
The Annals of Applied Probability
2020, Vol. 30, No. 4, 1642–1668
https://doi.org/10.1214/19-AAP1539
© Institute of Mathematical Statistics, 2020

HIGH-DIMENSIONAL LIMITS OF EIGENVALUE DISTRIBUTIONS
FOR GENERAL WISHART PROCESS

BY JIAN SONG1, JIANFENG YAO2 AND WANGJUN YUAN3

1School of Mathematics, Shandong University, txjsong@hotmail.com
2Department of Statistics and Actuarial Science, University of Hong Kong, jeffyao@hku.hk

3Department of Mathematics, University of Hong Kong, ywangjun@connect.hku.hk

In this article, we obtain an equation for the high-dimensional limit mea-
sure of eigenvalues of generalized Wishart processes, and the results are ex-
tended to random particle systems that generalize SDEs of eigenvalues. We
also introduce a new set of conditions on the coefficient matrices for the ex-
istence and uniqueness of a strong solution for the SDEs of eigenvalues. The
equation of the limit measure is further discussed assuming self-similarity on
the eigenvalues.

1. Introduction. While the theory of stochastic differential equations (SDEs) with val-
ues in a Euclidean space is quite well developed in stochastic analysis, the study of SDEs
on general manifolds is more recent. In this paper, we consider the eigenvalue process of the
solution of a special class of matrix-valued SDEs as well as a more general class of parti-
cle systems introduced in Graczyk and Małecki (2014). For ease of notation, let SN be the
group of N × N symmetric matrices. For X ∈ SN and f a real-valued function, f (X) ∈ SN

denotes the matrix obtained from X by acting f on the spectrum of X. Namely, if X has the
spectral decomposition X =∑p

j=1 αjuju
ᵀ
j with eigenvalues (αj ) and eigenvectors (uj ), then

f (X) =∑p
j=1 f (αj )uju

ᵀ
j . Here Aᵀ denotes the transpose of a matrix or vector A.

There is not much work in the literature on SDEs with matrix state space SN . We consider
the class of so-called generalized Wishart process which satisfies the following SDE on SN :

(1.1) dXN
t = gN

(
XN

t

)
dBthN

(
XN

t

)+ hN

(
XN

t

)
dB

ᵀ
t gN

(
XN

t

)+ bN

(
XN

t

)
dt, t ≥ 0.

Here Bt is a Brownian matrix of dimension N × N , and the functions gN,hN, bN : R → R

act on the spectrum of XN
t . Let

(1.2) GN(x, y) = g2
N(x)h2

N(y) + g2
N(y)h2

N(x),

which is symmetric with respect to x and y. Let λN
1 (t) ≤ λN

2 (t) ≤ · · · ≤ λN
N(t) be the eigen-

values of XN
t . According to Theorem 3 in Graczyk and Małecki (2013), if λN

1 (0) < λN
2 (0) <

· · · < λN
N(0), then before the first collision time

τN = inf
{
t > 0 : ∃i �= j, λi(t) = λj (t)

}
,

the eigenvalues satisfy the following SDEs: for 1 ≤ i ≤ N ,

(1.3)

dλN
i (t) = 2gN

(
λN

i (t)
)
hN

(
λN

i (t)
)
dWi(t)

+
(
bN

(
λN

i (t)
)+ ∑

j :j �=i

GN(λN
i (t), λN

j (t))

λN
i (t) − λN

j (t)

)
dt.
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Here, {Wi, i = 1,2, . . . ,N} are independent Brownian motions. In Graczyk and Małecki
(2013, 2014), some other conditions on the functions were imposed to ensure that (1.3) has a
unique strong solution and the collision time is infinity almost surely.

The generalized Wishart process (1.1) extends the celebrated symmetric Brownian motion
and Wishart process introduced respectively in Dyson (1962) and Bru (1989), as follows.

• If we take gN(x) = (2N)−1/2, hN(x) = 1 and bN(x) = 0 in (1.1), the random matrix XN
t

becomes the symmetric Brownian motion with elements:

(1.4) XN
t (i, j) = 1√

N
Bt(i, j)1{i<j} +

√
2√
N

Bt(i, i)1{i=j }, 1 ≤ i ≤ j ≤ N,

where {Bt(i, j), i ≤ j} are independent Brownian motions.
• If we take gN(x) = √

x, hN(x) = 1/
√

N , and bN(x) = p/N with p > N − 1 in (1.1),
then the random matrix YN

t = NXN
t is the Wishart process B

ᵀ
t Bt , where Bt is a p × N

Brownian matrix.

Symmetric matrices appear in many scientific fields. Historically, Dyson (1962) used sym-
metric Brownian motions to analyse the Hamiltonian of a complex nucleic system in particle
physics. Bru (1989) introduced her Wishart process to perform principal component analysis
on a set of resistance data of Escherichia Coli to certain antibiotics. More recently, time series
of positive definite matrices are particularly important in the following fields.

1. Financial data analysis: multivariate volatility/co-volatility between stock returns or
interest rates from different markets have been studied recently through Wishart processes,
see Gourieroux (2006), Gourieroux and Sufana (2010), Da Fonseca, Grasselli and Tebaldi
(2008), Da Fonseca, Grasselli and Ielpo (2014), Gnoatto (2012), Gnoatto and Grasselli (2014)
and Wu et al. (2018).

2. Machine learning: an important task in machine learning using kernel functions is the
determination of a suitable kernel matrix for a given data analysis problem (Schölkopf and
Smola (2002)). Such determination is referred as the kernel matrix learning problem. A kernel
matrix is in fact a positive definite Gram-matrix of size N ×N where N , the sample size of the
data, is usually large. An innovative method for kernel learning is proposed by Zhang, Kwok
and Yeung (2006) where unknown kernel matrix is modeled by a Wishart process prior. This
approach has been followed in Kondor and Jebara (2007) and Li, Zhang and Yeung (2009).

3. Computer vision: real-time computer vision often involves tracking of objects of inter-
est. At each time t , a target is encoded into a N -dimensional vector at ∈ R

N (feature vector).
It is therefore clear that measuring “distance” between these vectors, say at and at+dt at two
consecutive time spots t and t + dt , is of crucial importance for object tracking. Because the
standard Euclidean distance ‖at+dt − at‖2 is rarely optimal, it is more satisfactory to iden-
tify a better metric of the form (at+dt − at )

ᵀMt(at+dt − at ) using a suitable positive definite
matrix Mt . Again, the sequence of metric matrices (Mt) is time varying; it should be data-
adaptive, estimable from data available at time t . An innovative solution is proposed in Li
et al. (2016) where Mt follows a Wishart process.

Motivated by these recent applications where the dimension N of a matrix process is usu-
ally large, we study in this paper high-dimensional limits of eigenvalue distributions of the
generalized Wishart process (1.1) as N tends to infinity. To the best of our knowledge, such
high-dimensional limits are known in the literature only for some simple cases. An early
result is the derivation of the Wigner semi-circle law from the eigenvalue empirical mea-
sure process in Chan (1992) where the symmetric matrix process has independent Ornstein–
Uhlenbeck processes as its entries. The results were later generalized in Rogers and Shi



1644 J. SONG, J. YAO AND W. YUAN

(1993) to the following SDEs:

dXj =
√

2α

N
dBj +

(
−θXj + α

N

∑
j :j �=i

1

Xi − Xj

)
dt, 1 ≤ i ≤ N, t ≥ 0.

Cépa and Lépingle (1997) further generalised these SDEs to

dXj = σ(Xj ) dBj +
(
b(Xj ) + ∑

j :j �=i

γ

Xi − Xj

)
dt, 1 ≤ i ≤ N, t ≥ 0,

with some coefficient functions b, σ and constant γ . Another important case is the
Marčenko–Pastur law for the eigenvalue empirical measure process derived in Cabanal-
Duvillard and Guionnet (2001). The eigenvalues SDEs (1.3) considered in the present pa-
per generalises the eigenvalue SDEs in Chan (1992) and Cabanal-Duvillard and Guionnet
(2001), as well as the particle system in Rogers and Shi (1993). Also the particle system
(3.1) in Section 3 which is introduced in Graczyk and Małecki (2014) generalizes the particle
system in Cépa and Lépingle (1997).

The rest of the paper is organized as follows. In Section 2, we study high-dimensional
limits of eigenvalue distributions of the generalized Wishart process (1.1). In Section 3, our
results are extended to a random particle system that generalizes the eigenvalue SDEs (1.3).
These results from the two sections presuppose that these SDEs have a unique strong solution
(before colliding/exploding time). In Section 4, we introduce a new set of conditions on the
coefficient matrices in (1.3) and its generalization, the particle system (3.1) (here the dimen-
sion N is fixed). These conditions are thus compared with the ones proposed in Graczyk and
Małecki (2013, 2014). In Section 5, assuming self-similarity on the eigenvalues, we simplify
the equation (2.15) of the limit measure and indicate its connection with the Hilbert transform
operator.

2. Limit point of empirical measure for eigenvalues. We denote by M1(R) the set of
probability measures on R. Since a probability measure can be viewed as a continuous linear
functional on the space Cb(R) of bounded continuous functions, M1(R) is a subset of the dual
space Cb(R)∗ of Cb(R). Since the space Cb(R) endowed with the sup norm is a normable
space, its dual Cb(R)∗ is a Banach space with the dual norm. The space M1(R) with the norm
inherited from the dual norm of Cb(R)∗ is complete. Besides, the space C([0, T ],M1(R))

endowed with the metric

dC([0,T ],M1(R))(f1, f2) = sup
t∈[0,T ]

dM1(R)

(
f1(t), f2(t)

)
,

is complete.
Consider the empirical measure of the eigenvalues λN

i (t) satisfying (1.3)

(2.1) LN(t) = 1

N

N∑
i=1

δλN
i (t).

We shall study the limit point of LN in the space C([0, T ],M1(R)), as N goes to infinity, and
we assume the following conditions.

(A) There exists a positive function ϕ(x) ∈ C2(R) such that lim|x|→+∞ ϕ(x) = +∞,
ϕ′(x)bN(x) is bounded with respect to (x,N), and ϕ′(x)gN(x)hN(x) satisfies

∞∑
N=1

(‖ϕ′gNhN‖2
L∞(dx)

N

)l1

< ∞,

for some positive integer l1.
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(B) The function NGN(x, y)
ϕ′(x)−ϕ′(y)

x−y
is bounded with respect to (x, y,N).

(C)

(2.2) C0 = sup
N>0

〈
ϕ,LN(0)

〉= sup
N>0

1

N

N∑
i=1

ϕ
(
λN

i (0)
)
< ∞.

(D) There exists a sequence {f̃k}k∈N of C2(R) functions such that it is dense in the space
C0(R) of continuous functions vanishing at infinity and that f̃ ′

k(x)gN(x)hN(x) satisfies

(2.3) ψ(k) =
∞∑

N=1

(‖f̃ ′
kgNhN‖2

L∞(dx)

N

)l2

< ∞

for some positive integer l2 ≥ 2.

REMARK 2.1. When one chooses the function ϕ(x) in condition (A), although ϕ(x) goes
to ∞ as |x| goes to ∞, one should expect that the first and second derivatives of ϕ vanish fast
enough. One typical choice is ϕ(x) = ln(1 + x2).

Condition (B) implies that

NGN(x, x)ϕ′′(x) = lim
y→x

NGN(x, y)
ϕ′(x) − ϕ′(y)

x − y

is uniformly bounded with respect to (x,N), and so is Ng2
N(x)h2

N(x)ϕ′′(x).

REMARK 2.2. Suppose that bN(x) ≤ cb|x|, g2
N(x) ≤ cg|x|N−α and h2

N(x) ≤ ch|x|N−β

for large N and large |x| with constants cb, cg , ch and α +β ≥ 1, then we can choose ϕ(x) =
ln(1 + x2) to satisfy the above conditions (A), (B) and (D).

THEOREM 2.1. Let T > 0 be a fixed number. Suppose that (1.3) has a strong solution
that is nonexploding and noncolliding for t ∈ [0, T ]. Then under the conditions (A), (B), (C)
and (D), the sequence {LN(t), t ∈ [0, T ]}N∈N is relatively compact in C([0, T ],M1(R)), that
is, every subsequence has a further subsequence that converges in C([0, T ],M1(R)) almost
surely.

PROOF. We split the proof into three steps for the reader’s convenience.
Step 1. In this step, we apply Itô’s formula to estimate 〈f,LN(t)〉 for f ∈ C2(R).
Note that

〈
f,LN(t)

〉= ∫
f (x)LN(t)(dx) = 1

N

N∑
i=1

∫
f (x)δλN

i (t)(dx) = 1

N

N∑
i=1

f
(
λN

i (t)
)
.

By Itô’s formula and (1.3),

f
(
λN

i (t)
)− f

(
λN

i (0)
)

=
∫ t

0
f ′(λN

i (s)
)
dλN

i (s) + 1

2

∫ t

0
f ′′(λN

i (s)
)
d
〈
λN

i

〉
s

= 2
∫ t

0
f ′(λN

i (s)
)
gN

(
λN

i (s)
)
hN

(
λN

i (s)
)
dWi(s)

+
∫ t

0
f ′(λN

i (s)
)
bN

(
λN

i (s)
)
ds +

∫ t

0
f ′(λN

i (s)
) ∑
j :j �=i

GN(λN
i (s), λN

j (s))

λN
i (s) − λN

j (s)
ds

+ 2
∫ t

0
f ′′(λN

i (s)
)
g2

N

(
λN

i (s)
)
h2

N

(
λN

i (s)
)
ds.
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Thus,

(2.4)

〈
f,LN(t)

〉− 〈f,LN(0)
〉

= 2

N

N∑
i=1

∫ t

0
f ′(λN

i (s)
)
gN

(
λN

i (s)
)
hN

(
λN

i (s)
)
dWi(s)

+ 1

N

N∑
i=1

∫ t

0
f ′(λN

i (s)
)
bN

(
λN

i (s)
)
ds

+ 1

N

∑
i �=j

∫ t

0
f ′(λN

i (s)
)GN(λN

i (s), λN
j (s))

λN
i (s) − λN

j (s)
ds

+ 2

N

N∑
i=1

∫ t

0
f ′′(λN

i (s)
)
g2

N

(
λN

i (s)
)
h2

N

(
λN

i (s)
)
ds

= MN
f (t) +

∫ t

0

〈
f ′bN,LN(s)

〉
ds + 2

∫ t

0

〈
f ′′g2

Nh2
N,LN(s)

〉
ds

+ 1

N

∑
i �=j

∫ t

0
f ′(λN

i (s)
)GN(λN

i (s), λN
j (s))

λN
i (s) − λN

j (s)
ds,

where

(2.5) MN
f (t) = 2

N

N∑
i=1

∫ t

0
f ′(λN

i (s)
)
gN

(
λN

i (s)
)
hN

(
λN

i (s)
)
dWi(s)

is a local martingale.
In the following, we adopt the convention that f ′(x)−f ′(y)

x−y
= f ′′(x) on {x = y}. We omit

the integral domain when it is R. We also omit the domain of the double integral when it is
R

2.
By changing the index in the sum and using the symmetry, the last term in (2.4) can be

simplified as follows:

1

N

∑
i �=j

∫ t

0
f ′(λN

i (s)
)GN(λN

i (s), λN
j (s))

λN
i (s) − λN

j (s)
ds

= 1

2N

∑
i �=j

∫ t

0

f ′(λN
i (s)) − f ′(λN

j (s))

λN
i (s) − λN

j (s)
GN

(
λN

i (s), λN
j (s)

)
ds

= 1

2N

∑
i �=j

∫ t

0

∫∫
f ′(x) − f ′(y)

x − y
GN(x, y)δλN

i (s)(dx)δλN
j (s)(dy) ds

= N

2

∫ t

0

∫∫
f ′(x) − f ′(y)

x − y
GN(x, y)LN(s)(dx)LN(s)(dy) ds

− 1

2N

N∑
i=1

∫ t

0

∫∫
f ′(x) − f ′(y)

x − y
GN(x, y)δλN

i (s)(dx)δλN
i (s)(dy) ds.
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Hence, the second term on the right-hand side of the above equation can be simplified as

1

2N

N∑
i=1

∫ t

0

∫∫
f ′(x) − f ′(y)

x − y
GN(x, y)δλN

i (s)(dx)δλN
i (s)(dy) ds

= 1

2N

N∑
i=1

∫ t

0
f ′′(λN

i (s)
)
GN

(
λN

i (s), λN
i (s)

)
ds

= 1

N

N∑
i=1

∫ t

0
f ′′(λN

i (s)
)
g2

N

(
λN

i (s)
)
h2

N

(
λN

i (s)
)
ds

=
∫ t

0

〈
f ′′g2

Nh2
N,LN(s)

〉
ds.

Therefore, (2.4) becomes

(2.6)

〈
f,LN(t)

〉= 〈
f,LN(0)

〉+ MN
f (t) +

∫ t

0

〈
f ′bN,LN(s)

〉
ds

+
∫ t

0

〈
f ′′g2

Nh2
N,LN(s)

〉
ds

+ N

2

∫ t

0

∫∫
f ′(x) − f ′(y)

x − y
GN(x, y)LN(s)(dx)LN(s)(dy) ds.

Now we assume the boundedness of the following terms:

sup
N

|〈f,LN(0)〉|, sup
x,N

∣∣f ′(x)bN(x)
∣∣, sup

x

∣∣f ′(x)gN(x)hN(x)
∣∣,

sup
x,N

∣∣f ′′(x)g2
N(x)h2

N(x)
∣∣ and sup

x,y,N

∣∣∣∣NGN(x, y)
f ′(x) − f ′(y)

x − y

∣∣∣∣.
Note that the above assumption is satisfied by the function ϕ appearing in conditions (A), (B)
and (C).

Now the quadratic variation of the local martingale MN
f (t) has the following estimation:

(2.7)

〈
MN

f

〉
t = 4

N2

N∑
i=1

∫ t

0

∣∣f ′(λN
i (s)

)
gN

(
λN

i (s)
)
hN

(
λN

i (s)
)∣∣2 ds

= 4

N

∫ t

0

〈∣∣f ′gNhN

∣∣2,LN(s)
〉
ds

≤ 4T

N

∥∥f ′gNhN

∥∥2
L∞(dx).

Thus, MN
f (t) is a martingale.

By (2.6), we have

(2.8) sup
t∈[0,T ]

∣∣〈f,LN(t)
〉∣∣≤ sup

N>0

∣∣〈f,LN(0)
〉∣∣+ sup

t∈[0,T ]
∣∣MN

f (t)
∣∣+ D0T ,

where

(2.9)

D0 = sup
N>0

{∥∥f ′bN

∥∥
L∞(dx) + ∥∥f ′′g2

Nh2
N

∥∥
L∞(dx)

+ 1

2

∥∥∥∥NGN(x, y)
f ′(x) − f ′(y)

x − y

∥∥∥∥
L∞(dx dy)

}
.
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Fix l ∈ N. By Markov inequality, Burkholder–Davis–Gundy inequality and (2.7), there
exists a positive constant �l depending on l such that for any ε > 0,

(2.10)

P

(
sup

t∈[0,T ]
∣∣MN

f (t)
∣∣≥ ε

)
≤ 1

ε2l
E

[
sup

t∈[0,T ]
∣∣MN

f (t)
∣∣2l
]

≤ �l

ε2l
E
[〈
MN

f

〉l
T

]≤ 4lT l�l

Nlε2l

∥∥f ′gNhN

∥∥2l
L∞(dx).

Hence, for M > supN>0 |〈f,LN(0)〉| + D0T , it follows from (2.8) and (2.10) that

(2.11)

P

(
sup

t∈[0,T ]
∣∣〈f,LN(t)

〉∣∣≥ M
)

≤ P

(
sup

t∈[0,T ]
∣∣MN

f (t)
∣∣≥ M − C0T − sup

N>0

∣∣〈f,LN(0)
〉∣∣)

≤ 4lT l�l

Nl(M − D0T − supN>0 |〈f,LN(0)〉|)2l

∥∥f ′gNhN

∥∥2l
L∞(dx).

Step 2. Now we study the Hölder continuity of 〈f,LN(t)〉. For t ≥ s, (2.6) implies〈
f,LN(t)

〉− 〈
f,LN(s)

〉
= MN

f (t) − MN
f (s) +

∫ t

s

〈
f ′bN,LN(u)

〉
du +

∫ t

s

〈
f ′′g2

Nh2
N,LN(u)

〉
du

+ N

2

∫ t

s

∫∫
f ′(x) − f ′(y)

x − y
GN(x, y)LN(u)(dx)LN(u)(dy) du.

Hence, ∣∣〈f,LN(t)
〉− 〈f,LN(s)

〉∣∣
≤ ∣∣MN

f (t) − MN
f (s)

∣∣+ (t − s)
∥∥f ′bN

∥∥
L∞(dx) + (t − s)

∥∥f ′′g2
Nh2

N

∥∥
L∞(dx)

+ t − s

2

∥∥∥∥N f ′(x) − f ′(y)

x − y
GN(x, y)

∥∥∥∥
L∞(dx dy)

≤ ∣∣MN
f (t) − MN

f (s)
∣∣+ (t − s)D0,

where D0 is given in (2.9). Note that [0, T ] can be partitioned into small intervals of length
η < D

−8/7
0 and the number of the intervals are J = [T η−1]. Then by Markov inequality,

Burkholder–Davis–Gundy inequality and (2.7), we have

P

(
sup

|t−s|≤η

∣∣MN
f (t) − MN

f (s)
∣∣≥ Mη1/8

)

≤
J∑

k=0

P

(
sup

kη≤t≤(k+1)η

∣∣MN
f (t) − MN

f (kη)
∣∣≥ Mη1/8

3

)

≤
J∑

k=0

32l

M2lηl/4E
[

sup
kη≤t≤(k+1)η

∣∣MN
f (t) − MN

f (kη)
∣∣2l
]

≤
J∑

k=0

32l�l

M2lηl/4E
[〈
MN

f (kη + ·) − MN
f (kη)

〉l
η

]
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≤
J∑

k=0

62l�lη
3l/4

M2lNl

∥∥f ′gNhN

∥∥2l
L∞(dx)

≤ η3l/4−1 · 62l�lT

M2lNl

∥∥f ′gNhN

∥∥2l
L∞(dx).

Hence, noting that ηD0 < η1/8, we have

(2.12)

P

(
sup

|t−s|≤η

∣∣〈f,LN(t)
〉− 〈f,LN(s)

〉∣∣≥ (M + 1)η1/8
)

≤ P

(
sup

|t−s|≤η

∣∣MN
f (t) − MN

f (s)
∣∣≥ (M + 1)η1/8 − ηD0

)

≤ P

(
sup

|t−s|≤η

∣∣MN
f (t) − MN

f (s)
∣∣≥ Mη1/8

)

≤ η3l/4−1 · 62l�lT

M2lNl

∥∥f ′gNhN

∥∥2l
L∞(dx).

Step 3. In this last step, we obtain the relative compactness of {LN }N∈N+ and conclude the
proof.

Let M denote a generic positive constant that may vary in different places. Recalling that
ϕ is given in condition (A), we set

K(ϕ,M) =
{
μ ∈ M1(R) : 〈ϕ,μ〉 =

∫
ϕ(x)μ(dx) ≤ M + 1

}
.

Since ϕ(x) is positive and tends to infinity as |x| → +∞, K(ϕ,M) is tight, that is, it is
(sequentially) compact in M1(R).

By Arzela–Ascoli Lemma, the set

CM

({εn}, {ηn})
=

∞⋂
n=1

{
g ∈ C

([0, T ],R) : sup
|t−s|≤ηn

∣∣g(t) − g(s)
∣∣≤ εn, sup

t∈[0,T ]
∣∣g(t)

∣∣≤ M
}
,

where {εn} and {ηn} are two positive sequences converging to 0, is (sequentially) compact in
C([0, T ],R). For ε > 0 and a bounded function f̃ ∈ C2(R), we define

CT (f̃ , ε) =
∞⋂

n=1

{
μ ∈ C

([0, T ],M1(R)
) : sup

|t−s|≤n−4

∣∣μt(f̃ ) − μs(f̃ )
∣∣≤ 1

ε
√

n

}

=
{
μ ∈ C

([0, T ],M1(R)
) : sup

|t−s|≤n−4

∣∣μt(f̃ ) − μs(f̃ )
∣∣≤ 1

ε
√

n
,∀n ∈ N

}

= {
μ ∈ C

([0, T ],M1(R)
) : t → μt(f̃ ) ∈ CM

({
(ε

√
n)−1}, {n−4})},

where we can choose M = ‖f̃ ‖∞. By Lemma 4.3.13 in Anderson, Guionnet and Zeitouni
(2010), for a positive sequence {εk}k∈N which will be determined in the sequel, the set

HM = {
μ ∈ C

([0, T ],M1(R)
) : μt ∈ K(ϕ,M),∀t ∈ [0, T ]}∩ ∞⋂

k=1

CT (f̃k, εk),
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where {f̃k}k≥1 is given in Condition (D), is compact in C([0, T ],M1(R)). We have

(2.13)

∞∑
N=1

P
(
LN ∈ Hc

M

)≤ ∞∑
N=1

P
(∃t ∈ [0, T ], s.t. LN(t) /∈ K(ϕ,M)

)

+
∞∑

N=1

∑
k≥1

P
(
LN /∈ CT (f̃k, εk)

)
.

By using (2.11) for the case l = l1 and f = ϕ with l1 and ϕ given in condition (A), the first
term on the right-hand side can be simplified as

(2.14)

∞∑
N=1

P
(∃t ∈ [0, T ], s.t. LN(t) /∈ K(ϕ,M)

)

=
∞∑

N=1

P

(
sup

t∈[0,T ]
〈
ϕ,LN(t)

〉
> M + 1

)

≤
∞∑

N=1

4l1T l1�l1

Nl1(M + 1 − D0T − supN>0 |〈ϕ,LN(0)〉|)2l1

∥∥ϕ′gNhN

∥∥2l1
L∞(dx)

= 4l1T l1�l1

(M + 1 − D0T − C0)2l1

∞∑
N=1

‖ϕ′gNhN‖2l1
L∞(dx)

Nl1
< ∞,

where C0 is given by (2.2), D0 is given by (2.9), and M = M0 is sufficiently large such that
M0 > D0T + C0.

By using (2.12) with l = l2, f = f̃k , η = n−4 and M = ε−1
k − 1, where l2 and f̃k are given

in condition (D), the second term on the right-hand side of (2.13) can be simplified as follows,
recalling that ψ(k) is given in (2.3),

∞∑
N=1

∑
k≥1

P
(
LN /∈ CT (f̃k, εk)

)

≤
∞∑

N=1

∑
k≥1

∞∑
n=1

P

(
sup

|t−s|≤n−4

∣∣LN(t)(f̃k) − LN(s)(f̃k)
∣∣> 1

εk

√
n

)

≤
∞∑

N=1

∑
k≥1

∞∑
n=1

62l2�l2T n−3l2+4

(ε−1
k − 1)2l2Nl2

∥∥f̃ ′
kgNhN

∥∥2l2
L∞(dx)

= 62l2�l2T

∞∑
n=1

n−3l2+4
∑
k≥1

1

(ε−1
k − 1)2l2

∞∑
N=1

‖f̃ ′
kgNhN‖2l2

L∞(dx)

Nl2

= 62l2�l2T

∞∑
n=1

n−3l2+4
∑
k≥1

ψ(k)

(ε−1
k − 1)2l2

,

which is finite if we take εk so that ε−1
k > 1 + kψ(k)1/(2l2).

Thus, it follows from (2.13), (2.14) and the above estimate that
∞∑

N=1

P
(
LN ∈ Hc

M0

)
< ∞,

and Borel–Cantelli Lemma implies

P

(
lim inf
N→∞ {LN ∈ HM0}

)
= 1.
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Finally, the relative compactness of the family {LN }N∈N+ follows from the compactness of
HM0 , and the proof is concluded. �

The Corollary 3 in Graczyk and Małecki (2013) provided the conditions under which the
system of SDEs (1.3) has a unique nonexploding and noncolliding strong solution. As a
consequence, we have the following corollary.

COROLLARY 2.1. For the system of SDEs (1.3), suppose that the initial value satisfies
λN

1 (0) < · · · < λN
N(0) and the condition (C) holds. Assume that there exist positive constants

L, α and β with α + β ≥ 1, such that bN(x), Nαg2
N(x) and Nβh2

N(x) are Lipschitz continu-
ous with the Lipschitz constant L for all N ∈N, and that

max
N∈N

{∣∣bN(0)
∣∣+ Nαg2

N(0) + Nβh2
N(0)

}≤ L.

Besides, suppose that GN(x, x) is convex or in the Hölder space C1,1(R), and that GN(x, y)

is strictly positive on {x �= y} for all N ∈ N. Then for any fixed number T > 0, the sequence
{LN(t), t ∈ [0, T ]}N∈N is relatively compact in C([0, T ],M1(R)).

PROOF. Under the conditions given in the Corollary, by Graczyk and Małecki (2013),
Corollary 3, for each N , the system of SDEs (1.3) has a unique strong solutions that is non-
exploding and noncolliding on [0,∞). Besides, we have the following estimation:∣∣bN(x)

∣∣≤ ∣∣bN(0)
∣∣+ ∣∣bN(x) − bN(0)

∣∣≤ L
(
1 + |x|),

which is also satisfied by Nαg2
N(x) and Nβh2

N(x). Thus, it is easy to check that the conditions
(A), (B) and (D) are now satisfied (with ϕ(x) = ln(1 + x2)), and the conclusion follows from
Theorem 2.1. �

Under proper conditions, the following theorem provides an equation for the Stieltjes
transform of the limit point of {LN }N∈N.

THEOREM 2.2. Let T > 0 be a fixed number. Assume that (1.3) has a strong solution
that is nonexploding and noncolliding for t ∈ [0, T ]. Furthermore, we assume that there exist
continuous functions b(x) and G(x,y), such that bN(x) converges to b(x) and NGN(x, y)

converges to G(x,y) uniformly as N tends to infinity, and that∥∥∥∥ b(x)

1 + x2

∥∥∥∥
L∞(dx)

< ∞,

∥∥∥∥ G(x,y)

(1 + |x|)(1 + y2)

∥∥∥∥
L∞(dx dy)

< ∞.

If almost surely, the empirical measure LN(0) converges weakly to a measure μ0 as N

goes to infinity, and the sequence {LN }N∈N has a limit measure μ in C([0, T ],M1(R)), then
the measure μ satisfies the equation

(2.15)

∫
μt(dx)

z − x
=
∫

μ0(dx)

z − x
+
∫ t

0

[∫
b(x)

(z − x)2 μs(dx)

]
ds

+
∫ t

0

[∫∫
G(x,y)

(z − x)(z − y)2 μs(dx)μs(dy)

]
ds,

for z ∈ C \R.

REMARK 2.3. Taking x = y, the boundedness condition∥∥∥∥ G(x,y)

(1 + |x|)(1 + y2)

∥∥∥∥
L∞(dx dy)

< ∞
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becomes ∥∥∥∥ G(x,x)

(1 + |x|)3

∥∥∥∥
L∞(dx)

< ∞.

Thus,

NGN(x, x)

(1 + |x|)4 ≤ C

for some constant C and large N . Note that GN(x, x) = 2g2
N(x)h2

N(x), we have

∞∑
N=1

1

N

∥∥∥∥gN(x)hN(x)

(z − x)2

∥∥∥∥2

L∞(dx)

=
∞∑

N=1

1

2N

∥∥∥∥GN(x, x)

(z − x)4

∥∥∥∥
L∞(dx)

≤
∞∑

N=1

C

2N2 < ∞.

PROOF OF THEOREM 2.2. For any limit point μ = (μt , t ∈ [0, T ]) of LN , we can find a
subsequence {Ni}, such that LNi

converges to μ in C([0, T ],M1(R)) as Ni tends to infinity.
By using (2.6) for the case N = Ni and f (x) = (z−x)−1, and then letting Ni tends to infinity,
we have∫

μt(dx)

z − x
−
∫

μ0(dx)

z − x

= lim
Ni→∞M

Ni

f (t) + lim
Ni→∞

∫ t

0

∫
bNi

(x)

(z − x)2 LNi
(s)(dx) ds

+ lim
Ni→∞

∫ t

0

∫ 2g2
Ni

(x)h2
Ni

(x)

(z − x)3 LNi
(s)(dx) ds

+ lim
Ni→∞

1

2

∫ t

0

∫∫
(z − x)−2 − (z − y)−2

x − y
NiGNi

(x, y)LNi
(s)(dx)LNi

(s)(dy) ds.

(2.16)

The second term of right-hand side of (2.16) vanishes almost surely. Indeed, by using
(2.10) for the case l = 1 and f (x) = (z − x)−1 for some z ∈ C \R, we have

∞∑
N=1

P

(
sup

t∈[0,T ]
∣∣MN

f (t)
∣∣≥ ε

)
≤

∞∑
N=1

4T �1

Nε2

∥∥∥∥gN(x)hN(x)

(z − x)2

∥∥∥∥2

L∞(dx)

,

of which the right-hand side is finite due to Remark 2.3. By Borel–Cantelli Lemma,

P

(
lim inf
N→∞

{
sup

t∈[0,T ]
∣∣MN

f (t)
∣∣< ε

})
= 1,

that is, MN
f (t) converges to zero uniformly with respect to t almost surely.

For the third term on the right-hand side of (2.16), noting that the boundedness of b(x)(1+
x2)−1 implies the boundedness of b(x)(z− x)−2 for z ∈ C \R, which is continuous, we have∣∣∣∣

∫
bNi

(x)

(z − x)2 LNi
(s)(dx) −

∫
b(x)

(z − x)2 μs(dx)

∣∣∣∣
≤
∣∣∣∣
∫

bNi
(x) − b(x)

(z − x)2 LNi
(s)(dx)

∣∣∣∣+
∣∣∣∣
∫

b(x)

(z − x)2

(
LNi

(s)(dx) − μs(dx)
)∣∣∣∣

≤ supx |bNi
(x) − b(x)|

(Im(z))2 +
∣∣∣∣
∫

b(x)

(z − x)2

(
LNi

(s)(dx) − μs(dx)
)∣∣∣∣,

the right-hand of which converges to 0 as Ni → ∞ by the uniform convergence of bNi
(x) to-

wards b(x) and the weak convergence of the empirical measure LNi
(s) towards μs . Besides,

the boundedness of b(x)/(1 + x2) and the uniform convergence of bN(x) to b(x) imply the
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boundedness of bN(x)/(z − x)2. Then it follows from the dominated convergence theorem
that

lim
Ni→∞

∫ t

0

∫
bNi

(x)

(z − x)2 LNi
(s)(dx) ds =

∫ t

0

∫
b(x)

(z − x)2 μs(dx) ds.

Similarly, for the fourth term on the right-hand side of (2.16), noting that 2Nig
2
Ni

(x) ×
h2

Ni
(x) = NiGNi

(x, x), we have

∣∣∣∣
∫ 2g2

Ni
(x)h2

Ni
(x)

(z − x)3 LNi
(s)(dx)

∣∣∣∣
= 1

Ni

∣∣∣∣
∫

NiGNi
(x, x)

(z − x)3 LNi
(s)(dx)

∣∣∣∣
≤ 1

Ni

∣∣∣∣
∫

NiGNi
(x, x) − G(x,x)

(z − x)3 LNi
(s)(dx)

∣∣∣∣+ 1

Ni

∣∣∣∣
∫

G(x,x)

(z − x)3 LNi
(s)(dx)

∣∣∣∣
≤ supx,y |NiGNi

(x, x) − G(x,x)|
Ni(Im(z))3 + Cz

Ni

∥∥∥∥ G(x,x)

(1 + |x|3)
∥∥∥∥
L∞(dx)

which tend to 0 as Ni → ∞. Here, Cz is a constant depending only on z.
Finally, using the identity

(z − x)−2 − (z − y)−2

x − y
= (z − y)2 − (z − x)2

(z − x)2(z − y)2(x − y)

= 2z − x − y

(z − x)2(z − y)2 = 1

(z − x)(z − y)2 + 1

(z − x)2(z − y)
,

the last term on the right-hand side of (2.16) can be simplified as

lim
Ni→∞

1

2

∫ t

0

∫∫
(z − x)−2 − (z − y)−2

x − y
NiGNi

(x, y)LNi
(s)(dx)LNi

(s)(dy) ds

= lim
Ni→∞

1

2

∫ t

0

∫∫ [ 1

(z − x)(z − y)2 + 1

(z − x)2(z − y)

]

× NiGNi
(x, y)LNi

(s)(dx)LNi
(s)(dy) ds

= lim
Ni→∞

∫ t

0

∫∫
NiGNi

(x, y)

(z − x)(z − y)2 LNi
(s)(dx)LNi

(s)(dy) ds,

where the last equality follows from the symmetry of GNi
. Now,∣∣∣∣

∫∫
NiGNi

(x, y)

(z − x)(z − y)2 LNi
(s)(dx)LNi

(s)(dy) −
∫∫

G(x,y)

(z − x)(z − y)2 μs(dx)μs(dy)

∣∣∣∣
≤
∣∣∣∣
∫∫

NiGNi
(x, y) − G(x,y)

(z − x)(z − y)2 LNi
(s)(dx)LNi

(s)(dy)

∣∣∣∣
+
∣∣∣∣
∫∫

G(x,y)

(z − x)(z − y)2

(
LNi

(s)(dx)LNi
(s)(dy) − μs(dx)μs(dy)

)∣∣∣∣
≤ supx,y |NiGNi

(x, y) − G(x,y)|
| Im(z)|3

+
∣∣∣∣
∫∫

G(x,y)

(z − x)(z − y)2

(
LNi

(s)(dx)LNi
(s)(dy) − μs(dx)μs(dy)

)∣∣∣∣
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converges to 0 as Ni → ∞. Also note that the boundedness of G(x,y)/(1 + |x|)(1 +
y2) and the uniform convergence of NGN(x, y) to G(x,y) yield the boundedness of
NGN(x, y)/(z − x)(z − y)2. Thus, by the dominated convergence theorem and the conti-
nuity of the function G(x,y),

lim
Ni→∞

∫ t

0

∫∫
NiGNi

(x, y)

(z − x)(z − y)2 LNi
(s)(dx)LNi

(s)(dy) ds

=
∫ t

0

∫∫
G(x,y)

(z − x)(z − y)2 μs(dx)μs(dy) ds.

Therefore, (2.15) is obtained from (2.16). The proof is complete. �

Using the conditions in Corollary 3 of Graczyk and Małecki (2013) that guarantee the
existence and uniqueness of the nonexploding and noncolliding strong solution to the system
of SDEs (1.3), we have the following corollary.

COROLLARY 2.2. For the system of SDEs (1.3), suppose λN
1 (0) < · · · < λN

N(0). Assume
that there exist positive constants L and α, such that bN(x), Nαg2

N(x), N1−αh2
N(x) are

Lipschitz continuous with the Lipschitz constant L for all N ∈ N, and

max
N∈N

{∣∣bN(0)
∣∣+ Nαg2

N(0) + N1−αh2
N(0)

}≤ L.

Besides, suppose that GN(x, x) is convex or in the Hölder space C1,1, and that GN(x, y) is
strictly positive on {x �= y}. Moreover, assume that bN(x) converges to a continuous function
b(x) and NGN(x, y) converges to a continuous function G(x,y) uniformly as N tends to
infinity.

If the empirical measure LN(0) converges weakly to a measure μ0 almost surely as N

goes to infinity, and the sequence {LN }N∈N has a limit measure μ in C([0, T ],M1(R)) for
any fixed number T > 0, then the measure μ satisfies the equation

(2.17)

∫
μt(dx)

z − x
=
∫

μ0(dx)

z − x
+
∫ t

0

[∫
b(x)

(z − x)2 μs(dx)

]
ds

+
∫ t

0

[∫∫
G(x,y)

(z − x)(z − y)2 μs(dx)μs(dy)

]
ds,

for z ∈ C \R, t ∈ [0, T ].

PROOF. By Graczyk and Małecki (2013), Corollary 3, we can conclude that for each N ,
the SDEs (1.3) has a unique strong solution that is nonexploding and noncolliding on [0,∞).
Moreover, the estimation in the proof of Corollary 2.1 is still valid for bN(x), Nαg2

N(x) and
N1−αh2

N(x). Besides, we have∣∣NGN(x, y)
∣∣≤ (∣∣Nαg2

N(x) − Nαg2
N(0)

∣∣+ ∣∣Nαg2
N(0)

∣∣)
× (∣∣N1−αh2

N(y) − N1−αh2
N(0)

∣∣+ ∣∣N1−αh2
N(0)

∣∣)
≤ L2(1 + |x|)(1 + |y|).

It can be easily checked that all the conditions in Theorem 2.2 are satisfied. �

REMARK 2.4 (The normalized case). Now we suppose that YN
t satisfies the following

equation:

(2.18) dYN
t = g

(
YN

t

)
dBth

(
YN

t

)+ h
(
YN

t

)
dB

ᵀ
t g
(
YN

t

)+ a
(
YN

t

)
dt.
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Then the equation for XN
t := 1

N
YN

t is

dXN
t = 1

N
g
(
NXN

t

)
dBth

(
NXN

t

)+ 1

N
h
(
NXN

t

)
dB

ᵀ
t g
(
NXN

t

)+ 1

N
a
(
NXN

t

)
dt,

which coincides with (1.1) with

gN(x)hN(y) = 1

N
g(Nx)h(Ny) and bN(x) = 1

N
a(Nx).

Therefore, under the conditions in Theorem 2.1 and Theorem 2.2, the equation (2.15) is still
valid for a limit measure μ of the empirical measures of the eigenvalues of XN with

b(x) = lim
N→∞

1

N
a(Nx) and G(x,y) = lim

N→∞
1

N

[
g2(Nx)h2(Ny) + h2(Nx)g2(Ny)

]
.

3. Limit point of empirical measure for particle systems. In Graczyk and Małecki
(2014), the following system of SDEs was introduced: for 1 ≤ i ≤ N and t ≥ 0,

(3.1) dxN
i (t) = σN

i

(
xN
i (t)

)
dWi(t) +

(
bN

(
xN
i (t)

)+ ∑
j :j �=i

HN(xN
i (t), xN

j (t))

xN
i (t) − xN

j (t)

)
dt,

where HN(x, y) is a nonnegative symmetric function, and the existence and uniqueness of the
noncolliding strong solution was studied. Clearly, this particle system generalizes the system
(1.3) for eigenvalues of a generalized Wishart process studied in Section 2. There is a huge
literature on related interacting particle systems, particularly on those related to the Bessel
processes. For background information, we here refer to the survey papers Göing-Jaeschke
and Yor (2003) and Zambotti (2017), and the recent book Katori (2016).

In this section, we extend the results established in Section 2 for the particle system. Here
the corresponding empirical measures are

LN(t) = 1

N

N∑
i=1

δxN
i (t).

We assume the following conditions which are similar to those in Section 2.

(A′) There exists a positive function ϕ(x) ∈ C2(R) such that lim|x|→+∞ ϕ(x) = +∞,
ϕ′(x)bN(x) is bounded with respect to (x,N), and ϕ′′(x)σN

i (x)2 is bounded with respect to
(x, i,N), and ϕ′(x)σN

i (x) satisfies

∞∑
N=1

(max1≤i≤N ‖ϕ′σN
i ‖2

L∞(dx)

N

)l1

< ∞

for some positive integer l1.
(B′) The function NHN(x, y)

ϕ′(x)−ϕ′(y)
x−y

is bounded with respect to (x, y,N).
(C′)

C′
0 := sup

N>0

〈
ϕ,LN(0)

〉= sup
N>0

1

N

N∑
i=1

ϕ
(
λN

i (0)
)
< ∞.

(D′) There exists a sequence {f̃k}k≥1 of C2(R) functions such that it is dense in C0(R)

and that f̃ ′
k(x)σN

i (x) satisfies

ψ(k) =
∞∑

N=1

(max1≤i≤N ‖f̃ ′
kσ

N
i ‖2

L∞(dx)

N

)l2

< ∞

for some positive integer l2 ≥ 2.
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REMARK 3.1. Similar to Remark 2.2, suppose that bN(x) ≤ cb|x|, σN
i (x) ≤ c0|x| and

HN(x, y) ≤ ch|xy|N−γ for large N and large |x|, |y| with constants cb, c0, ch and γ ≥ 1,
then we can choose ϕ(x) = ln(1 + x2) to satisfy the conditions.

THEOREM 3.1. Let T > 0 be a fixed number. Suppose that (3.1) has a strong solution
that is nonexploding and noncolliding for t ∈ [0, T ]. Then under the conditions (A′), (B′),
(C′) and (D′), the sequence {LN(t), t ∈ [0, T ]}N∈N is relatively compact in C([0, T ],M1(R))

almost surely.

Analogous to Corollary 2.1, we have the following corollary of Theorem 3.1, based on the
conditions given in Graczyk and Małecki (2014) which assures a unique nonexploding and
noncolliding strong solution to (3.1).

COROLLARY 3.1. For the system of SDEs (3.1), assume that the initial value satisfies
λN

1 (0) < · · · < λN
N(0) and condition (C′). Suppose that σN

i (x)2 is Lipschitz continuous for
each 1 ≤ i ≤ N , and HN(x, y) is continuous for all N ∈ N. Moreover, there exists a positive
number L > 0, such that bN(x) is Lipschitz continuous with the Lipschitz constant L for all
N ∈ N, and

sup
N∈N

{∣∣bN(0)
∣∣}≤ L.

Besides, suppose that there exist constant c2 ≥ 0 that does not depend on N , and constants
c3(N), c4(N) that may depend on N , such that for 1 ≤ i ≤ N ,

(a) HN(x, y) ≤ c2
N

(1 + |xy|), ∀x, y ∈ R;

(b) HN(w,z)
z−w

≤ HN(x,y)
y−x

, ∀w < x < y < z;

(c) σN
i (x)2 + σN

i (y)2 ≤ c3(N)(x − y)2 + 4HN(x, y), ∀x, y ∈ R;
(d) HN(x, y)(y −x)+HN(y, z)(z−y) ≤ c4(N)(z−y)(z−x)(y −x)+HN(x, z)(z−x),

∀x < y < z.

Then for any fixed number T > 0, the sequence {LN(t), t ∈ [0, T ]}N∈N is relatively compact
in C([0, T ],M1(R)) almost surely.

PROOF. As in the proof of Corollary 2.1, the estimation |bN(x)| ≤ L(1 + |x|) holds.
By (a) and (c), we have σN

i (x)2 ≤ 2HN(x, x) ≤ 2c2(1 + |x|2)/N . By Graczyk and Małecki
(2014), the system (3.1) has a unique strong solution that is nonexploding and noncolliding
on [0,∞), for each N ∈ N. Besides, it can be easily checked that the conditions (A′) (B′) and
(D′) are satisfied with ϕ(x) = ln(1 + x2). Thus, the desired result comes from Theorem 3.1.

�

A similar equation for the Stieltjes transform of the limit measure is given below.

THEOREM 3.2. Let T > 0 be a fixed number. Assume that (3.1) has a strong solution
that is nonexploding and noncolliding for t ∈ [0, T ]. Suppose that

∞∑
N=1

(
1

N
max

1≤i≤N

∥∥∥∥σ
N
i (x)

1 + x2

∥∥∥∥2

L∞(dx)

)l3

< ∞

for some positive integer l3, and that there exists a continuous function σ(x) such that

(3.2) lim
N→∞ max

1≤i≤N

∥∥∥∥σ
N
i (x)2 − σ(x)2

1 + x3

∥∥∥∥
L∞(dx)

= 0.
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Furthermore, assume that there exist continuous functions b(x) and H(x,y), such that
bN(x) converges to b(x) and NHN(x, y) converges to H(x,y) uniformly as N tends to
infinity, and that∥∥∥∥ b(x)

1 + x2

∥∥∥∥
L∞(dx)

< ∞,

∥∥∥∥ H(x,y)

(1 + |x|)(1 + y2)

∥∥∥∥
L∞(dx dy)

< ∞,

∥∥∥∥ σ(x)2

1 + x3

∥∥∥∥
L∞(dx)

< ∞.

If the empirical measure LN(0) converges weakly as N goes to infinity to a measure μ0
almost surely, and the sequence LN has a limit measure μ in C([0, T ],M1(R)), then the
measure μ satisfies the equation

(3.3)

∫
μt(dx)

z − x
=
∫

μ0(dx)

z − x
+
∫ t

0

[∫
b(x)

(z − x)2 μs(dx)

]
ds +

∫ t

0

[∫
σ(x)2

(z − x)3 μs(dx)

]
ds

+
∫ t

0

[∫∫
H(x,y)

(z − x)(z − y)2 μs(dx)μs(dy)

]
ds,

for z ∈ C \R.

Similar to Corollary 3.1, we have the following consequence of Theorem 3.2.

COROLLARY 3.2. Assume that the initial value of (3.1) satisfies λN
1 (0) < · · · < λN

N(0).
Suppose that σN

i (x)2 is Lipschitz continuous for all 1 ≤ i ≤ N and HN(x, y) is continuous
for all N ∈ N. Moreover, assume that there exists a positive number L > 0, such that, bN(x)

is Lipschitz continuous with the Lipschitz constant L for all N ∈N, and

sup
N∈N

{∣∣bN(0)
∣∣}≤ L.

Besides, suppose that the conditions (a)–(d) in Corollary 3.1 hold. Furthermore, assume that
there exist continuous functions b(x) and H(x,y), such that bN(x) converges to b(x) and
NHN(x, y) converges to H(x,y) uniformly as N tends to infinity.

If almost surely, the empirical measure LN(0) converges weakly as N goes to infinity to
a measure μ0, and the sequence LN has a limit measure μ in C([0, T ],M1(R)) for a fixed
number T > 0, then the measure μ satisfies the equation

(3.4)

∫
μt(dx)

z − x
−
∫

μ0(dx)

z − x

=
∫ t

0

[∫
b(x)

(z − x)2 μs(dx)

]
ds +

∫ t

0

[∫∫
H(x,y)

(z − x)(z − y)2 μs(dx)μs(dy)

]
ds,

for z ∈ C \R, t ∈ [0, T ].

PROOF. By the proof of Corollary 3.1, we have the following estimation:

∣∣bN(x)
∣∣≤ L

(
1 + |x|), σN

i (x)2 ≤ 2c2

N

(
1 + |x|2).

Hence, according to Graczyk and Małecki (2014), for each N , the system (3.1) has a unique
strong solution that is nonexploding and noncolliding on [0,∞). It can be checked easily that
all the conditions in Theorem 3.2 hold with σ(x) = 0. �

The proofs of Theorems 3.1 and 3.2 are analogous to those of Theorems 2.1 and 2.2 in
Section 2, respectively. They are thus omitted.
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REMARK 3.2 (The normalized case). For the particle system

(3.5) dyN
i (t) = σi

(
yN
i (t)

)
dWi(t) +

(
a
(
yN
i (t)

)+ ∑
j :j �=i

G(yN
i (t), yN

j (t))

yN
i (t) − yN

j (t)

)
dt,

where G(x,y) is a symmetric function, the normalized particle system

xN
i (t) = 1

N
yN
i (t), 1 ≤ i ≤ N, t ≥ 0,

satisfies (3.1) with

σN
i (x) = 1

N
σi(Nx), bN(x) = 1

N
a(Nx) and HN(x, y) = 1

N2 G(Nx,Ny).

In this case, if the conditions in Theorem 3.1 and Theorem 3.2 hold, any limit point μ of the
empirical measures of {xN

i ,1 ≤ i ≤ N} satisfies (3.3) with

σ(x)2 = lim
N→∞σN

i (x)2, b(x) = lim
N→∞

1

N
a(Nx) and

H(x,y) = lim
N→∞

1

N
G(Nx,Ny).

In the rest of this section, we apply the above general results to general noncolliding
squared Bessel particle, general noncolliding squared β-Bessel particle system, and Dyson
Brownian motion.

General noncolliding squared Bessel particle system. We choose the coefficient func-
tions gN(x), hN(x) and bN(x) and the initial value in (1.3) such that they satisfy the con-
ditions in Corollary 2.1 and 2.2, where NGN(x, y) = N(gN(x)2hN(y)2 + gN(y)2hN(x)2)

converges to G(x,y) = x + y, and bN(x) converges to b(x) = c, uniformly as N tends to
infinity. Thus the equation (2.17) for the limit measure becomes

(3.6)

∫
μt(dx)

z − x
=
∫

μ0(dx)

z − x
+
∫ t

0

[∫
c

(z − x)2 μs(dx)

]
ds

+
∫ t

0

[∫∫
x + y

(z − x)(z − y)2 μs(dx)μs(dy)

]
ds.

However, it is challenging to determine the limit measure {μt, t ∈ [0, T ]} in general. If we
assume that μ0(dx) = δ0(dx) and that μt is supported on [0,∞) for all t ≥ 0, then (3.6) has
a unique solution as established in Cabanal-Duvillard and Guionnet (2001). The paper also
determined the solution by iterating the equation of the associated characteristic function, for
which Gronwall’s lemma was employed to deduce the convergence.

Here we sketch an alternative approach to find this particular {μt, t ∈ [0, T ]}. Actually,
μt can be considered as the limit of empirical measure of the eigenvalues of XN

t = 1
N

B
ᵀ
t Bt

where Bt is a p×N Brownian matrix. Note that XN
t and its eigenvalues solve (1.1) and (1.3),

respectively, with gN(x) = √
x/

√
N , hN(x) = 1 and bN(x) = p/N . Here, p > N − 1 and

p/N → c ≥ 1.
Denoting the Stieltjes transform of μt by

(3.7) Gt(z) =
∫ 1

z − x
μt(dx),

the equation (3.6) becomes

(3.8) Gt(z) = G0(z) − (c − 1)

∫ t

0
∂zGs(z) ds −

∫ t

0

(
Gs(z)

2 + 2zGs(z)∂zGs(z)
)
ds.
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Assume XN
0 = 0, and the key observation to solve (3.8) is the following scaling property:

(3.9) Gt(z) = 1

t
G1

(
z

t

)
,

which follows easily from the self-similarity of the process (B
ᵀ
t Bt )t≥0. By (3.9), we have

∂zGt(z) = 1

t2 G′
1

(
z

t

)
= −1

z

d

dt

(
G1

(
z

t

))
,

and

Gt(z)
2 + 2zGt(z)∂zGt(z) = 1

t2 G2
1

(
z

t

)
+ 2z

t3 G1

(
z

t

)
G′

1

(
z

t

)
= − d

dt

(
1

t
G2

1

(
z

t

))
.

The above two equations and (3.8) imply

(3.10) Gt(z) = G0(z) + c − 1

z
G1

(
z

t

)
+ 1

t
G2

1

(
z

t

)
.

Let t = 1 in (3.10) and we have

(3.11) zG2
1(z) + (c − 1 − z)G1(z) + 1 = 0,

of which the solution is

(3.12) G1(z) = (z + 1 − c) −√
(c − 1 − z)2 − 4z

2z
,

where the square root maps from C+ to C+. Thus by (3.9),

(3.13) Gt(z) = (z + t (1 − c)) −√(z + t (1 − c))2 − 4tz

2tz
.

REMARK 3.3. The matrix process

X̃N(t) = 1

p
B

ᵀ
t Bt = N

p
XN(t)

often appears in the literature. We take the notation c̃ = limN→∞ N
p

= 1
c

≤ 1. Let μ̃t be the
limit of the empirical measure of X̃N(t), and denote its Stieltjes transform by

G̃t (z) =
∫ 1

x − z
μ̃t (dx).

Noting that X̃N(t) and XN(t) only differ by a multiple of N/p, we also have λ̃N
i (t) =

N
p

λN
i (t) and it is easy to verify that

G̃t (z) = −cGt(cz).

Letting t = 1, we have by (3.12),

G̃1(z) = −cG1(cz) = 1 − c̃ − z +√(1 − c̃ − z)2 − 4c̃2z

2c̃z

which is the Stieltjes transform of the standard Marčenko–Pastur law with parameter c̃ ≤ 1
(see, e.g., equation (3.1.1) in Bai and Silverstein (2010)).
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General noncolliding squared β-Bessel particle system. This process is a slight gen-
eralization of the noncolliding squared Bessel particle system. We choose the coefficient
functions σN

i (x), bN(x), HN(x, y) in (3.1) such that they satisfy the conditions in Corol-
lary 3.1 and Corollary 3.2, where bN(x) converges to b(x) = βc, and NHN(x, y) converges
to H(x,y) = β(x + y), uniformly as N tends to infinity, and σ(x) = 0. Then the equation
(3.4) now is

∫
μt(dx)

z − x
=
∫

μ0(dx)

z − x
+ β

∫ t

0

[∫
c

(z − x)2 μs(dx)

]
ds

+ β

∫ t

0

[∫∫
x + y

(z − x)(z − y)2 μs(dx)μs(dy)

]
ds,

which is equivalent to

(3.14) Gt(z) = G0(z) − β(c − 1)

∫ t

0
∂zGs(z) ds − β

∫ t

0

(
Gs(z)

2 + 2zGs(z)∂zGs(z)
)
ds,

where Gt(z) is the Stieltjes transform defined in (3.7).
Similar to general noncolliding squared Bessel particle system case, we consider the sys-

tem of SDEs (3.1) with μ0(dx) = δ0(x), σN
i (x) = √

x/
√

N , HN(x, y) = β(x + y)/N and
bN(x) = bN , where {bN,N ∈ N} is a sequence of positive numbers that converges to βc. By
the uniqueness of the solution to (3.1) and the self-similarity of Brownian motion, we can still
obtain the scaling property (3.9) for Gt(z). Thus, similar to the transformation from (3.8) into
(3.10), (3.14) now is transformed into

Gt(z) = G0(z) + β(c − 1)

z
G1

(
z

t

)
+ β

t
G2

1

(
z

t

)
.

Letting t = 1, it is easy to get

G1(z) = z − β(c − 1) −
√

[β(c − 1) − z]2 − 4βz

2βz
.

Hence, by (3.9),

(3.15) Gt(z) = z − βt(c − 1) −
√

[βt(c − 1) − z]2 − 4βtz

2βtz
.

In other words, μt is the celebrated Marčenko–Pastur law with parameters (1/c, cβt).

REMARK 3.4. If we take σi(x) = 2
√

x, a(x) = βα, G(x,y) = β(x + y) in (3.5) with
α/N → c, the equation becomes

(3.16) dyN
i (t) = 2

√
yN
i (t) dWi(t) + β

(
α + ∑

j :j �=i

yN
i (t) + yN

j (t)

yN
i (t) − yN

j (t)

)
dt.

This is the eigenvalue process of the classical β-Laguerre processes that are studied in Demni
(2007) and König and O’Connell (2001). As discussed in Remark 3.2, the corresponding
normalized particle equation is (3.1) with coefficient functions σN

i (x) = 2
√

x/N , bN(x) =
βα/N and HN(x, y) = β(x + y)/N .
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General Dyson Brownian motion. We choose the coefficient functions gN(x), hN(x)

and bN(x) and initial value in (1.3) such that they satisfy the conditions in Corollary 2.1
and Corollary 2.2, where NGN(x, y) = N(gN(x)2hN(y)2 + gN(y)2hN(x)2) converges to
G(x,y) = 1, and bN(x) converges to b(x) = 0, uniformly as N tends to infinity.

Similar to the examples above, (2.17) can be simplified as

(3.17) Gt(z) = G0(z) −
∫ t

0
Gs(z)∂zGs(z) ds,

which was shown in Anderson, Guionnet and Zeitouni (2010).
Now we consider the system of SDEs (1.3) with μ0(dx) = δ0(dx), gN(x) = (2N)−1/2,

hN(x) = 1 and bN(x) = bN , where {bN,N ∈ N} is a sequence of positive numbers that
converges to 0. Thanks to the uniqueness of the solution to (1.3) and the self-similarity of
Brownian motion, we can obtain the following scaling property:

(3.18) Gt(z) = 1√
t
G1

(
z√
t

)
.

Thus, (3.17) can be transformed to

Gt(z) = G0(z) + 1

z
G2

1

(
z√
t

)
.

When t = 1, we have

G1(z) = z − √
z2 − 4

2
,

which is the Stieltjes transform of the semicircle law. Finally, it follows from the scaling
property (3.18) that

(3.19) Gt(z) = z − √
z2 − 4t

2t
,

is the Stieltjes transform of a limit measure, which is also a solution to (3.17). This yields
the uniqueness of the limit measure of LN . Note that in Anderson, Guionnet and Zeitouni
(2010), the uniqueness of the limit measure was obtained from the uniqueness of the solution
to the equation (3.17).

REMARK 3.5. The symmetric Brownian motion is obtained by taking gN(x) =
(2N)−1/2, hN(x) = 1 and bN(x) = 0 in (1.1) and the solution of the corresponding eigen-
value SDEs (1.3) is the classical Dyson Brownian motion.

4. Conditions for existence and uniqueness of the solutions to particle systems. We
stress that the results of large-N limit in Sections 2 and 3 were obtained under the assumption
that the eigenvalue SDEs (1.3) and (3.1) have solutions (before colliding/exploding). Also
note that Graczyk and Małecki (2013, 2014) imposed conditions to guarantee the existence
and uniqueness of such solutions.

In this section, we provide a new set of conditions for the existence and uniqueness of
strong solutions to (1.3) and (3.1). Throughout this section, the dimension N is fixed and we
remove N in subscripts/superscritps.

As (1.3) is a special case of (3.1), we consider the latter only: for 1 ≤ i ≤ N and t ≥ 0,

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

dxi = σi(xi) dWi(t) +
(
bi(xi) + ∑

j :j �=i

Hij (xi, xj )

xi − xj

)
dt,

x1(0) < · · · < xN(0),
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where (Wi)1≤i≤N are independent Brownian motions. In Graczyk and Małecki (2014), the
existence and strong uniqueness of the system (4.1) were established under the following
conditions:

(G1) The functions σi are continuous. Besides, there exists a function ρ :R+ →R+, such
that for any ε > 0 ∫ ε

0
ρ−1(x) dx = ∞,

and for all x, y ∈ R and 1 ≤ i ≤ N ,∣∣σi(x) − σi(y)
∣∣2 ≤ ρ

(|x − y|).
(G2) The functions bi and Hij are continuous for all 1 ≤ i, j ≤ N and i �= j . The functions

Hij are nonnegative and symmetric, that is, Hij (x, y) = Hji(y, x).

Now, we define, for n ∈ N, −∞ ≤ A < B ≤ +∞,

Dn =
{
(x1, . . . , xN) : −∞ < An < x1 < · · · < xN < Bn < ∞,

xi+1 − xi >
1

n
for 1 ≤ i ≤ N − 1

}
,

with An ↘ A, Bn ↗ B and define

D = {
(x1, . . . , xN) : A <x1 < · · · < xN < B

}
.

Then Dn ⊆ Dn+1 and
⋃

n Dn = D. We impose the following conditions on the coefficient
functions:

(E) The functions σi are in C1((A,B)) and strictly positive on (A,B);
(F) For each n ∈N, there exists a number p = p(n) > N such that the functions bi(x) are

in Lp(An,Bn) for 1 ≤ i ≤ N and Hjk(x, y) belongs to Lp({(x, y|An < x < y < Bn,y − x ≥
1
n
)}) for 1 ≤ j < k ≤ N .

Note that condition (G1) is not a consequence of condition (E) (consider, e.g., σi(x) =
x2 + 1), and condition (G2) clearly implies condition (F).

THEOREM 4.1. Suppose that the initial value (x1(0), . . . , xN(0)) ∈ D. Under the condi-
tions (E) and (F), the system of SDEs (4.1) has a unique strong solution up to the first exit
time τ from D, which is defined as follows:

τ = inf
t≥0

{(
x1(t), . . . , xN(t)

)
/∈ D

}
.

The proof of Theorem 4.1 relies on the following result due to Krylov and Röckner (2005).

THEOREM 4.2. Consider the SDE

(4.2) xt = x0 +
∫ t

0
b(s + r, xr) dr + wt, t ≥ 0,

where wt is a Brownian motion and b(t, x) a R
d -valued Borel function on an open set Q ⊆

R×R
d . Let Qn, n ≥ 1 be bounded open subsets of Q, such that Qn ⊆ Qn+1 and

⋃
n Qn = Q.

Suppose that for each n ∈ N
+, there exist p = p(n) ≥ 2 and q = q(n) > 2 satisfying

d

p
+ 2

q
< 1,
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and ∥∥∥∥b(t, x)IQn(t, x)
∥∥
Lp(dx)

∥∥
Lq(dt) < ∞.

Then there exists a unique strong solution up to the first exit time, say τ , from Q. Moreover
this solution satisfies ∫ t

0

∣∣b(s + r, xr)
∣∣2 dr < ∞

for t < τ almost surely.

PROOF OF THEOREM 4.1. By condition (E), for 1 ≤ i ≤ N , there exist fi(x) ∈
C2((A,B)) satisfying f ′

i (x) = 1/σi(x). Besides, fi(x) is increasing so it is invertible and
the inverse is in C2((fi(A), fi(B))). For 1 ≤ i ≤ N , let yi = fi(xi). By Itô formula,

(4.3)

dyi = f ′
i (xi) dxi + 1

2
f ′′

i (xi) d〈xi〉

= f ′
i (xi)σi(xi) dWi + f ′

i (xi)

(
bi(xi) + ∑

j :j �=i

Hij (xi, xj )

xi − xj

)
dt

+ 1

2
f ′′

i (xi)σi(xi)
2 dt

= dWi + 1

σi(xi)

(
bi(xi) + ∑

j :j �=i

Hij (xi, xj )

xi − xj

)
dt − 1

2

(
σi(xi)

)′
dt

= dWi + 1

σi(f
−1
i (yi))

(
bi

(
f −1

i (yi)
)+ ∑

j :j �=i

Hij (f
−1
i (yi), f

−1
j (yj ))

f −1
i (yi) − f −1

j (yj )

)
dt

− 1

2

(
σi

(
f −1

i (yi)
))′

dt.

Introduce the map

F : (A,B)N −→ (
f1(A), f1(B)

)× · · · × (
fN(A),fN(B)

)
,

(x1, . . . , xN) �−→ (
f1(x1), . . . , fN(xN)

)
.

Then F is bijective, both F and F−1 being twice continuously differentiable. Then the system
of SDEs (4.3) on F(D) is equivalent to the the system of SDEs (4.1) on D.

Let Q = R+ × F(D) and Qn = (0, n) × F(Dn). In order to apply Theorem 4.2, we only
need to verify that the following functions are in Lp(Qn) for some p = p(n) > N :

bi(f
−1
i (yi))

σi(f
−1
i (yi))

,
1

σi(f
−1
i (yi))

Hij (f
−1
i (yi), f

−1
j (yj ))

f −1
i (yi) − f −1

j (yj )
and

(
σi

(
f −1

i (yi)
))′

.

By change of variables, it is equivalent to show that the functions(
bi(xi)

σi(xi)

)p 1

σi(xi)
,

(
1

σi(xi)

Hij (xi, xj )

xi − xj

)p 1

σi(xi)σj (xj )
and

((σi(xi))
′)p

σi(xi)

belong to L1(Dn), which is a direct consequence of Conditions (E) and (F).
The proof is concluded. �
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REMARK 4.1. Note that theorem 4.1 is valid for Dyson Brownian motion, noncolliding
square Bessel process and noncolliding squared β-Bessel particle system. Indeed, for the
Dyson Brownian motion, σi(x) = (2N)−1/2, bi(x) = 0 and Hij (x, y) = 1/N , which satisfy
the conditions (E) and (F) with A = −∞ and B = +∞. For the noncolliding square Bessel
process, σi(x) = 2

√
x/

√
N , bi(x) = p/N and Hij (x, y) = (x + y)/N , which satisfy the

conditions (E) and (F) with A = 0 and B = +∞. For the noncolliding squared β-Bessel
particle system, σi(x) = 2

√
x/N , bi(x) = βα/N and Hij (x, y) = β(x + y)/N , which also

satisfy the conditions (E) and (F) with A = 0 and B = +∞. In the noncolliding square Bessel
process case and the noncolliding squared β-Bessel particle system case, the first exit time τ

is the first time the particles explode, collide or reach zero.
Furthermore, Theorem 4.1 also applies to the particle system (4.1) with discontinuous

coefficient functions bi(x) and Hi,j (x, y). For instance, it applies to the system with σi(x) =
(2N)−1/2, bi(x) = 1

N
f (x) and Hij (x, y) = 1

N
g(x, y) where f and g are bounded measurable

functions.

Combining Theorem 4.1 with Theorem 3.1 and Theorem 3.2 which are obtained in Sec-
tion 3, we have the following two corollaries for the particle system (3.1), in which now the
continuity of the coefficient functions bN(x) and HN(x, y) is not required.

COROLLARY 4.1. For the system of SDEs (3.1), assume that the initial value satisfies
λN

1 (0) < · · · < λN
N(0) and condition (C′) holds. Suppose that for each N ∈ N, σN

i (x) are in
C1(R) and strictly positive for 1 ≤ i ≤ N and bN(x) is nondecreasing (or Lipschitz continu-
ous). Moreover, we assume that there exist positive constants c1, c2 that does not depend on
N and positive constants c3(N) and c4(N), such that

(a′) |bN(x)| ≤ c1

√
1 + |x|2, ∀x ∈ R;

(b′) HN(x, y) ≤ c2
N

(1 + |xy|), ∀x, y ∈ R;

(c′) σN
i (x)2 + σN

i (y)2 ≤ c3(N)(x − y)2 + 4HN(x, y), ∀x, y ∈R, ∀x, y ∈ R;
(d′) HN(x, y)(y −x)+HN(y, z)(z−y) ≤ c4(N)(z−y)(z−x)(y −x)+HN(x, z)(z−x),

∀x < y < z.

Then for any fixed number T > 0, the sequence {LN(t), t ∈ [0, T ]}N∈N is relatively com-
pact in C([0, T ],M1(R)) almost surely.

PROOF. It is obvious that conditions (a′) and (b′) imply condition (F). Thus, by Theo-
rem 4.1, SDEs (3.1) has a unique strong solution. Conditions (a′), (b′) and (c′) allow to apply
Graczyk and Małecki (2014), Proposition 3.4, and hence the solution is nonexploding. More-
over, conditions on bN and conditions (c′) and (d′) imply the noncollision of the solution
by Graczyk and Małecki (2014), Proposition 4.2. Note that the continuity of the coefficient
functions is not involved in the proofs of Graczyk and Małecki (2014), Proposition 3.4 and
Proposition 4.2.

Finally, it is easy to check that conditions (A′)–(D′) in Section 3 are satisfied with ϕ(x) =
ln(1 + x2), and the conclusion follows from Theorem 3.1. �

The following result is a direct consequence of Corollary 4.1 and Theorem 3.2.

COROLLARY 4.2. For the system of SDEs (3.1), assume that all the conditions in Corol-
lary 4.1 hold. Besides, suppose there exist continuous functions b(x) and H(x,y), such that
bN(x) converges to b(x) and NHN(x, y) converges to H(x,y) uniformly as N tends to in-
finity. If the empirical measure LN(0) converges weakly as N goes to infinity to a measure
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μ0 almost surely, and the sequence LN has a limit measure μ in C([0, T ],M1(R)) for a fixed
number T > 0, then the measure μ satisfies the equation

(4.4)

∫
μt(dx)

z − x
=
∫

μ0(dx)

z − x
+
∫ t

0

[∫
b(x)

(z − x)2 μs(dx)

]
ds

+
∫ t

0

[∫∫
H(x,y)

(z − x)(z − y)2 μs(dx)μs(dy)

]
ds,

for z ∈ C \R, t ∈ [0, T ].

5. Discussion on the equation (2.15) of the limit measure. Consider the equation
(2.15) of limit measure∫

μt(dx)

z − x
=
∫

μ0(dx)

z − x
+
∫ t

0

[∫
b(x)

(z − x)2 μs(dx)

]
ds

+
∫ t

0

[∫∫
G(x,y)

(z − x)(z − y)2 μs(dx)μs(dy)

]
ds for z ∈C \R.

The uniqueness of the limit measure μt(dx) is obtained so far only for some special cases in
Section 3 by solving (2.15) directly with the help of the scaling property (3.9). For general
cases, the uniqueness is still unknown.

In this section, we further explore equation (2.15) assuming self-similarity on the eigen-
values λN

i (t), which hopefully may shed some light on solving the issue of the uniqueness of
the limit measure.

Recalling that G(x,y) is the limit of NGN(x, y) where GN(x, y) takes the form of (1.2),
we assume that G(x,y) = g2(x)h2(y) + g2(y)h2(x), and then (2.15) becomes

(5.1)

∂t

∫
μt(dx)

z − x
=
∫

b(x)

(z − x)2 μt(dx) +
∫

g2(x)

z − x
μt(dx)

∫
h2(x)

(z − x)2 μt(dx)

+
∫

h2(x)

z − x
μt(dx)

∫
g2(x)

(z − x)2 μt(dx).

Suppose that the self-similarity λN
i (t)

d= tαλN
i (1) holds for some constant α, then for any

ϕ ∈ Cb(R)

(5.2)

∫
ϕ(x)μt (dx) = lim

Nj→∞
1

Nj

Nj∑
i=1

ϕ
(
λ

Nj

i (t)
)

= lim
Nj→∞

1

Nj

Nj∑
i=1

ϕ
(
tαλ

Nj

i (1)
)= ∫

ϕ
(
tαx

)
μ1(dx).

Hence, applying (5.2) to ϕ(x) = (z − x)−1 and ϕ(x) = x(z − x)−2, we have

∂t

∫
μt(dx)

z − x
= ∂t

∫
μ1(dx)

z − tαx
=
∫

αtα−1x

(z − tαx)2 μ1(dx)

= α

t

∫
tαx

(z − tαx)2 μ1(dx) = α

t

∫
x

(z − x)2 μt(dx)

= −α

t
∂z

∫
x

z − x
μt(dx).
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Furthermore, we also have∫
g2(x)

z − x
μt(dx)

∫
h2(x)

(z − x)2 μt(dx) +
∫

h2(x)

z − x
μt(dx)

∫
g2(x)

(z − x)2 μt(dx)

= −
∫

g2(x)

z − x
μt(dx)∂z

∫
h2(x)

z − x
μt(dx) −

∫
h2(x)

z − x
μt(dx)∂z

∫
g2(x)

z − x
μt(dx)

= −∂z

[∫
g2(x)

z − x
μt(dx)

∫
h2(x)

z − x
μt(dx)

]
,

and ∫
b(x)

(z − x)2 μt(dx) = −∂z

∫
b(x)

z − x
μt(dx).

Thus, (5.1) can be simplified as

α

t

∫
x

z − x
μt(dx) =

∫
b(x)

z − x
μt(dx) +

∫
g2(x)

z − x
μt(dx)

∫
h2(x)

z − x
μt(dx) + C(t),

where C(t) is a complex constant independent of z. Let |z| → ∞. By dominated convergence
theorem, we can see that C(t) ≡ 0.

Thus, for G(x,y) = g2(x)h2(y) + g2(y)h2(x), assuming self-similarity on λN
i (t), the

equation (2.15) for limit measure μt(dx) becomes

(5.3)
α

t

∫
x

z − x
μt(dx) =

∫
b(x)

z − x
μt(dx) +

∫
g2(x)

z − x
μt(dx)

∫
h2(x)

z − x
μt(dx).

In particular, when b(x), g2(x) and h2(x) are polynomial functions (consider, for example,
Bru’s Wishart process, β-Wishart process, and Dyson Brownian motion), the above equation
can be simplified to a polynomial equation only involving the variable z and the Stieltjes
transform

∫ 1
z−x

μt (dx) of the limit measure μt(dx).
We also would like to point out that equation (5.3) can be represented via the Hilbert

transform, in light of the following lemma (see, e.g., Section 3.1 in Stein and Shakarchi
(2011)).

LEMMA 5.1. For ϕ ∈ L2(R), in the L2(R)-norm we have

lim
v→0+

∫
ϕ(x)

z − x
dx = −2πiP (ϕ)(u),

where z = u + iv, and the projective operator P = (I + iH)/2 with H being the Hilbert
transform operator.

Assume that μt(dx) = pt(x) dx is absolutely continuous with respect to the Lebesgue
measure. Applying Lemma 5.1 to (5.3), we have the following equation for the density func-
tion pt(x):

α

t
(I + iH)

(
xpt (x)

)
= (I + iH)

(
b(x)pt (x)

)− πi(I + iH)
(
g2(x)pt (x)

)
(I + iH)

(
h2(x)pt (x)

)
.

The imaginary part of the equation is

H

((
α

t
x − b(x)

)
pt(x)

)
= −πg2(x)h2(x)p2

t (x) + πH
(
g2(x)pt (x)

)
H
(
h2(x)pt (x)

)
,

which is equivalent to the real part, noting that H 2 = −I ,(
α

t
x − b(x)

)
pt(x) = πg2(x)pt (x)H

(
h2(x)pt (x)

)+ πh2(x)pt (x)H
(
g2(x)pt (x)

)
.
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