∞EXm(x)Xn(y) = CX(x, y),

where convergence is in measure with respect to the Lebesgue measure on U × U .
(ii) There exists a sequence (cn)

∞
n=1 such that c1 ≥ c2 ≥ · · · > 0, limn→∞ cn = 0, and for

every compact K ⊂ U

sup
n≥1

sup
x,y∈K

∣∣∣∣EXn(x)Xn(y) − log
1

max(cn, |x − y|)
∣∣∣∣ < ∞.

(iii) We have

sup
n≥1

sup
x,y∈U

[
EXn(x)Xn(y) − log

1

|x − y|
]

< ∞.

There can of course be various standard approximations. For example, one can check that
for the GFF restricted to the unit circle from Example 2.6, one could take Xn to be the trun-
cation of the sum at k = n—see Example 2.9. Perhaps the most important class is provided
by the usual mollifications of the field:

LEMMA 2.8. Let X be as in Proposition 2.3, and let η ∈ C∞
c (Rd) be nonnegative, ra-

dially symmetric, with unit mass: ∫
Rd η(x) dx = 1, and with support supp(η) ⊂ B(0,1). For

x ∈ U , y ∈ Rd , and ε > 0 define ηε(y) = ε−dη(y/ε) and set Xε(x) := X ∗ ηε(x)× 1U(x) for
x ∈ Rd .14

Let K ⊂ U be a compact set and x, y ∈ U . We then have the estimates: for some a =
aK > 0,

sup
0<ε<δ<a

sup
x,y∈K

∣∣∣∣EXε(x)Xδ(y) − log
1

max(|x − y|, δ)
∣∣∣∣ < ∞,(2.6)

lim
ε,δ→0

EXε(x)Xδ(y) = CX(x, y) for x 	= y fixed,(2.7)

sup
0<ε≤ a

2

sup
x,y∈U

[
EXε(x)Xε(y) − log

1

|x − y|
]

< ∞,(2.8)

and finally there exists a constant C > 0 depending only on K and η so that for x, y ∈ K and
0 < ε ≤ a

2

(2.9) E
(
Xε(x) −Xε(y)

)2 ≤ C|x − y|ε−1.

Especially, for any sequence δn ↘ 0 the convolutions Xδn , n ≥ 1, provide a standard approx-
imation.

14Recall that X ∈ H−s (Rd) ⊂ S ′(Rd) for any s > 0, so as ηε ∈ S(Rd), this convolution makes sense.
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PROOF. We begin with the proof of (2.6) and observe that by definition

(2.10) EXε(x)Xδ(y) = (
(ηε ⊗ ηδ) ∗CX

)
(x, y)1U×U(x, y).

Note that by our definition, CX is extended to be zero outside U × U , and CX is integrable
(actually belongs to all Lp-spaces by Lemma 2.1), so the convolution is well defined in all
of R2d . In turn, the factor 1U×U verifies that the approximations are supported on U . Pick
an open set V such that K ⊂ V ⊂ V ⊂ U . Denote a = aK := dist(K, ∂V ) > 0. Locally the
function g is bounded uniformly from above and below on V by the assumed continuity, so
its contribution to the convolution (2.10) is also uniformly bounded if x, y ∈ K and ε, δ ≤ a.
Hence it remains to verify (2.6) just for the logarithmic term.

As the logarithmic term depends only on the difference x − y we may write

(2.11)
(
(ηε ⊗ ηδ) ∗ log

(| · − · |−1))
(x, y) = (

(ηε ∗ ηδ) ∗ log
(| · |−1))

(x − y).

Given any differentiable function h : Rd → R we have the easy estimate

(2.12) ‖ηε ∗ h− h‖L∞(B(x,r−ε)) � ε‖Dh‖L∞(B(x,r))

for any 0 < ε < r and x ∈ Rd . Let us denote H := η1 ∗ log(1/| · |). As a smooth function
H is uniformly bounded near the origin. Moreover, |D log(1/|x|)| ≤ 1 for |x| ≥ 1, whence
(2.12) yields that |H(x) − log(1/|x|)| ≤ C for |x| ≥ 1. These observation may be combined
as follows:

(2.13) sup
x∈Rd

∣∣H(x) − log
(
1 ∧ |x|−1)∣∣ ≤ C.

Using the smoothness of H and again the bound |D log(1/|x|)| ≤ 1 for |x| ≥ 1, we see
that |DH | is uniformly bounded in Rd , and hence (2.12) implies the inequality ‖ηε ∗ H −
H‖L∞(Rd ) < C uniformly in ε ∈ (0,1). Putting things together we have shown that∣∣(η1 ∗ ηε) ∗ log

(| · |−1)
(x) − log

(
1 ∧ |x|−1)∣∣ ≤ C for all ε ∈ (0,1) and x ∈ Rd .

This is (2.6) for 1 = δ > ε > 0, and scaling yields the general case

(2.14)
∣∣∣∣(ηε ∗ ηδ) ∗ log

(| · |−1)
(x) − log

(
1

ε ∨ δ ∨ |x|
)∣∣∣∣ ≤ C.

The convergence in (2.7) is immediate from standard properties of convolution and the
continuity of CX outside the diagonal. Next, (2.8) follows from (2.10), (2.11), (2.14) and
the upper boundedness of g. Finally, for (2.9) we may clearly assume that ε ≤ a/2 (where
a depends on K as was defined in the beginning of the proof) and that g is continued as a
uniformly bounded measurable function to the whole of Rd (the extension need not to be a
covariance). For (2.9) it is enough to prove the derivative bounds |DxCXε |, |DyCXε | � ε−1.
Since

∫
Rd |Dηε| � ε−1, we obtain the stated bounds for the contribution of g to the derivative.

In turn, for the contribution of the logarithm one assumes first that ε = 1. Then the uniform
boundedness of the derivatives follow from (2.11) and the fact that ‖DH‖∞ < ∞, where H

is as before. The case of general ε ∈ (0,1) is again obtained by scaling.
Finally we note that conditions (i), (ii), and (iii) of a standard approximation follow from

(2.6), (2.7), and (2.8). Thus we only need to check that (Xδn) are jointly Gaussian and contin-
uous. We recall the simple argument for the convenience of a reader unfamiliar with such mat-
ters. By construction, all of the processes (n, x) �→ Xδn(x) live on the same probability space.
Moreover, for any fixed N ∈ Z+, x1, . . . , xN ∈ U , n1, . . . , nN ∈ Z+, and t1, . . . , tN ∈ R,

N∑
k=1

tkXδnk
(xk) = X

(
N∑

k=1

tkηδnk
(· − xk)

)
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and as we have, for example,
∑N

k=1 tkηδnk
(· − xk) ∈ Hε(Rd), this is a Gaussian random vari-

able by definition, so indeed we have joint Gaussianity. Finally continuity follows by observ-
ing that ηδ(· − x′) → ηδ(· − x) in Hε(Rd) as x′ → x and using the duality between H−ε

and Hε . �

The proof of this result can be used to prove that other natural approximations are also
standard approximations. As an example, we give the following one.

EXAMPLE 2.9. Let Xn(x) = √
2 Re

∑n
k=1

1√
k
eikxWk , where Wk are as in Example 2.6

part 2. Then the sequence (Xn)n≥1 forms a standard approximation. Intuitively, this follows,
since for the approximation

X̃n(x) := √
2 Re

(
n∑

k=1

√
n− k√
nk

eikxWk

)

we have EX̃n(x)X̃n(y) = ∑n
k=1

n−k
nk

cos(k(x − y)). The last written sum is a convolution
of the logarithmic kernel with a standard Fejér kernel, and the difference between the Fejér
partial sum and Fourier partial sum is uniformly bounded by direct inspection. Finally, the
Fejér partial sum of the logarithm is essentially a convolution approximation which behaves
like the covariance of a standard approximation by the proof of Lemma 2.8. For a detailed
argument, see, for example, the beginning of the proof of Lemma 6.5 in [47].

Note that Xn is a truncation of the Karhunen–Loève expansion from (2.3). While for this
particular case, the Karhunen–Loève expansion forms a standard approximation, we do not
know if this is true in general for log-correlated fields.

To conclude this preliminary section, we discuss briefly the spaces of generalized functions
that we will discuss in this article.

2.2. Classical function spaces. Realizations of the imaginary chaos that we define in
the next section are rather singular objects and one can’t have convergence in any space of
honest functions or even complex measures, so we must study convergence in suitable spaces
of distributions. In fact this is also true for log-correlated fields that were defined in the
previous subsection, and therein we used the basic negative index Sobolev Hilbert spaces as a
suitable tool. Here we recall for the convenience of readers less familiar with various spaces
of generalized functions the definition of Sobolev spaces as well as of the other function
spaces we use in the article.

For any smoothness index s ∈ R we define

(2.15) Hs(Rd) = {
ϕ ∈ S ′(Rd) : ‖ϕ‖2

Hs(Rd )
=

∫
Rd

(
1 + |ξ |2)s ∣∣ϕ̂(ξ)

∣∣2 dξ < ∞
}
,

where ϕ̂ stands for the Fourier transform of the tempered distribution ϕ—our convention for
the Fourier transform is

ϕ̂(ξ) =
∫

Rd
e−2πiξ ·xϕ(x) dx

for any Schwartz function ϕ ∈ S(Rd). Some basic facts about the spaces Hs(Rd) are, for
example, that they are Hilbert spaces, for s > 0, H−s(Rd) is the dual of Hs(Rd) with respect
to the standard dual pairing, Hs(Rd) is a subspace of C0(Rd) for s > d/2, that is, there
is a continuous embedding into the space of continuous functions vanishing at infinity, and
for s < −d/2, compactly supported Borel measures (especially δ-masses) are elements of
Hs(Rd).



2118 J. JUNNILA, E. SAKSMAN AND C. WEBB

A more extensive scale of measuring the simultaneous size and smoothness properties of
functions is provided by Besov spaces on Rd . In order to recall their definition, fix radial
and nonnegative Schwartz test functions φ0, φ1 ∈ S(Rd), denote φk(x) := 2kdφ1(2kx) and
assume that

supp(φ̂0) ⊂ B(0,2), supp(φ̂1) ⊂ B(0,4) \ B(0,1),

together with the partition of unity property

∞∑
k=0

φ̂k(ξ) = 1 for all ξ ∈ Rd .

Assume that 1 ≤ p,q ≤ ∞. A function (or Schwartz distribution) f on Rd belongs to the
Besov space Bs

p,q(Rd) if

(2.16) ‖f ‖Bs
p,q(Rd ) :=

( ∞∑
k=0

2qks‖φk ∗ f ‖q

Lp(Rd )

)1/q

< ∞,

where the interpretation for q = ∞ is ‖f ‖Bs
p,q

:= supk≥0 2ks‖φk ∗ f ‖Lp(Rd ). These spaces

include many standard spaces. First of all, Bs
2,2(R

d) = Ws,2(Rd) = Hs(Rd). Moreover, if
s ∈ (0,1) we have Bs∞,∞(Rd) = Cs(Rd) (with equivalent norms), where Cs is the well-
known space of bounded Hölder continuous functions with the norm

‖f ‖Cs(Rd ) := ‖f ‖L∞(Rd ) + sup
x,y∈Rd

|f (x)− f (y)|
|x − y|s .

Indeed, as is standard in harmonic analysis, one defines Cs(Rd) := Bs∞,∞(Rd) for arbitrary
s ∈ R.

Our motivation for proving in this paper basically optimal results for membership of the
imaginary chaos in general Besov spaces comes from the fact that this yields considerably
more knowledge on the smoothness and size of these objects than is obtained by just using
the spaces Hs(Rd). Recall, for example, that in the setting of log-correlated fields, our Propo-
sition 2.3 said that the field X, if smoothed a little bit, becomes an L2-function, which is far
weaker than saying that it becomes continuous as was stated in Lemma 2.5. The latter result
indeed measures smoothness using the Besov scale Bs∞,∞, that is, Hölder-spaces.

Another scale of function spaces is provided by the Triebel–Lizorkin spaces F s
p,q(R

d),
where we assume that 1 ≤ p,q < ∞ and set

‖f ‖Fs
p,q (Rd ) :=

∥∥∥∥∥
( ∞∑

k=0

2qks |φk ∗ f |q
)1/q∥∥∥∥∥

Lp(Rd )

.

This space contains as special cases, for example, the general Sobolev spaces Wk,p(Rd) =
Fk

p,2(R
d). However, we do not need to know more of them, since we will transfer our smooth-

ness results from the Besov case to the Triebel–Lizorkin scale in view of the simple embed-
dings

(2.17) Bs+δ
p,p

(
Rd) ⊂ F s

p,q

(
Rd) ⊂ Bs−δ

p,p

(
Rd)

which hold for any δ > 0, all 1 ≤ p,q < ∞ and s ∈ R. This is easily shown from the very
definitions of the spaces. For example, by Hölder’s inequality we have for any sequence
(ak)k≥1 and δ > 0 that ‖(ak)k≥1‖
q′ � ‖(2kδak)k≥1‖
q for any q, q ′ ∈ [1,∞]. This shows
that F s

p,q(R
d) ⊂ F s−δ

p,q ′ (Rd) for any q, q ′. By choosing q ′ = p and noting that ‖f ‖Fs
p,p(Rd ) =
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‖f ‖Bs
p,p(Rd ), we obtain the right hand inequality in (2.17), and the other one is proven in a

similar way.
We need a couple of additional facts about Besov spaces. Fix K ⊂ Rd compact. Then for

a distribution f in Rd with support contained in K we have also (now for the full range
1 ≤ p,q ≤∞)

(2.18) ‖f ‖Bs∞,∞(Rd ) � ‖f ‖
Bs′

p,p(Rd )
if s′ ≥ s + d

p

and

(2.19) ‖f ‖
Bs−δ

1,1 (Rd )
� ‖f ‖Bs

p,q (Rd ) � ‖f ‖
Bs+δ∞,∞(Rd )

,

with the implied constants in (2.19) possibly depending on K . (2.18) is found in [77], Sec-
tion 2.7.1, and (2.19) follows by combining the reasoning from the end of the last paragraph
with a standard expression for the Besov-norm using wavelets—see [61], Chapter 6. One
finally uses the simple fact that for functions f supported in a compact set K ′ we have by
Hölder’s inequality that ‖f ‖Lp1 � ‖f ‖Lp2 for 1 ≤ p1 ≤ p2 ≤∞.

For a subdomain U ⊂ Rd (naturally one may have U = Rd ) one says that a distribution
λ ∈ D′(U) lies in the space Hs

loc(U) if for all ψ ∈ C∞
c (U) one has ψλ ∈ Hs(Rd). In turn,

one says that λ ∈ Hs(U) assuming that there is f ∈ Hs(Rd) such that λ = f|U (then one de-
fines ‖λ‖Hs(U) := inf{‖f ‖Hs(Rd ) | λ = f|U }). Similar conventions are used for other function
spaces defined initially on Rd .

One final general fact about the function spaces we will use is the standard δ-lift I δf

(“smoothing by an amount δ”) of a given f ∈ S ′(Rd), which for any fixed δ ∈ R is defined
by using the Fourier-transform as follows:

(2.20) I δf :=F−1((
1 + | · |2)−δ/2

f̂
) = Gδ ∗ f,

where Gδ is the Bessel potential kernel. For any δ, s ∈ R and p,q ∈ [1,∞] the map
I δ : Bs

p,q(R
d) → Bs+δ

p,q (Rd) is a continuous, linear and bijective isomorphism (see [77], Sec-
tion 2.3.8).

We also mention here that it is well known that for a given f ∈ Bs
p,q(Rd) and ϕ ∈ C∞

c (Rd),
ϕ ≥ 0, and

∫
Rd ϕ(x) dx = 1,

(2.21) lim
ε→0

‖ϕε ∗ f − f ‖Bs
p,q(Rd ) = 0

for 1 ≤ p,q < ∞ and s ∈ R. Here ϕε(x) = ε−dϕ(x/ε). This follows for example, easily from
the density of test functions in Bs

p,q(R
d) assuming that p,q < ∞, see [76], Theorem 2.3.2.

In case p =∞ or q =∞, then (2.21) is true as long as f ∈ Bs′
p,q(R

d) for some s′ > s and is
compactly supported. A similar statement is true for Triebel spaces.

For an introduction to the basic properties of the L2-Sobolev spaces, as well as for the
Besov and Triebel spaces we refer in general to [40], Chapter 2, [61, 77].

This concludes our preliminary discussion about log-correlated fields and spaces of gen-
eralized functions. We will now move onto imaginary chaos.

3. Basic properties of imaginary multiplicative chaos. In this section, we prove our
results stated in Section 1.2 concerning basic properties of imaginary multiplicative chaos as
well as auxiliary ones. We begin with Section 3.1 where we construct our imaginary multi-
plicative chaos and give some uniqueness results. In Section 3.2, we discuss stochastic prop-
erties of imaginary multiplicative chaos, namely we provide some general moment estimates,
based on a generalisation of so-called Onsager type (electrostatic) inequalities (they will be
discussed in Section 3.2 below) for general covariances with a logarithmic singularity on the
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diagonal. These are used to obtain uniqueness statements in terms of moments and tail esti-
mates for the law of the imaginary chaos tested against a given test function. We then move
on to proving basic estimates for the regularity of imaginary chaos in Section 3.3. Section 3.4
verifies that in the definition of “eiβX” there is a lot of freedom in replacing x �→ eix by
another periodic function. Finally, in Section 3.5 we investigate what happens in the limit
β ↗ βcrit =

√
d . It is known from [53] that βcrit is the critical value for β beyond which the

naive renormalization scheme of dividing eiβXn(x) by EeiβXn(x) does not produce a nontrivial
limiting object, and our Theorem 3.20 gives another manifestation of this fact.

3.1. Construction of imaginary chaos. We begin by constructing imaginary multiplica-
tive chaos and verifying some uniqueness properties, namely that the constructed object does
not depend very much on the approximation used—see Theorem 1.1. Before starting, we re-
call that under a slightly more restrictive class of covariances CX , the existence of the object
follows already from results in [53], where complex multiplicative chaos was studied, but we
offer a simple alternative proof here. We also mention that if one were to work for example,
in the class of tempered distributions, proving existence would be slightly simpler, but this
would give very little insight into the regularity of these objects.

Let us start by proving existence. In our approach we are given a sequence of approxima-
tions (Xn)n≥1 of the log-correlated field X on the domain U , which we use to define what
we hope are approximations to our multiplicative chaos distribution:

μn(x) := exp
(

β2

2
E

[
Xn(x)2] + iβXn(x)

)
1U(x).

We will first prove the convergence of μn in a suitable Sobolev space, assuming that Xn

forms a standard approximation sequence as in Definition 2.7. As we will see in Section 3.3,
the smoothness index we obtain here is not optimal, but we will return to finer regularity
properties later. We also mention here that as follows from [53], Theorem 4.2 (under slightly
more restrictive assumptions on g), one should not expect that μn has a limit for β ≥ √

d

unless it is multiplied by a suitable quantity tending to zero, in which case the limit should
be proportional to white noise. As this is a rather well understood object, we choose to focus
on the regime 0 < β <

√
d . The following proposition is the first ingredient of Theorem 1.1.

PROPOSITION 3.1. Let (Xn)n≥1 be a standard approximation of a given log-correlated
field X on a domain U (see Definition 2.7). When 0 < β <

√
d , the functions μn converge

in probability in Hs(Rd) for s < −d
2 . The limit μ is a nontrivial random element of Hs(Rd),

supported on U .

PROOF. Assume first that ϕ ∈ L∞(Rd) is nonnegative and let us write Cn,m(x, y) =
EXn(x)Xm(y), whence we have Cn,m(x, y) = Cm,n(y, x). Then a short calculation shows
that

E
∣∣μm(ϕ) −μn(ϕ)

∣∣2 =
∫
U

∫
U

ϕ(x)ϕ(y)
(
eβ2Cn,n(x,y) + eβ2Cm,m(x,y) − 2eβ2Cn,m(x,y))dx dy.

By (iii) of Definition 2.7, we have eβ2Cn,n(x,y) =O(|x − y|−β2
), where the implied constant

is independent of x, y,n. Note that as β2 < d , |x − y|−β2
is an integrable singularity (this is

the role the 0 < β <
√

d condition plays). Thus by the dominated convergence theorem,

0 ≤ lim sup
(n,m)→∞

E
∣∣μm(ϕ) −μn(ϕ)

∣∣2
=

∫
U

∫
U

ϕ(x)ϕ(y)
(
eβ2CX(x,y) + eβ2CX(x,y))dx dy
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− lim inf
(n,m)→∞

∫
U

∫
U

ϕ(x)ϕ(y)eβ2Cn,m(x,y) dx dy

≤ 0,

where the last inequality follows by Fatou’s lemma and property (i) of Definition 2.7. Thus
we get

lim
(n,m)→∞E

∣∣μm(ϕ) −μn(ϕ)
∣∣2 = 0,

implying that μn(ϕ) is a Cauchy sequence in L2(P). Moreover, by property (iii) of Defini-
tion 2.7, we have the simple upper bound

E
∣∣μm(ϕ) −μn(ϕ)

∣∣2 ≤ ‖ϕ‖2∞
∫
U

∫
U

(
eβ2Cn,n(x,y) + eβ2Cm,m(x,y))dx dy ≤ C‖ϕ‖2∞

for some constant C > 0. By splitting a complex valued ϕ into positive and negative real and
imaginary parts we get the convergence in L2(P) of μn(ϕ) for all ϕ ∈ L∞(Rd),15 as well as
the upper bound

(3.1) E
∣∣μm(ϕ) − μn(ϕ)

∣∣2 ≤ 16C‖ϕ‖2∞.

We next compute

E‖μm −μn‖2
Hs =

∫
Rd

(
1 + |ξ |2)s

E
∣∣μ̂m(ξ) − μ̂n(ξ)

∣∣2 dξ

=
∫

Rd

(
1 + |ξ |2)s

E
∣∣μm

(
e−2πiξ ·) −μn

(
e−2πiξ ·)∣∣2 dξ.

Notice that if s < −d
2 , then the estimate (3.1) and the dominated convergence theorem show

us that as elements of Hs , the sequence is Cauchy in L2(P). Thus there exists a random ele-
ment of Hs , say μ, living on the same probability space as our approximations, and satisfying
E‖μ‖2

Hs < ∞ as well as limn→∞E‖μn − μ‖2
Hs = 0. In particular this implies convergence

in probability in Hs of μn to μ.
Nontriviality of μ follows from L2-convergence: one has, for example,

E
∣∣μ(ϕ)

∣∣2 =
∫
U×U

ϕ(x)ϕ(y)eβ2g(x,y)|x − y|−β2
dx dy.

Finally, the claim of the support is evident since all the approximations μn are supported on
U by definition. �

Having proven that limiting objects exist, the next natural step is to check that the limit
μ does not depend on our approximating sequence μn in some sense. There are various
statements of this flavor one could formulate; one example being that the law of the limit
would be independent of the standard approximation. We return to this question of uniqueness
of the law when we study moments of μ—in particular, we will see that moments both
characterize the law of μ and are independent of the standard approximation. For now, we
consider uniqueness from a slightly different point of view and show with a simple argument
that if there are two standard approximations living on the same probability space and are
compatible in a certain way, then they converge in probability to the same random variable.
The next proposition is the uniqueness portion of Theorem 1.1.

15Note that this result is essentially enough to ensure the existence of say a random tempered distribution μn

converges to, but as stated before, it gives very little insight into the regularity of the object. Hence we work a bit
harder to prove convergence in a Sobolev space, and later to extract the optimal regularity.
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PROPOSITION 3.2. Suppose that Xn and X̃n are two jointly Gaussian sequences of stan-
dard approximations of the same log-correlated field X and that

lim
n→∞EXn(x)X̃n(y) = CX(x, y),

where the convergence takes place in measure on U ×U . Then the corresponding imaginary
chaoses μ and μ̃ are equal almost surely.

PROOF. It is enough to show that for all f ∈ C∞
c (Rd) we have

lim
n→∞E

∣∣μn(f ) − μ̃n(f )
∣∣2 = 0.

A straightforward computation shows that the expectation equals∫
U

∫
U

f (x)f (y)
(
eβ2

EXn(x)Xn(y) + eβ2
EX̃n(x)X̃n(y) − eβ2

EXn(x)X̃n(y) − eβ2
EX̃n(x)Xn(y))dx dy.

Notice that since Xn and X̃n are standard approximations, there exists a constant c > 0 such
that on U ×U

eβ2
EXn(x)Xn(y) + eβ2

EX̃n(x)X̃n(y) ≤ c

|x − y|β2 .

Thus by the reverse Fatou lemma we have

lim sup
n→∞

E
∣∣μn(f ) − μ̃n(f )

∣∣2 ≤
∫
U

∫
U

f (x)f (y) lim sup
n→∞

(
eβ2

EXn(x)Xn(y) + eβ2
EX̃n(x)X̃n(y)

− eβ2
EXn(x)X̃n(y) − eβ2

EX̃n(x)Xn(y))dx dy

= 0. �

By combining Propositions 3.1 and 3.2 we conclude the proof of Theorem 1.1.

REMARK 3.3. Given a log correlated field X as in Proposition 2.3 and β ∈ (0,
√

d),
when we speak of the imaginary chaos μ = “ exp(iβX)” we mean the chaos defined via
Proposition 3.1 using convolution approximations. The definition is well-posed since con-
volution approximations yield a standard approximation according to Lemma 2.8, and the
outcome does not depend on the approximation used as one may easily check that two differ-
ent sequences of convolution approximations satisfy the conditions of Proposition 3.2.

In our application to the Ising model, what will turn out to be important is the real part of
imaginary chaos. We now define this properly.

DEFINITION 3.4. Given a log-correlated field X, satisfying our assumptions (2.1) and
(2.2), and β ∈ (0,

√
d) the cosine of X (simply denoted by “cos(βX)”) is defined as the real

part of the imaginary chaos, or in other words, for any test-function ϕ ∈ C∞
c (Rd) one has

〈
cos(βX),ϕ

〉 := lim
n→∞

∫
U

e
1
2 β2

E(Xn(x))2
cos

(
βXn(x)

)
ϕ(x)dx,

where the limit is in probability, and (Xn)n≥1 is a sequence of convolution approximations
of X.
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The most important example of “ cos(βX)” is the one corresponding to a Gaussian free
field (GFF) on a given simply connected planar domain U ⊂ R2, see the first part of Exam-
ple 2.6. In Section 3.2 we shall characterise the laws of both “ exp(iβX)” and “ cos(βX)” via
moments.

Before concluding this section about the existence and uniqueness of imaginary chaos, we
mention that it is natural to ask whether the definition of the imaginary chaos could be done
via the approximations given by the partial sums of the Karhunen–Loève expansion (2.3):

(3.2) XKL,n(x) :=
n∑

k=1

Ak

√
λkϕk(x).

The benefit of such a definition would be that it would allow using powerful probabilistic
tools such as martingale theory and the Kolmogorov 0–1 law, which sometimes simplify
proofs significantly. Unfortunately, checking even the uniform integrability condition (iii) in
Definition 2.7 appears to be quite complicated in the case of the Karhunen–Loève approxi-
mations XKL,n(x), so we cannot refer to the above statements. However, under a mild further
assumption, we will be able to settle the convergence question by a more probabilistic argu-
ment, without referring to the notion of a standard approximation.

LEMMA 3.5. Assume that β ∈ (0,
√

d) and that X is the GFF on a bounded simply con-
nected subdomain of C, or more generally, that X is a log-correlated field on a bounded
domain in Rd with covariance satisfying our basic assumptions (2.1) and (2.2), and the addi-
tional size-condition supx∈U ‖g(x, ·)‖L2(U) < ∞. Denote νn(x) := exp(1

2β2
E[XKL,n(x)2] +

iβXKL,n(x)). As n → ∞, νn converges to the imaginary chaos μ (see Remark 3.3). More
specifically, given φ ∈ C∞

c (Rd), we have as N →∞
〈νn,φ〉→ 〈μ,φ〉,

where the convergence is almost sure. Moreover, νm → μ almost surely in the Sobolev space
Hs(Rd) for any s < −d/2.

PROOF. We may assume that X is given by the Karhunen–Loève decomposition (2.3).
Let us denote

Yn := 〈νn,φ〉 =
∫
U

exp
(

1

2
β2

E
[
XKL,n(x)2] + iβXKL,n(x)

)
φ(x) dx,

whence Yn is a martingale by construction. Here the integral is well defined since by Cauchy–
Schwarz, the condition supx∈U ‖g(x, ·)‖L2(U) < ∞ implies that each eigenfunction ϕk (cor-
responding to a nonzero eigenvalue) belongs to L∞(U). In order to prove convergence of
Yn to something, as n → ∞, the martingale structure implies that it is enough to verify that
Yn is L2-bounded. Denote by Xδk

a standard convolution approximation and note that since
X − XKL,n ⊥ XKL,n we may write Xδk

= (XKL,n)δk
+ (X − XKL,n)δk

, where the summands
are independent. This implies that

(3.3)

E

(
exp

(
1

2
β2

E
[
Xδk

(x)2] + iβXδk
(x)

)∣∣∣Fn

)
= exp

(
1

2
β2

E
[
(XKL,n)δk

(x)2] + iβ(XKL,n)δk
(x)

)
,

where Fn is the σ -algebra generated by {A1, . . . ,An}, and Ai are the i.i.d. standard Gaus-
sians from (3.2). By basic real analysis, as we are convolving L1-functions with nice bump
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functions, there is a set E ⊂ U of zero Lebesgue measure so that we have (ϕj )δk
(x) → ϕj (x)

for each j and x ∈ U \E. Hence, if we denote

Yn,k :=
∫
U

exp
(

1

2
β2

E
[
(XKL,n)δk

(x)2] + iβ(XKL,n)δk
(x)

)
φ(x) dx,

then we have Yn,k → Yn almost surely as k → ∞. By dominated convergence and (3.3) it
follows for every n that if we write μk for the approximation to μ given by Xδk

, then

E|Yn|2 ≤ sup
k

E|Yn,k|2 = sup
k

E
∣∣E(〈μk,φ〉|Fn

)∣∣2 ≤ sup
k

E
[∣∣〈μk,φ〉

∣∣2] := C < ∞,

where the last inequality used again the uniform L2-bound on approximations of μ coming
from convolution approximations, which in turn followed from (2.8). Further, the above rea-
soning16 also verifies that Yn = E(〈μ,φ〉|Fn). Here both sides converge almost surely by the
martingale property and L2-boundedness, and the right hand side converges to 〈μ,φ〉 simply
by the fact that 〈μ,φ〉 is measurable with respect to the σ -algebra σ(

⋃∞
j=1 Fj ).

The stated convergence in the Sobolev space now follows since the above reasoning yields
the uniform estimate E|Yn|2 ≤ c‖φ‖2∞, which leads to νn being a L2-bounded Hs -valued
martingale. Finally, the GFF on a bounded planar domain U ⊂ C satisfies the extra size
condition as we then have 0 ≤ CX(z,w) ≤ c + log(1/|z −w|) for any z,w ∈ U . �

This concludes our basic discussion about existence and uniqueness of imaginary chaos,
and we move onto discussing probabilistic properties of imaginary chaos.

3.2. Moment and tail bounds. In this section we will prove moment and tail bounds
for imaginary chaos, namely Theorem 1.3 and Theorem 1.4. The situation is quite different
from real chaos (or complex chaos in general), since, as we will see in this section, for μ

from Theorem 1.1, the moments E|μ(f )|2N are finite for all N ≥ 1 and all f ∈ C∞
c (U).

Moreover, it will turn out that (under minor smoothness assumptions on g from (2.1)) these
moments grow slowly enough for one to be able to characterize the law of μ(f ) in terms
of its moments. This makes proving that something converges to imaginary chaos rather
straightforward since it is then a question about controlling moments—indeed, this is what
we will show for the XOR-Ising model.

Before going into details about the moments, let us point out that a (formal) straightforward
Gaussian computation yields the formula

(3.4)

E
∣∣μ(f )

∣∣2N “=”
∫
U2N

∏
1≤i<j≤N e−β2CX(xi ,xj ) ∏

1≤i<j≤N e−β2CX(yi ,yj )∏
1≤i,j≤N e−β2CX(xi ,yj )

×
N∏

i=1

f (xi)f (yi) dxi dyi,

where we have written “=” to indicate that we have not justified this identity beyond N = 1,
or that one would have convergence of say μδ to μ in all Lp-spaces. Nevertheless, let us not
worry about rigor for a moment. The archetypical case of (3.4) would be CX(x, y) = log 1

|x−y|

16More precisely: multiplying (3.3) by φ(x), integrating over U , and letting k →∞, one sees that the left hand

side of (3.3) becomes E(〈μ,φ〉|Fn)—this used the fact that μk → μ in L2. On the other hand, before taking the
k →∞ limit, the right hand side equals Yn,k and we saw that this tends to Yn as k →∞.
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and f ≡ 1 (or more precisely, f ∈ C∞
c (Rd) and f |U = 1), in which case (3.4) becomes the

following interesting integral:

(3.5)
∫
U2N

∏
1≤i<j≤N |xi − xj |β2 ∏

1≤i<j≤N |yi − yj |β2∏
1≤i,j≤N |xi − yj |β2 dx1 · · ·dxN dy1 · · ·dyN .

The finiteness of (3.4) for all β ∈ (−√
d,

√
d) is not completely trivial, although it is well

known to experts and can be proven, for example, by using the techniques in [53], Ap-
pendix A. Rather precise lower and upper bounds for (3.5) are known for d = 2, see, for
example, [41, 57]. As we will see later on, these bounds imply in particular that the law of
μ(f ) is determined by its moments. Our goal in this section is to prove similar bounds in all
dimensions and for more general covariance kernels. This is also crucial for us in Section 4,
where we deal with the convergence of the XOR-Ising model. Note that in this case, the
relevant field is the zero boundary condition GFF from part 1. of Example 2.6 and moment
bounds on the corresponding imaginary chaos do not follow directly for example, from [41,
57].

In [41] estimates for moments in the case of the purely logarithmic kernel are obtained via
first establishing a two-dimensional version of a famous inequality called Onsager’s lemma
[67] (also sometimes called the electrostatic inequality). The original 3-d version of Onsager’s
lemma (where one has the |x|−1-kernel instead of our logarithmic kernel) has been used for
example, in the modern theory of stability of matter [31, 32], and we refer to [32] or [75]
for a mathematical proof of the inequality. These proofs do not apply as such for our general
logarithmic covariance kernels, especially in the case of d 	= 2, but we will shortly discuss
in more detail how this can be overcome and explain the various versions of the generalised
inequality we shall need.

In any case, after a suitable version of Onsager is at our hand, we may then finish the proof
of the desired moment bounds by implementing the combinatorial part of the argument in
[41] as stated in Lemma 3.10 below. We include a proof of the lemma in the Appendix for
the reader’s convenience as the proof in [41] is for d = 2 and there are cosmetic differences
for d 	= 2. Moreover, we also note that the approach of [41] for lower bounds of the moments
generalizes to some extent, and we record consequences for the tail of the imaginary chaos.
Finally, it is to be noted that very precise estimates for the moments in the case of d = 2 and
the purely logarithmic kernel were obtained recently in [57], with applications to the tails of
the corresponding imaginary chaos.

Let us then discuss our versions of Onsager’s lemma, of which there are four in total. Our
first version (see Proposition 3.6(i) below) takes care of general two-dimensional covariances
for which g ∈ C2(U × U). This generalizes the one in [41], which considers just the purely
logarithmic kernel. To achieve this generalization, we need to replace the complex analytic
proof of [41] by a more probabilistic one. The effect of the term g in the covariance is dealt
with by a rather direct error analysis. Surprisingly enough, this proof or the other known ones
appear not to work for dimensions d 	= 2, and for that purpose we require a more complicated
approach based on a general decomposition principle of logarithmic covariances—indeed,
our second version of the Onsager inequality is Theorem 3.8 below, and its proof will be
published elsewhere as it relies on the above decomposition principle whose proof we feel
does not belong in this article. The above versions of Onsager are local in the sense that one
considers points lying in a fixed subset of U . In contrast, our third version (Proposition 3.9
below) is a global result in the case of the GFF on a bounded domain. Finally, our fourth ver-
sion (Proposition 3.6(ii) below) is an auxiliary result that does not require further regularity
from g, but comes at the cost of having error of order O(N2) instead of O(N). Hence it is
not an “honest Onsager inequality” from our point of view. In fact, quadratic error in N is
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too large to prove that the moments determine the distribution, but we may use this version
of the inequality to verify that E|με(f )|2N converges to (3.4) as ε → 0, validating our formal
computations and verifying that all moments are finite.

We start with the first and fourth version of our Onsager inequalities.

PROPOSITION 3.6. Let K be a compact subset of U , N ≥ 1, q1, . . . , qN ∈ {−1,1}, and
x1, . . . , xN ∈ K . Assume that the covariance of X is as in (2.1) and that g satisfies the as-
sumptions (2.2). We then have the following two Onsager-type inequalities:

(i) Let d = 2 and assume that in addition to (2.2) we have g ∈ C2(U ×U). Then

− ∑
1≤j<k≤N

qjqkEX(xj )X(xk) ≤ 1

2

N∑
j=1

log
1

1
2 mink 	=j |xj − xk|

+CN

for some constant C > 0 depending only on g and K .
(ii) Let d ≥ 1 be arbitrary. For convolution approximations Xε (as in Lemma 2.8) of X

we have

− ∑
1≤j<k≤N

qjqkEXε(xj )Xε(xk) ≤ 1

2

N∑
j=1

log
1

1
2 mink 	=j |xj − xk|

+CN2

for some constant C > 0 that is independent of ε > 0, and depends only on g and K . Note
that no extra assumptions beyond (2.2) on g are required in this case.

PROOF. Let rj = 1
2(mink 	=j |xj − xk| ∧ dist(K, ∂U)) and set (see here Remark 3.7)

Zj = 1

2π

∫ 2π

0
X

(
xj + rj e

iθ )
dθ.

We have

(3.6)

EZ2
j = 1

(2π)2

∫ 2π

0

∫ 2π

0

(
log

1

|rj eiθ − rj eiϕ| + g
(
xj + rj e

iθ , xj + rj e
iϕ))

dθ dϕ

= log
1

rj
+ 1

(2π)2

∫ 2π

0

∫ 2π

0
g
(
xj + rj e

iθ , xj + rj e
iϕ)

dθ dϕ

by harmonicity of log(| · |−1). Moreover, for j 	= k we obtain, again using harmonicity of the
log,

EZjZk = 1

(2π)2

∫ 2π

0

∫ 2π

0

(
log

1

|xj + rj eiθ − xk − rkeiϕ|
+ g

(
xj + rj e

iθ , xk + rke
iϕ))

dθ dϕ

= log
1

|xj − xk| +
1

(2π)2

∫ 2π

0

∫ 2π

0
g
(
xj + rj e

iθ , xk + rke
iϕ)

dθ dϕ.

Letting cj,k = 1
(2π)2

∫ 2π
0

∫ 2π
0 g(xj + rj e

iθ , xk + rke
iϕ) dθ dϕ this means that

EZ2
j = log

1

rj
+ cj,j and EZjZk = log

1

|xj − xk| + cj,k.
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A simple computation (where we allow also j = k) yields that

cj,k = 1

(2π)2

∫ 2π

0

∫ 2π

0
g
(
xj + rj e

iθ , xk + rke
iϕ)

dθ dϕ

= 1

(2π)2

∫ 2π

0

∫ 2π

0

(
g(xj , xk) +

(
rj e

iθ

rke
iϕ

)
∇g(xj , xk) + ξ

(
rj e

iθ , rke
iϕ))

dθ dϕ

= g(xj , xk)+
∫ 2π

0

∫ 2π

0
ξ
(
rj e

iθ , rke
iϕ)

dθ dϕ =: g(xj , xk) + dj,k,

where ξ is the remainder in the Taylor expansion of g at the point (xj , xk), and the error dj,k

is of the order

|dj,k| � max
(
r2
j , r2

k

)
.

Since Zj are jointly Gaussian, their covariance is positive definite, and in particular

0 ≤ ∑
1≤j,k≤N

qjqkEZjZk =
N∑

j=1

EZ2
j + ∑

j 	=k

qjqkEZjZk

=
N∑

j=1

log
1

1
2(mink 	=j |xk − xj | ∧ dist(K, ∂U))

+ 2
∑

1≤j<k≤N

qjqkEX(xj )X(xk)

+
N∑

j=1

dj,j + 2
∑

1≤j<k≤N

qjqkdj,k.

A key observation for the proof is that by the disjointness of the circles and since d = 2 we
have the area estimate

(3.7)

∣∣∣∣∣
N∑

j=1

dj,j

∣∣∣∣∣ �
N∑

j=1

r2
j � |U |.

In turn,

log
1

1
2(mink 	=j |xk − xj | ∧ dist(K, ∂U))

≤ log
1

1
2 mink 	=j |xk − xj |

+ max
(

log
1

1
2 dist(K, ∂U)

,0
)
.

Moreover, (3.7) implies that∣∣∣∣ ∑
1≤j<k≤N

qjqkdj,k

∣∣∣∣ ≤ ∑
1≤j<k≤N

c max
(
r2
j , r2

k

) ≤ 2Nc|U |

for some constant c > 0 that depends on g. By putting all the observations together, part (i)
of the claim follows.

In order to prove the second inequality, we again employ auxiliary random variables Zj .
Letting the radii rj be as before we set this time

Zj := Xmax(ε,rj )(xj ).

By Lemma 2.8 we have

EZ2
j = log

1

max(ε, rj )
+O(1)
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and

EZjZk = log
1

max(ε, |xj − xk|) + O(1) = EXε(xj )Xε(xk)+O(1).

Hence

0 ≤ ∑
1≤j,k≤N

qjqkEZjZk =
N∑

j=1

EZ2
j + ∑

j 	=k

qjqkEZjZk

≤
N∑

j=1

log
1

log(1
2(mink 	=j |xk − xj |))

+ 2
∑

1≤j<k≤N

qjqkEXε(xj )Xε(xk)+CN2.
�

REMARK 3.7. Note that the definition of the variables Zj in the above proof is somewhat
formal; we have only defined X as an element of H−ε(R2), so it would seem that integrating
X over a circle can not be interpreted as X acting on a valid test function. Nevertheless, the
probabilistic objects we use are simply a device to obtain covariance inequalities. To make
things precise, one might want to rephrase the definition of Zj as Zj := X(ρε,xj

), where
ρε,xj

∈ C∞
c (R2) is a convolution approximation of uniform probability measure on a circle

of radius rj around xj . Then later in the obtained covariance inequalities, one simply lets
ε → 0 and gets the desired statements. However, we feel that this level of precision could
obscure the idea of the proof and hope that the reader will be forgiving us for the slight
inaccuracy in the exposition.

Let us next state the third version of Onsager’s lemma, which is even more local in nature
than Proposition 3.6 but works in arbitrary dimensions. For a definition of the space Hs

loc, we
refer the reader to Section 2.2.

THEOREM 3.8. Assume that X is a log-correlated field on the domain U ⊂ Rd with
0 ∈ U and assume that g ∈ Hd+ε

loc (U × U) for some ε > 0. Then there is a neighbourhood
Bδ(0) ⊂ U of the origin so that X satisfies the following electrostatic inequality in Bδ(0): for
any N ≥ 1, q1, . . . , qN ∈ {−1,1} and x1, . . . , xN ∈ Bδ(0) it holds that

(3.8) − ∑
1≤j<k≤N

qjqkEX(xj )X(xk) ≤ 1

2

N∑
j=1

log
1

1
2 mink 	=j |xj − xk|

+ CN,

where C is independent of the points xj or N , but may depend on the neighbourhood Bδ(0).

PROOF. This is Theorem 7.1 in [48]. �

One should observe that in the above result, in the case d = 2 (disregarding the more local
nature that does not affect our moment estimates) the condition g ∈ C2 is certainly satisfied
if g ∈ C2+ε ⊂ H 2+ε

loc . On the other hand, in a certain sense the class H 2+ε
loc (R2 × R2) is much

larger than C2(R2 × R2), for example, it allows for local behaviour of type |x − x0|δ , δ > 0,
so the conditions are not comparable but extend each other. We expect that also for d 	= 2 one
can find alternative regularity conditions under which the theorem is true, but our proof for
the condition g ∈ C2 being sufficient is specific to d = 2.

All the above results are local in nature. In order to obtain full grip of the moments, or
optimal understanding of the imaginary chaos on a two-dimensional bounded domain as a
random element in S ′(Rd), it is desirable to have a global version which is valid for all
x1, . . . , xN ∈ U . This can be achieved as a consequence of the previous results if g continues
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with suitable smoothness in a neighbourhood of the closure U (by Theorem 3.8 the extension
needs not to be even a covariance). We next show that one can also obtain a global Onsager
inequality in the case of the GFF on a bounded simply connected domain U ⊂ R2 = C. For
that end let us recall that the density of the hyperbolic metric of U at a point z ∈ U is given
by

|dHz| := 2|ψ ′(z)|
1 − |ψ(z)|2 |dz|,

where ψ : U →D is any conformal map. The hyperbolic distance between two points in U is
obtained by minimizing the integral

∫
γ |dHz| over all rectifiable curves in U joining the given

points. In a simply connected domain the classical Koebe estimate ([38], Theorem 4.3—we
refer overall to [38] on basic facts on hyperbolic metric) says that

1

2

(
d(z, ∂U)

)−1|dz| ≤ |dHz| ≤ 2
(
d(z, ∂U)

)−1|dz|.
In particular, the hyperbolic distance dominates a multiple of the standard metric. The hyper-
bolic metric is conformally invariant, whence one easily computes that in the unit disc the
hyperbolic distance of points w,z ∈D equals

dH (w, z) = log
(

1 + ρ(w, z)

1 − ρ(w, z)

)
with ρ(w, z) :=

∣∣∣∣ z − w

1 − zw

∣∣∣∣,
where ρ(w, z) is called the pseudo hyperbolic metric between z and w. Also ρ is an honest
metric. Given z0 ∈ U and r > 0 we denote by Bρ(z0, r) ⊂ U the pseudo-hyperbolic ball of
radius r . We then have Bρ(z0, r) = BH(z0, r

′), and this is the image of the ordinary ball
B(0,R) ⊂ D under any conformal map ψ−1 : D→ U such that ψ(z0) = 0. Here R = r and
r ′ is given by r ′ = log((1 + r)/(1 − r)).

PROPOSITION 3.9. Assume that U ⊂ R2 is simply connected and bounded and that X is
the zero boundary condition GFF on U . Let N ≥ 1, q1, . . . , qN ∈ {−1,1}, and x1, . . . , xN ∈
U be arbitrary. Then

− ∑
1≤j<k≤N

qjqkEX(xj )X(xk) ≤ 1

2

N∑
j=1

log
(

1
1
2 mink 	=j |xj − xk|

)
+CN

for some constant C > 0 depending only on the domain U .

PROOF. We assume first that U = D. Let rj = 1
2 infk 	=j dρ(xj , xk) be half the pseudo

hyperbolic distance of xj to the nearest point. Denote Bj := Bρ(xj , rj ). Let νj stand for the
harmonic measure on ∂Bj with respect to the point xj (computed with respect to the ball
Bj ). We consider the random variables

Yj =
∫
∂Bj

X(z)νj (dz)

(concerning the definition, an analogue of Remark 3.7 applies). By recalling (2.5), the covari-
ance CX(z,w) is separately harmonic with respect to both of the variables. Since the balls
Bj are disjoint, a standard limiting argument allows us to use the harmonicity of the Green’s
function to compute for k 	= j

(3.9)
EYjYk =

∫
∂Bj

(∫
∂Bk

CX(z,w)νk(dw)

)
νj (dz) =

∫
∂Bj

CX(z, xk)νj (dz)

= CX(xj , xk).
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We next observe that by the conformal invariance of the harmonic measure we have for any
h ∈ C(∂Bj ) that ∫

∂Bj

h(z)νj (dz) =
∫
∂Bρ(0,rj )

h
(
τ(w)

)|dw|,

where
∫

stands for the averaged integral and τ is a conformal self map of D that carries
Bρ(0, rj ) ⊂ D to Bj . By applying this formula and the conformal invariance of the GFF
covariance we thus obtain

(3.10)

EY 2
j =

∫
∂Bj

(∫
∂Bj

CX(z,w)νj (dw)

)
νj (dz)

=
∫
∂Bρ(0,rj )×∂Bρ(0,rj )

log
∣∣∣∣1 − zw

z − w

∣∣∣∣|dw||dz|

=
∫
∂Bρ(0,rj )×∂Bρ(0,rj )

log
∣∣∣∣ 1

z −w

∣∣∣∣|dw||dz| = log(1/rj ),

where we noted the harmonicity of log |1 − zw| and recalled the computation (3.6). We also
used the fact that the standard radius of the pseudo hyperbolic ball centred at the origin is the
same as the pseudo-hyperbolic one.

By performing our standard consideration of the expectation E|∑N
k=1 qjYj |2, in view of

(3.9) we thus obtain the desired inequality with the right hand side

1

2

n∑
j=1

log
(

1
1
2 mink 	=j ρ(xj , xk)

)
.

The conformal invariance of both the covariance and the pseudo hyperbolic metric ensures
that the stated inequality with the above right hand side is actually true on any simply con-
nected domain. This yields the claim as we finally note that for any bounded domain there
is a constant a > 0 so that |z − w| ≤ aρ(z,w). This last inequality is seen by noting that
Koebe’s estimate yields |z − w| ≤ (2 diam(U))dH (z,w) ≈ ρ(z,w) for ρ(z,w) ≤ 1/2, and
by boundedness of U this yields the claim. �

Our goal in this section was to bound the moments of imaginary chaos. As noted al-
ready before, after Onsager’s lemma the second ingredient we need for the upper bound
is the following estimate. As the proof is a rather straightforward generalization of the two-
dimensional result in [41] it is given in the Appendix.

LEMMA 3.10. Let B(0,1) be the unit ball in Rd . We have∫
B(0,1)N

exp

(
β2

2

N∑
j=1

log
1

1
2 mink 	=j |xj − xk|

)
dx1 · · ·dxN ≤ cNNN

β2

2d

for some constant c > 0.

This lemma and Proposition 3.6(ii) yield a bare uniform integrability statement which will
be used to show that all the moments exist and that the formula (3.4) is indeed correct. This
verifies the part of Theorem 1.3 which claims that E|μ(f )|k < ∞ for all k.

COROLLARY 3.11. Let K be a compact subset of U and assume that x1, . . . , xN,

y1, . . . , yN ∈ K . Denote z1 = x1, . . . , zN = xN , zN+1 = y1, . . . , z2N = yN . We have the
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uniform bound

e−β2 ∑
1≤j<k≤N(CXε (xj ,xk)+CXε (yj ,yk))+β2 ∑

1≤j,k≤N CXε (xj ,yk)

≤ exp

(
β2

2

2N∑
j=1

log
1

1
2 mink 	=j |zj − zk|

+ cN2

)
=: �N(z1, . . . , z2N)

for all ε > 0. Here the majorant �N depends on the subset K through the constant c, and
is integrable over K2N . A fortiori, the formula (3.4) for the moments is valid for any f ∈
C∞

c (U) under our standard assumptions (2.2).

PROOF. We begin by writing out the moment E|με(f )|2N as a multiple integral

E
∣∣με(f )

∣∣2N =
∫
U2N

N∏
j=1

dxjf (xj )

N∏
j=1

dyjf (yj )

×Ee
iβ

∑N
j=1(Xε(xj )−Xε(yj ))+ β2

2
∑N

j=1(EXε(xj )2+EXε(yj )2)

=
∫
U2N

N∏
j=1

dxjf (xj )

N∏
j=1

dyjf (yj )

× e−β2 ∑
1≤j<k≤N(CXε (xj ,xk)+CXε (yj ,yk))+β2 ∑

1≤j,k≤N CXε (xj ,yk)

≤ ‖f ‖2N∞
∫
(suppf )2N

exp

(
β2

2

2N∑
j=1

log
1

1
2 mink 	=j |zj − zk|

+ cN2

)
dz1 · · ·dz2N.

Since the upper bound is independent of ε we may use the dominated convergence theorem
to let ε → 0 and deduce that the moments are finite and given by the right formula. �

Lemma 3.10 combined with our versions of the Onsager inequality allows us to finally
prove an upper bound for the moments of the purely imaginary chaos, verifying the moment
bound portion of Theorem 1.3.

THEOREM 3.12. Assume that either d = 2 and g ∈ C2(U × U), or d is arbitrary and
g ∈ Hd+ε

loc (U × U) for some ε > 0. Then for every N ≥ 1 and f ∈ C∞
c (U) we have for μ

from Theorem 1.1

E
∣∣μ(f )

∣∣2N ≤ ‖f ‖2N∞ CNN
β2N

d

for some constant C > 0 (which may depend on the support of f ).

PROOF. To obtain the stated upper bounds, assume first that we are in the case d = 2 and
g ∈ C2(U × U). Then we may use Corollary 3.11 to infer

E
∣∣μ(f )

∣∣2N =
∫
U2N

N∏
j=1

dxjf (xj )

N∏
j=1

dyjf (yj )

× e−β2 ∑
1≤j<k≤N(CX(xj ,xk)+CX(yj ,yk))+β2 ∑

1≤j,k≤N CX(xj ,yk)

≤ ‖f ‖2N∞
∫
(suppf )2N

exp

(
β2

2

2N∑
j=1

log
1

1
2 mink 	=j |zj − zk|

+ cN

)
dz1 · · ·dz2N,
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where the last inequality is a consequence of part (1) of Proposition 3.6. The claim now
follows from Lemma 3.10.

In the case where d is arbitrary and g ∈ Hd+ε
loc (U × U), we may by using compactness

first cover suppf with a finite number of balls B(a1, δ1/2), . . . ,B(am, δm/2) ⊂ U , where δ


are given by Theorem 3.8. Moreover, we can find a smooth partition of unity of nonnegative
functions η1, . . . , ηm such that suppη
 ⊂ B(a
, δ
) and for any x in a small neighbourhood
of suppf we have

∑m

=1 η
(x) = 1. Then

E
∣∣μ(f )

∣∣2N = E

∣∣∣∣∣
m∑


=1

μ(f η
)

∣∣∣∣∣
2N

≤ m2N
Emax




(∣∣μ(f η
)
∣∣2N ) ≤ m2N

m∑

=1

E
∣∣μ(f η
)

∣∣2N
,

and each summand may be approximated as in the previous case, replacing the use of Propo-
sition 3.6 with Theorem 3.8. �

As the final component in the proof of Theorem 1.3, we record the following basic fact
about the moments from Theorem 3.12 growing slowly enough for the moments to determine
the law of μ.

COROLLARY 3.13. Under the conditions of Theorem 3.12 all the exponential moments

Eeλ|μ(ϕ)| for λ ∈ R and ϕ ∈ C∞
c (U) are finite and in particular the moments Eμ(ϕ)kμ(ϕ)

l

for k, l ≥ 0 exist and they determine the distribution of μ as a random distribution in D′(U).

PROOF. As is standard, by linearity, the joint distribution of (μ(φ1), . . .μ(φm)) for any
number of test functions φj ∈ C∞

c (U) is determined as soon as the case of an arbitrary single
test function, or m = 1 is known. This on the other hand, follows from Theorem 3.12, since
the stated growth rate of the moments is well known to be small enough to determine the
distribution, see, for example, [30], Theorem 3.3.12. Finally, the finiteness of exponential
moments follows from expanding the exponential as a power series and using Theorem 3.12
coupled with a standard Jensen estimate to bound odd moments in terms of even moments
followed by a straightforward Stirling estimate. �

As mentioned, the proof of Theorem 1.3 now follows from combining Corollary 3.11,
Theorem 3.12, and Corollary 3.13.

Asymptotics for moments in the case of the Gaussian free field (or more precisely for
g = 0) have been proven in [41] by scaling and space partition arguments. Below we show
how to slightly alter their method to deal with a general covariance CX(x, y) and obtain the
following lower bounds for the moments. One should note that the main term in the estimate
is the same as for the upper bound.

PROPOSITION 3.14. Let f ∈ C∞
c (U) be nonnegative and not identically zero. Then for

μ from Theorem 1.1,

logE
∣∣μ(f )

∣∣2N ≥ β2

d
N logN +O(N).

PROOF. By the assumption we may choose a cube K ⊂ U so that f ≥ c0 > 0 on K . With
a simple scaling and translation argument we may assume that K = [0,1]d and c0 = 1. Let
us denote

Zβ,2N(�) = “E
∣∣μ(1�)

∣∣2N” =
∫
�2N

∏N
i,j=1 eβ2CX(xi ,yj )∏

1≤i<j≤N eβ2CX(xi ,xj )+β2CX(yi ,yj )

N∏
i=1

dxi

N∏
j=1

dyj
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for any measurable subset � ⊂ K and integer N ≥ 0. Here we wrote “E|μ(1�)|2N” to indi-
cate that we ignore the discussion about whether or not 1� is a suitable test function, since
it’s only the integral we are interested in. Note that E|μ(f )|2N ≥ Zβ,2N(K).

Assume that 0 ≤ N1 ≤ N is an integer and write N2 = N − N1. Let also �1,�2 ⊂ K be
two measurable subsets (with positive 2N -dimensional measure) satisfying �1 ∩ �2 = ∅.
Then the total integral defining Zβ,2N(K), can be bounded from below by restricting to the
subset of K2N where precisely N1 of both the x- and the y-variables are in �1 and N2 of

them are in �2. There are
(N
N1

)2
ways to choose the variables in this way and we find the

following bound:

Zβ,2N(K) ≥
(

N

N1

)2

Zβ,2N1(�1)Zβ,2N2(�2)Eνe
β2U

≥
(

N

N1

)2

Zβ,2N1(�1)Zβ,2N2(�2)e
β2

EνU ,

where in the last step we used Jensen’s inequality, and we have also introduced the following
notation: ν is a probability measure on �

2N1
1 ×�

2N2
2 of the form

ν
(
dx(1), dy(1), dx(2), dy(2))
= 1

Zβ,2N1(�1)

1

Zβ,2N2(�2)

∏N1
i,j=1 e

β2CX(x
(1)
i ,y

(1)
j )

∏
1≤i<j≤N1

e
β2CX(x

(1)
i ,x

(1)
j )+β2CX(y

(1)
i ,y

(1)
j )

×
∏N2

i,j=1 e
β2CX(x

(2)
i ,y

(2)
j )

∏
1≤i<j≤N2

e
β2CX(x

(2)
i ,x

(2)
j )+β2CX(y

(2)
i ,y

(2)
j )

dx(1) dy(1) dx(2) dy(2),

where dx(i) and dy(i) denote the Lebesgue measure on �
Ni

i , and we write

U = log

∏N1
i=1

∏N2
j=1 e

CX(x
(1)
i ,y

(2)
j )+CX(y

(1)
i ,x

(2)
j )

∏N1
i=1

∏N2
j=1 e

CX(x
(1)
i ,x

(2)
j )+CX(y

(1)
i ,y

(2)
j )

.

We point out that the density of ν (as well as the domain of ν) is invariant under the trans-
formation x(2) ↔ y(2), but under this transformation U is mapped to −U , so we see that
EνU = 0. We conclude that

Zβ,2N(K) ≥
(

N

N1

)2

Zβ,2N1(�1)Zβ,2N2(�2),

or in other words

1

[N !]2 Zβ,2N(K) ≥ 1

[N1!]2 Zβ,2N1(�1)
1

[N2!]2 Zβ,2N2(�2).

By induction, if (�j )
k
j=1 are nonempty disjoint positive measure subsets of K and (Nj )

k
j=1

are nonnegative integers such that N1 + · · · +Nk = N , then

(3.11)
1

[N !]2 Zβ,2N(K) ≥
k∏

j=1

1

[Nj !]2 Zβ,2Nj
(�j ).
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Let us now apply this inequality to the case where k = �N1/d�d , Nj = 1 for all j =
1, . . . ,N , Nj = 0 for j = N + 1, . . . , k, and �j is a translate of [0, �N1/d�−1)d . This yields

logZβ,2N(K) ≥ log[N !]2 +
N∑

i=1

logZβ,2(�i).

We now have for some vector vi ∈ [0,1)d

Zβ,2(�i) =
∫
[0,�N1/d�−1)2d

eβ2g(vi+x,vi+y)

|x − y|β2 dx dy

≥ e−β2‖g‖L∞(K)
⌈
N1/d⌉β2−2d

∫
[0,1)2d

1

|x − y|β2 dx dy

so that

logZβ,2N(K) ≥ 2N logN − 2N + o(N) +
N∑

i=1

[(
β2

d
− 2

)
logN +O(1)

]

= β2

d
N logN +O(N). �

As an application of the moment bounds we close this subsection by proving Theorem 1.4.

PROOF OF THEOREM 1.4. Fix λ > 1. By Chebyshev’s inequality and Theorem 3.12 we
have for any N ≥ 1 that

logP
(∣∣μ(ϕ)

∣∣ > λ
) ≤ log

E|μ(ϕ)|2N

λ2N
≤ β2

d
N log(N)− 2N log(λ)+ cN

for some c > 0. Letting N = �λ
2d

β2 e
−1− cd

β2  and using the fact that the map x �→ β2

d
x log(x)−

2x log(λ) + cx has Lipschitz constant of order 1 when x ≈ λ
2d

β2 , we get

logP
(∣∣μ(ϕ)

∣∣ > λ
) ≤ β2

d
λ

2d

β2 e
−1− cd

β2 2d

β2 log(λ) − β2

d
λ

2d

β2 e
−1− cd

β2

(
1 + cd

β2

)

− 2λ
2d

β2 e
−1− cd

β2 log(λ) + cλ
2d

β2 e
−1− cd

β2 +O(1)

=−β2

d
λ

2d

β2 e
−1− cd

β2 +O(1).

To prove the lower bound, assume that there exist arbitrarily large numbers λ > 0 such that

logP
(∣∣μ(ϕ)

∣∣ > λ
) ≤−λ

2d

β2 +ε

and fix some large enough λ > 0 (how large λ is needed will be implicitly determined during

the proof). By assuming that λ is so large that b := (1
c
)

β2

2d λ1+ β2

2d
ε > λ, we may compute for

any N ≥ 1 that

E
∣∣μ(ϕ)

∣∣2N = 2N

(∫ λ

0
+

∫ b

λ
+

∫ ∞
b

)
x2N−1

P
(∣∣μ(ϕ)

∣∣ > x
)
dx

≤ 2Na

∫ λ

0
x2N−1e−cx

2d

β2
dx + 2Na

∫ b

λ
x2N−1e−λ

2d

β2 +ε

dx

+ 2Na

∫ ∞
b

x2N−1e−cx

2d

β2
dx,
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where we have used the bound P(|μ(ϕ)| > x) ≤ ae−cx2d/β2

(for some c > 0 and a > 1)
coming from the first part of the proof, and applied the monotonicity of P(|μ(ϕ)| > x) and

the fact a > 1 when x ∈ [λ,b]. The length of the interval [λ,b] is of the order λ1+ β2

2d
ε . By

differentiation it is easy to check that the function x �→ x2N−1e−cx

2d

β2
has a unique maxi-

mum at x0 = (
β2(2N−1)

2dc
)

β2

2d . Fix some δ ∈ (0,
β2

2d
ε). If we now choose N ∈ [1

2 + dc
β2 λ

2d(1+δ)

β2 ,

2(1
2 + dc

β2 λ
2d(1+δ)

β2 )] to be an integer (this is possible for large enough λ), then by this choice

of N , the function x �→ x2N−1e−cx

2d

β2
is increasing on the interval [0, λ] (simply due to the

fact that with this choice of N , we have x0 ≥ λ1+δ). The first integral is thus bounded by

2Naλ2Ne−cλ

2d

β2
.

The second integral can be evaluated as

ae−λ

2d

β2 +ε (
b2N − λ2N )

,

and finally the third integral has the upper bound

2Na

∫ ∞
b

x2N−1e−cx

2d

β2
dx ≤ 2Na

∫ ∞
b

b2N+1e−cb

2d

β2

x2 dx ≤ 2Nab2N+1e−cb

2d

β2
,

where we have used the fact that b > 1 for large enough λ, and also that the unique maximum

of x �→ x2N+1e−cx

2d

β2
, which is at the point (

β2(2N+1)
2dc

)
β2

2d , lies in [λ,b] for large enough λ.

Our choice of N shows that both λ2d/β2+ε and b2d/β2
grow quicker than N1+δ′ for some

δ′ > 0, and hence the second and the third integrals converge to zero as λ →∞ as logb is of
the order logN . From the first integral we obtain that by increasing λ, we can find arbitrarily
large integers N = N(λ) for which

E
∣∣μ(ϕ)

∣∣2N � e
β2N

d(1+δ′) log(N)
.

This contradicts the lower bound given by Proposition 3.14, and concludes the argument. �

3.3. Regularity properties of imaginary chaos. In this section we continue our study of
analytic properties of imaginary chaos, namely we shall study to which classical function
spaces imaginary chaos belongs—this corresponds to Theorem 1.2. We shall obtain essen-
tially sharp results in Besov and Triebel–Lizorkin scales of function spaces, which include,
for example, negative index Hölder spaces. As described in more detail in Section 2.2, this
gives much more combined size and smoothness information on the chaos than obtained by
just considering the Hilbert–Sobolev spaces Hs(Rd).

We start by proving that we are dealing with true generalised functions, instead of say
honest functions or even complex measures. This is the first component of Theorem 1.2.
Though this is an important fact, it seems not to have been proven in the literature before.

THEOREM 3.15. The imaginary chaos μ from Theorem 1.1 is almost surely not a com-
plex measure.

PROOF. What the claim means is that the total variation of μ is almost surely infinite.
To prove this, it is enough to find a sequence of smooth functions (hk)k≥1 on U such that
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almost surely supk≥1 ‖hk‖∞ ≤ 1 but supk≥1 |μ(hk)| = ∞. A suitable candidate turns out to
be a subsequence of the random sequence

fk(x) = e−iβX1/k(x)ψ(x),

where X1/k are standard mollifications of X, and the real-valued test function ψ ∈ C∞
c (U)

satisfies 1B ≤ ψ(x) ≤ 12B , where B = B(x0, r0) is a ball such that the double sized ball
2B := B(x0,2r0) is compactly contained in U . The idea of the proof is to calculate Eμ(fk)

and E|μ(fk)|2 and argue by Paley–Zygmund that the total variation must be infinite with
probability 1.

To simplify the notation, denote gδ(x) = e−iβXδ(x)ψ(x) so that fk(x) = g1/k(x). Let us be-
gin by computing Eμ(gδ)—note that gδ is almost surely a C∞

c (U)-function for small enough
δ > 0 so μ(gδ) is a well-defined random variable. Using Proposition 3.1, we can pick a se-
quence εn ↘ 0 such that μεn → μ almost surely in say H−d/2−1(Rd)—in particular, we have
almost surely μ(gδ) = limn→∞ μεn(gδ). We will first verify that Eμ(gδ) can be computed as

Eμ(gδ) = lim
n→∞Eμεn(gδ).

By the almost sure convergence mentioned above, it is enough to check that μεn(gδ) is uni-
formly integrable.

For uniform integrability, note first that E‖μεn‖2
H−d/2−1(Rd )

is bounded, which was part of
the proof of Proposition 3.1, and that one then readily checks that by the smoothness of the
covariance of Xδ , E‖gδ‖2


Hd/2+1(Rd )
< ∞ for all 
 ≥ 1. In particular, by Hölder’s inequality,

sup
n

E
∣∣μεn(gδ)

∣∣4/3 ≤ sup
n

(
E‖μεn‖2

H−d/2−1(Rd )

)2/3(
E‖gδ‖4

Hd/2+1(Rd )

)1/3
< ∞,

implying that μεn(gδ) is uniformly integrable. We may thus compute

Eμ(gδ) = lim
n→∞

∫
2B

EeiβXεn(x)−iβXδ(x)e
β2

2 EXεn(x)2
ψ(x)dx

= lim
n→∞

∫
2B

e−
β2

2 EXδ(x)2+β2
EXεn(x)Xδ(x)ψ(x) dx

=
∫

2B
e−

β2

2 EXδ(x)2+β2
EX(x)Xδ(x)ψ(x) dx =: Aδ,

where EX(x)Xδ(x) = limε→0 EXε(x)Xδ(x), where the existence of the limit follows from

our conditions on the covariance CX . Note that by Lemma 2.8 we have Aδ � δ−
β2

2 .
For E|μ(gδ)|2, we actually only need an upper bound, and Fatou’s lemma implies that

E
∣∣μ(gδ)

∣∣2 ≤ lim inf
n→∞ E

∣∣μεn(gδ)
∣∣2

= lim inf
n→∞

∫
2B

∫
2B

EeiβXεn(x)−iβXεn(y)−iβXδ(x)+iβXδ(y)

· e β2

2 EXεn(x)2+ β2

2 EXεn(y)2
ψ(x)ψ(y)dx dy

= lim inf
n→∞

∫
2B

∫
2B

e−
β2

2 EXδ(x)2− β2

2 EXδ(y)2+β2
EXεn(x)Xδ(x)+β2

EXεn(y)Xδ(y)ψ(x)ψ(y)

· eβ2
EXδ(x)Xδ(y)+β2

EXεn(x)Xεn(y)−β2
EXεn(x)Xδ(y)−β2

EXδ(x)Xεn(y) dx dy

=
∫

2B

∫
2B

e−
β2

2 EXδ(x)2− β2

2 EXδ(y)2+β2
EXδ(x)X(x)+β2

EXδ(y)X(y)ψ(x)ψ(y)

· eβ2
EXδ(x)Xδ(y)+β2

EX(x)X(y)−β2
EXδ(x)X(y)−β2

EXδ(y)X(x) dx dy

=: Bδ.
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Our aim is to show that limδ→0
A2

δ
Bδ

= 1. Let

aδ(x) := δβ2/2e−
β2

2 EXδ(x)2+β2
EXδ(x)X(x)ψ(x)

and

bδ(x, y) := eβ2
EXδ(x)Xδ(y)+β2

EX(x)X(y)−β2
EXδ(x)X(y)−β2

EXδ(y)X(x).

Then we have

(3.12)

Bδ

A2
δ

=
∫

2B

∫
2B aδ(x)aδ(y)bδ(x, y) dx dy

(
∫

2B aδ(x) dx)2

= 1 +
∫

2B

∫
2B aδ(x)aδ(y)(bδ(x, y)− 1) dx dy

(
∫

2B aδ(x) dx)2 .

By Lemma 2.8 we know that aδ(x) is bounded both from above and away from 0, uniformly
in δ and x. Moreover, bδ(x, y) has an integrable majorant of the form C|x − y|−β2

for some
C > 0, and it converges to 1 pointwise. Thus by the dominated convergence theorem the right
hand side of (3.12) tends to 1 as δ → 0, as desired.

Since E|μ(fk)| ≥ Eμ(fk), the Paley–Zygmund inequality shows that we have

P
(∣∣μ(fk)

∣∣ > θE
∣∣μ(fk)

∣∣) ≥ (1 − θ)2 (Eμ(fk))
2

E|μ(fk)|2
for any θ ∈ (0,1). Choosing θ = (E|μ(fk)|)−ε for some ε > 0 we thus see that

P
(∣∣μ(fk)

∣∣ >
(
E

∣∣μ(fk)
∣∣)1−ε) ≥ (

1 − (
E

∣∣μ(fk)
∣∣)−ε)2 A2

1/k

B1/k

→ 1

as k →∞. As we noted above that A1/k � k
β2

2 , this implies that

(3.13) P
(∣∣μ(fk)

∣∣ ≥ Ck(1−ε)
β2

2 for infinitely many k
) = 1

for some constant C > 0. This provides us with the desired subsequence hk and proves the
claim. We note that for our purposes here one could have chosen for instance ε = 1/2, but we
stated (3.13) for later use in the proof of Theorem 3.16 below. �

We mention here a fact that readers more familiar with real multiplicative chaos might find
puzzling: for a given Borel set A, compactly contained in the domain U , one can readily show
that με(χA) converges in probability as ε → 0. Moreover, this can be done simultaneously for
any countable collection of such sets A. In the setting of real multiplicative chaos, this would
imply the existence of a limiting positive random measure. The situation is quite different in
our setting as we are missing positivity. From this perspective, imaginary chaos resembles
white noise rather than a random measure.

The following general result can be used to show that the imaginary chaos belongs to
Cs

loc(U) or Hs
loc(U)17 for indices s < −β2/2, and this range is essentially optimal. Moreover,

the optimality is not due to some special boundary effects since it is shown using localisations
that lie compactly inside the domain U . This is the second part of Theorem 1.2.

17The definition of localised functions spaces with subscript loc was given in Section 2.2. We also recall that for
general s ∈ R, the interpretation of Cs is Bs∞,∞—see again Section 2.2.
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THEOREM 3.16. Assume that β ∈ (0,
√

d) and fix 1 ≤ p,q ≤ ∞. Moreover, let X be a
log-correlated field satisfying our basic assumptions (2.1) and (2.2). Let μ be the imaginary
chaos given by Theorem 1.1. Then the following are true.

(i) We have almost surely μ ∈ Bs
p,q,loc(U) when s < −β2

2 , and μ /∈ Bs
p,q,loc(U) for s >

−β2

2 .
(ii) Assume moreover that g ∈ L∞(U × U) or that X is the 2d GFF with zero boundary

conditions. Then almost surely μ ∈ Bs
p,q(R

d) when s < −β2

2 .
(iii) Analogous statements hold for the Triebel spaces in the case p,q ∈ [1,∞).

PROOF. (i) Fix ψ ∈ C∞
c (U), and denote the support of ψ by K so that K is a compact

subset of U . In view of the inclusions (2.17),(2.18) and the embedding (2.19), in order to
prove the claim it is enough to establish that for any s < −β2/2 and for arbitrary large positive
integers n it holds that ψμ ∈ Bs

2n,2n(R
d) almost surely.

We fix a large n and compute a suitable moment of the Besov-norm as follows

E‖ψμ‖2n
Bs

2n,2n
= E

∞∑
j=0

22nsj
∫

Rd

∣∣((ψμ) ∗ φj

)
(x)

∣∣2n
dx,

where the φj ’s are as in the discussion leading to (2.16). By Proposition 3.6(ii), and us-
ing the fact that the integrand is invariant under permutations of the whole set of variables
x1, . . . , xn, y1, . . . , yn, we see that it is enough to check that

∞∑
j=0

22nsj
∫

Rd

∫
K2n

|φj (x − x1) · · ·φj (x − xn)φj (x − y1) · · ·φj (x − yn)|
|x1 − y1|β2 · · · |xn − yn|β2 dx1 · · ·dxn dy1 · · ·dyn dx

is finite. As for j ≥ 1, the functions φj are built from φ1, we consider separately j = 0 and
j ≥ 1. The summand for j = 0 is clearly finite (by compact support and the fact that β2 < d).
For j ≥ 1, pick a ball B centered at the origin such that K ⊂ B . For the rest of the sum the
change of variables xk �→ 2−j xk , yk �→ 2−j yk and x �→ 2−j x yields the upper bound

∞∑
j=1

22nsj+njβ2−jd
∫

Rd

(∫
(2jB)×(2jB)

|φ1(x − x1)φ1(x − y1)|
|x1 − y1|β2 dx1 dy1

)n

dx,

where we have used the fact that φj (x) = 2djφ1(2j x). Comparing with our statement, we see
that it is enough to check that∫

Rd
2−jd

(∫
(2jB)×(2jB)

|φ1(x − x1)φ1(x − y1)|
|x1 − y1|β2 dx1 dy1

)n

dx

is uniformly bounded in j . Notice that for x ∈ 2j+1B we have∫
(2jB)×(2jB)

|φ1(x − x1)φ1(x − y1)|
|x1 − y1|β2 dx1 dy1

�
∫

Rd

1

(1 + |x − x1|2d)(1 + |x − y1|2d)|x1 − y1|β2 dx1 dy1 ≤ c′,

as the integral is constant in x. Moreover, for x /∈ 2j+1B we have∫
x /∈2j+1B

2−jd

(∫
(2jB)×(2jB)

|φ1(x − x1)φ1(x − y1)|
|x1 − y1|β2

)n

dx

≤
∫
x /∈2j+1B

2−jd

(∫
(2jB)×(2jB)

1

(1 + |x − x1|2d)(1 + |x − y1|2d)|x1 − y1|β2 dx1 dy1

)n

dx
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≤
∫
x /∈2B

2(2jd−jβ2)n

×
(∫

B×B

1

(1 + 22dj |x − x1|2d)(1 + 22dj |x − y1|2d)|x1 − y1|β2 dx1 dy1

)n

dx,

�
∫
x /∈2B

2n(−2jd−jβ2)

|x|4dn

(∫
B×B

1

|x1 − y1|β2 dx1 dy1

)n

dx

which goes to 0 as j → ∞. This concludes the proof of ψμ ∈ Bs
2n,2n(R

d) almost surely,

and thus by our discussion at the beginning of the proof, this implies that for s < −β2

2 ,
μ ∈ Bs

p,q,loc(U) almost surely.
We then turn to the converse direction. In this case one deduces from (2.17), (2.18) and

(2.19) that it is enough to verify for any fixed s <
β2

2 that almost surely ψμ /∈ B−s
1,1. From

(3.13) we know that if we let fk(x) = ψ(x)e−iβX1/k(x) with ψ as in the proof of Theo-
rem 3.15, then for any δ > 0 there exists a deterministic constant C and a stochastic sequence

nk →∞ such that |μ(fnk
)| ≥ Cn

β2

2 −δ

k with probability one. By the duality of B−s
1,1 and Bs∞,∞

we thus have

‖μ‖B−s
1,1

≥ Cn
β2

2 −δ

k

‖fnk
‖Bs∞,∞

,

and hence it is enough to show that for all fixed δ > 0 the inequality ‖fn‖Bs∞,∞ ≤ ns+2δ holds
almost surely for large enough n. We will prove this bound first in the case when s < 1. The
norm ‖fk‖Bs∞,∞ is equivalent to the Hölder norm of fk , and since t �→ e−iβt is Lipschitz, it is
enough to consider the Cs-norm of X1/k . In order to bound this, we note first that for a fixed
δ ∈ (0, (1 − s)/2)

‖X1/n‖Cs ∼ c
∥∥I δX1/n

∥∥
Cs+δ ∼ ∥∥(

I δX
)
1/n

∥∥
Cs+δ ,

where I δ is the standard lift operator (2.20) (see the definition in Section 2.2) I δ : Cs → Cs+δ ,
and c > 0 is a constant. By Lemma 2.5 we have I δX ∈ Cδ/2 almost surely, and thus by
Fernique’s theorem

E exp
(
a
∥∥I δX

∥∥2
Cδ/2

)
< ∞

for some a > 0. Moreover, we may compute directly from the definition of a convolution that

(3.14)

∣∣(I δX
)
1/n(x) − (

I δX
)
1/n(y)

∣∣ ≤ ∥∥I δX
∥∥∞ ∫ ∣∣η1/n(x − u)− η1/n(y − u)

∣∣du

≤ b
∥∥I δX

∥∥∞ min
(
1, n|x − y|)

for some constant b > 0. Thus∥∥(
I δX

)
1/n

∥∥
Cs+δ ≤ b sup

|x−y|≤1
|x − y|−s−δ min

(
1, n|x − y|)∥∥I δX

∥∥∞ + ∥∥(
I δX

)
1/n

∥∥∞
�

(
ns+δ + 1

)∥∥I δX
∥∥
Cδ/2 .

By the Fernique bound we have

P
(∥∥(

I δX
)
1/n

∥∥
Cs+δ > ns+2δ) ≤ P

((
ns+δ + 1

)∥∥I δX
∥∥
Cδ/2 ≥ ns+2δ) ≤ e−b′nδ

for some constant b′ > 0. Finally, by Borel–Cantelli ‖fn‖Cs ≤ ns+2δ for all large enough
n ≥ n(ω). This is precisely what we set out to prove, so we are done in the s < 1 case.
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In the case of s ≥ 1, we may actually choose s > 1 and we need to get an estimate for the
Hölder norm of the derivatives of X1/n. This is obtained by applying estimates like (3.14) by
replacing the test function η by its derivatives. We leave the details for the reader.

(ii) The proof is identical to that in case (i) as one invokes Proposition 3.9.
(iii) The claims for the Triebel–Lizorkin spaces follow easily from those for the Besov

spaces by employing the embeddings (2.17). �

Combining Theorem 3.15 and Theorem 3.16 yields Theorem 1.2, so this concludes our
study of regularity properties of imaginary chaos and we turn to what we refer to as univer-
sality properties.

3.4. Universality properties. The goal of this section is to study the following question:
For which periodic functions H can we make sense of H(X) (through a suitable regulariza-
tion and renormalization procedure) when X is a log-correlated field? To give an intuitive
answer to this question, let us assume that H is a 2π/β-periodic18 function and let us expand
H(Xn) as a Fourier series H(Xn(x)) = ∑

k∈Z Hke
ikβXn(x). Now if H0 	= 0, we would expect

from Proposition 3.1 that H(Xn(x)) → H0 as n → ∞. If on the other hand H0 = 0, and β

is small enough, then one would expect that multiplying by e
β2

2 E[Xn(x)2] and letting n → ∞
would pick out the k = ±1-terms and yield H1e

iβX(x) + H−1e
−iβX(x). If H±1 = 0 and β

is small enough, one would expect convergence to H2e
2iβX(x) + H−2e

−2iβX(x) and so on.
To make this argument rigorous, one needs to control the contribution of the higher Fourier
modes. For simplicity we shall assume from now on that H is real, even, H0 = 0, and H1 	= 0,
though these assumptions can be relaxed, see Remark 3.19 below.

Before proceeding, let us address a technicality that might concern a careful reader. If
H is not very regular, say just measurable instead of continuous, one might worry whether
or not

∫
H(Xn(x))ϕ(x) dx is a well-defined random variable. That is, if H̃ = H Lebesgue

almost everywhere, do we have
∫

H(Xn(x))ϕ(x) dx = ∫
H̃ (Xn(x))ϕ(x) dx almost surely?

To see that this is the case, note that if Xn is a centered Gaussian field with continuous
realisations on the bounded domain U ⊂ Rd , pointwise nondegenerate (i.e., EXn(x)2 > 0 for
each x ∈ U ), and H : R → R is a locally bounded function, then for any bounded compactly
supported measurable function ϕ, the evaluation

Y :=
∫
U

H
(
Xn(x)

)
ϕ(x)dx

is well-defined as a random variable. Indeed, we may choose Borel measurable repre-
sentatives for the functions H and ϕ, and it follows that (x,ω) �→ H(Xn(x,ω))ϕ(x) is
jointly measurable. Moreover, given another Borel measurable representative H̃ , one has a.s.
H(Xn(x,ω)) = H̃ (Xn(x,ω)) for almost every x ∈ U by Fubini’s theorem and the fact that
Gaussians have continuous density on Rd . Hence moving to H̃ does not change the value of
Y , and we do not need to assume much regularity from H to pose a meaningful question.

In what follows we assume again that (Xn) are standard convolution approximations of our
log-correlated field X on the domain U ⊂ Rd . To be more precise, we write Xn := X ∗ ηcn

for some sequence cn → 0 as in Lemma 2.8, and we recall that the covariance Cn(x, y) :=
CXn(x, y) satisfies for any compact subset K ⊂ U , that there exists a M = M(K) such that

(3.15)
∣∣∣∣Cn(x, y)− log

(
1

max(cn, |x − y|)
)∣∣∣∣ ≤ M for all x, y ∈ K

as n →∞.

18This is simply a notationally convenient way to write the arbitrary period of the function as it will work well
with the notation we have used previously.
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The following lemma is instrumental in controlling the contribution of higher order Fourier
modes. We are able to obtain a result for a slightly larger class of functions H when special-
izing to two dimensions and assuming some further regularity from g, and for this reason,
we also prove a slightly stronger version of our control of higher Fourier modes in the case
of d = 2.

LEMMA 3.17. Let X be a log-correlated field satisfying assumptions (2.1) and (2.2) and
let (Xn) be a convolution approximation of it as described above. Assume that β ∈ (0,

√
d)

and ϕ ∈ L∞(U) has compact support. Denote for k ∈ Z

Yk :=
∫
U

ϕ(x)e
1
2 β2Cn(x,x)eikβXn(x) dx.

(i) For all integers k with |k| ≥ 2 it holds that

(3.16) E|Yk|2 � cα
n‖ϕ‖2

L∞,

where cn is as in (3.15), α = min(3β2, d − β2), and in the special case β = 1
2

√
d the factor

on the right hand side must be replaced by c
3β2

n log 1
cn

. The bounds are uniform in k.

(ii) Assume that d = 2, g ∈ C2(U × U) and assume that the bump function η used to
define the convolution approximations Xn is additionally nonnegative, radially decreasing
and symmetric, so that η(0) > 0. Moreover, assume that the term g in the covariance satisfies
g(x, x) = g(y, y) for all x, y ∈ U . Then for all integers 
, k with |
|, |k| ≥ 4/β and for n

large enough it holds that

(3.17) |EYkY
| � (e2Mcn)
−β2+2+ β2

8 (
−k)2

(|
| ∨ |k|)2 ‖ϕ‖2
L∞,

where M is as in (3.15).

PROOF. (i) We may assume that ‖ϕ‖L∞ = 1 and denote K := supp(ϕ) ⊂ U , so that K is
compact. A direct computation yields the upper bound

E|Yn|2 ≤ In :=
∫
K×K

exp(β2k2Cn(x, y)− 1

2
β2(

k2 − 1
)(

Cn(x, x)+ Cn(y, y)
)
dx dy.

In the range k2β2 < d the term exp(β2k2Cn(x, y)) is uniformly integrable in n, as

|Cn(x, x) − log(1/cn)| � 1 for all x we infer that In � c
(k2−1)β2

n . In the case k2β2 = d we
obtain a similar bound where one just adds the extra factor∫

U×U
edCn(x,y) dx dy ∼

∫
|x−y|≤cn

c−d
n +

∫
|x−y|≥cn

|x − y|−d ∼ log(1/cn).

In the generic situation k2β2 > d we observe first that due to the covariance inequality

(3.18) Cn(x, y) ≤ 1

2

(
Cn(x, x)+Cn(y, y)

)
,

the integrand in In is upper bounded by exp(β2Cn(x, y)). We use this estimate in the part of
the product domain where |x − y| ≤ e2Mcn and note that for the remaining values |x − y| >
e2Mcn, where M is from (3.15), we have

β2k2Cn(x, y)− 1

2
β2(

k2 − 1
)(

Cn(x, x)+Cn(y, y)
)

≤ β2k2(log
(|x − y|−1) +M − β2(

k2 − 1
)(

log(1/cn) −M
)

≤ β2k2 log
(∣∣(x − y)e−2M

∣∣−1) − β2(
k2 − 1

)
log(1/cn).
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Thus

In �
∫
|x−y|≤e2Mcn

|x − y|−β2
dx dy + cβ2(−1+k2)

n

∫
|x−y|>e2Mcn

∣∣(x − y)e−2M
∣∣−k2β2

dx dy

� c−β2+d
n ,

where in the latter integral one performs a change of variables (x, y) = (e2Mx′, e2My′). The
claim follows by combining our estimates for different values of k.

(ii) We use the same notation as in the proof of part (i). Consider first the case where 
 and
k have the same sign, so that we may assume k, 
 > 0. We claim first that given any constant
A > 0, for points x, y ∈ K it holds with a constant ξ = ξ(K,A,g) > 0 and large enough
n ≥ n0(K,A,g) that

(3.19) Cn(x, y) ≤ Cn(x, x)− ξ(|x − y|/cn)
2 if |x − y| ≤ Acn.

This auxiliary result will be used later on in the proof. In order to verify (3.19), we fix y0 ∈ K

and note that

Cn(x, y0) = (
η̃cn ∗ log

(| · |−1))
(x − y0) + (

(ηcn ⊗ ηcn) ∗ g
)
(x, y0)

=: Vn(x) +Wn(x),

where η̃ := η∗η. Since Cn(x, x) is independent of x, it follows from the covariance inequality
(3.18) that Vn(x) + Wn(x) has a maximum at x = y0 and we have ∇(Vn + Wn)(y0) = 0. By
symmetry considerations ∇Vn(y0) = 0, whence also ∇Wn(y0) = 0. Since D2Wn is bounded
in any compact subdomain of U , uniformly in n, we may easily infer the uniform bound

Wn(x) −Wn(y0) ≤ C|x − y0|2,
valid uniformly for (x, y0) ∈ K × K , and C = C(K). On the other hand, the function V0 :=
(η̃1 ∗ log(| · |−1))(x − y0), defined for all x ∈ R2, obtains its unique maximum at the point
y0 by (an integral version of) the Hardy–Littlewood rearrangement inequality, and as the
logarithm yields the fundamental solution of the Laplacian in the plane, we have �V0(y0) =
−2πη̃1(0) < 0. As V0 is radial with respect to y0 it follows easily that for any given A ≥ 1
there is ξ = ξ(A) > 0 such that V0(x) − V0(y0) ≤ −2ξ |x − y0|2 for |x − y0| ≤ A. Then the
scaling properties of the logarithm yield that

Vn(x) − Vn(y0) ≤−2ξ
(|x − y0|/cn

)2 for |x − y0| ≤ Acn.

By combining this with our previous estimate for Wn(x) − Wn(y0) the inequality (3.19) fol-
lows for large enough n.

We now move to actually estimating E|YkY
|. We recall that K ⊂ U is the topological
support of ϕ and compute

|EYkY
| =
∣∣∣∣∫

K×K
ϕ(x)ϕ(y)

× exp
[

kβ2Cn(x, y)− β2

2

((

2 − 1

)
Cn(x, x)+ (

k2 − 1
)
Cn(y, y)

)]
dx dy

∣∣∣∣
� c−β2

n

∫
K×K

exp
[

kβ2Cn(x, y)− β2

2

(

2Cn(x, x)+ k2Cn(y, y)

)]
dx dy

= c−β2

n

∫
{|x−y|≤e2Mcn}∩K×K

e
kβ2Cn(x,y)− β2

2 (
2Cn(x,x)+k2Cn(y,y)) dx dy

+ c−β2

n

∫
{|x−y|>e2Mcn}∩K×K

e
kβ2Cn(x,y)− β2

2 (
2Cn(x,x)+k2Cn(y,y)) dx dy

=: I 1
n + I 2

n .
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In the set {|x − y| > e2Mcn} ∩K ×K we may estimate


kβ2Cn(x, y)− β2

2

(

2Cn(x, x)+ k2Cn(y, y)

)
≤ 
kβ2(

log
(|x − y|−1) +M

) − β2

2

(

2 + k2)(

log(1/cn)− M
)

≤ 
kβ2(
log

(∣∣e2M |x − y|−1∣∣) − M
) − β2

2

(

2 + k2)(

log(1/cn) −M
)

≤ 
kβ2 log
(∣∣e2M |x − y|−1∣∣) − β2

2

(

2 + k2)

log(1/cn)+ Mβ2

2
(
 − k)2.

We denote M ′ := eM and perform the change of variables u = (x − y)/(M ′)2,
v = (x + y)/(M ′)2. After integration first with respect to the variable v it follows that

I 2
n � c

−β2+ β2

2 (
2+k2)
n M ′β2(
−k)2/2

∫
|u|≥cn

|u|−k
β2
du

� (cnM
′)−β2+2+ β2

2 (
−k)2

k
β2 − 2
� (cnM

′)−β2+2+ β2

2 (
−k)2


k
� (cnM

′)−β2+2+ β2

4 (
−k)2

(
 ∨ k)2 ,

where in the second last inequality we used the fact that 1
4k
β2 ≥ 2, which follows from

our assumption that |k|, |
| ≥ 4/β . In turn, the last inequality follows by noting that we may
assume 
 > k, and by considering separately the cases 
 ≥ 2k and 2k > 
. Naturally, we need
to assume that n is large enough so that, say, c−1

n > 2M ′.
Next, for I 1

n we have |x − y| ≤ e2Mcn. Using (3.19) yields that


kβ2Cn(x, y)− β2

2

(

2Cn(x, x)+ k2Cn(y, y)

)
≤ 
kβ2(

Cn(x, x)− ξ
(|x − y|/cn

)2) − β2

2

(

2 + k2)

Cn(x, x)

≤ (
− k)2 1

2
β2(log cn +M)− (

(ξ
k)1/2β|x − y|/cn

)2
.

We thus obtain

I 1
n � c−β2

n

(
cnM

′) β2

2 (
−k)2
∫
K

∫
R2

e−((ξ
k)1/2β|x−y|/cn)2
dx dy � (cnM

′)−β2+2+ β2

2 (
−k)2


k
,

and this is transformed to the desired form as before.
Finally, the case where k and 
 have different sign is much easier since then the term


kβ2Cn(x, y) has negative sign and works to our favour. �

We are now in a position to prove our universality result.

THEOREM 3.18. (i) Let (Xn)n≥1 be a convolution approximation of a log-correlated
field X as in Lemma 3.17 and let 0 < β <

√
d . Assume that H : R → R is a 2π/β-periodic

even function with absolutely convergent Fourier series and mean zero. Then there is a con-
stant a such that for every test function ϕ ∈ C∞

c (U) we have∫
U

ϕ(x)e
1
2 β2Cn(x,x)H

(
Xn(x)

)
dx → 〈

a“ cos(βX)”, ϕ
〉
,

in probability as n →∞.
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(ii) If d = 2 and Xn,X satisfy the condition of part (ii) of the previous lemma, we have
the same conclusion as in part (i) of this theorem, but assuming only that H is a locally
integrable 2π/β-periodic even function with mean zero.

PROOF. (i) Let H(x) = ∑∞
k=1 Ĥk cos(βkx). By Theorem 1.1 it is enough to check that

for a test function ϕ the quantity

R := ∑
|k|≥2

Ĥk

∫
U

e
1
2 β2Cn(x,x)ϕ(x)

(
eikβXn(x) + e−ikβXn(x))dx

converges to zero in probability. Since
∑

|k|≥2 |Ĥk| < ∞ by assumption, this follows from
Lemma 3.17(i) combined with two basic Cauchy–Schwarz estimates as one then finds that
ER2 → 0 as n →∞.

(ii) We aim to show that again ER′2 → 0 as n →∞, where we now define

R′ := ∑
|k|≥k0

Ĥk

∫
U

e
1
2 β2Cn(x,x)ϕ(x)

(
eikβXn(x) + e−ikβXn(x))dx,

where k0 > 2
√

d/β . The finite number of terms with 2 ≤ |k| < k0 can be handled as in
case (i). Since, for example, Fejér partial sums of the Fourier series converge to H almost
everywhere pointwise, Fatou’s lemma allows us to assume that H is a trigonometric polyno-
mial and it is enough to prove a uniform bound for ER2 over all trigonometric polynomials
H such that the modulus of all of their Fourier coefficients is bounded by 1. However, by
Lemma 3.17(ii) we obtain in this situation

ER′2 ≤ ∑
|k|,|
|≥k0

∣∣Ĥ (k)Ĥ (
)EYkY


∣∣ � c−β2+2
n

∑
|k|,|
|≥k0

(cne
2M)

β2

4 (
−k)2

(|
| ∨ |k|)2

� c−β2+2
n → 0 as n →∞. �

REMARK 3.19. The second part of the result applies to, for example, ∗-scale invariant
log-correlated fields since they typically have translation invariant covariance structure. The
same proof of course yields that if H is any complex valued 2π/β-periodic function with
zero mean and absolutely convergent Fourier series, the limit is a linear combination of the
imaginary chaoses “e±iβX”.

This concludes our study of universality and now we discuss the behavior of μ near βc.

3.5. Approach to the critical point. As we have mentioned before and as follows from

results in [53], e
β2

2 E[Xn(x)2]+iβXn(x) does not converge for β ≥ √
d , at least if one assumes a

bit more of g and the approximation Xn. Nevertheless, if one multiplies this quantity by a
suitable deterministic one, then one can prove convergence to white noise. In this section, we
study how this fact that βc :=

√
d is a special point can be seen from the limiting objects μ. In

what follows, we find it convenient to write μβ to indicate the dependence on β and hope this
notation causes no confusion. The main result of this section is the following which describes
how μβ blows up as β increases to

√
d . The theorem complements in a natural manner some

results in [53], and the methods used in the proof are somewhat similar to the ones already
employed in that paper.



IMAGINARY MULTIPLICATIVE CHAOS AND THE ISING MODEL 2145

THEOREM 3.20. Let X be a log correlated field on the bounded subdomain U ⊂ Rd

satisfying the standard assumptions (2.2) as before. Fix any test function f ∈ C∞
c (U). As

β ↗√
d , we have √

d − β2

|Sd−1| μβ(f ) →
∫
U

f (x)e
d
2 g(x,x)W(dx)

in law, where W is the standard complex white noise on U ,19 and |Sd−1| denotes the “area”
of the unit sphere of Rd .

PROOF. As we are dealing with Gaussian random variables, it is enough to show that the
moments converge and we start by computing the second absolute one; we will implicitly
be using constantly the results from Section 3.2 which allow us to write all the moments as
suitable integrals. We have

d − β2

|Sd−1|E
∣∣μβ(f )

∣∣2 = d − β2

|Sd−1|
∫
|x−y|<(d−β2)

1
2d

f (x)f (y)
eβ2g(x,y)

|x − y|β2 dx dy

+ d − β2

|Sd−1|
∫
|x−y|>(d−β2)

1
2d

f (x)f (y)
eβ2g(x,y)

|x − y|β2 dx dy.

The trivial estimate 1
|x−y|β2 ≤ 1

(d−β2)
β2
2d

shows that the second term goes to 0 as β ↗ √
d .

This and uniform continuity of our test function f and the function g on the support of f

easily gives us

lim
β↗√

d

d − β2

|Sd−1| E
∣∣μβ(f )

∣∣2
= lim

β↗√
d

d − β2

|Sd−1|
∫
|x−y|<(d−β2)

1
2d

|f (x)|2eβ2g(x,x)

|x − y|β2 dx dy

= lim
β↗√

d

d − β2

|Sd−1|
∫
U
|f (x)|2eβ2g(x,x)

∫
y∈B(x,(d−β2)

1
2d )

|x − y|−β2
dy dx

= lim
β↗√

d

d − β2

|Sd−1|
∫
U

∣∣f (x)
∣∣2eβ2g(x,x)

∣∣Sd−1∣∣ ∫ (d−β2)
1

2d

0
rd−1−β2

dr dx

= lim
β↗√

d

(
d − β2) d−β2

2d

∫
U

∣∣f (x)
∣∣2eβ2g(x,x) dx

=
∫
U

∣∣f (x)
∣∣2edg(x,x) dx.

Next note that for mixed moments (a 	= b) we have by Lemma A.2 and the above computation
that (

d − β2

|Sd−1|
) a+b

2 ∣∣Eμβ(f )aμβ(f )
b∣∣ ≤ Ca,b

(
d − β2

|Sd−1|
) a+b

2 (
E

∣∣μβ(f )
∣∣2)min(a,b)

�
(
d − β2) a+b

2 −min(a,b)
,

19Our notation here is slightly formal; Zh := ∫
h(x)W(dx) denotes a centered complex Gaussian random vari-

able satisfying EZ2
h = 0 and E|Zh|2 = ∫

U |h(x)|2 dx.
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where the right hand side tends to 0 as β ↗√
d . Thus it remains to check that the moments

(
d−β2

|Sd−1|)
a
E|μβ(f )|2a behave correctly. We have

E|μβ(f )|2a =
∫
U2a

(
a∏

j=1

dxj dyjf (xj )f (yj )

)

×
∏

1≤j<k≤a |xj − xk|β2 |yj − yk|β2
e−β2g(xj ,xk)−β2g(yj ,yk)∏

1≤j,k≤a |xj − yk|β2
e−β2g(xj ,yk)

.

We may split the integration domain into the a! disjoint sets Aσ , σ ∈ Sa (the set of permuta-
tions of {1, . . . , a}), and the complement of their union, where

Aσ = {|xi − yσi
| < (

d − β2) 1
2d for all 1 ≤ i ≤ a

}
∩ {|xi − xj | > (

d − β2) 1
3d for all 1 ≤ i < j ≤ a

}
.

Consider the integral over Ae, where e is the identity permutation. In Ae we have for j < k

that
|xj − xk|
|xj − yk| ≥

|xj − xk|
|xj − xk| + |xk − yk| ≥

1

1 + (d−β2)
1

2d

(d−β2)
1

3d

and
|xj − xk|
|xj − yk| ≤

|xj − xk|
|xj − xk| − |xk − yk| ≤

1

1 − (d−β2)
1

2d

(d−β2)
1

3d

from which we deduce that in Ae

|xj − xk|
|xj − yk| → 1

as β →√
d . Similar reasoning shows that

|yj − yk|
|xk − yj | → 1.

Hence again by uniform continuity of g and f

lim
β↗√

d

(
d − β2

|Sd−1|
)a ∫

Ae

(
a∏

j=1

dxj dyjf (xj )f (yj )

)

×
∏

1≤j<k≤a |xj − xk|β2 |yj − yk|β2
e−β2g(xj ,xk)−β2g(yj ,yk)∏

1≤j,k≤a |xj − yk|β2
e−β2g(xj ,yk)

= lim
β↗√

d

(
d − β2

|Sd−1|
)a ∫

Ae

∏a
j=1 dxj dyj |f (xj )|2eβ2g(xj ,xj )∏

1≤j≤a |xj − yj |β2

= lim
β↗√

d

(
d − β2

|Sd−1|
)a ∫

|xi−xj |>(d−β2)
1

3d

(
a∏

j=1

dxj

∣∣f (xj )
∣∣2eβ2g(xj ,xj )

)

×
a∏

j=1

∫
|yj−xj |<(d−β2)

1
2d

dyj

|xj − yj |β2
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= lim
β↗√

d

(
d − β2

|Sd−1|
)a ∫

|xi−xj |>(d−β2)
1

3d

(
a∏

j=1

dxj

∣∣f (xj )
∣∣2eβ2g(xj ,xj )

)

× ∣∣Sd−1∣∣a(∫ (d−β2)
1

2d

0
rd−1−β2

dr

)a

=
(∫

U

∣∣f (x)
∣∣2edg(x,x) dx

)a

.

By relabelling yi , we see that the result does not depend on the permutation chosen, so we
get the same outcome a! times. Thus the moments converge to Gaussian ones as soon as we
check that the contribution from the complement of the sets Aσ goes to 0. The complement
is covered by the sets

B1 = {|xj − xk| ≤ (
d − β2) 1

3d for some 1 ≤ j < k ≤ a
}

and

B2,k = {|xk − yj | > (
d − β2) 1

2d for all j 	= k
}
.

We have

lim
β→√

d

(
d − β2

|Sd−1|
)a ∫

B1

(
a∏

j=1

dxj dyjf (xj )f (yj )

)

×
∏

1≤j<k≤a |xj − xk|β2 |yj − yk|β2
e−β2g(xj ,xk)−β2g(yj ,yk)∏

1≤j,k≤a |xj − yk|β2
e−β2g(xj ,yk)

= 0

because we may use Lemma A.1 and Fubini’s theorem to integrate out the variables yk , leav-
ing a term of size � (d − β2)−a that cancels the factor in front. The remaining integral over
the variables xk is over a domain whose measure goes to 0. Finally, again using Lemma A.1
we have(

d − β2

|Sd−1|
)a ∫

B2,a

(
a∏

j=1

dxj dyjf (xj )f (yj )

)

×
∏

1≤j<k≤a |xj − xk|β2 |yj − yk|β2
e−β2g(xj ,xk)−β2g(yj ,yk)∏

1≤j,k≤a |xj − yk|β2
e−β2g(xj ,yk)

� ‖f ‖2a∞
∑
σ∈Sa

(
d − β2

|Sd−1|
)a ∫

B2,a

(
a∏

j=1

dxj dyj

)
1∏

1≤j≤a |xj − yσj
|β2

�
∑
σ∈Sa

(
d − β2

|Sd−1|
)a(

d − β2)− β2

2d

∫
B2,a

(
a∏

j=1

dxj dyj

)
1∏

1≤j≤a−1 |xj − yσj
|β2

�
(
d − β2)1− β2

2d ,

which goes to 0. A similar calculation holds for B2,k , 1 ≤ k ≤ a − 1. �

This concludes the portion of this article dealing with basic properties of imaginary chaos.
We now turn to discussing the Ising model.
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4. The Ising model and multiplicative chaos: The scaling limit of the critical and near
critical planar XOR-Ising spin field. The goal of this section is to prove Theorem 1.5 and
Theorem 1.6. We begin by first recalling the definition of the Ising model (with + boundary
conditions) on a finite part of the square lattice as well as recent results concerning the scaling
limit of correlation functions of the spin field for the critical Ising model. We then define
the XOR-Ising model on the square lattice and using the results concerning the correlation
functions (along with some rough estimates for the behavior of the correlation functions
on the diagonals), we prove Theorem 1.5, namely that in zero magnetic field, the scaling
limit of the critical XOR-Ising spin field is the real part of an imaginary multiplicative chaos
distribution. After this, we prove that if we add a magnetic field to the XOR-Ising model, then
the scaling limit of the spin field can be seen as the cosine of the sine-Gordon field, which is
Theorem 1.6.

4.1. The Ising model and spin correlation functions for the critical planar Ising model.
Let U ⊂ C be a simply connected bounded planar domain, and for δ > 0, let Fδ be the set
of faces of the lattice graph δZ2 that are contained in U . To avoid overlap, let us say that
the faces are half-open, that is, of the form δ([n,n + 1) × [m,m + 1)) for some m,n ∈ Z.
Following [17], we will define our Ising model on the faces Fδ . We also define the set of
boundary faces ∂Fδ as the set of faces in δZ2 which are adjacent to a face in Fδ but not in Fδ

themselves.
We call a function σδ : Fδ ∪ ∂Fδ →{−1,1}, a �→ σδ(a) a spin configuration on Fδ ∪ ∂Fδ

and we define the Ising model on Fδ with + boundary conditions, inverse temperature β , and
zero magnetic field to be a probability measure on the set of spin configurations on Fδ ∪ ∂Fδ :

Pδ(σδ) = P
+
δ,β,U (σδ) = 1

Zβ

e
β

∑
a,b∈Fδ∪∂Fδ,a∼b σδ(a)σδ(b)1

{
(σδ)|∂Fδ

= 1
}
,

where by a ∼ b we mean that a, b ∈ Fδ ∪ ∂Fδ are neighboring faces, and Zβ is a normalizing
constant. We count each pair a, b of nearest neighbor faces only once. We will want to talk
about the spin at an arbitrary point x ∈ U , so we overload our notation slightly, and define a
function σδ(x) = σδ(f ) if x ∈ f ∈ Fδ , and σδ(x) = 1 otherwise.

As discussed in the Introduction, a fundamental fact about the planar Ising model with
zero magnetic field is that it has a phase transition. From now on, we will focus on the critical

model, namely when β = βc = log(1+√
2)

2 —see [8], Section 7.12. We will also write from
now on Pδ = P

+
δ,βc,U

for the law of the critical Ising model as well as the law of the induced
spin field σδ : U →{−1,1}.

We next turn to the analysis of the correlation functions of σδ , which as we discussed in
Section 1.3 have a nontrivial scaling limit and are connected to conformal field theory. The
precise statement concerning the scaling limit is a recent result of Chelkak, Hongler, and
Izyurov (see [17], Theorem 1.2, and the discussion leading to it):

THEOREM 4.1 (Chelkak, Hongler, and Izyurov). Let x1, . . . , xn ∈ U be distinct and the

spin field σδ be distributed according to Pδ . Then for C = 25/48e
3
2 ζ ′(−1),

lim
δ→0+

δ−
n
8 E

[
n∏

j=1

σδ(xj )

]
= Cn

n∏
j=1

( |ϕ′(xj )|
2 Imϕ(xj )

)1/8

×
(

2−n/2
∑

μ∈{−1,1}n

∏
1≤k<m≤n

∣∣∣∣ϕ(xk)− ϕ(xm)

ϕ(xk)− ϕ(xm)

∣∣∣∣
μkμm

2
)1/2

,

where ϕ : U → H = {x + iy ∈ C : y > 0} is any conformal bijection and for any ε > 0, the
convergence is uniform in {x1, . . . , xn ∈ � : mini 	=j |xi − xj | > ε,mini d(xi, ∂U) > ε}.
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REMARK 4.2. We note that in [17], the authors consider actually the square lattice ro-
tated by π/4 and with diagonal mesh 2δ in which case the lattice spacing is

√
2δ instead of δ

as in our case. Rotating the lattice plays a role only in the value of the constant C. Our version
follows by replacing their δ with δ/

√
2. We also note that in [17] there appears to be a sign er-

ror in the exponent of e
3
2 ζ ′(−1). We offer here a brief suggestion on how the interested reader

might convince themselves of this fact. First of all, as pointed out in [17], Remark 1.4, one
can recover the (continuum) whole plane spin-correlation functions from the finite volume
ones through a suitable limiting process. In particular, the scaling limit of the whole plane
two-point function equals C2|x − y|−1/4 (see [17], (1.6)). On the other hand, it is known
that on the whole plane Z2-lattice the diagonal two point function has an explicit product
representation—see, for example, [60], (XI.4.18). This product can be written in terms of
Barnes G functions, and using their known asymptotics, one can recover the correct value
of C. We thank Antti Suominen for pointing this sign error out to us.

4.2. The critical XOR-Ising model and its magnetic perturbation. Following Wilson
[80], see also [13], we consider now the so-called XOR-Ising model, which is again a
probability measure on spin configurations, but now the spin configurations are given by
a pointwise product of two independent Ising spin configurations. We focus on the critical
case again and we thus make the following definitions: let σδ, σ̃δ be independent and dis-
tributed according to Pδ and define for x ∈ U , Sδ(x) = σδ(x)σ̃δ(x). Also write for a ∈ Fδ ,
Sδ(a) = σδ(a)σ̃δ(a). Let us write Pδ for the law of S (both the spin configuration and spin
field, and as for the normal Ising model, we don’t care what space of functions S lives on).
Perhaps slightly artificially, but as discussed in Section 1.3, motivated by wanting to study
scaling limits of near critical models of statistical mechanics, we also add a coupling to a
(nonuniform) magnetic field to this law: for a function ψ ∈ C∞

c (U), define

Pψ,δ(S) = 1

Zψ,δ

e
δ

2− 1
4

∑
a∈Fδ∪∂Fδ

(δ−2 ∫
a ψ(x) dx)Sδ(a)Pδ(S)

= 1

Zψ,δ

eδ−1/4 ∫
U ψ(x)Sδ(x) dxPδ(S),

where Zψ,δ is a normalizing constant and for the second equality, we are assuming that δ > 0
is so small that the support of ψ does not intersect the boundary ∂Fδ . The reason to view this
as a coupling to a magnetic field is that typically in spin models, the part of the energy of a
spin configuration (σδ(a)) coming from an interaction with a magnetic field (ha) is given by
−∑

a haσδ(a), and the Gibbs measure of the model in a nonzero magnetic field is obtained
by biasing the zero-magnetic field Gibbs measure with a quantity 1

Zβ,h
eβ

∑
a haσδ(a), where

Zβ,h is a normalizing constant. In this picture, our model corresponds roughly to choosing

ha = δ2− 1
4 ψ(a) (where ψ(a) means the value at the center of the face, which is close to

δ−2 ∫
a ψ(x) dx due to the smoothness of ψ). Since ha → 0 as δ → 0, one sometimes calls

this type of model near-critical in that it is close to the critical case of h = 0.

4.3. Convergence to multiplicative chaos. The goal of this subsection is to prove Theo-
rem 1.5. The main point in the proof is to obtain a δ-independent integrable upper bound
for the n-point correlation function Eσδ(x1) · · ·σδ(xn), which makes it possible to use
the dominated convergence theorem and Theorem 4.1 to find asymptotics of moments of
δ−1/4 ∫

U Sδ(x)f (x) dx and then using the method of moments, justified by Theorem 1.3, con-
clude the convergence. Such an upper bound is obtained by proving a variant of the Onsager
inequality for the Ising model, after which integrability is obtained again from Lemma 3.10.

The precise statement about the moments of Sδ is the following.
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LEMMA 4.3. For each f ∈ C∞
c (U) and integer k ≥ 0

(4.1)

lim
δ→0

E

(
δ−1/4

∫
U

f (x)Sδ(x) dx

)k

=
( C2
√

2

)k ∫
Uk

k∏
j=1

[
f (xj )

( |ϕ′(xj )|
2 Imϕ(xj )

)1/4]

× ∑
μ∈{−1,1}n

∏
i<j

∣∣∣∣ϕ(xi) − ϕ(xj )

ϕ(xi) − ϕ(xj )

∣∣∣∣
μiμj

2
k∏

j=1

dxj

and for each λ > 0

(4.2) sup
δ>0

Eeλ|δ−1/4 ∫
U Sδ(x) dx| < ∞.

Our proof will be based on the following lemma.

LEMMA 4.4. Let a1, . . . , ak ∈ Fδ be distinct faces lying inside a fixed compact set K ⊂ U

and identify each face with its center. Then for small enough δ > 0 and some constant C > 0
we have

δ−k/8
Eσδ(a1) · · ·σδ(ak) ≤ Ck

k∏
i=1

(
min
j 	=i

|ai − aj |
)−1/8

.

The constant C is independent of the points ai , k, and δ but it may depend on K . Similarly
the notion of “small enough” does not depend on the points ai or k, but it may depend on K .

PROOF. This inequality essentially appears in the proof of Proposition 3.10 in [34],
where the authors show ([34], last line on p. 20) that

Eσδ(a1) · · ·σδ(ak) ≤
k∏

i=1

φ+
Bi

(ai ↔ ∂Bi).

Here Bi = ai + [−
i/4, 
i/4]2 are disjoint boxes with 
i = minj≥0,j 	=i d(ai, aj ) being the
δZ2-distance (we have added the factor δ compared to [34] because we are working on the
scaled lattice) from ai to its closest neighbour or to the boundary ∂Fδ which is denoted by
a0. The quantity φ+

Bi
(ai ↔ ∂Bi) denotes the probability that ai is connected to the boundary

of Bi in the FK–Ising model with wired boundary conditions (see, e.g., [34], Section 3.1
and Section 3.2, and references therein), and this probability is less than C


−1/8
i by [34],

Lemma 3.9. Our claim then follows from the elementary inequality d(a, b) ≤ √
2|a − b|/δ,

the fact that for small enough δ, |ai − a0| is comparable to dEucl(ai, ∂U), and the fact that by
compactness dEucl(K, ∂U) is bounded from below. �

This allows us to give the proof of Lemma 4.3.

PROOF OF LEMMA 4.3. Let K ⊂ U be a fixed compact set and let x1, . . . , xk ∈ K . We
claim that for some C > 0 independent of xi , k, and δ,

(4.3) δ−k/8
Eσδ(x1) · · ·σδ(xk) ≤ Ck

k∏
i=1

(
min
j 	=i

|xi − xj |
)−1/8

which can be seen as a variant of the Onsager inequality for the Ising model.
Let us write a

(x)
i for the face x lies in (with the convention that we count in it the southern

and western boundary without corners as well as the south-western corner). If we first assume
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that all of the a
(x)
i are distinct (|a(x)

i − a
(x)
j | ≥ δ) and note that |xi − xj | ≤ |xi − a

(x)
i | +

|a(x)
i −a

(x)
j |+|xj −a

(x)
j | ≤ 2δ+|a(x)

i −a
(x)
j | ≤ 3|a(x)

i −a
(x)
j |, then (4.3) follows immediately

from Lemma 4.4.
Consider then the case where not all of the a

(x)
i are distinct. After using σ 2

a = 1 to reduce
the number of spins from the correlation function and possibly relabelling the spins, let us
assume that we have

δ−k/8
Eσδ(x1) · · ·σδ(xk) = δ−k/8

Eσδ(x1) · · ·σδ(xl)

with l < k and (a
(x)
i )li=1 distinct. From the case where all faces were distinct, we find

δ−k/8
Eσδ(x1) · · ·σδ(xk) ≤ δ−(k−l)/8Cl

l∏
j=1

(
min

1≤i≤l,i 	=j
|xi − xj |

)−1/8

≤ δ−(k−l)/8Cl
l∏

j=1

(
min

1≤i≤k,i 	=j
|xi − xj |

)−1/8
,

where the second step comes from the fact that we minimize over a larger set. Now for each
of the remaining points xl+1, . . . , xk , there is another xi such that both points belong to the
same face, implying that for j > l,

min
1≤i≤k,i 	=j

|xi − xj | ≤
√

2δ

so that

δ−(k−l)/8 ≤ 2
k−l
16

k∏
j=l+1

(
min

1≤i≤k,i 	=j
|xi − xj |

)−1/8
,

which concludes the proof of (4.3).
We may now compute

E

(
δ−1/4

∫
U

f (x)Sδ(x) dx

)k

= δ−k/4
∫
Uk

f (x1) · · ·f (xk)ESδ(x1) · · ·Sδ(xk) dx

= δ−k/4
∫
Uk

f (x1) · · ·f (xk)
(
Eσδ(x1) · · ·σδ(xk)

)2
dx.

Using (4.3), we see that the absolute value of the integrand is at most

C2k‖f ‖k∞
k∏

i=1

(
min
j 	=i

|xi − xj |
)−1/4

.

By Lemma 3.10 this is integrable, so we may apply the dominated convergence theorem and
Theorem 4.1 to get

lim
δ→0

E

(
δ−1/4

∫
U

f (x)Sδ(x) dx

)k

=
∫
Uk

f (x1) · · ·f (xk)C2k
k∏

j=1

( |ϕ′(xj )|
2 Imϕ(xj )

)1/4
2−k/2

× ∑
μ∈{−1,1}n

∏
1≤i<j≤k

∣∣∣∣ϕ(xi) − ϕ(xj )

ϕ(xi) − ϕ(xj )

∣∣∣∣
μiμj

2
dx,
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which proves (4.1). Moreover, the uniform bound obtained from Lemma 3.10 also implies
(4.2). �

Having Lemma 4.3 in our hand, we can now turn to the proof of convergence to chaos.

PROOF OF THEOREM 1.5. By Corollary 3.11, the moments of∫
U
C2

(
2|ϕ′(x)|
Imϕ(x)

)1/4
cos

(
2−1/2X(x)

)
f (x) dx

are precisely the right-hand side of (4.1). Thus by Lemma 4.3 the moments of the XOR-
Ising field converge to those of the real part of the imaginary chaos and by Theorem 1.3, the
moments of the imaginary chaos grow slowly enough so that they determine its distribution
and the convergence of moments implies convergence in law—see Corollary 3.13. �

4.4. The sine-Gordon model. Let us now introduce the sine-Gordon type model appear-
ing in the statement of Theorem 1.6. In the theoretical physics literature, (quantum) fields are
characterized by their correlation functions which can often be expressed in terms of func-
tional integrals. Indeed, in the physics literature, one might encounter the following definition
of the sine-Gordon model: it is the field X whose correlation functions are given by〈

X(x1) · · ·X(xk)
〉
sG(λ,β)

= 1

Z(λ,β)

∫
X(x1) · · ·X(xk)e

λ
∫

R2 cosβX(x)dx−∫
Rd ∇X(x)·∇X(x)dxDX.

Above DX = ∏
x∈R2 dX(x) is formally the (nonexistent) infinite dimensional Lebesgue mea-

sure and the integral is over RR2
. In addition to the infinite dimensional Lebesgue measure

being ill-defined, also the quantity ∇X · ∇X is ill-defined for a typical element of RR2
. The

way one makes mathematically precise sense of the sine-Gordon model is through under-
standing the quantity e−

∫
R2 ∇X(x)·∇X(x)dxDX as the probability distribution of the (whole

plane) Gaussian free field. Indeed, a lattice approximation of this quantity is precisely the
(unnormalized) probability distribution of the discrete free field. Then one could try to view
this as biasing the law of the Gaussian free field with something again related to imaginary
multiplicative chaos. For our purposes, it is more convenient to work in a finite domain with
zero boundary conditions on the free field (this also avoids the problem with the zero mode or
the fact that the whole plane free field is well defined only up to a random additive constant).
Also instead of having just the quantity λ

∫
cosβX(x)dx, our purposes require generalizing

slightly and replacing the constant λ by a weight in the integral. We thus make the following
definition.

DEFINITION 4.5. Let U ⊂ R2 be a bounded simply connected domain, let X be the zero
boundary Gaussian free field in U—see Example 2.6—with law PGFF on (say) H−ε(R2).20

For ψ ∈ C∞
c (U), β ∈ (0,

√
2), the sine-Gordon(ψ,β) model in domain U with zero boundary

condition is a probability distribution on H−ε(R2) of the form

PsG(ψ,β)(dX) = 1

Z(ψ,β)
e

∫
U ψ(x) cosβX(x)dx

PGFF(dX),

where again the integral in the exponential is formal notation for testing the random general-
ized function cos(βX) against the test function ψ .

20Recall that the field X is actually supported in U—see Proposition 2.3. As is often done, one could also
consider X as a random element of H−ε(U).
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REMARK 4.6. For the above definition to make sense, cosβX has to be measurable w.r.t.
X and we need Ee

∫
U ψ(x) cosβX(x)dx to be finite. The first property follows simply from our

convergence in probability in Theorem 1.1, while the second one follows from Theorem 1.3.

This definition allows us to construct the cosine of the sine-Gordon field, namely the pro-
posed limiting object from Theorem 1.6. We do not really need to construct it as a random
generalized function, we simply need to know that for each test function, there exists a ran-
dom variable that can be viewed as the cosine of the sine-Gordon field tested against this test
function.

DEFINITION 4.7. Let U ⊂ R2 be a bounded simply connected domain. For each β,γ ∈
(0,

√
2) and f,ψ ∈ C∞

c (U), let us write∫
U

f (x) cos
(
γXsG(ψ,β)(x)

)
dx

for the random variable whose law is characterized by the condition that for each bounded
continuous F : R → R,

E

[
F

(∫
U

f (x) cos
(
γXsG(ψ,β)(x)

)
dx

)]
= 1

Z(ψ,β)
EGFF

[
F

(∫
U

f (x) cos
(
γX(x)

)
dx

)
e

∫
U ψ(x) cos(βX(x)) dx

]
,

where
∫
U f (x) cos(γX(x)) dx and

∫
U ψ(x) cos(βX(x)) dx denote the action of the real parts

of imaginary chaos distributions built from the GFF on U with zero boundary conditions
provided by Theorem 1.1.

To see that this is a valid definition, first note from Theorem 1.1 that we can simultaneously
construct both of the random variables

∫
U f (x) cos(γX(x)) dx and

∫
U ψ(x) cos(βX(x)) dx

on the same probability space. Moreover, as F is bounded, we have from Theorem 1.3 that
the expectation on the right hand side of the equation in the definition is finite. Thus, by
the standard argument of interpreting this as a positive linear functional of F , the Riesz–
Markov–Kakutani representation theorem provides the existence of the desired probability
distribution. We note that one could also construct the same object starting from regulariza-
tions of the free field.

We are now in a position to move on to the proof of Theorem 1.6.

4.5. Convergence of the magnetically perturbed critical XOR-Ising to the cosine of the
sine-Gordon field. Theorem 1.6, namely the convergence of the spin field of the magneti-
cally perturbed XOR-Ising model to the cosine of the sine-Gordon field, now follows rather
easily from Theorem 1.1.

PROOF OF THEOREM 1.6. What we wish to show is that for each bounded continuous
F : R → R,

lim
δ→0

Eψ,δ

[
F

(
δ−1/4

∫
U

f (x)Sδ(x) dx

)]

= E

[
F

(
C2

∫
U

(
2|ϕ′(x)|
Imϕ(x)

)1/4
f (x) cos

(
2−1/2XsG(ψ̃,1/

√
2)

(x)
)
dx

)]
,

where on the left hand side we have the spin field of the magnetically perturbed XOR-Ising
model, with law Pψ,δ and expectation Eψ,δ , and on the right hand side we have the random
variable defined in Definition 4.7.
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Recall that we wrote Pδ for the law of the spin field of the zero-magnetic field XOR-Ising
model and let us write Eδ for the corresponding expectation. By the definition of Pψ,δ we
thus have

Eψ,δF

(
δ−1/4

∫
U
Sδ(x)f (x) dx

)
= 1

Zψ,δ

Eδ

[
F

(
δ−1/4

∫
U
Sδ(x)f (x) dx

)
eδ−1/4 ∫

U ψ(x)Sδ(x) dx

]
.

By Theorem 1.5 we know that under Pδ , δ−1/4Sδ tested against an arbitrary test function
converges in law to cos( 1√

2
X) (where X is the free field) tested against C2(2 |ϕ′(x)|

Imϕ(x)
)1/4 times

that same test function, so by linearity and the Cramér-Wold theorem, the random variables
A = δ−1/4 ∫

U Sδ(x)f (x) dx and B = δ−1/4 ∫
U Sδ(x)ψ(x) dx converge jointly in law (to the

corresponding random variables expressed in terms of the free field). We now deduce by the
continuity of (x, y) �→ F(x)ey and by the continuous mapping theorem [50], Lemma 4.27,
that F(A)eB converges in law to the random variable

F

(
C2

∫
U

(
2|ϕ′(x)|
Imϕ(x)

)1/4
f (x) cos

(
2−1/2X(x)

)
dx

)
e

∫
U ψ̃(x) cos(2−1/2X(x)) dx.

Moreover, by the (exponential) uniform integrability provided by boundedness of exponen-
tial moments proven in Lemma 4.3, Zψ,δ converges to Z(ψ,1/

√
2) as δ → 0. These re-

marks combined with another application of the boundedness of exponential moments from
Lemma 4.3 shows that also the expectation of F(A)eB converges to the correct quantity as
δ → 0 and we deduce that

lim
δ→0

Eψ,δ

[
F

(
δ−1/4

∫
U

f (x)Sδ(x) dx

)]

= E

[
F

(
C2

∫
U

(
2|ϕ′(x)|
Imϕ(x)

)1/4
f (x) cos

(
2−1/2XsG(ψ̃,1/

√
2)

(x)
)
dx

)]
,

as was desired. �

This concludes our study of the Ising model.

5. Random unitary matrices and imaginary multiplicative chaos—A cautionary tale.
We begin this section with a review of the connection between random unitary matrices,
log-correlated fields, and real multiplicative chaos. Based on this connection, it is natural to
expect that imaginary multiplicative chaos also appears naturally in random matrix theory,
and we indeed formulate a result of this flavor in the setting of random unitary matrices.
As the proof is similar to the case of real multiplicative chaos, and its essential ingredients
are well documented in the literature, we omit the details and simply offer the reader the
relevant references. With the example of random matrices, we illustrate both that imaginary
chaos appears naturally in various models of probability and mathematical physics along
with some of the subtleties one can expect to encounter when constructing multiplicative
chaos from such models.

In the last two decades, the connection between random matrix theory and log-correlated
fields has been observed in various random matrix models—see, for example, [37, 43, 70].
More precisely, as the size of the matrix tends to infinity, the real part of the logarithm of
the characteristic polynomial of a random matrix drawn from various distributions of unitary,
Hermitian, or normal matrices, is known to converge to a variant of the Gaussian free field
after suitable recentering. As first utilized in [35, 36] on a heuristic level, one would then
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naturally expect that powers of the (absolute value of the) characteristic polynomial of such a
random matrix should be related to the exponential of the Gaussian free field–multiplicative
chaos. This type of results have since been proven for some models of random matrices—
see, for example, [10, 54, 78]—though focusing on cases where the limiting object is a real
multiplicative chaos measure, such as the case of real powers of the absolute value of the
characteristic polynomial.

In this article, we will consider large random unitary matrices drawn from the Haar mea-
sure on the unitary group U(N), or in other words, we consider the so-called circular unitary
ensemble. Let us write UN for such a random N × N unitary matrix21 and consider the
following two fields defined on the unit circle: for θ ∈ [0,2π ],

XN(θ) = log
∣∣det

(
I − e−iθUN

)∣∣ and YN(θ) = lim
r→1−

Im Tr log
(
I − re−iθUN

)
,

where I denotes the N × N identity matrix, and in the definition of YN , what we mean by
Tr log(I − re−iθUN) is

∑N
j=1 log(1 − rei(θj−θ)), where (eiθj )Nj=1 are the eigenvalues of UN ,

and the branch of the logarithm is the principal one—namely it is given by log(1 − z) =
−∑∞

k=1
1
k
zk for |z| < 1. Note that in this case, the limit defining YN exists almost surely, for

example, in L2([0,2π ], dθ). Thus the fields can be interpreted as the real and imaginary parts
of the logarithm of the characteristic polynomial of UN evaluated on the unit circle.

It was proven in [43] that as N → ∞, XN and YN converge in law to 2−1/2 times the
2d Gaussian free field restricted to the unit circle, namely a centered log-correlated Gaussian
field X with covariance EX(θ)X(θ ′) =− log |eiθ − eiθ ′ |—for details about this field, see Ex-
ample 2.6. Moreover, this convergence is in the Sobolev space H−ε for arbitrary ε > 0—this
is essentially as nicely as a sequence of random generalized functions could converge. It was

then proven in [78] that for −1
2 < α <

√
2 and −√

2 < β <
√

2, eαXN (θ)

EeαXN (θ) dθ and eβYN (θ)

EeβYN (θ) dθ

converge in law to the multiplicative chaos measures formally written as e
α√
2
X(θ)

dθ and

e
β√
2
X(θ)

dθ . In this article, we consider an analogue of this result for imaginary α and β .
More precisely, the result is the following:

PROPOSITION 5.1. Let X(θ) be the log-correlated Gaussian field on [0,2π ] with co-
variance EX(θ)X(θ ′) =− log |eiθ − eiθ ′ | (see Example 2.6 for details), and eiβX(θ) the as-
sociated imaginary multiplicative chaos distribution provided by Theorem 1.1. Then for any
smooth and 2π -periodic f : R → C∫ 2π

0

eiβXN(θ)

EeiβXN(θ)
f (θ) dθ

d→
∫ 2π

0
e
i

β√
2
X(θ)

f (θ) dθ

as N →∞, for β ∈ (−√
2,

√
2). Moreover, as N →∞,∫ 2π

0

eiβYN(θ)

EeiβYN(θ)
f (θ) dθ

d→
∫ 2π

0
e
i

β√
2
X(θ)

f (θ) dθ

for β ∈ (−1,1). In both statements, the integrals on the right hand side are formal notation

meaning that the distribution e
i

β√
2
X(θ)

is tested against f .

21Being one of the classical compact groups, it is a classical fact that there exists a unique probability measure
PN on U(N) such that for any Borel set B ⊂ U(N) and any fixed U ∈ U(N), PN(UB) = PN(BU) = PN(B)—
this probability measure is the one we take for the distribution of the random matrix UN . We write simply E for
integration with respect to PN .
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As mentioned above, the proof of this theorem is essentially repeating the proof from the
real case in the L2-phase—see, for example, [10, 54, 78] for this type of arguments. The
main issue is to control moments of the form, for example, EeiβXN(θ)−iβXN(θ ′). This is done
through a connection to certain Toeplitz determinants and their known asymptotics. Again
this is essentially identical to the real case—see, for example, [78] for the argument and [19],
Theorem 1.11,22 and [23], Theorem 1.1 and Remark 1.4, for the asymptotics of the relevant
Toeplitz determinant.

Being nearly identical to the real case, we think that the reader would not find the proof
very illuminating. Indeed, instead of the proof, what we hope readers will find interesting
here is the discrepancy between the parameter values for which convergence is obtained for
the two fields. We maintain that this is not a technical issue simply requiring better estimates,
but truly that for YN one does not have convergence for larger values of |β| despite the fact
that YN converges to a log-correlated field essentially as nicely as one might hope and that
the corresponding multiplicative chaos exists. We think these remarks should be viewed as a
warning that one ought to take some care when hoping to prove that something converges to
multiplicative chaos, and hence we will next elaborate on it slightly.

5.1. Pitfalls in proving convergence to multiplicative chaos, from the point of view of ran-
dom matrices. Let us first discuss the case of real multiplicative chaos briefly. As men-

tioned above, it was proven in [78] that for −1
2 < α <

√
2, eαXN (θ)

EeαXN (θ) dθ converges in law to

e
α√
2
X(θ)

dθ . A natural question that one might then have is what happens for −√
2 < α ≤−1

2 .
After all, the multiplicative chaos measure is perfectly well-defined here and for the field YN ,
one has convergence. This issue is at least partly resolved by recalling the definition of XN :
for α < 0, one has eαXN(θ) = |det(I − e−iθUN)|−|α|. If α < −1, as a function of θ , this will
have nonintegrable singularities at each eigenangle, and even after a deterministic normal-

ization, eαXN(θ) dθ cannot converge to e
α√
2
X(θ)

dθ or any other finite measure—note that for
such α, even the normalization constant EeαXN(θ) is infinite. Thus we have an example of a
sequence of fields which approximate a log-correlated field essentially as nicely as one could
hope for—that is, we have convergence in any Sobolev space of negative regularity index—
yet do not give rise to a real multiplicative chaos measure in the full regime where one would
naively expect. This example demonstrates that the field may take extremely large values, but
in a very small set, while maintaining convergence on the level of log-correlated fields but
not on the level of real multiplicative chaos measures—and this happens already in a portion
of the L2-phase.

Let us turn to imaginary multiplicative chaos, and try to qualitatively understand the dis-
crepancy in Proposition 5.1, which we expect to arise due to a mechanism of a different
nature compared to the real case. Noting now that for the field XN , we have convergence in
the whole L2-regime, this suggests that any possible lack of convergence for YN is not due to
the size of the field. To explain the lack of convergence, let us point out that a simple exercise
in trigonometry shows that for θ 	= θj for all j

YN(θ) =
N∑

j=1

θj − θ

2
− Nπ

2
+ π

N∑
j=1

1{θj < θ},

so apart from the first sum (which is a rather simple function of θ ) and a factor of π , the field
is essentially integer valued. If we only cared about this integer valued “eigenangle counting

22We mention here that while in [78] the proof requires nearly the full extent of the results of [19], one can
actually simplify the proof slightly through an easy Cauchy–Schwarz estimate and one can manage with just
making use of [19], Theorem 1.11, and [23], Theorem 1.1 and Remark 1.4, also in the real case.
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function” ỸN (θ) := π
∑N

j=1 1{θj < θ}, then eiβỸN (θ) would be 2-periodic in β ∈ (−√
2,

√
2).

This periodic structure is of course somehow present also in eiβYN(θ), though not in its exact

form. As the limiting multiplicative chaos distribution e
i

β√
2
X(θ)

does not have any periodicity
properties when viewed as a function of β , this suggests that indeed it is not reasonable
to expect convergence for β /∈ (−1,1), since outside of this regime, periodicity will kick
in. Also, at β = ±1 something special obviously happens as the exponential exp(iβỸN(θ))

takes only values ±1. This is also seen in the Toeplitz determinants corresponding to the
moments—see, for example, [22], Theorem 1.1 and Theorem 1.13 (our β =±1 corresponds
precisely to their |||β||| = 1 e.g., for the second moment EeiβYN(θ)−iβYN(θ ′), though note the
slight difference in notation: our β corresponds to β/2 in [22]).

Such “essentially integer valued” approximations to log-correlated fields are common in
various models of probability and mathematical physics—indeed any height functions or in-
terfaces of discrete models, like dimer models or random partitions of integers, are inherently
of this type, so when attempting to study these fields through the associated (real or imagi-
nary) multiplicative chaos, the phenomenon described above is good to keep in mind.

APPENDIX: AUXILIARY RESULTS

In this appendix we record some basic facts needed to control moments of imaginary
chaos near the critical point. The first one is something that gives a rough estimate required
for controlling moments.

LEMMA A.1. Let U ⊂ Rd be bounded and 0 < β <
√

d . Then for any indices a ≥ b and
x1, . . . , xa, y1, . . . , yb ∈ U , we have the inequality∏

1≤j<k≤a |xj − xk|β2 ∏
1≤j<k≤b |yj − yk|β2∏

1≤j≤a

∏
1≤k≤b |xj − yk|β2 ≤ ∑

f : {1,...,b}→{1,...,a},
injective

C∏
1≤j≤b |xf (j) − yj |β2

for some constant C depending only U , a, and b—not β .

PROOF. The result can be obtained by using a Gale–Shapley matching (see, e.g. the Ap-
pendix in [53]—we provide a proof here for the reader’s convenience). For given x1, . . . , xa

and y1, . . . , yb we may form a matching f : {1, . . . , b} → {1, . . . , a} via the following algo-
rithm: Among the remaining pairs (xj , yk) choose one with minimal distance |xj − yk|, set
f (k) = j , remove the points xj and yk from the set of remaining points and repeat. By per-
mutation invariance of the original expression we may assume that the points matched by the
algorithm are (y1, x1), . . . , (yb, xb), and they are matched in this order. We may then write∏

1≤j<k≤a |xj − xk|β2 ∏
1≤j<k≤b |yj − yk|β2∏

1≤j≤a
1≤k≤b

|xj − yk|β2

=
∏

b+1≤j<k≤a |xj − xk|β2∏
1≤j≤b |xj − yj |β2 ·

∏
1≤j<k≤a

j≤b

|xj − xk|β2 ∏
1≤j<k≤b |yj − yk|β2

∏
1≤j≤a
1≤k≤b
j 	=k

|xj − yk|β2 .

We next write the second factor as

=
b∏


=1

( ∏

<k≤b

|y
 − yk|β2

|x
 − yk|β2

∏

<j≤a

|x
 − xj |β2

|xj − y
|β2

)
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and using the inequalities

|y
 − yk|
|x
 − yk| ≤

|y
 − x
| + |x
 − yk|
|x
 − yk| ≤ 2,

where we use that yk was matched after y
, and

|x
 − xj |
|xj − y
| ≤

|x
 − y
| + |y
 − xj |
|xj − y
| ≤ 2

implied in turn by the fact that x
 was matched before xj , we see that∏
1≤j<k≤a |xj − xk|β2 ∏

1≤j<k≤b |yj − yk|β2∏
1≤j≤a
1≤k≤b

|xj − yk|β2 ≤ 2β2(a−1)b

∏
b+1≤j<k≤a |xj − xk|β2∏

1≤j≤b |xj − yj |β2

under the assumption that the points were matched according to f . Summing over the possi-
ble matchings and bounding β2 by d in the prefactor yields the result. �

The following lemma is used for studying the behavior of imaginary multiplicative chaos
near the critical point.

LEMMA A.2. Let μ be the random generalized function from Theorem 1.1. For any test
function ϕ ∈ C∞

c (U) we have∣∣Eμ(ϕ)aμ(ϕ)
b∣∣ ≤ C

(
E

∣∣μ(ϕ)
∣∣2)min(a,b)

for all integers a, b ≥ 0 and some constant C possibly depending on ϕ, g from (2.1), a, and
b, but not on β .

PROOF. By the proof of Theorem 1.3 and a direct computation

∣∣Eμ(ϕ)aμ(ϕ)
b∣∣ � Ca,b

∫
Ua×b

∏
1≤j<k≤a |xj − xk|β2 ∏

1≤j<k≤b |yj − yk|β2∏
1≤j≤a

∏
1≤k≤b |xj − yk|β2 dx1 · · ·dxa dy1 · · ·dyb.

Here Ca,b depends on ϕ and g, and initially also on β , since the natural estimate one uses

involves terms like eβ2‖g‖L∞(supp(ϕ)×supp(ϕ)) , but we can always bound this from above by re-
placing β2 with d , so we get a bound independent of β . We may assume that a ≥ b, the
other case is handle in the same way. It then readily follows by applying Lemma A.1 and
integrating that ∣∣Eμ(ϕ)aμ(ϕ)

b∣∣ ≤ C
(
E

∣∣μ(ϕ)
∣∣2)b

for some constant C independent of β . �

Finally we conclude with a proof of Lemma 3.10.

PROOF OF LEMMA 3.10. For fixed x1, . . . , xN ∈ B(0,1), let F : {1, . . . ,N} →
{1, . . . ,N} be the nearest neighbour function mapping i �→ j , where j is the index of the
closest point xj to the point xi . By removing a set of measure 0 from B(0,1)N , we may
assume that F is uniquely defined. The integral then becomes

∑
F

∫
UF

e

β2

2
∑N

j=1 log 1
1
2 |xj−xF(j)| dx1 · · ·dxN,
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where UF ⊂ B(0,1)N is the set of those point configurations (x1, . . . , xN) ∈ B(0,1)N whose
nearest neighbour function equals F . Each nearest neighbour function F can be uniquely rep-
resented by a directed graph with vertices {1, . . . ,N} and an arrow from i to F(i). This graph
is of the following form: It consists of k ≤ �N/2 components, and each component consists
of a 2-cycle (the two mutually closest points in the component, by the triangle inequality
there can be no longer cycles) with two trees connected to the two vertices in the cycle. With-
out loss of generality we may assume that (x1, x2), . . . , (x2k−1, x2k) are the vertices forming
the cycles. Perform now the change of variables uj = 1

2(xj − xF(j)) for j = 2k + 1, . . . ,N ,
u1 = 1

2(x1 − x2), u2 = 1
2x2, . . . , u2k−1 = 1

2(x2k−1 − x2k) and u2k = 1
2x2k . Then we get the

integral ∫
ŨF

2N

|u1|β2 |u3|β2 · · · |u2k−1|β2 |u2k+1|β2/2 · · · |uN |β2/2
du1 · · ·duN

for some new integration domain ŨF . We have |uj | ≤ 1 for all j and moreover the balls
Bj = {y ∈ Rd : |y − xj | ≤ |uj |}, j = 1,3, . . . ,2k − 1,2k + 1,2k + 2, . . . ,N are disjoint
(since |uj | is half the distance from xj to its nearest neighbour). Each such ball is contained
in B(0,2), and thus by comparing volumes we get the inequality

|u1|d + |u3|d + · · · + |u2k−1|d + |u2k+1|d + · · · + |uN |d ≤ 2d .

In particular the new integration domain ŨF is contained in{|u1|d + |u3|d + · · · + |u2k−1|d + |u2k+1|d + · · · + |uN |d ≤ 2d, |u2|, . . . , |u2k| ≤ 1
}
.

Hence we get the upper bound∫
ŨF

2N

|u1|β2 |u3|β2 · · · |u2k−1|β2 |u2k+1|β2/2 · · · |uN |β2/2
du1 · · ·duN

≤ cN
∫
(∂B(0,1))N−k

∫
rd
1 +···+rd

N−k≤2d
r
−β2+d−1
1 · · · r−β2+d−1

k

× r
− β2

2 +d−1
k+1 · · · r−

β2

2 +d−1
N−k dr1 · · ·drN−k

≤ cN
∫
t1+···+tN−k≤1

t
− β2

d

1 · · · t−
β2

d

k t
− β2

2d

k+1 · · · t−
β2

2d

N−k dt1 · · ·dtN−k

≤ cN
�(1 − β2

d
)k�(1 − β2

2d
)N−2k

�(k(1 − β2

d
) + (N − 2k)(1 − β2

2d
))

∫ 1

0
tN−k−k

β2

d
−(N−2k)

β2

2d
−1 dt

≤ cN

�(k(1 − β2

d
) + (N − 2k)(1 − β2

2d
)+ 1)

,

where c is some constant that may get bigger on each line of the above and following com-
putations, and which is allowed to depend on β2 and d but not on N or k. Above we used
Dirichlet’s integral formula, see, for example, [79], Section 12.5. Thus we have

(A.1)
∫
UF

e

β2

2
∑N

j=1 log 1
1
2 |xj−xF(j)| dx1 · · ·dxN ≤ cN

�(N(1 − β2

2d
) − k + 1)

,

where the right hand side only depends on F via the number of components in the directed
graph associated with F .
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Next we bound the number of nearest neighbour functions whose graphs have k compo-
nents. As already mentioned above, each component consists of a 2-cycle augmented with
two trees, or a simpler way to think of them might be as unordered pairs of rooted trees whose
roots form the cycle. It is worth noting that the map from the nearest neighbour functions to
their associated graphs is not a surjection since geometrical reasons limit the number of in-
coming edges each vertex may have. However, since we are only concerned with an upper
bound, we will ignore this fact and simply count all possible labeled graphs with N vertices
and k components of the above prescribed type, with labels corresponding to the variables
x1, . . . , xN . This is a fairly straightforward task to which standard counting methods using
generating functions apply. Here we have written the argument using combinatorial species,
see, for example [11] for an introduction to the subject. For an argument formulated in more
elementary terms, we refer to [41]. Let Ek be the species of (unordered) sets of k elements
and let T be the species of rooted trees. The species of a single component in the graph is then
E2 ◦ T (an unordered pair of rooted trees, whose roots correspond to the cycle). A set of k of
these gives us then the required species Gk of nearest neighbour graphs with k components,
Gk = Ek ◦ (E2 ◦T ). The labeled generating function of Ek is given by Ek(x) = xk

k! and hence

Gk(x) = (T (x)2/2)k

k! = T (x)2k

2kk! .

The species T itself satisfies the equation T = X · (E ◦ T ), where E is the species of sets (a
rooted tree consists of a root and a set of subtrees). Since E(x) = ex , the labeled generating
function of T satisfies the equation T (x) = xeT (x). In particular, if we let f (x) = xe−x ,
then f is the compositional inverse of T , and we may use the Lagrange inversion formula to
compute for N ≥ 2k that

T (x)2k = 2k

N

[
x−2k]f (x)−N = 2k

N

[
x−2k]eNx

xN
= 2k

N

[
x−2k] ∞∑

j=0

Njxj−N

j !

= 2kNN−2k−1

(N − 2k)! ,

where [xk]g(x) is the coefficient of xk in some power series g. Hence the number of nearest
neighbour graphs with N vertices and k components (ignoring the geometrical restrictions)
is

(A.2)
N !2kNN−2k−1

2kk!(N − 2k)! ≤ cN N !
k! ≤ cN(N − k)!,

where the first inequality follows by Stirling’s approximation and the second follows from
the fact that

(N
k

) ≤ 2N .
The proof is easily finished by combining (A.1) and (A.2) with another application of

Stirling: ∫
B(0,1)N

exp

(
β2

2

N∑
j=1

log
1

1
2 mink 	=j |xj − xk|

)
dx1 · · ·dxN

= ∑
F

∫
UF

e

β2

2
∑N

j=1 log 1
1
2 |xj−xF(j)| dx1 · · ·dxN

≤ cN
�N/2 ∑
k=1

(N − k)!
�(N(1 − β2

2d
)− k + 1)

≤ cN
�N/2 ∑
k=1

NN
β2

2d ≤ cNNN
β2

2d ,

where again the value of c may not be the same in each of the places it appears. �
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