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The Bouncy Particle Sampler (BPS) is a Monte Carlo Markov chain algo-
rithm to sample from a target density known up to a multiplicative constant.
This method is based on a kinetic piecewise deterministic Markov process
for which the target measure is invariant. This paper deals with theoretical
properties of BPS. First, we establish geometric ergodicity of the associated
semi-group under weaker conditions than in (Ann. Statist. 47 (2019) 1268—
1287) both on the target distribution and the velocity probability distribution.
This result is based on a new coupling of the process which gives a quantita-
tive minorization condition and yields more insights on the convergence. In
addition, we study on a toy model the dependency of the convergence rates on
the dimension of the state space. Finally, we apply our results to the analysis
of simulated annealing algorithms based on BPS.

1. Introduction. Markov chain Monte Carlo methods are a core requirement in many
applications, for example, in computational statistics [22], machine learning [1], molecular
dynamics [7]. These methods are used to get approximate samples from a target distribution
denoted 7, with density w.r.t.the Lebesgue measure given for all x € RY by

6] m(x) = exp(—=U(x)),

for a potential U : RY — R, known up to an additive constant. They rely on the construction
of Markov chains which are ergodic with respect to 7, see [48].

Whle the first and best-known MCMC methods are based on reversible chains, such as
many Metropolis—Hastings type algorithms [34], there has been since the last decade an in-
creasing interest in nonreversible discrete-time processes [4, 12, 38, 42]. Indeed, consider a
Markov chains (X )ren on the state space {1, ..., n}. If (Xg)ren is reversible, for any n € N,
the event {X,, 4> = X} has a positive probability, which explains why reversible processes
typically used in MCMC show a diffusive behaviour, covering a distance ~/K after K itera-
tions. This makes the exploration of the space slow and affects the efficiency of the algorithm.
One of the first attempt to avoid this diffusive behaviour has been proposed in [40], where
the author suggests to modify the transition matrix M of (Xj)xen, reversible with respect to
M, in such way that the obtained transition matrix is nonreversible but still leaves p invariant.
By definition of M, the probability of backtracking is smaller than for M, that is, Ml-z’i < Miz’l.

for any i € {1, ..., n}. In addition, [40] shows that the asymptotic variance of M is always
smaller than the one of M.

For general state space and in particular in order to sample from 7 defined by (1), a now
popular idea to construct nonreversible Markov chain is based on lifting, see [12] and the
references therein. The idea is to extend the state space R¢ and consider a Markov chain
(Xk, Y)reny on R? x Y, Y ¢ R?, which admits an invariant distribution for which the first
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marginal is the probability measure of interest. It turns out that, appropriately scaled, some of
these lifted chains converge to continuous-time Markov processes. For instance, the persistent
walk on the discrete torus introduced in [12] converges to the integrated telegraph on the
continuous torus [38], while the lifted chain defined in [49] for spin models converges to
the Zig-zag process [5] (see also the event-chain MC with infinitesimal steps in the physics
literature [37, 42]). In these cases, the continuous-time limits belong to the class of velocity
jump processes (X;, Y;);>0 on R? xY,YCRY, satisfying X, = X¢o + fé Yds forall t >0
with (Y;);>0 piecewise-constant on random time intervals. The velocity (Y;);>¢ acts as an
instantaneous memory, or inertia, so that (X;);>o tends to continue in the same direction for
some time instead of backtracking. In addition, these processes may be designed to target a
given probability measure defined on (R? x Y, B(R? x Y)) of the form

2 T=7Q Ly,

where [y is a probability measure on Y, and therefore can be used as MCMC samplers. This
kind of dynamics, which are not new [21, 29], have regained a particular interest in the last
decade, in two separate fields: stochastic algorithms, as we presented, but also biological
modelling, where they model the motion of a bacterium [9, 18, 19] and are sometimes called
run-&-tumble processes.

From a numerical point of view, an advantage of these continuous-time processes is that,
under appropriate conditions on the potential U, an exact simulation is possible, following a
thinning strategy [8, 31, 32]. Therefore, no discretization schemes are needed to approximate
the continuous time trajectory, contrary to Langevin diffusions or Hamiltonian dynamics. As
a consequence, no Metropolis filter is necessary to preserve the invariance of 7, see [14, 41,
45, 47] and the reference therein.

This work deals with the velocity jump process introduced in [39, 42]. Following [8], we
refer to it as the Bouncy Particle Sampler (BPS). The aim of this paper is to establish geomet-
ric convergence to equilibrium for the BPS in dimension larger than 1. As detailed below, we
relax the conditions of [11], in particular we show that any constant refreshment rate is suffi-
cient for thin tail target distributions. The paper is organized as follows. Section 2.2 presents
the BPS process and our main results, which are proven in Section 3. Finally, Section 4 is de-
voted to a discussion on our result and approach. First, in Section 4.1, we give explicit bound
for a toy model, paying a particular attention to the dependency on the dimension of the state
space in the constants we get. Second, in Section 4.2, we apply our results to study the an-
nealing algorithm based on the BPS, extending the results of [39]. Some technical proofs are
postponed to the Supplementary Material [16].

Although the work is restricted to the BPS, our arguments can easily be adapted to other
velocity jump processes, such as randomized variants of the BPS. In particular, the coupling
argument in Section 3.3 applies as soon as the process admits a refreshment mechanism.

Notation. For all a,b € R, we denote a, = max(0,a), a V b = max(a,b), a AN b =
min(a, b). Id stands for the identity matrix on R<.

For all x, y € R, the scalar product between x and y is denoted by (x, y) and the Eu-
clidean norm of x by ||x||. We denote by S¢ = {v € R? : ||v|| = 1}, the d-dimensional sphere
with radius 1 and for all x € R, r > 0, by B(x, r) = {w € R? : |lw — x|| < r} the ball centered
in x with radius r. For any d-dimensional matrix M, define by | M || = SUPy,eB(0.1) IMw]| the
operator norm associated with M.

Denote by C(R?) the set of continuous function from R? to R and for all k € N*, CK(R?)
the set of k-times continuously differentiable function from R? — R. Denote for all k € N,
CICc (R?) and C’l; (R?) the set of functions belonging to C¥(R?) with compact support and the
set of bounded functions belonging to C¥(R?) respectively. For all function f :R¢ — R,
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we denote by V f and V2 f, the gradient and the Hessian of f respectively, if they exist.
For all function F : R — R™ and compact set K C R¢, denote || F oo = sup,cpe | F ()],
| Flloo,k = Sup, ek I F(x)||. We denote by B(R?) the Borel o-field of and P(Rg) the set of
probability measures on R?. For 1, v € P(RY), & € P(R? x R?) is called a transference plan
between p and v if for all A € B(R?), £(A x R?) = u(A) and £(R? x A) = v(A). The set of
transference plan between p and v is denoted I'(i1, v). The random variables X and Y on R¢
are a coupling between u and v if the distribution of (X, Y) belongs to I'(u, v). The total
variation norm between p and v is defined by

lw—vltv = 256%125’1)) o Lpg (x, y) dE(x,y),

where Ape = {(x,y) € RY x RY: x = v}. For V : R — [1, 400), define the V-norm be-
tween u and v by

=ty =sup| [ rane— [ ra

When V(x) = 1 for all x € R¢, the V-norm is simply the total variation norm. For all u €
P(R?), define the support of i by

RS RS/ Ve < 1}.

supp u = {x € R? : for all open set U > x, u(U) > 0}.

In the sequel, we take the convention that inf @ = +o0.
2. Geometric convergence of the BPS.

2.1. Presentation of the BPS. In all this work, we assume that the potential U, given by
(1), is continuously differentiable on R?. Let Y ¢ R? be a closed C*®-submanifold Y C R?,
which is rotation invariant, that is, for any rotation O € R4 xd "OY =Y. The BPS process
(Xt, Yi)=0 associated with U evolves on (R? x Y, B(R? x Y)) and is defined as follows.

Consider some initial point (x,y) € R x Y, and a family of i.i.d. random variables
(E;, F;, G})jen+ on the same probability space (€2, F, P), where for all i € N*, E;, F; are
exponential random variables with parameter 1, G; is a random variable with a given distribu-
tion wy on (Y, B(Y)), referred to as the refreshment distribution. In addition, for all i € N*, E;,
F; and G; are independent. Let A, > 0, referred to as the refreshment rate, (Xo, Yo) = (x, y)
and Sp = 0. We define by recursion the jump times of the process and the process itself.
Assume that S, and (X, Y;);<s, have been defined for n > 0. Consider

Tn(Jlr)l = En—i—l/)\r,
t
3) T = inf{t >0: / (Ys,. VU(Xs, +5Ys,)), ds > Fn+1},
0

1 2
=10 AT,
Set Sp+1 =S + Tnt1, (Xi, Y1) = (X5, +1tYs,, Ys,), forall t € [Sy, Snt1), XSn+l = Xg, +
T,+1Ys, and

S — Gn—H if Tn+l = Tn(—lk)l’
i R(Xs,,,.Ys,) otherwise,
where R : R?¢ — R is the function given for all x, y € R? by
R(x, y) =y —2{y, n(VU (0))n(VU (1)),
Z/lzll - ifz#0,
0 otherwise.

4) )
where forall z e RY, n(z) =
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Note that for all (x, y) € R*? with VU (x) # 0, R(x, y) is the reflection of y orthogonal to
VU (x) and therefore for all (x, y) € R¥, |[R(x, )| = lIyl.

KT, =T ,1(21, we say that, at time T),4, the velocity has been refreshed, and we call

T,+1 arefreshment time. If 7, = Tn(i)l, we say that, at time 7}, 1, the process has bounced,
and we call 7,41 a bounce time.

Then, (X;, Y;) is defined for all ¢ < sup,, .y S, and we set for all # > sup,, cry Su, (X7, ¥y) =
oo, where oo is a cemetery point.

In fact, itis proven in [15], Proposition 10, that almost surely, sup,, .y S, = +00. Therefore,
almost surely, (X;, Y;);>0 is a (Rd x Y)-valued cadlagprocess. By [10], Theorem 25.5, the
BPS process (X;, Y:)>0 defines a strong Markov semi-group (P;);>¢ given for all (x, y) €
R? x Y and A € B(R? x Y) by

Pt((X, y),A) =P((Xt, Y:) GA),

where (X;, Y;);cRr, is the BPS process started from (x, y).
Consider the following basic assumption.

A1l. The potential U is twice continuously differentiable, . is rotation invariant and
(x, ¥) = |I¥IIIVU (x)|| is integrable with respect to 7 defined by (2).

It is shown in [15], Corollary 24, and contrary to the popular belief it is quite technical and
difficult, that under A1, the probability measure 7 defined by (2) is invariant for (P;)>0, that
is, P, = forall t > 0.

2.2. Main results. For V :RY x Y — [1, +00), the semi-group (F);>0 with invariant
measure 77 is said to be V-uniformly geometrically ergodic if there exist C, p > 0 such that
forallr >0andall i € P(R? x Y) with n(V) < +o0, it holds

S)) lwPr = 7lly < Ce ' (V).

We state in this section our main results regarding the V -uniform geometric ergodicity of the
BPS.
Our basic assumptions to prove geometric ergodicity are the following.

A2.

(i) The potential U is positive and satisfies [psexp(—U(x)/2)dx < 400 and
lim x| 400 U (x) = +00.

(ii) v admits a density w.r.t.the Lebesgue measure on R or there exists ro > 0 such that
H(r0S?) > 0.

Here, we establish practical conditions on the potential U, vy and Y implying that (£;);>0
is V-uniformly geometrically ergodicity. In fact, these conditions are derived from a more
general result. However, since its assumptions and statement may seem very intricate, for the
sake of clarity we have decided to give this result after its corollaries.

Consider the following alternative conditions, which will be used in the case where Y is
bounded.

A3. The potential U satisfies
lim |VU@x)| = oo, sup [ VAU (x)|| < oo.

lell—>+o0 LR



GEOMETRIC ERGODICITY OF THE BOUNCY PARTICLE SAMPLER 2073

A4. There exists ¢ € (0, 1) such that
liminf {IVU®|/U"=S )} >0,
x — 400

limsup {|[VU @) [|/U'™"%(x)} < +o0,

flx ]| —+o0

limsup {|V2U (x) |/ U5 (x)} < 4o0.

llx (| =400

A5. The potential U satisfies limjy |- 400 IV2U (x)||/IVU (x)|| = 0 and there exists ¢ €
(0, 1) such that

”11“m1nf [VU@)|/U""S(x) >0 and “ ||hm+ VU@ |/ Uu* =9 (x) =0
X||—T00

Note that A5 is similar to A4 but these two conditions are different: none of them im-
plies the other. Indeed, on R?, consider U (x1, x2) = (1 + |x1|%)%/% + (1 + |x2|%)#/? for some
o, B > 1. Then for all (x1,x7) € R2, we have

VU(x):[otxl(l—Fxl)a/z ', Bx 2(1+x3 )ﬁ/z 1]

) _ (F(a, x1) 0
ViU ‘( 0 F(p x2>>

where  F(a,x1) = (1 +x7)"? 7 2007 (@/2 = D (1 +x7)*272,

In that case A4 is satisfied if and only if [(« Vv B)/2, o A B] # &, while A5 is satisfied if and
onlyif [2(a Vv B8)/(1+aV B), a AB] # @, chosing in both cases ¢ ~! > 1 in the corresponding
interval. In particular, if both «, 8 > 2, then AS is satisfied, but A4 may not (if « > 28 for
instance). On the contrary if, say, « =4/3 and 8 € (1, 8/7), then A4 holds while A5 does not.

THEOREM 1. Assume Al, A2, Y is bounded and either A3, A4 or AS. In the case where
A3 holds, set ¢ = 1. Then, for any refreshment rate ,. > 0, there exists k € (0, 1] such
that (Py);>o is V-uniformly geometrically ergodic with V : R? x Y — [1, 400) given for
all (x,y) e RY x Y by V(x,y) =exp(kUS (x)).

PROOF. The proof is postponed to Section 3.5. [

Note that A3, A4 and A5 all require that limy|— 400 VU (x)|| = +00. We consider now
the case where liminf ;| 4o [|VU (x)|| < 400 possibly.
A6. The potential U satisfies
liminf [VU(x)| >0 and  lim |V2U(x)|=0.

[|x||——+o0 [|x ||——+o0

THEOREM 2. Assume Al, A2, A6 and Y is bounded. Then, there exists Ao > O such that,
if Ar € (0, X0], (Pt);>0 is V-uniformly geometrically ergodic with V : RY x Y — [1, +00)
given for all (x,y) e R? x Y by V(x, y) =exp(kU(x)), for k € (0, 1].

PROOF. The proof is postponed to Section 3.6. [J]

Note that contrary to the setting of Theorem 1, the result of Theorem 2 requires that the
refreshment rate A, is sufficiently small for the BPS to be V -uniformly geometrically ergodic.
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We now turn to the case where Y is unbounded. Indeed, this case is interesting from the
numerical experiments conducted in [8], Section 4.3, which shows that the choice of Y = R4
and uy being the d-dimensional Gaussian distribution appears to be better and less sensitive
to the choice of the refreshment rate A, compared to Y = S? and the uniform distribution on
this set.

In the case where Y is unbounded, A4 must be strengthened as follows.

A7. There exists ¢ € (0, 1) such that
liminf {|VU@)|/U'™S(x)} >0,

f
flx]| =00

limsup {|VU@)|/U'™S (x)} < 400,

[lx]| =00

limsup {|V2U (x) |/ U2 (x)} < 4-o0.

flx]|—+o00
A7 (and therefore A4) holds when U is a perturbation of an @-homogeneous function:

PROPOSITION 3. Leta € (1, +00) and assume that U = Uy + Uy with Uy, Uy € Cz(Rd)
satisfying:

o U is a-homogeneous: for allt > 1 and x € RY with ||x|| > 1,

Ui(tx) =t"U;(x) and lim Uj(x) =+oo0.

|| x|]— 400

limsup {U2(x)/1x[1% + | VU2 /12171 + [ V2020 | /11x 172} = 0.

|x ]| =400

Then A7 holds with ¢ =1/ «.

PROOF. The proof is postponed to Section S1.1 in the Supplementary Material [16].
g

This class of potentials is considered in [27], Theorem 4.6, which shows that the random
walk metropolis algorithm is geometrically ergodic for target distributions 7 associated to a
potential belonging to this class.

THEOREM 4. Assume Al, A2, A7 and vy admits a Gaussian moment: there exists n > 0
such that [, enlly ”2,uv(dy) < 400. Then, for any refreshment rate Ay > 0, there exists k €
(0, 1] such that (Py);>0 is V -uniformly geometrically ergodic with V : R? x Y — [1, 4+00)
given for all (x,y) e R x Y by V(x,y) =exp(kUS (x)) +exp(n|y]|?).

PROOF. The proof is postponed to Section 3.7. [J

We now compare our results to the ones established by [11]. First, their results deal only
with the case where Y = S and [y 18 the uniform distribution on 84, while our work can be
applied to much broader cases. We discuss in the following our main contributions compared
to [11] in the case where Y is bounded. The basic assumptions of [11] are the following:
(i) V2U is locally Lipschitz; (i) fga VU (x)]|dmr(x) < +o00; (iii) liminfj,|— +co{eV®/?/
IVU @172} > 0;

. U )/2
inf >
(x,v)eR9 xSd {(VU(X), U)—i-Aref}l/z

(iv)

0,
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where Agef: R — R is a function chosen in the results. These conditions are similar to A1l
and A2 in our work. We now give the results obtained by [11] in detail in order to highlight the
differences with the present work. Apart from the CLT which is a consequence of the others,
there are three main results in [11] for the geometric ergodicity of the BPS. The first one,
concerning regular tail distributions ([11], Theorem 3.1), establishes that the BPS process as
defined at the beginning of Section 2.1 is V-geometrically ergodic if A.f = A; and one of the
following conditions holds:

(A) liminfjyx - 400 VU (X)|| = 400, limsupy 400 |V2U (x)|| < 400 and A, > Cy for
some constant C| > 0.

(B) limianx||_>+oo ||VU(X)|| > 0, lim||x”_>+oo ||V2U(x)|| = 01 and A < C2 for some
constant Cy > 0.

Note that Theorem 1 applied with A3 generalizes [11], Theorem 3.1(A) since no condition
on A; is required, which is nice in practice. In addition, Theorem 1 can be applied with other
conditions than A3 that is, A4 and A5, which yields new results. Also, Theorem 2 is similar to
[11], Theorem 3.1(B), except that, as stated before, it holds with more general choices for Y.

The second result of [11] studies, in the case of thin tail distributions, the BPS
process where A; is replaced by Ars : RY — R, defined for any x € R? by A, +
IVU (x)||/ max(1, ||x]|€) for some € > 0. Then, under the conditions that

lim |[VU@)|/lx]l = o0, lim {|V2U@)|Ix1€/|[VU @) |} =0,
llx[|—+o0 llx[|—+o0

[11], Theorem 3.2, shows that the BPS with refreshment rate Aer is V-geometrically ergodic.
The use of a nonconstant, unbounded refreshment rate is motivated in [11] by the fact that
[11], Theorem 3.1 (the result with constant rate) does not apply to potentials equivalent at
infinity to ||x||*, « > 2. For instance, the case of the Bayesian logistic regression presented
in [11], Example 2, for which

d n;
(6) Ux) =Y gx)+y (—bilci, x) +log(1 +el)),
i=1 i=1
with y; € {0, 1} and ¢; € R9 foralli € {1,...,n;}, n; € N* is the number of data points, and

guw)=(~10+ uz/az)’g/2 for some parameters o > 0 and § > 2, is covered by [11], Theo-
rem 3.2, but not [11], Theorem 3.1. Following the results of [11], one would use a noncon-
stant, unbounded refreshment rate in that practical case. However, first, from a computational
point of view, this kind of refreshment rate function may be problematic when there is no sim-
ple thinning method to sample the refreshment times exactly. Even when a thinning method is
available, the cost of each jump is increased since VU has to be computed when a refreshment
is proposed. Moreover, at least for d = 1 (see [3]), increasing the refreshment rate—hence the
amount of randomness in the system and its diffusive behaviour—increases the asymptotic
variance. For these reasons, it was an important question to understand whether the use of
a nonconstant, unbounded refreshment rate in [11] was a practical necessity or a technical
restriction in the theoretical study. Although the assumptions of Theorem 1 are slightly more
restrictive than the conditions of [11], Theorem 3.2, our results show that a constant refresh-
ment (with any positive value) is in fact sufficient for a large class of thin tail distributions,
including the logistic regression case (6) or more generally the cases where U behaves at
infinity like ||x||* for any o > 1 (from Theorem 1 with A4 thanks to Proposition 3).

n the statement of the Theorem, the authors claim that lim SUP | | — 400 ||V2U(x) || < 400 but a careful read-
ing of the proof shows that lim| || 400 ||V2U(x) || = 0 is necessary.
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Finally, [11], Theorem 3.3, deals with thick tail distributions. It consists in applying
smooth bijective parametrizations of the space proposed by [28] to get geometric ergodic-
ity of Metropolis—Hastings algorithms for thick tail distributions by transforming the target
into a thin tail one. It is in fact a general trick that could also be applied in combination of
our results.

As noticed before, Theorem 1, Theorem 2 and Theorem 4 ensue from more general results,
which holds under the following assumption.

A8. There exist some positive functions H € C(R;), ¢ € C2(R), £ € C'(R?), and some
constants R, 7, § >0, c¢; > 0fori =1, ..., 4 satisfying the following conditions.
(i) Conditions on U. The function U, defined by U= Y o U, satisfies

lim U(x)=+oo0,

llx[|—+o00
(7) _
/ exp(U(x) — U (x))dx < +o0,
R4
(8) sup {exp(—U (x)/4)(|VU @) | + [V?T @) |)} < +o0,

xeRd

and for all x € R? with || x| > R,
9) VU@ [ex) =i, L) <co,  |[VU®[L)/|VT@)] = c3.
(i) Conditions on (L.

/YeH(”y”)Mv(dy) < o0,

sup{e_H(”y”)/zHy”z} < 00,
yey

)
/ L1, 400) Y1)y (dy) > =
Y 2

(ili) Conditions on U and jiy. For x € R?, define

(10) Ay ={yeY:H(lyll) <30}
Assume that
(n fim [Ivecol v sup Ivi}]=o.

and for all x € R with ||x|| > R,

(12) V20 @ e suplyl*} < es.
Y€Ax

THEOREM 5. Assume A1-A2-A8. Assume in addition that the following inequalities
hold:

[162cc2/(ren)] v [64caca/(re1)?]

<[(1/3) A {idrer/(16e))][{c3/(Bea)} A {arde3/(100re)) } 2.

Then there exists k € (0, 1] given below by (33), such that (P;);>0 is V-uniformly geometri-
cally ergodic with V given for all (x,y) € R x Y by V(x,y)=expU(x))+exp(H(yl)).

(13)

PROOF. The proof is postponed to Section 3.4. [
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REMARK 6. Note that, under A8, (13) is implied by either one of the two following
additional assumptions:

(@) limjx |- 400 VU () || = +00;
() limyjy |- 400 €(x) =0; )
(©) limjjy|—+00 VU @) [[€(x)/[IVU (x)|| = +o00.

Indeed, if a holds, then c; can be chosen as large as necessary while ¢», c4, ¢3 can be held
fixed so that (13) is satisfied. If b holds, then ¢, can be chosen as small as necessary while
c1, ¢3, ¢4 can be held fixed. Finally if ¢ holds, then c¢3 can be chosen as large as necessary
while c1, ¢2, ¢4 can be held fixed.

Note that if (P;);>¢ is V-uniformly geometrically ergodic then, by [20], Theorem 4.4,
a functional central limit theorem (FCLT) holds. Let g : RIxY—>TR satisfying for all (x, y) €
R x Y, |g|2 < CV for some C > 0. Let (X, Y;);>0 be a BPS process with initial distribution
Ho € PR x Y), satisfying po(V) < +o00. For t > 0 and n € N,, define

R B
Gt_\/ﬁ/(; (g(XS7YS) ﬂ(g))ds-

Then, there exists o, > 0 such that the sequence of processes {(G});>0,n € N} converges
as n — oo toward (o B;);>¢ in the Skorokhod space, where (B;);>( is a standard Brownian
motion. It is also possible to consider moderate deviation [13, 23] or large deviation principle
[30, 50].

3. Proofs of the main results. For the proof Theorem 5, we follow the Meyn and
Tweedie approach, based upon two ingredients: a Foster—Lyapunov drift and a local Doe-
blin condition on compact sets. This section is organized as follows. Before showing the
Foster—Lyapunov drift in Section 3.2, we introduce the generator of the BPS in Section 3.1.
Then in Section 3.3, we show that under appropriate conditions, the BPS satisfies a local
Doeblin condition on compact sets. Contrary to the previous works [6, 11, 39], this result
is obtained in the case where w, has a density with respect to the Lebesgue measure by a
direct coupling. With these two elements in hand, Theorem 5 is proven in 3.4. The proofs of
Theorem 1, Theorem 2 and Theorem 4 are given in Section 3.5, Section 3.6 and Section 3.7.

3.1. Generator of the BPS. The BPS process belongs to the class of piecewise deter-
mistic Markov processes (PDMP). Indeed, consider the ordinary differential equation on R

d Xz) (yz>
14 — = ,
(19 dr <yz 0
and define for all # > 0, the map ¢, : R2¢ — R?? given for all (x, y) € R?? by

(15) Gr(x,y)=(x+1y,y).

The family (¢;);er, is referred to as the flow of diffeomorphisms associated with (14) that
is, for all (x,y) € Rt ¢:(x, y) is solution of (14) started at (x, y) and for all r > 0,
(x,y) = ¢ (x,y) is a C*-diffeomorphism. In addition to the deterministic flow (¢;)ser, ,
the BPS, as a PDMP, is characterized by a function A : R? x Y — R, referred to as the jump
rate, and a Markov kernel Q on R? x Y x B(R¢ x Y), defined for all (x, y) € R? x Y and
AcBR?Y xY) by

A, y) =y, VU()), +4,

(v, VU(x))+ )
TJ)SR(X’” + 7/“” A,

O((x,y),A) = [Sx ® { Ax, y)
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where 8, is the Dirac measure at x € RY. With these definitions in mind, we can define a
PDMP (in the sense of [10]) (X ‘s 17,);20 which has the same distribution as (X, Y;);>0 on the
space D(R,, RY) of cadlag functions w : Ry — R¢, endowed with the Skorokhod topology,
see [26], Chapter 6.

Consider some initial condition (x,y) € R%d a family of i.i.d. random variables
(Ei, Gi, Wi)izl on the probability space (€2, F, P) introduced in Section 2.1, where for all
i>1, Ei is an exponential random variable with parameter 1, Gi is a random variable with
distribution iy, W,- is a uniform random variable and Ei, Gi and W,- are independent. Set
(Xo, Xo) = (x,y) and S’o = (0. We define by recursion the jump times of the process and the
process itself. For all n > 0, let

~ t ~ ~ ~
Thiq :inf{tzO:/ Mos(X5 . Ye)}ds > Eyq .
0 n n
Set Sy+1 = Sp+ Tur1, (X0 1) = ¢1(X5,, Y5 ) forall t €[Sy, Sy, X5 = X5, + a1 Vs,
and

oG if o <A/0(X5 . Y5).
Sn+1 R(XS o 1751) otherwise,

where R is defined by (4) Thus, (X ‘s Y,) is defined for all # < sup, .y S, and we set for
all t > supneN Sn, (X ‘) Y,) = 00, where oo is a cemetery point. Note that for all n € N*,
(X 5, ) is distributed according to Q((X 5, Y ) ).

From [15], Lemma 7, (X t Yt) >0 and (X;, Yt) +>0 have the same distribution (in particular,
almost surely sup,, .y S, = oo and (X ‘s X,)tzo isa (RY x Y)-valued cadlagprocess).

Consider the canonical process associated with the BPS process (X;, Y);>0, still de-
noted by (X, Y;)s>0 on the Skorokhod space (D(R+, R xY), F, (F)r=0, Px,y) (x, yyeRdxv)>
where F is the Borel o-field associated with the Skorokhod topology, (F;);>0 is the com-
pleted natural filtration, and for all (x, y) € R? x Y, P, x,y i the distribution of the BPS process
starting from (x, y) € R? x Y. For all r > 0 and Borel measurable functions f, g : RY xY — R
such that, for all (x, y) € RY XY, s g((Xs, Yy)) is integrable P(, y)-almost surely, denote

t
(16) M/ = £(X,. V) —f(Xo,Yo>—/0 ¢(X,, Yy)ds.

The (extended) generator and its domain (A, D(A)) associated with the semi- group (P)i=0
are defined as follows: f € D(A) if there exists a Borel measurable function g : R? xY—R

such that (M 8 )t>0 is a local martingale under P(, y) for all (x, y) € R? x Y and, for such a
function, A f = g. Despite its very formal definition, (A, D(.A)) associated with (P;);>0 can
be easily described. Indeed, [10], Theorem 26.14, shows that D(A) = E; N E, where

={feM®R! xY):tr> f(¢i(x, )
is absolutely continuous on R for all (x, y) € RM},

and E; is the set of Borel measurable functions f : R¢ x Y — R such that there exists
an increasing sequence of (F;);>o-stopping time (0;,),>0, such that for all (x,y) € R,
lim,, s o0 05, = +00P(y y)-almost surely, and for all n € N*,

+00
(17) Ex,y) [Z Vs, <o | f (X5, Ys) — (X5, Ysk)q < +o0.
k=1

Taking for all n € N*, 0, = §,, A n A vy, where v, =inf{t > 0: || X,|| > n}, (17) is satisfied
for any function f € C(R? x Y) such that for all x € R, S 1f Gy w)ldpy (w) < oo.
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Then, for all f e D(A)andx,yeR? x Y,
Af(xv y) :Dyf(x7 y)-"_((yv VU('X)>)+{f(x7R(x7 )’)) - f(xv )’)}

(18)
+Ar{f £ w) dpy(w) — f(x, y)},
Y
where
floCe, )= fle,y)
Dy f(x,y) = tg% ; if this limit exists,
0 otherwise.

In particular, if x — f(x, y) is C! for all y €Y, then

AFGy) =y V) (0. VU, f (. RGr y) — £x )
(19)
+xr{fo<x,w)duv<w) —f(x,y>}.

3.2. Foster—Lyapunov drift condition. Fora,b,ce Ry,a<b<c,c—b<b—a <aand
& € (0, 1] consider a nondecreasing continuously differentiable function ¢ : Ry — [1, +00)
satisfying

p(s)=1 ifse (—o0,-2],
l+a(s+2)—ec<@p@s)<l+a(s+2)+e ifse(-2,-1),
(20) ps)=14+b+sb—a) ifse[-1,0],
1+b+s(c—b)—e<e(s)<l4+b+s(c—b)+e ifse(0,1),
p)=14+c ifsell,4o0]
and

(21) sup ¢'(s)<a-+te, sup ¢'(s) <c—b+e.
se[—2,—1] s€[0,1]

In addition for « € (0, 1], under A8, define the Lyapunov function V : RYxY -1, +00) by
(22) V(x,y) =exp(kU(x))p{(2¢(x)/(ren)y, VU (X))} + exp(H(Ilyll))-

This section is devoted to the proof of a Foster—Lyapunov drift condition for the generator A
given by (19) and the function V defined in (22).

LEMMA 7. Assume A1-A2-A8 and (13) hold. There exist a,b,c e Ry, a <b<c, c—
b<b—a<a,e€(0,1]and«k € (0, 1] such that A given by (19) satisfies a Foster—Lyapunov
drift condition with the Lyapunov function V , that is, there exist A1, Ay > 0 such that, for all
(x,y) € RYxY,

(23) AV (x,y) < A1(A2 = V(x, ).

Inequality (23) means that, away from a given compact set, in average, V tends to decay
along a trajectory of the BPS. Before proceeding into the details, let us give a brief explana-
tion on the roles of the different parts of V in this decay. When x has a large norm and y ¢ Ay,
the leading term of both V and AV is exp(H (||y|])), which appears in AV, thanks to the re-
freshment operator, with the negative factor —A;. In other words, when the scalar velocity
is large, then it will typically decrease at the next refreshment time, so that V will decrease.
The main difficulty appears as y € A,. The reason why V should decrease in average depends
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onfd(x,y) =y, VU (x)): when this is large enough, the process is likely to bounce, which
causes ¢(6) to change to ¢ (—60), which is smaller, so that V decreases. When 6 is negative
enough, the deterministic transport leads exp(kU), hence V, to decrease. Finally, when |6
is small, ¢(0) is close to 1, hence is larger than its mean with respect to wy, so that it can be
expected to decrease at the next refreshment time.

Remark that, because of the operator f fY f(, w)duy(w), the construction of V at
a point (x, y) influences the value of AV at all points {(x, v), v € Y}. Similarly, the term
f(x,R(x, y)) is nonlocal. This yields contradictory constraints: for instance, when 6 is large,
while the bounce mechanism typically makes ¢(6) decrease, the deterministic transport leads
exp(kU) to increase. Thus, in order for V to decrease in average, we need k to be small
enough. On the contrary, when 6 is negative enough, exp(xU) tends to decrease, but then
¢(0) is below its mean with respect to wy, so that it is expected to increase at the next re-
freshment time. Then we would like « to be large enough. The condition (13) on the ¢;’s and
on A, ensures that the different constraints are compatible.

PROOF. For ease of notation, we denote in the following for any (x,y) € RY x
Y 0(x,y) = (VU (x), y). From (19) and the facts that VU (x) = ¥'(U(x))VU (x) and
IR(x, )|l = lIyll, for any (x, y) € RY x Y,

(24) AV (x, y) = 0 1(x. y) +kr{/ AU () _eH<||y||>}’
Y
where
J(x,y) =k0(x, y)p{20(x)0(x, y)/(rc1)}
+ (2/(ren)@'{2€(x)0(x, y)/(ren)}
x [L)(y, VU (x)y) +6(x, y)(VE(x), y)]

VU ()l
= 0(x,
(25) IIVU(x)II{ (x0ky

x [p{=2L(x)0 (x, y)/(ren)} — @{2(x)0 (x, y)/(ren)}]

+Ar{ [ 126w /een)va . )} diey o)

~ol2t@oe n/een)].
The first step of the proof is to show that there exist Ay 1, A1,2 > 0 such that
(260 AV(y)<-AnV@.y) +Arz forany (x,y) €Rx Y,y ¢ Ay

where Ay C Y is defined by (10). In a second step, we show that there exist Az 1, A22 >0
such that

(27) AV (x,y) < —Ay1V(x,y)+ Azn forany (x,y) e R x Y,y €A,.
Note that if (26) and (27) hold, then the proof is concluded.
PROOF OF (26). Let (x,y) € R? x Y, y ¢ Ay. From (25) and the facts that ¢ is

bounded by 1 + ¢, that p(—s) — ¢(s) < 0 for any s € Ry since ¢ is nondecreasing, and
that sup,cp ¢'(s) < (@a+¢&) VbV ((c—b)+¢) <1+ csince ¢ <1, we have

Jx,y) <A+ 0[c[VU@] I

(28)
+ /eI VEE) | + L) Iy 1P| VEU @) |} + A
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By (9) and (11) and since £ € C1(R?), || V£||oo + ||£]l0c < 00. Therefore plugging (28) in (25)
and using (8) and A8(ii), we get

AV (x,y) < Ci(1V ||yl1*)exp(5U (x)/4) + C2 — Arexp(H (I¥ 1)),

Ci=0+o)f(k HVUe—U/“HOO) V (2IVLlso/(rer))

(29) VeV 220U l1elloo/(ren)} < 400,

G =/\rerXP(H(IIyII))dMV(w) < +o0.

Using now A8(ii) and the continuity of H, we get that C3 = C super(l \% ||y||2)ef1L"(Hy”)/2
is finite. Since y ¢ A,, 3U (x) < H(||y||) and we obtain

AV (x,y) < C3exp(11H([Iy11)/12) + C2 — Arexp(H (lIyl))
< —(/2)exp(H(|Iyll)) + C4,
Cy=Cy+ sup {C3e”S/12 —re').

SE]R+
The proof of (26) follows upon noting that ¥k < 1 and that ¢ is bounded by 1 + ¢, so that
Vx,y) =@2+o)exp(H(lylD) if y ¢ Ax. U

PROOF OF (27). We show in Lemma 8 below that there exist a,b,c e Ry, a <b <c,
e€(0,1],«k€(0,1), Ry eR; and 5 € Ri such that for all (x, y) € RY x Y, y € A, and
x|l = Ry, J(x,y) < —n. Note that if this result holds, then for all (x, y) € RY x Y, y e A,
and [|x|| > Ry, by (24),

AV (x,y) < —nexp(kU(x)) + C2 — rrexp(H(||y]))

<—{(m/A+)) Ar}V(x,y) + Ca,

where C» is given by (29) and we have used for the last inequality that ¢ is bounded by
1 + c. This result concludes the proof of (27) for ||x|| > R;. It remains to consider the case
lxIl < Ri.

Since ¥ and U are continuous, so is U, so that there exists M such that for all x € B(0, R;)
and y € A,, H(||y|]) < M. Since sup,, oy |w]?e~#U¥D < 400 by AS8(ii), it follows that
there exists M> such that for all x € B(0, Ry), Ay C B(0, M>). Then, using that U € CX(RY),
e ClRY), H € CR;) and ¢ € CHR) we get that there exists Cs, Cg such that for all
x€B(,Ry))and y € A, AV (x,y) < Csand V(x, y) < C. Combining this result and (30)
concludes the proof of (27). [

(30)

Let us now precise the parameters we chose in the definition of V. Set

31) a=1A([(1/3) A {drer/(16ea)}][{ea/Gea)} A {Ades/(100rer)} 2]~
(32) b—a=al[(1/3) A{rSrcr/(16¢a)}].

k= (b—a)[{c3/(4c2)} A {3/ (100rc;)} 2]

=a[(1/3) A {brer/(16e)][{e3/ (4ea)} A {Arde3/(100rep) } 2],
(34) c—b=[ra/(4(dcs/(rc2) +20)) A (D —a) A[(b—a)es/(4kca)] A (8b/4),
(35) e=(1/2) A (c—b) A (krct/4) A (heca).
Note that « <1 and
(36) O0<c—b<b—a<ac<l.

(33)
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LEMMA 8. Assume A1-A2-A8 and (13) hold. Then for a,b,c,k,e € (0, 1], given in
(31)—~(32)~(34)—(33)—(35) respectively, there exist R, n > 0 such that for all x € R? with
lx|| = R and all y €A, J(x,y) < —n, where J and ¢ are defined by (25) and (20) respec-
tively.

PROOF. In the proof, we first give a bound on J for any (x, y) € R4, vy € A;. Second, de-
noting again 6 (x, y) = (VU (x), y) for (x, y) € R? x Y, we distinguish five cases depending
on the value of 2¢(x)0(x, y)/(rcy) which determines the contribution of ¢ and ¢’ in J.

By (11), there exists R; € R, such that for any (x, y) € R4, y €Ay, |Ix]| = Ry,

(37) Ve [yl <.

From (9), ||[VU (x)||£(x) > ¢ for all x € R with ||x|| > R. Using A8(ii) and the facts that
Wy 1s rotation invariant and that ¢ is nondecreasing, bounded by 1 + ¢ and equal to 1 on
(—o00, 2], we then have for any x € R? with ||x|| > R

20 _
[ w{ (X)WU(x),w)}duv(w)

rcy

:/V(p{%(X)IVU(X)le }duv(w)

rei

< f 1 o0r—r) (w1) djty(w) + (1 4 €) / 1oy (1) ity ()
Vv Vv

<1+(1-38/2)c.

Therefore, combining this result, (37), (12) and the fact that ¢ is nondecreasing so that
¢'(s) >0 for any s € R, we get, for any x € R? with ||x|| > Ry =RV Ry and all y € A,,

J(x,y) <kb(x, »)p{20(x)0(x, y)/(re1)}

+ (2/(ren)@'{2€()0 (x, y) /(ren) [ea + 101 (x, y)e]

VU ()l
(38) +m{e()ﬁ)’)}+[(P{—2£(X)9(X’y)/(rcl)}

— o260, )/ (ren))]
+ {1+ (1= 8/2)c — {260 (x, y)/(ren)} ).

Let (x,y) € RY x Y, y €Y, |x] > Ry. We consider now five cases.
Case 1: 20(x)0(x, y)/(rc1) € (—oo, —2]. Since for s € (—2, —oc], ¢(s) =1, (38) reads

(39) J(x,y) <k0(x,y) + (1 —=58/2)Ac.

Using the facts that 2£(x)0(x, y)/(rcy) € (—oo, —2], that £(z) < cp forall z € R4 by (9), that
(b —a)V (c—b) <aby (36), that a <rci1k/(6Arc2) by (33) and that (13) holds, we get

reik/(20(x)) = reik/(2e2) = 3ha > (1 — §/2)Acc.
By this result and (39), we obtain
(40) J(x,y) < —rcik/(2c2).

Case 2: 20(x)0(x,y)/(rcy1) € (=2, —1). By (20)-21), 1 +2a+sa—e < ¢(s) < 1+2a+
sa+¢and ¢'(s) <a+¢&fors e (=2, —1), so that (38) reads

J(x,y) <k, {14 2a+2al(x)0(x,y)/(rc1) — €}
+ (2(a+¢)/(rc1)){ca — e0(x, y)}
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+ {1 = 8/2)c — 2a — 2al(x)0(x, y)/(rc1) + €}
< Bo+ B10(x,y) +20(x)B26 (x, y)?/(rey)
< Bo+ (B1 —2B2)0(x, y),

where we have used that 2¢(x)0(x, y)/(rc1) € (=2, —1) and that £(x) < ¢ by (9), and de-
fined

Bo=2(a+¢)cs/(rer) + {1 = 8/2)c — 2a + &},
B =«k(142a—¢)—2Aacy/(rc1) —2e(a+¢)/(rcy),
By =«ka.
First, (35) and (36) ensures that e < (1/2) A a A (Arc2), and therefore
By — 2By >«k/2 —4\acy/(rcy) =k /4,

where we have used that a < rcik/(16X.c2) for the last inequality, which is a consequence
of (33) and (13). In particular, By > 2B, and using again that 2¢(x)0(x, y)/(rc1) € (=2, —1)
and £(x) < ¢, from (9), then

(41) J(x,y) < Bo+ (rei1/(2¢2))(2By — By) < By — reix/(8¢2).

Since e <a A(c—b) by (35),c—b<b—aby (34) and b — a < a/3 by (32), we have
Bo <4acy/(rc1). Hence, (41) reads

(42) J(x,y) <4acs/(rc1) —rcik/(8c2) < —rcik/(16c2),

where we have used (33) and (13) for the last inequality.
Case 3: 2¢(x)0(x, y)/(rc1) € [—1, 0]. Using the expression of ¢ on [—1, 0] given by (20),
(38) reads

J(x,y) <0, {1 +b+ (b—a)2t(x)0(x,y)/(rc1)}
+ (2(b—a)/(rc1)){ca — 6(x, y)e}

(43) +A{(1 = 8/2)c — b —2L(x)0(x, y) (b —a)/(rc1)}

< Bo+ Bi6(x, y) + B22L(x)/(re)f (x, y)?

< Bo+ (B1 — B2)0(x, y),
where we have used that 2¢(x)0(x, y)/(rc1) € [—1, 0] and £(x) < ¢ by (9), and defined

By =2(b —a)ca/(rc1) + Af(1 —8/2)c — b},

Bi =k (1+0b) —2(¢ + Arc2) (b —a)/(rc1),

By =«(b—a).
First, since c — b < b/4 < éc/4 and a < ¢ by (34) and (36), we have

By <2(b —a)cy/(rc1) — Adc/4
(44) <2(b—a)cs/(rcy) — Ada/4
< —ak:8/8,

where we have used that b — a < A.darci/(16¢c4) by (32) for the last inequality. Second,
using € < Arcy by (35), (b —a) <a/3 <1/3 by (32)—(31), we have

By — By <k(b—a)+4rcr(b—a)/(rc1) —k(1+b)

<4ic2a/(rc1) —k <0,

(45)
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where we used the definition of « (33) and the condition (13) for the last inequality. Combin-
ing (44) and (45) in (43), we get

(46) J(x,y) < —aid/8.

Case 4: 20(x)0(x, y)/(rcy) € (0, 1). First, note that since ¢(s) =1+ b + s(b — a) for
s € [—1, 0], and ¢ is nondecreasing, we have for any s € [0, 1],

p(—=s) —@(s) <p(—=s) —0) < —(b—a)s.

From this result and the fact by (20)—(21) that 1 + b +s(c —b) —e < @(s) <1+ b+ s(c —
b) + ¢ and ¢'(s) <c — b+ ¢ for s € (0, 1) we get that (38) reads

J(x,y) <00, {1 +b+2L(x)0(x, y)(c —b+e)/(rci) + ¢}
+ (2(c—b+e)/(rc)){ea +6(x, y)e}
— (IVU[/IVT @) [)26x) (b — a)b(x, y)?/(rer)
+ {1+ (1 =8/2)c=1—=b—20(x)0(x,y)(c—b—2¢)/(rc1) + ¢}
< Bo+ Bif(x, ) + 2L(x) B2 (x, )*/ (re),
where we have used that (||VU(x)||/||Vl_](x)||)£(x) > c3 by (9), 6(x, y) > 0 and defined
By=2c4(c —b+e)/(rc1) + A{(1 —8/2)c — b+ ¢},
Bi=«x(14+b+¢e)+2e(c—b+¢)/(rcy),
By ={k(c—b+¢)—c3(b—a)/l(x)}].
Since ¢ < ¢ — b by (35), £(x) < c2 by (9) and 2xcy(c — b) < c3(b — a)/2 by (34), we get
(47) By < —By = —c3(b — a)/(2L(x)),
and therefore
J(x,y) < Bo+ Bi6(x, y) = 2L(x)B26 (x, y)*/(ren).
Then, using that s — Cs — C»s? is bounded by C12/(2C2) on R, we obtain
J(x,y) < Bo+6(x, y)rei BY/(4£(x) Ba).

Therefore, since 0(x, y) € (0, 1), to show that

(48) J(x,y) < —Adc/16,

it is sufficient to prove that

(49) By < —Xiéc/4,
(50) rc1BE/(46(x)Ba) < Mbc/8.

First (49) holds since using that ¢ < (c — b) by (35) and that a < ¢, we have
By —38/4=2ca(c —b+e)/(rc1) + A{(1 = 8/4)c — b+ ¢}
< (4c4/(rez) + 2Ar)(c — b) — dar /4 <0,

using (¢ — b) < dar;/(4(4dca/(rca) +2X;)) by (34) for~ the last inequality. It remains to estab-
lish (50) which is equivalent by definition of B; and B, (47) to

(51) k(1+b+e)+2e(c—b+e)/(re1) < {Acdes(b —a)/(4ren)} .
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Since ¢ <1 A (krcy/4) by (35),c —b <1 and b <2 by (36) and (31), we get
k(I1+b+e)+2e(c—b+e)/(rc1) <5«k.

This result, the inequality b — a < ¢ and the definition of x (33) implies that (51) holds.
Case 5: 20(x)0(x, y)/(rcy) > 1. Since by (20), ¢(s) =1+ ¢, ¢'(s) =0 and ¢(—s) —
o(s) <a—cfors>1,(38) reads

J(x,y) <k, )1 +0) = {|[VU)|/|VU)|}0(x, y)(c —a) — Asdc/2
<kB@x, )1 +0) = {[VU@) L) /(c2| VU @) |)}0(x, y)(c — a) — Ade/2
<{k(1+¢)—c3(c—a)/c2}0(x,y) — Adc/2,

where we have used by (9) that £(x) < ¢ and |[VU x)[|[€(x)||VU (x)||~! > ¢3. From ¢ < 3

by (36) we obtain
52) J(x,y) < {1 +¢) —c3(c —a)/c2}O(x,y) — Ardc/2
<{4k —c3(b—a)/c2}0(x,y) — Adc/2 < —Aidc/2,

where we have used the definition of « given by (33) and 6(x, y) > 0 for the last inequality.
The proof follows from combining (40)—(42)—(46)—(48)—(52). 0O

COROLLARY 9. Under A8, forall (x,y)eR xY andt >0,
PV (x,y) < V(x,me M + Ay (1 —e ),
where V is given by (22) and Ay, A, are given by Lemma 7.

PROOF. By [10], Section 31.5, since V € D(A), the process (M;);>o, defined for any
t e R+ by

t
Mt:eAltV(Xt,Y,)—V(x,y)—/ [A1e2V (Xy, Yy) + e AV (X, Yy) ) ds,
0

is a local martingale. Therefore (M;xr,);>0 is a martingale where for all n € N*, 7, = inf{r >
0:IXell + 11Y:ll = n} and

E[CAI(I/\Tn)V(XZA,[n, thn)] -Vix,y)

AT,
=E|:/. CAIS{AIV(XS,Ys)"l_AV(XS’YS)}dS]
0

AT,
< E[/ e A1 Ay ds} < Ay(e™’ —1).
0

Letting n go to infinity concludes the proof since it yields
eME[V (X, Y)] < V(x,y) + Ax(e?' —1). O
3.3. Mirror coupling. To obtain geometric ergodicity, the classical Meyn and Tweedie
approach is, once a Lyapunov drift condition holds, to show a Doeblin condition for some

C c R? x Y, that is, that the following holds: there exist > 0, ¢ > 0 and v € PRI x V),
such that

Pi((x,y),A) = ev(A) forall Ae B(RY x Y), (x,y) €C.

A set C that satisfies this is called a small set.

LEMMA 10. Assume Al and A2(ii). Then, any compact set K C R¢ x Y is a small set.
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Previous works [11, 39] establish Lemma 10 in the case where Y = S¢. The proof relies
on the fact that after two refreshment events the distribution of X; has some density w.r.t.the
Lebesgue density on a ball with a radius proportional to ¢. Nevertheless, the latter strategy
yields a nonexplicit rate of convergence. In particular the dependence of the obtained rate in
the dimension of the space is either intractable or very rough.

For this reason, we will present a different argument, based on an explicit coupling of two
BPS processes. However, this will only work under the assumption that ., is not singular
with respect to the Lebesgue measure on R?, which rules out, for example, the case of the
uniform measure on S?. A general proof of Lemma 10, with no additional assumption on /iy,
may be obtained by a straightforward adaptation of [39] or [11], Lemma 2, Lemma 5.2. We
will only treat the nonsingular case, with a particular emphasis on the case where iy is a d-
dimensional nondegenerate Gaussian distribution with zero-mean and covariance matrix X.

The aim of the rest of this section is to establish the following coupling condition: for any
compact set C C RY x Y, there exist > 0, ¢ > 0 such that for all (x,y),(x,y) €C,

Pt((x’y)! ) - PZ((i’y)’ ')“TV 52(1 _8)'

This is clearly implied by Lemma 10. However, in order to get good explicit rates of conver-
gence, it may be more efficient to establish directly a coupling condition, which can then be
directly used to obtain quantitative estimates (see for instance, Theorem S7 in Appendix and
the exemple in Section 4.1).

Before stating our main result, we need the following lemma concerning the reflexion
coupling (see [17, 33] and references therein) between two d standard Gaussian random
variables with different means.

LEMMA 11. Let xV, x® e RY, Sg be a positive definite matrix and (W,(l)),zo be a
standard one-dimensional Brownian motion. Define T, = inf{t > 0 : W,(l) > || g I/ Z(x(z) —
x (M) l/2}, the stochastic process (Wt(z)),zo by

1 .
@ _ —w,V ift <Te,
! 1= @ = x D] + wD otherwise,

and the d-dimensional random variables
GV = Wl(l)n{Z}{]/z(x(Z) —xM)} + Gp,
G? = Wl(z)n{Zgl/z(x(z) — x4 Gp,
Gp=([d—n{Z*(x® = xO) {2 *(x@ = xD)})G,

where G is a standard d-dimensional Gaussian random variable independent of (Wt(l)),zo
and n is given by (4). Then GV and G® are d-dimensional standard Gaussian random
variables and for all M > 0,

Px® + 2760 =x@ + 526, |6V — 5 (x@ — xD) 2| < M)

~ —1/2
=a(|Zg *(x® = x V)] m),
where for all r > 0,

r

a(r, M) = 2(27-5)(d+1)/2

1
/0 {s_3/2 exp(—rz/(8s))
(53)

X /Rd 1[0,M](((1 - S)U)% +--- 4+ w§)1/2)6_||x|2/2dw} ds.
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PROOF. By the Markov property of the Brownian motion (W;(]))tzo, since T, is a
(EW)tzo—stopping time, where ]-"ZW = U(WS(I) ,8 <1), W,(Z) is a Brownian motion. There-
fore, GV and G are d-dimensional standard Gaussian random variables.

Using again the Markov property of (W,(l))tzo, given T < 1, Wl(l) - W}CI) is independent

of ]-'}1/. Therefore, since {x! + EIIQ/ZG(I) =x@ 4 2112/2(;(2)} = {T: < 1} and G is indepen-

dent of (W,(l))tzo, we get for all M > 0,

]p(x(l) + 211{/2(;(1) =x@ 4 E};/ZG(Z)’ ”G(l) _ EEI/Z(X(Z) —x(l))/2|| < M)

=E[1j0.1(TOP((W" = W) +1G1%)"* < MIF))]

_ el
= (2m) d/zE[ﬂ[O,l](Tc) /]Rd 11[0,M]{((1 _ TC)UJ% NI w£21)1/2}e llx]1</2 dwi|‘

The proof then follows from the explicit expression of the density of 7, w.r.t.the Lebesgue
measure (see, e.g., [44], p. 107). U

LEMMA 12. Assume Al,Y =RY and Wy is the Gaussian measure with zero-mean and
covariance matrix X. Then, for all t > 0 and all compact set K C {(z, w) € RYxY: |zl +
lw] < Rk} ofRd x Y, Rk >0, forall (x,y), (x,y) € Kand forall M >0,

(1/2)HPI((X7 y)7 ) - Pl‘((£7 §)7 ')”TV
<1-E[Lj(E1 + E2)@(2(A + E1)R| 27| E2, M)g(E2/Ap)],
where & is given by (53), for all r > 0,

glr)= IP’(rM sup ) IVU@)|| > E3),
(54) 2€B(0,(1+E1 /) Re+(r/ M) M)

M=M+|=Y2|(1 + Ei/x) Rk,

and E1, Ey, E3 are three independent exponential random variables with parameter 1.

PROOF. Let K be a compact set of R*. Let (x, y), (X, 7) € K, (x, y) # (%, 7). We con-
struct a non Markovian coupling (X;, Y, X ‘s ﬁ) between the two distributions P ((x, y), -)
and P;((X,y),-) for all r > 0, and lower bound the quantity P((X;, Y;) = (X,,Y,)), which
will conclude the proof using the characterization of the total variation distance by coupling.

Before proceeding to its precise definition, let us give a brief and informal description of
this coupling (see Figure 1, Figure 2 and Figure 3). We couple both processes to have the
same two first refreshment times H; and H,. At time Hj, the Gaussian velocities are chosen
according to Lemma 11 so that, in the absence of bounces in the meanwhile, with positive
probability, the processes will reach the same position at time H». At time H», both velocities
are refreshed with the same Gaussian variable. Hence, with positive probability, at time H»,
the processes have the same position and same velocity, in which case we can keep them
equal for all times ¢ > H».

More precisely, the coupling we consider is defined as follows. Let (E;, F;, G,)ien+ be
i.i.d. random variables, where for all i € N*, E;, F; are independent exponential random vari-
ables with parameter 1 and G, has distribution py and is independent from E;, F;. In addition,
let G be a standard d-dimensional Gaussian random variable and (W;);>¢ be a d-dimensional
standard Brownian motion such that G, (W;);>¢ and (E;, F;, (_}i) ieN+ are independent.

Set (Xo,Y0) = (x,y), (Xo.Y0) = (£,5), So =0, Hy =0, No =0, H = E/A and
N1 = 1. The process and its jump times are defined by recursion. Assume that S,,, N1, Hy+1
and (X;, Y;, X,, 17,),6[0,5"] have been defined for some n € N. We distinguish two cases.
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80 —&— (Xt)ezo |
—8— (X4)i0
i
60
=
K=
Z
=¥
40t
20
| |
0 H, H>

Time ¢

FIG. 1. Before the first refreshment at time H{, both processes may bounce freely. At time H{, the Gaussian
velocities are coupled so that, at time Hp (which is the next refreshment time), provided this Gaussian coupling
of the velocities succeeds, and provided they have not bounced in the meanwhile, both processes reach the same
position. At time Hy, both processes take the same velocity: they have merged, the coupling is a success.

(A) If Nyy1 = 1. Define

t
T,;_lgl_mf{zzo;/ {(st,VU(XSn+sYSn))+}dst,,+1},
0

I ~ ~ ~
T@l_mf{tzo;/o {(st,VU(XSn+sY§n))+}dst,,+1},

1 1
Turt = Hupt AT AT,

Set Sut1 = Sp + Ty, for all 7 € [Sy, Spt1), (Xi, Yo) = ¢(Xss,, ¥s,), X, = Xs, +
Twi1Ys,, (X1, V1) = ¢:(Xs,, Vs,)s XS,,H Xs, + Tu41Ys,. If Ty = Hyy1, consider the
two random variables GV, G® defined by Lemma 11, associated with (W:)s>0 and G, and

80

Position
=N
S

N
(=}
5

20

0 H, H,
Time ¢

FI1G. 2. If one (at least) of the processes bounces between times H| and Hj, then the coupling fails. There may
be other bounces after the first one.
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80 |-

60

Position

—B— (X¢)ez0 |

—B— (Xt)tzo

FIG. 3.

for x(l) = XSn+1’ X(2) = XSH‘F] ’

Still if T4 = Hyy1,

set

Time ¢t

SR=E2X /A, and M > 0.

—x12GgM

Sn+1

Npt2 = 2

Otherwise set Ny, 42 = Ny+1, Hypo = Hy1 — Ty41 and

. 1 ~(1
1 =10, =70,

. 1 ~(1
17301 = 10, <70,

. ~(1 1
0701 = 10, <10,

where R is defined by (4).
(B) If N,41 > 2. Define

YS,H.] = R(XS'” + Tn—HYS,,v YSn)v
Ys,., =R(Xs, + Th1Ys,, Vs,),
Ys,,, =R(Xs, + Th+1Ys,, Ys,),

?SHI =R(Xs, + Tw1Ys,, ¥s,),

75, =312G69,
Hyy2=En, /M.

Ys

n+1 =

YSn+1

t
T,ffl=inf{zzo:f {(an,VU(Xsn+sY5n))+}dstn+1},
0

~ t ~ ~ ~
) =inf{t >0: [ {{Fs,, VURs, +575),}ds = Fn+1},
0 n

1 ~(1
Tuvi = Hut AT AT

n+l1-

Ys,,

=Ys,,

2089

Even if none of the process bounces between time H| and Hy, the coupling may also fail if the Gaussian
coupling of the velocities at time H1 fails.

Set Su+1 = Sp + Tuy1, for all 7 € [Sy, Sut1), (X1, Yi) = ¢i(X5s,, ¥s,), X5, = Xs, +
Th1Ys,, (X1, Y1) = ¢1(Xs,, Ys,), Xs,,, = X5, + T 4+1Ys, and

if 7:n-i—l = Hn—l—lv {

Ys,

n+1

Nyy2 = Npy1+ 1

= Gn+1

Otherwise set Ny, 42 = Nyp+1, Hypo = Hy1 — T,41 and

. 1 = (1
T =70, =70,

Ys,., =R(X5 +Tht1Ys,, Ys,),

Ys,., =R(Xs, + Th1¥s,. Vs,),

?Sn+1 = (_;n+1’
Hyy2=En, /M
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. 1 1 ~ ~
if 1 =T, <TH, Y5, =R(Xs, + Tus1Ys,. ¥s,), Vs, =7Ts,,

: = (1 1 % o 5 v
if i1 =T, <7D, Vs, =R(Xs, + Tus1¥s,, ¥s,), Vs

n+1° n+1

=Ys,.

For t > sup,, .y Su, set (X;,Y;) = ()N( ‘ 17,) = 0o. Remark that, since the conditional dis-
tribution of (G(l), G(Z)) given (E;, Fj, C_?i)ieN* depends on E>, (X;,Y;, f(t, 17,),20 1S not
Markovian. However, according to Lemma 11, conditionally to (E;, (Fj j)jen+, Gi)ien,
G and G?® are both d-dimensional standard Gaussian random variables. As a conse-
quence, from [15], Proposition 5, marginally, (X;, ¥;);>0 and ()N( t I?;)tzo are two BPS pro-
cesses starting from (x, y) and (X, y).

Further, from the construction of the two processes, for all n € N if (Xg, ,Ys ) =
(f(gn, 175”), then (X;, Y;) = (}N(t, f’t) for all > §,. Besides, consider t =inf{n e N: N, 1» =
2}. Then by definition, if 712> = Hr4» and Xs,,, + E2G WD/, = X, + E2G® /A, then
(Xs,. Ys,,2) = (Xs,,,, Vs, ,,). Finally, by definition of 7, Tr+y = H;4| implies S¢11 =
E (/X and if in addition T; 4> = H; 42, we have that S; 4o = S with § = (E| + E»)/X;. Based
on these three observations, we get for all ¢ > 0,

P((X;, Y1) = (X, 1))

Eyx'2G0 Eyn'2G®
655 2P(12Seia Tea = Hrpa Xy 4 2oy =R 4 2 )
)\.r )"I'
Ex12g E,x12G®@
zIP’<Aﬂ{t = {XE,/M+ 2/\— = XEg /i + %})
T T

where A=A NA,

EZ/}\r
Al = {/0 (Y, fos VU (X, g3, + 5YE j3,)), ) ds = Fr+z},

EZ/)\r ~ ~ ~
Ay = {/0 {(YE /20 VU X By + 8YE o))} ds = Fz+z}-
Since for all n € {1,..., T}, Tyt = T34 A T(Dprs 1Ys, 1= V1l 17,1l = [7]l, so for
all s € [0, E{/A),
(56) I Xsll < llxll + (E1/A0 Iyl < (1 + E1/Ac) Rk,
IXsll < (1+ E1/A) R
For i = 1, 2, by the definition (54) of M, we obtain that
2 . 2
ﬂ {16V — (=2/2)(XE 3, = X p) | < M) C ﬂ {(lcV] <m

Using that by definition, S;11 = E1/Ar, Nry1 =1, so Ys,,, = 2/2GD and Y5, =
»12GM ) we getthat AfNANB C A where
= |(E2/20m sup IVU@] = Fria).
z€B(0,(1+E1/Ar) Rk+(E2/Ar) M)
Then, we get by (55)

P((X,, Y1) = (X, 7))

Eyx'2GM Eyn'2G®) })

ZP(AH{IES}D{XEI/M+ =XEg /5 +
)\r )\-r
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Denoting by (.7:',1),121 the filtration associated with (E;, F;, G;)jenv, conditioning on .7:}+1
and E> and using that F;; is independent from GV, G E, and .7:"T+1, the definition
of GV, G?P conditionally to E, and ]:}H, Lemma 11 and since S = (E1 + E2)/A: by
definition, we have

P((X;, Y;) = (X, Y1)

E\+E >V (x -X A E
ZE[Jl[o,t]{ 1+ 2}&<|l (XE /e E o)l r,M)g(—zﬂ.
E> Ar

Combining this result with (56) concludes the proof. [J

T

Consider the more general case where iy is rotation invariant and not singular with respect
to the Lebesgue measure on RY. The previous proof may be adapted to this case but the result
is less explicit.

LEMMA 13. Assume for all A € B(R?),

(57) pv(A) = cvrs(A),

for somer, §, c > 0, where v, s the uniform law on {y € R, r < Iyl <r—+38}. LetKC RY, be
a compact set. Then there exists two random variables GV, GD with distribution vy, tg >0,
& > 0 such that for s > 1y, there exists M > 0 satisfying for all x, x € K,

P(x +sGV =5 +5G?, |GV — (x —3)/2| < M) > &.

PROOF. Let x,x e KC B(0,Rk), Rk = 0. If s > ||x — Xx||/Q2(r + ) and M > Rk +
s(r+8),thenl(x,%,s)={weR?, |w|<M}N{weR:sr <||lw—x| <sr+8)}N{we
R :sr < ||lw—X|| < s(r +8)} # &. Writing v, s the law of x + sG where G has law uy,
then for all A € B(R?), by (57), there exists ¢ > 0 such that

(58) D5 (A) A Dz (A) > ELeb(ANI(x, £, 5)).

Besides (see, e.g., [43] or [46]), we can construct a pair (G1, G3) of random variables with
both G| and G, distributed according to iy, and such that P(x +sG =X +5G) = vy s(A) A
V5 s (A). Combining this result with (58), the fact the function in the right-hand side of (58) is
positive and depends continuously of x and X, hence is lower bounded on K, concludes. [

LEMMA 14. Assume Al and (57) for some r, 8, c > 0, where v, 5 the uniform law on
{y eRe, r < ||y|l <r +8}. Then, for all compact set K of R? x Y, there exists ty, o > 0 such
that for all (x,y), (Xx,y) € Kand all t > 19,

| Pr((x, ), ) = Pe((E, 5), ) [ py <201 — ).

PROOF. The proof is exactly similar to the proof of Lemma 12. Indeed it suffices to
consider a coupling of two BPS (X,, ¥;);>0 and (f( ‘s 17,);20 defined similarly to the processes
defined in the proof of Lemma 12 but GV, G® are chosen according to Lemma 13 in place
of Lemma 11. [J

Finally, let us detail Lemma 10, in prevision of the low-temperature study of Section 4.2.

LEMMA 15. Assume Al. Then, for all compact set K C RY x Y, there exist to,&,C, R >
0, which depend on K, wy and Ay but not on U, such that for all (x,y), (x,y) € K and all
t = 1o,

|| P[((]C, )’), ) - Pt((i’ 5})’ ')”TV = 2[1 - Sexp(_C”VU”OO,B(O,R))]-
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PROOF. In the case where wy is a Gaussian distribution, the proof follows from the state-
ment of Lemma 12. In the general case, we only give a sketch of proof, since this is a direct
adaptation of [39], Theorem 5.1. First, in the spirit of the proof of Lemma 12 or of [39],
Lemma 5.2, we study a BPS with no potential, that is, with U = 0, and we show that we
may couple them so that, with some probability « > 0, they merge in a given time #y, without
leaving a given compact set. Then we add independent bounces, and say that the coupling is
still a success if no bounce happens before time 7y, which gives the desired dependency with
respectto U. [

3.4. Proof of Theorem 5. The proof follows from Lemma 7 and Lemma 10, and an ap-
plication of [36], Theorem 6.1. However, [36], Theorem 6.1, is nonquantitative and for the
proofs of Section 4.2 need explicit bounds for the convergence of (P;);>¢ to 7. To this end,
we give a quantitative version of Theorem 5 in Section S2 based on [25], Theorem 1.2.

3.5. Proofs of Theorem 1. In each case, we apply Theorem 5. Set H(t) = t> for t € R.
Consider r > 0 such that § = P(|Yy| > r) > 0 where Y = (Yy,...,Y;) €Y is distributed
according to py. Note that A8(ii) is automatically satisfied in all the cases.

Under A3, set U(x) = U(x) and £(x) = 1 for all x € R%. All the conditions of A8 are
sastisfied and so is (13) by Remark 6 since lim|x |- o0 [VU (x)|| = +00.

Under A4, set U(x) = US(x) and £(x) = 1 for any x € R?. Then A8 is satisfied. In addi-
tion, (13) holds by Remark 6 since under A4

lim {L)|VU@)|/|[VU@)|} =
[|x||—+o0

Under A5, set U(x) = US (x) and £(x) = 1/(1 + |[VU (x)||) for all x € R?. All the condi-

tions of A8 are satisfied and (13) holds by Remark 6 since limjy || o0 £(x) = 0.

3.6. Proof of Theorem 2. We apply Theorem 5 again. Set H () =t for ¢ € R. Consider
r > 0 such that § =P(|Y{| > r) > 0 where Y = (Y1, ..., Yz) €Y is distributed according to
. Note that A8(ii) is automatically satisfied. Set U(x)=U(x) and £(x) = 1 for any x € R4,
Then, the conditions of A8 hold with ¢4 arbitrarily small. Therefore, (13) is satisfied if A, is
small enough.

3.7. Proof of Theorem 4. We apply Theorem 5. Set H (t) = nt? for 1 small enough such
that A8(ii) is satisfied. Set U (x) = US (x) for any x € R?. Note that

{sup IylI*}| V20 (x)|

}e X
<37 W[V U W
<CUS)(|VPUW)|US™ x) + | VU @) |*US 2 (x)

for some C > 0, hence is bounded. Then, the proof follows the same lines as the proof of
Theorem 1 under A4, and is omitted.

4. Miscellaneous.

4.1. A specific and explicit bound for a toy model. Following carefully the proofs of
Theorem 5, it is possible to get explicit bounds on the values of C, p > 0 such that (5) holds.
Nevertheless, the obtained bounds are not sharp. In particular, in Section 3.3, when we try to
couple two processes, we do not make any use of the potential U. In fact, at this step, U only
plays the role of an hindrance in the minorization condition given by Lemma 10 based on
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Lemma 12-Lemma 15. We try to couple the processes using only the refreshment jumps, and
hope that, during this attempt, no bounce occurs. We now illustrate on a toy model how an
analysis which is model specific can circumvent this flaw. It shows that the explicit bounds
we obtain in Lemma 12 may be far from optimality for some problems.

Consider the smooth manifold D = (R/Z) x (R/nZ)¢~! for d > 2 and 5 > 0, and let
proj® : R¢ — D be the corresponding projection (also referred to as quotient map). We set in
this section 7 to be the uniform distribution on D, Y = R? and p, to be the zero-mean d-
dimensional Gaussian distribution on R with covariance matrix o> Id, o> > 0. In this setting,
U is simply the function which is identically equal to 0 on D. A BPS sampler (X;, Y;):>0
is defined as in Section 2.1 to target w ® . The construction is in all respects the same,
just by replacing the state space R? x Y by D x Y and setting X; = proj®(X s, +1tYs ) for
t €[Sy, Sp+1) in place of X; = X5, 4+ 1Y, . To show the convergence of the corresponding
semi-group (P;D)tzo, we show a uniform Doeblin condition [35], Chapter 16, holds using a
direct coupling argument.

Note that D has no boundary and therefore no reflexion has to be take care of but it
is worthwhile to mention that by a deterministic transformation of this process from D to
[0, 1] x [0, 714", we end up with the reflected PDMP process targeting the uniform distri-
bution on [0, 1] x [0, 77]”1_1 described in [2].

The process that we consider in this section can be seen as a toy model for convex po-
tentials. If n is small, which is the analogous of multi-scales problems, then the proof of
Theorem 5 would yield a mixing time of order n?. Indeed, in Section 3.3, the coupling
is considered a failure as soon as one of the processes bounce (or, here, is reflected at the
boundary). Hence, a successful coupling would need that, at the first refreshment time, the
new Gaussian velocity is directed mainly according to the first dimension, which is unlikely.
As we will see, this is a too pessimistic bound.

PROPOSITION 1. Forallx,ieD,y,)?eRd andt > 0,
D D
18¢e.y) Pr” = 8.5 P | vy
(1+n%@d —1)1/?
<2[pwv, <1 —HE[IL N {1_2¢( )m
<2[ BV, = 1)+ E[ 1 401(N) o

where ® is the cumulative distribution function of the standard Gaussian distribution on R,
(Nt)r>0 is a Poisson process with rate A and jump times (S;);ieN, with So = 0.

PROOF. Let (N;);>0 be a Poisson process with rate A; and jump times (S;);eN, With
So = 0. Set first for ¢ € [0, $1), X; = proji®(x 4+ ty), ¥; = y, X5, = proj®(x + S1y), X; =
proi® (& +17), Y, = v, f(gl = proj® (& + $17). By [33], Section 2, given (S;);en, there exist
two Brownian motions (W;),>¢ and ( Wt),zo on D such that for any ¢ > 0,

P(Xs, + W, = X5, + Wi |(Sr=0) = P(Te < t](Sk)k=0)

(59)

=1-2@(-|IXg g Il/(2:/2))
and
(60) T. =inf(s > 0: X5, + W, = X5, + W,}.

We can define then, for any i € N*,
Gi= (W(Si+1—S1)2 - W(Si_sl)Z)/(SiH =S,

61) L -
Gi=Wisi-sp2 = Wis—sp2)/ i1 = Si).
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Note that by the Markov property of (W;);>¢ and (W,)tzo, (G)ien+ and (Gi),-eN* are se-
quences of i.i.d. d-dimensional standard Gaussian random variables.

Define Y5, = G, )751 = G and now assume that (X, 1y), (}N( 17,) are defined for 7 €
[0, St], k = 1. Set for 1 € [Sk, Sg+11, X; = proj (Xsk + (t — SO)Grs1), Xy = pIOJD(XSk
(t — St)Gr+1), for t € [Sk, Sk11), Y = Ys,, ¥i = Y5, and Ysk+1 = Gi+1, Vs, = Gip1.
It follows then by construction that for any ¢ > 0, (X;, Y;);>0 is distributed according to
PtD((x, y),-) and (X;, f’,),zo is distributed according to P,D(()Z, y),-). Then it remains to
bound P((X;, Y;) = (f( ‘ 17,)) by definition of the total variation norm.

Note that if (S;+1 — Sl) > (t— 51)2 > (S — Sl) >Te> (S — S1) i > 2, we have by
(60)—(61) and construction (X;, Y;) = (X,, Y,). Therefore, we get {(Sy, — 51)2 > T N{N; >
1} c{(X;,Y,) = (X;, Y:)} and we obtain

P((X;, Y;) = (X1, Y1) <P({Sn, < S1 + T} N{N, < 1})
<P(N; < 1) +P({N, > 2} N {(Sy, — S1)* > Ti.}).

The proof is then concluded by conditioning with respect to (Si)xen using (59) and for any
xeD, x| = +n*d—1)"2 O

COROLLARY 16. There exist C > 0 and ¢ € (0, 1] independent of d such that setting
fe = Cdl/z,for allx,xeDandy,y € R4,

||8(x’y)PtE) - 8()2,&) PtICD HTV =< (1 - 8).

PROOF. By Proposition 1 and using the same notation, for all x,% €D, y, 7 € R¢ and
t > 0, we have since forany s >0, 1/2 — ®(—s) <1 A {s/(27t)1/2},

278y PP — 8.5y PP |y
<SPS >t/4)+P(S2 <t/4,Sn, — S2 <1/2)

(1+n*(d - 1))1/2)”
2(Sn, — S1)

200 _ 1/2
<P(S2>1t/4) +P(Sy, <3t/4) + d +77”E‘11/2 ) :

+ IE[ll[o,t/4](Sz)ll[z/z,Jro<>)(Szv, - 52){1 - 24’(

Since {Sy, < 3t/4} C {N; — N3;74 =0}, and N; — N3;/4 follows a Poisson distribution with
parameter /4, we get forall x,¥ €D, y,y € R% andt > 0

201 +n*@d - H)}/?

2780y PP =85 PPy <P(S2 = 1/4) +e /4 ml/2

The proof then follows from a straightforward computation. [

A direct consequence of Corollary 16 is that, with the same notation, for all v € P(D x R?)
andt >0,

[vPP =7 @ | gy = (1 =)t/

As a conclusion, for the considered toy model, we get that the rate of convergence scales
only as d!/?. Note that this result is optimal since the process has unit constant speed and the
diameter of D is d'/2.
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4.2. The metastable regime and annealing. The simulated annealing methodology (see
[24] and references therein) aims at finding a global minimum of a function U and not sam-
pling to the target distribution 7 given by (1). However, roughly, these methods need to
approximately sample from the family of distributions {rrg : > 0}, where 7 is the distribu-
tion on R? associated with the potential x — BU (x), for B > 0. To do so, we will study in
this section a simulated annealing algorithm based on the BPS, extending the results of [39],
Theorem 1.5, on the torus (R/Z)?. For the sake of simplicity, the study is restricted to the
following case:

A9.
(i) The potential U € C*(R?) satisfies

—U(x)/2)dx < o0, lim  U(x) = 400,

/R ,PU@/2dx <00, lim V)= +oo
liminf [VU(x)| >0, sup [V2U@)]| < oo.
Jxll—o0 xeR

Moreover, without loss of generality, U (0) = mings U = 0.
(i1)) Y=B(0, M) for M > 0 and the distribution w, on Y is rotation invariant.

In the rest of this section, A9 is enforced. However, note the arguments also work under
A8 (in particular when ¥ = R, u, has a Gaussian moment and U is a perturbation of an
x -homogeneous potential with x > 1, as in Proposition 3), which is not implied by A9.

For a measurable function 8 : R, — R, referred to in the following as the cooling sched-
ule, we consider in this section the simulated annealing BPS process (X ,(’3 ), Yt(ﬁ )) defined as
follows. Consider some initial point (x, y) € R? x Y, and the family of i.i.d. random variables
(E;, F;, G})ien* introduced in Section 2.1. Let A, > 0, (X(()ﬂ), YO('B)) = (x,y) and S(()’S) =0.
We define by recursion the jump times of the process and the process itself. For all n > 0,
consider

L,
Tn(_:,_lﬁ) = Ent1/Ar

t
@.p _ . : ®) ® Ly ® 2
TSP = mf{t >0 /0 (BOY . VU (X i +5Y ), }ds > Exyy }

®B) _ 1,8 2,8)
Lo=T, AT,

set 5,70 = 87 + 10, PP = (@ v v, for all 1 € 157,57,

n+l = n+1° S
B _ B B) y(B)
Xop =Xp + 1,117 and
n+1 n n
B _ (LB
Y = GHéﬂ) ® T =Tt
s R(XS’STI,YS?)) otherwise,

where R is defined by (4). Note that under A9, Y is bounded and therefore by [15], Proposi-
tion 10, sup,, . S,(,ﬂ) = 4-00.

Therefore almost surely (X t(ﬁ ), Yt(ﬂ )),Zo isa (RY x Y)-valued cadlagprocess. By [10], The-
orem 25.5, the BPS process (X t(ﬁ ), Y,(’3 )) >0 defines a nonhomogeneous strong Markov semi-
group (Pr);>o given for all s, e Ry, (x,y) € R? x Y and A € B(R? x Y) by

Pl (). A) =B(X . 1P) e A),

t,t+s
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where (X L(,ﬁ ), Yu(ﬂ )) uek, 18 the annealed BPS process started from (x, y) and cooling schedule
s+ B(t + ). As it is usual in simulated annealing if t — S(¢) goes to infinity sufficiently

slowly for the process (X ,(’3 ), Y,(ﬂ )) to approach its instantaneous equilibrium exp(—g8(#)U) ®
Wy, then X t(,s ) should be close to a global minimum of U with high probability.

A10. The function ¢ — B(t) is increasing, satisfies lim;_, { o, B(¥) = +o00, B(0) > 1 and
there exist sg, D1, D2 > 0 with D; > D» such that for all # large enough, 8(¢) > D> Int and

Bt +s0) — B(t) < Dy/t.

We can then adapt well-known techniques from the simulated annealing literature to ex-
tend the result of [39] which restricts its study to the torus (R/ Z)%. A crucial step is to show
that for fixed s, > 0, s <1, the Markov kernel Pf ; 18 a contraction in an appropriate metric
with constants which have to be explicit in s, # and the cooling schedule 8. However, using
our approach for the proof of the geometric ergodicity of BPS, we were able to complete such
a task.

THEOREM 17. Assume A9. There exists 0 > 0 such that if A10 holds with Dy < 071,
then for any (x,y) € R? x Y and any levels n > 1’ > 0, there exists A > 0 such that, for all
t>0,

P(U(X,(ﬂ)) > 1+ min U) < Aexp(U(x)/2)/t",

where p = (1 —0D)) A (D2n') > 0 and (X,(ﬂ), Yt(ﬁ)) is the annealed BPS process starting
from (x, ).

PROOF. The proof is postponed to Section S1.2 in the Supplementary Material [16]. O
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