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Take a continuous-time Galton–Watson tree. If the system survives un-
til a large time T , then choose k particles uniformly from those alive. What
does the ancestral tree drawn out by these k particles look like? Some spe-
cial cases are known but we give a more complete answer. We concentrate on
near-critical cases where the mean number of offspring is 1 + μ/T for some
μ ∈ R, and show that a scaling limit exists as T → ∞. Viewed backwards
in time, the resulting coalescent process is topologically equivalent to King-
man’s coalescent, but the times of coalescence have an interesting and highly
nontrivial structure. The randomly fluctuating population size, as opposed to
constant size populations where the Kingman coalescent more usually arises,
have a pronounced effect on both the results and the method of proof required.
We give explicit formulas for the distribution of the coalescent times, as well
as a construction of the genealogical tree involving a mixture of independent
and identically distributed random variables. In general subcritical and super-
critical cases it is not possible to give such explicit formulas, but we highlight
the special case of birth–death processes.

1. Introduction. Let L be a random variable taking values in Z+ = {0,1,2, . . .}. Con-
sider a continuous-time Galton–Watson tree beginning with one initial particle and branching
at rate r with offspring distribution L. We will give more details of the model shortly.

Fix a large time T , and condition on the event that at least k particles are alive at time T .
Choose k particles uniformly at random (without replacement) from those alive at time T .
These particles, and their ancestors, draw out a smaller tree. The general question that we
attempt to answer is: what does this tree look like? This is a fundamental question about
Galton–Watson trees; several authors have given answers via interesting and contrasting
methods for various special cases, usually when k = 2. We aim to give a more complete
answer with a unified approach that can be adapted to other situations.

Before explaining our most general results we highlight some illuminating examples. Let
Nt be the set of particles that are alive at time t , and write Nt = #Nt for the number of
particles that are alive at time t . Let m = E[L] and for each j ≥ 0 let pj = P(L = j). We
assume throughout the article, without further mention, that p0 + p1 �= 1.

On the event {NT ≥ 2}, choose a pair of particles (UT ,VT ) ∈ NT uniformly at random
(without replacement). Then let S(T ) be the last time at which these uniformly chosen parti-
cles shared a common ancestor. If NT ≤ 1 then set S(T ) = 0.

If p0 ∈ [0,1) and p2 = 1 − p0, then the model is a birth–death process. In this case we are
able to calculate explicitly the distribution of S(T ) conditional on {NT ≥ 2}. In particular:

• in the supercritical case when p2 > p0, the law of S(T ) conditional on {NT ≥ 2} con-
verges as T → ∞ to a nontrivial distribution with tail satisfying

lim
T →∞P

(
S(T ) ≥ t | NT ≥ 2

) ∼ 2r(m − 1)te−r(m−1)t as t → ∞;
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• in the subcritical case p0 > p2, the law of T −S(T ) conditional on {NT ≥ 2} converges
as T → ∞ to a nontrivial distribution with tail satisfying

lim
T →∞P

(
T − S(T ) ≥ t | NT ≥ 2

) ∼
(

1 − 2p2

3p0

)
er(m−1)t as t → ∞.

In the critical case we can work more generally.

• If L has any distribution satisfying m = E[L] = 1 and E[L2] < ∞, then the law of
S(T )/T conditional on {NT ≥ 2} converges as T → ∞ to a nontrivial distribution on [0,1]
satisfying

lim
T →∞P

(S(T )

T
≥ t

∣∣∣ NT ≥ 2
)

= 2(1 − t)

t2

(
log

(
1

1 − t

)
− t

)
.

This last result is known: Durrett [7] gave a power series expansion, and Athreya [4] gave a
representation in terms of a geometric number of exponential random variables, both of which
agree with our explicit formula. Lambert [16] gave a similar formula for a critical continuous
state branching process. Methods involving the excursion representation of continuum ran-
dom trees were used by Popovic [23], Aldous and Popovic [2], Lambert [17], and Lambert
and Popovic [19] to investigate related questions. We give more details in Section 3.2.

Beyond the critical case, we can find a distributional scaling limit when L is near-critical.
We let the distribution of L depend on T , and write PT to signify that the Galton–Watson
process now depends on T as a result.

• Suppose that L satisfies ET [L] = 1 + μ/T + o(1/T ), ET [L(L − 1)] = β + o(1), and
that L2 is uniformly integrable under PT . Then the law of S(T )/T conditional on {NT ≥ 2}
converges as T → ∞ to a nontrivial distribution on [0,1] satisfying

lim
T →∞PT

(S(T )

T
≥ s

∣∣∣ NT ≥ 2
)

= 2
(

erμ(1−s) − 1

erμ(1−s) − erμ

)

+ 2
(erμ − 1)(erμ(1−s) − 1)

(erμ(1−s) − erμ)2 log
(

erμ − 1

erμ(1−s) − 1

)
.

O’Connell [22], Theorem 2.3, gave this result by using a diffusion approximation, relating
the near-critical process to a time-changed Yule tree, and adapting the method of Durrett [7]
from the critical case. Again, these authors only considered choosing two particles at time T .

All of the above special cases—although they are already interesting in their own right—
are just a taster of our general results. The effectiveness and adaptability of our method is
demonstrated by the fact that it recovers, in these cases, the results of several separate inves-
tigations using different techniques [4, 7, 16, 22]. In our main result (see Theorem 3), we will
give a complete description for the genealogical tree of a uniform sample of k ≥ 2 individuals
in near-critical Galton–Watson processes in the large time limit.

We now attempt to describe our general results in a little more detail. For any k ≥ 2, under
a second moment condition on L, we sample k particles without replacement at time T and
trace back the tree induced by them and their ancestors. It turns out that if we view this
tree backwards in time, then the coalescent process thus obtained is topologically the same as
Kingman’s coalescent, but has different coalescent rates. We give an explicit joint distribution
function for the limiting k − 1 coalescent times, which are asymptotically independent of the
Kingman tree topology: they can be constructed by choosing k independent random variables
with a certain distribution and renormalising by the maximum. Equivalently, the coalescent
times can be viewed as a mixture of independent identically distributed random variables.
The correlation introduced by this mixture is due to fluctuations in the population size. On
the other hand, Kingman’s coalescent usually arises from populations where the total number
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of individuals is kept constant: see, for example, [27]. One of the biggest hurdles in our proof
is to overcome the effect of fluctuations in the population size; we do this using a change of
measure Qk,T under which the coalescent times decorrelate, making calculations easier.

After this article was released, using knowledge of the precise form of our answers, Lam-
bert [18] was able to construct a remarkable method to obtain some of our formulas for
coalescent point processes. However, [18] assumes binary branching, so while it can apply
to birth–death processes, it does not cover our main results concerning general near-critical
Galton–Watson processes. We discuss this approach further in Section 3.2.

Ren, Song and Sun [24, 25] have also subsequently used a 2-spine approach (involving
analogues of our Q2,T ) to give elegant probabilistic proofs of Yaglom theorems about the size
of the population conditional on survival, both for the discrete time critical Galton–Watson
processes [24] and critical superprocesses [25].

In Section 2, we state full details our main results, we present a more intuitive probabilistic
construction of the near-critical scaling limit, and we then provide a heuristic explanation
and intuitive probabilistic derivation for it. We follow that with discussion of some of the
properties of the scaling limit and comparisons to related results in Section 3. In Section 4,
we introduce the tools required to prove our results, including a change of measure and a
version of Campbell’s formula. We then prove our main result for birth–death processes in
Section 5, and our main result for near-critical processes in Section 6.

2. Results. We first describe, in more detail, our continuous-time Galton–Watson tree.
Under a probability measure P, we begin with one particle, the root, which we give the label
∅. This particle waits an exponential amount of time τ∅ with parameter r , and then instanta-
neously dies and gives birth to offspring with labels 1,2, . . . ,L∅, where L∅ is an independent
copy of the random variable L. To be precise, at the time τ∅ the particle ∅ is no longer alive
and its offspring are. These offspring then repeat, independently, this behaviour: each parti-
cle u waits an independent exponential amount of time with parameter r before dying and
giving birth to offspring u1, u2, . . . , uLu where Lu is an independent copy of L, and so on.
We let pj = P(L = j) and m = ∑∞

j=1 jpj . Since we will be using more than one probability
measure, we will write P[·] instead of E[·] for the expectation operator corresponding to P.

Denote by NT the set of all particles alive at time T . For a particle u ∈ NT we let τu be
the time of its death, and define τu(T ) = τu ∧ T . If u is an ancestor of v, we write u ≤ v, and
if u is a strict ancestor of v (i.e., u ≤ v and u �= v) then we write u < v. For technical reasons
we introduce a graveyard � which is not alive (it is not an element of NT ).

For a particle u ∈ Nt and s ≤ t , let u(s) be the ancestor of u that was alive at time s. For
two particles u, v ∈ NT , let σ(u, v) be the last time at which they shared a common ancestor,

σ(u, v) = sup
{
t ≥ 0 : u(t) = v(t)

}
.

Now fix k ∈N, and at time T , on the event NT ≥ k, pick k particles U1
T , . . . ,Uk

T uniformly
at random without replacement from NT . We let Pk

t (T ) be the partition of {1, . . . , k} induced

by letting i and j be in the same block if particles Ui
T and U

j
T shared a common ancestor at

time t , that is, if σ(Ui
T ,U

j
T ) > t . We order the elements of Pk

t (T ) by their smallest element.
There are two aspects to the information contained in Pk

t (T ). The first is the topological
information: given a collection of blocks, which block will split first, and when it does, what
will the new blocks look like? The second is the times at which the splits occur. We will find
that in all of our models, the topological information is asymptotically universal and simple
to describe, whereas the split times are much more delicate and depend on the parameters of
the model. In order to separate out these two aspects, we require some more notation.

Let νk
t (T ) be the number of blocks in Pk

t (T ), or equivalently the number of dis-
tinct ancestors of U1

T , . . . ,Uk
T that are alive at time t ; that is, νk

t (T ) = #{u ∈ Nt :
u < Ui

T for some i ≤ k}.
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For i = 1, . . . , k − 1 let

Sk
i (T ) = inf

{
t ≥ 0 : νk

t (T ) > i
}
.

We call Sk
1 (T ) ≤ · · · ≤ Sk

k−1(T ) the split times. For technical reasons it is often easier to

consider the unordered split times; we let (S̃k
1 (T ), . . . , S̃k

k−1(T )) be a uniformly random per-
mutation of (Sk

1 (T ), . . . ,Sk
k−1(T )).

For i = 1, . . . , k − 1 let P k
i (T ) = Pk

Sk
i

(T ), and let H = σ(P k
1 (T ), . . . ,P k

k−1(T )), so that H
contains all the topological information about the tree generated by U1

T , . . . ,Uk
T , but almost

no information about the split times.

2.1. Birth–death processes. Fix α ≥ 0 and β > 0. Suppose that r = α + β , p0 =
α/(α + β) and p2 = β/(α + β), with pj = 0 for j �= 0,2. This is known as a birth–death
process with birth rate β and death rate α. Note that since there are only binary splits, if there
are at least k particles alive at time T then when we pick k uniformly at random as above there
are always exactly k − 1 distinct split times. Our first theorem gives an explicit distribution
for these split times, in the noncritical case and conditional on {NT ≥ k}.

THEOREM 1. Suppose that α �= β . The unordered split times are independent of H, and
for any s1, . . . , sk−1 ∈ (0, T ] they satisfy

P
(
S̃k

1 (T ) ≥ s1, . . . , S̃k
k−1(T ) ≥ sk−1 | NT ≥ k

)

= k(E0 − α/β)k

(E0 − 1)k−1

[
1

(E0 − α/β)

k−1∏
i=1

Ei − 1

Ei − E0

+
k−1∑
j=1

(Ej − 1)

(Ej − E0)2

(
k−1∏
i=1
i �=j

Ei − 1

Ei − Ej

)
log

(
βE0 − α

βEj − α

)]
,

where Ej = e(β−α)(T −sj ) for each j = 1, . . . , k and s0 = 0. Furthermore, the partition pro-
cess P k

0 (T ),P k
1 (T ), . . . ,P k

k−1(T ) has the following description:

• if P k
i (T ) contains blocks of sizes a1, . . . , ai+1, the probability that the next block to split

will be block j is (aj − 1)/(k − i − 1);
• if a block of size a splits, it creates two blocks whose sizes are l and a− l with probability

1/(a − 1) for each l = 1, . . . , a − 1.

The case of the Yule tree, in which β = 1 and α = 0, gives simpler formulas.

EXAMPLE 1 (Yule tree). Suppose that α = 0 and β = 1. Then for any s ∈ (0, T ],

P
(
S̃2

1 (T ) ≥ s | NT ≥ 2
) = 2(e−s − e−T )(e−s − 1 + s)

(1 − e−T )(1 − e−s)2

and for any s1, s2 ∈ (0, T ],
P

(
S̃3

1 (T ) ≥ s1, S̃3
2 (T ) ≥ s2 | NT ≥ 3

)
= 3

(
e−s1 − e−T )(

e−s2 − e−T )
× (s1(1 − e−s2)2 − s2(1 − e−s1)2 + (1 − e−s1)(1 − e−s2)(e−s2 − e−s1))

(1 − e−T )2(1 − e−s1)2(1 − e−s2)2(e−s2 − e−s1)
.
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Returning to general α �= β , as mentioned in the Introduction, the case k = 2 is of particular
interest. As there is only one split time when the sample consists of a pair of particles, we can
simply write S(T ) = S2

1 (T ). Taking a limit as T → ∞ simplifies the formula significantly,
although we have to consider the supercritical and subcritical cases separately.

EXAMPLE 2 (Supercritical birth–death, T → ∞). Suppose that β > α. Then for any
s > 0,

lim
T →∞P

(
S(T ) ≥ s | NT ≥ 2

) = 2e−(β−α)s

(1 − e−(β−α)s)2

(
(β − α)s − 1 + e−(β−α)s).

EXAMPLE 3 (Subcritical birth–death, T → ∞). Suppose that α > β . Then for any s > 0,

lim
T →∞P

(
S(T ) ≥ T −s | NT ≥ 2

) = 2α2

β2

(
e(α−β)s −1

)(
e(α−β)s log

(
1+ β

αe(α−β)s − β

)
− β

α

)
.

To our knowledge all of these results are new. We note (as Durrett also mentioned in [7])
that in the supercritical case, the time S(T ) is likely to be near 0, whereas in the subcritical
case, S(T ) is likely to be near T . This much is to be expected, but the detailed behaviour
is perhaps more surprising: as mentioned in the Introduction, some elementary calculations
using the formulas above show that in the supercritical case,

lim
T →∞P

(
S(T ) ≥ s | NT ≥ 2

) ∼ 2(β − α)se−(β−α)s as s → ∞,

whereas in the subcritical case,

lim
T →∞P

(
T − S(T ) ≥ s | NT ≥ 2

) ∼
(

1 − 2β

3α

)
e−(α−β)s as s → ∞.

We can also give analogous results in the critical case α = β .

THEOREM 2. Suppose that α = β . The unordered split times are independent of H, and
for any distinct s1, . . . , sk−1 ∈ (0, T ] with si �= sj for any i �= j ,

P
(
S̃k

1 (T )/T ≥ s1, . . . , S̃k
k−1(T )/T ≥ sk−1 | NT ≥ k

)

= k

(
1 + 1

βT

)k
[

1

1 + 1/T

k−1∏
i=1

(
1 − 1

si

)

+
k−1∑
j=1

1 − sj

s2
j

(
k−1∏
i=1
i �=j

1 − si

sj − si

)
log

(
1 + 1/T

1 − sj + 1/T

)]
.

Furthermore, the partition process P k
0 (T ),P k

1 (T ), . . . ,P k
k−1(T ) has the following descrip-

tion:

• if P k
i (T ) contains blocks of sizes a1, . . . , ai+1, the probability that the next block to split

will be block j is (aj − 1)/(k − i − 1);
• if a block of size a splits, it creates two blocks whose sizes are l and a− l with probability

1/(a − 1) for each l = 1, . . . , a − 1.

EXAMPLE 4. Suppose that α = β . Then for any s > 0

P
(
S̃2

1 (T )/T ≥ s | NT ≥ 2
) = 2

(
1 + 1

βT

)2(
1 − s

s2

)(
log

(
1 + 1/T

1 − s + 1/T

)
− s

1 + 1/T

)
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and for any s1, s2 > 0,

P
(
S̃3

1 (T )/T ≥ s1, S̃3
2 (T )/T ≥ s2 | NT ≥ 3

)

= 3(1 + 1
βT

)3(1 − s1)(1 − s2)

s2
1s2

2(s2 − s1)

×
[
s2

2 log
(1 − s1 + 1

T

1 + 1
T

)
− s2

1 log
(1 − s2 + 1

T

1 + 1
T

)
+ s1s2(s2 − s1)

1 + 1
T

]
.

We can easily let T → ∞ in these formulas, but in cases near criticality, if we are willing
to take a scaling limit as T → ∞ then we can work much more generally.

2.2. Near-critical processes: A scaling limit. We no longer restrict to birth–death pro-
cesses; the birth distribution L may take any nonnegative integer value. In order to get a
scaling limit, we take Galton–Watson processes that are near-critical in that the mean num-
ber of offspring is approximately 1 + μ/T when T is large. Henceforth, we will assume the
following:

ASSUMPTION 1. For some μ ∈ R and σ > 0, suppose that for each T > 0, the offspring
distribution L satisfies:

• PT [L] = 1 + μ/T + o(1/T );
• PT [L(L − 1)] = σ 2 + o(1);
• L2 is uniformly integrable under PT (i.e., ∀ε > 0, ∃K such that PT [L21{L>K}] < ε ∀T )

where, for R-valued functions f and g, f (x) = o(g(x)) means that f (x)/g(x) → 0 as
x → ∞.

Conditional on the population surviving to a large time T , we sample k particles uni-
formly without replacement and wish to understand their genealogical tree. Our near critical
Galton–Watson process conditioned to survive for a large time produces a large population
that fluctuates naturally over time. In other branching models with constant population size, it
has been shown that the genealogical tree emerging in the large population limit is Kingman’s
coalescent; see [27]. We find something significantly different and more complex.

THEOREM 3 (Near-critical scaling limit). Suppose that Assumption 1 holds. Then the
split times are asymptotically independent of H, and if μ �= 0, then for any s1, . . . , sk−1 ∈
(0,1) with si �= sj for any i �= j ,

lim
T →∞PT

(
S̃k

1 (T )/T ≥ s1, . . . , S̃k
k−1(T )/T ≥ sk−1 | NT ≥ k

)

= k

k−1∏
i=1

Ei

Ei − E0
+ k

k−1∑
j=1

E0Ej

(Ej − E0)2

(
k−1∏
i=1
i �=j

Ei

Ei − Ej

)
log

E0

Ej

,

where Ej = erμ(1−sj ) − 1 for each j = 0, . . . , k − 1 and s0 = 0. If μ = 0, then instead

lim
T →∞P

(
S̃k

1 (T )/T ≥ s1, . . . , S̃k
k−1(T )/T ≥ sk−1 | NT ≥ k

)

= k

k−1∏
i=1

si − 1

si
− k

k−1∑
j=1

1 − sj

s2
j

(
k−1∏
i=1
i �=j

1 − si

sj − si

)
log(1 − sj ).
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Furthermore, the partition process P k
0 (T ),P k

1 (T ), . . . ,P k
k−1(T ) has the following descrip-

tion:

• if P k
i (T ) contains blocks of sizes a1, . . . , ai+1, the probability that the next block to split

will be block j converges as T → ∞ to (aj − 1)/(k − i − 1);
• if a block of size a splits, with probability tending to 1 it creates two blocks whose sizes

are l and a − l with probability converging to 1/(a − 1) for each l = 1, . . . , a − 1.

In Theorems 1 and 2 we saw that the split times were independent of H. This can-
not be the case in Theorem 3, since two or more split times may be equal with positive
probability, an event which is captured by both the split times and the topological infor-
mation H. However we do see that the split times are asymptotically independent, in that
PT (A ∩ B) → PT (A)PT (B) for any A ∈ σ(Sk

1 (T ), . . . ,Sk
k−1(T )) and B ∈ H, which is the

best that we can hope for.
We note here that the topology of the (limiting) tree described forwards in time in Theo-

rem 3 is the same as that described backwards in time by Kingman’s coalescent; but the times
of splits (or times of mergers, in the coalescent picture) are drastically different.

EXAMPLE 5 (Critical processes). Suppose that P[L] = 1 and P[L2] < ∞. Then for any
s ∈ (0,1),

(1) lim
T →∞P

(
S(T )/T ≥ s | NT ≥ 2

) = 2(1 − s)

s2

(
log

(
1

1 − s

)
− s

)
.

EXAMPLE 6 (Near-critical scaling limit, k = 2). Suppose that the conditions of Theo-
rem 3 hold with μ �= 0. Then for any s ∈ (0,1), as T → ∞,

PT

(
S(T )/T ≥ s | NT ≥ 2

) →2
(

erμ(1−s) − 1

erμ(1−s) − erμ

)

+ 2
(erμ − 1)(erμ(1−s) − 1)

(erμ(1−s) − erμ)2 log
(

erμ − 1

erμ(1−s) − 1

)
.

Both these examples are known [22], but to our knowledge the general formula is not. We
give more information on related results in Section 3.1.

2.3. Construction of the near-critical scaling limit. In this section we investigate further
the scaling limit observed in Theorem 3. Our aim is to give a more intuitive probabilistic
understanding of the scaling limit, rather than the explicit formulas seen in Theorems 1 to 3.
We continue to work under Assumption 1, given in Section 2.2.

Theorem 3 says that the rescaled unordered split times, conditional on at least k particles
being alive at time T , converge jointly in distribution to an explicit limit,

( S̃k
1 (T )

T
, . . . ,

S̃k
k−1(T )

T

)
(d)−→ (

S̃k
1 , . . . , S̃k

k−1
)
.

We aim to shed some more light on this limit. First we note that, although the split times (for
fixed T ) do not usually have a joint density—with positive probability one split time may
equal another—their scaling limit does have a density. Indeed, from the proof of Theorem 3
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(or by checking directly) we see that this density satisfies (with s0 = 0)

fk(s1, . . . , sk−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(rμ)k−1(
1 − e−rμ)

×
∫ ∞

0
θk−1

k−1∏
i=0

erμ(1−si )

(1 + θ(erμ(1−si ) − 1))2 dθ if μ > 0,

k

∫ ∞
0

θk−1
k−1∏
i=0

1

(1 + θ(1 − si))2 dθ if μ = 0,

k(−1)k(rμ)k−1(
1 − e−rμ)

×
∫ ∞

0
θk−1

k−1∏
i=0

erμ(1−si )

(1 − θ(erμ(1−si ) − 1))2 dθ if μ < 0.

The following two theorems give constructions of the scaling limits of the tree in the spirit
of Aldous’ construction of Kingman’s coalescent [3], Section 4.2. In particular it gives a
method for consistently constructing the times (S̃k

1 , . . . , S̃k
k−1).

THEOREM 4 (A construction for critical genealogies). Suppose that μ = 0. Let X1,

X2, . . . be a sequence of independent and identically distributed random variables on (0,∞)

with density (1 + x)−2. Let Mk = maxi≤k Xi , and choose I such that XI = Mk . For
i ≤ k define Ti = 1 − Xi/Mk . Then (T1, . . . , TI−1, TI+1, . . . , Tk) is equal in distribution to
(S̃k

1 , . . . , S̃k
k−1).

Moreover, the ancestral tree drawn out by the k uniformly chosen particles has the follow-
ing description: let U1,U2, . . . be independent uniform random variables on [0,1]. Within
the unit square, for each 1 ≤ i ≤ k, draw a vertical line from (Ui,0) to (Ui,1 − Ti). These
lines represent the branches of our tree. Now, for each 1 ≤ i ≤ k − 1, draw a horizontal line
starting from (Ui, Ti) towards (UI , Ti) but stopping as soon as it hits another vertical line
(see Figure 1).

This result, in particular, clarifies the consistency of the split times. Of course, if we choose
k + 1 particles uniformly without replacement at time T , and then forget one of them, the
result should be consistent with choosing k particles originally. This is not immediately ob-
vious from the distribution in Theorem 3, but it follows easily from the construction in The-
orem 4. In fact, the particular choice of U1,U2, . . . is not so important above; they simply
provide a convenient way to consistently construct random permutations of {1, . . . , k} for
every k ∈ N.

FIG. 1. A representation of the rescaled tree drawn out by 5 particles chosen uniformly at random from those
alive at a large time. Here I = 4.
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THEOREM 5 (A construction for near-critical genealogies). Suppose that μ �= 0. Let
X1,X2, . . . be a sequence of independent and identically distributed random variables on
(0,∞) with density (1 + x)−2. Let Mk = maxi≤k Xi , and choose I such that XI = Mk . For
i ≤ k define

Ti = 1 − 1

rμ
log

(
1 + (

erμ − 1
) Xi

Mk

)
.

Then (T1, . . . , TI−1, TI+1, . . . , Tk) is equal in distribution to (S̃k
1 , . . . , S̃k

k−1). Moreover, the
ancestral tree drawn out by the k particles has the same construction as in Theorem 4.

2.4. Heuristic explanation of our results. In this section, we aim to give a quick intuitive
probabilistic derivation of Theorem 4. For this we will need to use a certain very natural
probability measure, Qk,T . While Qk,T will not be defined until Section 4 (see (6)), and
is fundamental to our approach, for now it will be sufficient to know only a few of its basic
properties. The probability measure Qk,T will describe the behaviour of k distinguished spine
particles along which standard Galton–Watson processes are immigrated. Under Qk,T , these
k spines will have the property of looking like a uniform choice without replacement from
the NT particles alive at time T . For this heuristic we will use this measure Qk,T , together
with the classical theorems of Kolmogorov [15] about the asymptotics of the survival prob-
ability, and Yaglom [28] about the distribution of the scaled population size conditioned to
survive.

Let Ek be any event concerning the tree drawn out by the k uniformly sampled particles
(we will only consider these conditionally on NT ≥ k so that they always exist). It will be
easy to show, using the definition of our change of measure Qk,T , that

(2)
P(Ek | NT ≥ k) = Qk,T

[ 1
E

ξ
k

NT (NT − 1) · · · (NT − k + 1)

]

× P[NT (NT − 1) · · · (NT − k + 1)]
P(NT ≥ k)

,

where E
ξ
k is the event corresponding to Ek , but for the k spines under Qk,T , rather than the k

uniformly chosen particles under P.
Now, the second fraction above can be approximated using Yaglom’s theorem: as T → ∞,

(3)

P[NT (NT − 1) · · · (NT − k + 1)]
P(NT ≥ k)

= P
[
NT (NT − 1) · · · (NT − k + 1) | NT ≥ k

]
∼ T kP

[
(NT /T )k | NT > 0

] ∼ T kP
[
Ek],

where E is an exponential random variable with parameter 2/σ 2. Therefore, in order to de-
scribe the distribution of the tree drawn out by the k uniformly sampled particles under P
when T is large, it suffices to understand the joint distribution of the tree drawn out by the k

spines together with NT under Qk,T when T is large.
Write τi = S̃k

i (T )/T for the scaled split times of the k uniformly sampled particles, and

τ
ξ
i for the scaled split times of the k spine (unordered, in the sense that they are a random

permutation of the ordered split times). In Proposition 27, Lemma 28, and also the discussion
in Section 4.4, we will see that in the limit as T → ∞ under Qk,T , the times (τ

ξ
1 , . . . , τ

ξ
k−1)

are uniform random variables on [0,1], and the topology of the underlying tree is equivalent
to the topology of Kingman’s coalescent restricted to k blocks. Here is a way of construct-
ing such a tree, again in the spirit of Aldous [3], Section 4.2, and similar to Figure 1. Let
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U0, . . . ,Uk−1 and V1, . . . , Vk−1 be independent uniform random variables on [0,1]. Also let
V0 = 1. Within the unit square, for each 0 ≤ i ≤ k − 1, draw a line from (Ui,0) to (Ui,Vi).
These lines represent the branches of our tree. Now, for each 1 ≤ i ≤ k − 1, draw a horizontal
line starting from (Ui,Vi) towards (U0,Vi) but stopping as soon as it hits another (verti-
cal) line. This is our description of the tree drawn out by the spines under Qk,T as T → ∞.
(Note, as earlier, the particular choice of the Ui is merely a convenient way to give a random
permutation of the vertical lines; the scale on the horizontal axis has no meaning here yet.)

Now we explain how to observe the joint distribution of this tree and the total population
size, given the description above. Under Qk,T , each spine—that is, each vertical line in our
picture—behaves in the same way, giving birth to ordinary particles at a constant rate (in-
dependent of the number of marks following the spine); this can be seen from Lemma 9.
Thus the contribution to the total population of a vertical line of length v in our picture is
simply the contribution to the total population of a single spine that lived for time vT . It is
immediate from the definition of Q1,vT that a single spine results in a size-biasing of the total
population size; by Yaglom’s theorem, under P, the total population size after time vT is ap-
proximately vT times an independent exponential random variable of parameter 2/σ 2, and
therefore under Q1,vT the total population size is approximately vT times an independent
Gamma random variable of parameters (2,2/σ 2).

Thus the total population size NT under Qk,T satisfies

NT

T
→(d)

k−1∑
i=0

Vi�i,

where the branch lengths V1, . . . , Vk−1 are independent U [0,1] random variables, V0 = 1,
and �0, . . . ,�k−1 are independent identically distributed �(2,2/σ 2) random variables. Now,
a uniform random variable multiplied by an independent �(2,2/σ 2) random variable is
exponentially distributed with parameter 2/σ 2; that is, Ei := Vi�i ∼ Exp(2/σ 2) for i =
1, . . . , k − 1. As V0 = 1, V0�0 is distributed as the sum of two independent exponential
random variables, say E0 and E ′

0, each with parameter 2/σ 2. Thus, the total population size
under Qk,T is approximately T times a sum of k + 1 independent Exp(2/σ 2) random vari-
ables, or in other words, T times a �(k + 1,2/σ 2) random variable. We can now re-draw our
probabilistic representation of the rescaled tree under Qk,T for large T to jointly include the
topology, split times, and sub-populations; see Figure 2. (Note, the new horizontal scale cor-
responds to sub-population sizes; here, we only used the earlier U values to give the random
ordering of the vertical lines.)

FIG. 2. A probabilistic representation of the rescaled tree under Q5,T for large T . Each triangle represents
the contribution towards the total population from particles that branched off the adjacent spine. The random
variables drawn on the horizontal axis can be interpreted as population size.
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To complete the explanation of our results, continuing from (2) and (3), we now see that

P(τ1 ∈ dt1, . . . , τk−1 ∈ dtk−1 | NT ≥ k) ∼ Qk,T

[ 1{τ ξ
1 ∈dt1,...,τ

ξ
k−1∈dtk−1}

NT (NT − 1) · · · (NT − k + 1)

]
T kP

[
Ek]

∼ P

[
1{1−V1∈dt1,...,1−Vk−1∈dtk−1}

T k(
∑k−1

i=0 Vi�i)k

]
T kP

[
Ek]

= P

[
1

(
∑k−1

i=0 (1 − ti)�i)k

]
P

[
Ek]dt1 · · ·dtk−1.

We note the fact that, for any α > 0, 1
αk = 1

(k−1)!
∫ ∞

0 zk−1e−αz dz. Thus, we find

P(τ1 ∈ dt1, . . . , τk−1 ∈ dtk−1 | NT ≥ k)

∼ P

[
1

(k − 1)!
∫ ∞

0
zk−1e−z

∑k−1
i=0 (1−ti )�i dz

]
P

[
Ek]dt1 · · ·dtk−1

= 1

(k − 1)!
∫ ∞

0
zk−1

k−1∏
i=0

1

(1 + σ 2

2 (1 − ti)z)2
dzk!

(
σ 2

2

)k

dt1 · · ·dtk−1

= k

∫ ∞
0

zk−1
k−1∏
i=0

1

(1 + (1 − ti)z)2 dz dt1 · · ·dtk−1.

Indeed, this is the joint density of the coalescent times in the critical case as given in Sec-
tion 2.3, and consistent with the construction in Theorem 4. Further, integrating gives the
joint distribution function in Theorem 2.

Note that in near-critical cases a similar picture will hold, although the distribution of the
rescaled spine split times will not be uniform and will have a density that is proportional to
erμ(1−s) for s ∈ [0,1]. See Section 6 for more details.

3. Further discussion of the results. In this section we try to understand our scaling
limit further, compare it to known results, and explore other ways of obtaining similar repre-
sentations. For brevity, we will not worry too much about technical details. We will return to
full rigour in Sections 4, 5 and 6, in order to prove our main results.

3.1. Comparison to known formulas. As mentioned in the Introduction, the critical case
μ = 0 has been investigated by other authors. For k = 2, Athreya [4] gave an implicit de-
scription of the distributional limit of S(T )/T . In fact, he worked with discrete-time Galton–
Watson processes, but this makes no difference in the limit, and we will continue to use our
continuous-time terminology and notation for ease of comparison. By considering the num-
bers of descendants at time T of particles alive at an earlier time sT , Athreya showed that

lim
T →∞P

(
S(T )/T < s | NT ≥ 2

) = 1 − E
[
φ(Gs)

]
,

where Gs satisfies P(Gs = j) = (1 − s)sj−1 for j ≥ 1, and

φ(j) = E

[ ∑j
i=1 η2

i

(
∑j

i=1 ηi)2

]
,

where η1, η2, . . . are independent exponential random variables of parameter 1.
One can show using properties of the exponential distribution that φ(j) = 2/(j + 1), and

a simple computation shows that this description of the scaling limit agrees with our own
formula (1). We omit this calculation here, but it is available in full as Lemma 6 of [12].
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Durrett [7] also gave a description for the limit of S(T )/T in the critical case, showing
that

lim
T →∞P

(
S(T )/T > s | NT ≥ 2

) = (1 − s)

(
1 + 2

∞∑
j=1

sj

j + 2

)
.

It is easy to expand our formula (1) as a power series and check that it agrees with the above.
Durrett, in fact, went on to give power series expressions when k = 3 for the distributions of
S3

1 and S3
2 . He further stated that it was “theoretically” possible to calculate distributions of

split times for k > 3, and also mentioned that he could derive a joint distribution for S3
1 and

S3
2 , again in power series form, but that “we would probably not obtain a useful formula”.

This makes clear the advantage of our method, which gives explicit formulas for the joint
distribution for each k without going through an iterative procedure.

O’Connell [22] gave exactly the formula in our Example 6, the near-critical scaling limit
in the case k = 2. He also provided a very interesting application to a biologically motivated
problem: how long ago did the most recent common ancestor of all humans live?

In subcritical and supercritical cases, it is impossible to give such explicit results in gener-
ality as the genealogical structure of the tree depends on the detail of the offspring distribu-
tion. However one can characterize the distribution of the split times using integral formulas
involving the generating function of the offspring distribution. Lambert [16] (in discrete time)
and Le [21] (in continuous time) did this in the case k = 2 for quite general Galton–Watson
processes. Le also investigated the case k ≥ 3, but gave only an implicit representation for
the joint distribution of the split times. More recently Grosjean and Huillet [10] and Johnston
[14] gave detailed answers for general k.

Donnelly and Kurtz [6], Theorem 5.1, showed that the genealogy of the Feller diffusion
is a time-change of Kingman’s coalescent, in which the rate at which two lineages merge is
inversely proportional to the population size. The Feller diffusion started from x is itself the
scaling limit of a critical Galton–Watson process started with a population of size �Nx�, so
taking a limit as x ↓ 0 one might expect to be able to recover our results. However, finding
the marginal distribution of the coalescent times—that is, not conditional on the population
size—is highly nontrivial, as the two quantities are so closely connected; this can be seen in
(2), for example. We manage to overcome this serious difficulty by decoupling the depen-
dence between the population size and the split times via the measure Qk,T , which adjusts
for the varying population size while simultaneously ensuring the k spines form a uniform
sample without replacement from population at time T .

Besides being more difficult, the question of understanding the distribution of the coales-
cent tree drawn out by a sample from a large population, without knowing the population
size, appears to be more natural from the point of view of biological applications.

3.2. Contour processes and the continuum random tree. It is known that a critical
Galton–Watson tree conditioned to survive until time T converges, as T → ∞ (in a suit-
able topology), to a continuum random tree. There is a vast literature, beginning with Aldous
[1], on continuum random trees. For our discussion we can think of drawing our tree, condi-
tioned to survive to time T and renormalised by T , and tracing a contour around it starting
from the root and proceeding in a depth-first manner from left to right. The height of that
contour process converges as T → ∞ to a Brownian excursion (Bt )t∈[0,ν] conditioned to
reach height 1. It is easy to see that two points u, v ∈ [0, ν] correspond to the same “vertex”
in the limiting tree if they are at the same height and the excursion between u and v is always
above Bu. The total population of the tree at time sT corresponds to the local time of the
Brownian excursion at level s. Choosing two particles at time T means picking two points
on the excursion at height 1 according to the local time measure; and the two particles have
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FIG. 3. A Brownian excursion conditioned to reach height 1. Two points U1 and U2 are chosen uniformly
according to local time at height 1, and the induced tree is drawn below the excursion.

a common ancestor at time t if the two points chosen are in the same sub-excursion above
height t .

In order to calculate the probability of this last event, we (obviously) need to know a little
about Brownian excursions. Excursions, indexed by local time, occur according to a Poisson
point process with intensity Lebesgue ×n for some excursion measure n. This measure n

satisfies n(supt f (t) > a) = 1
2a

; and the local time at 0 when the Brownian motion first hits
−δ is exponentially distributed with parameter 1

2δ
. See, for example, [26].

Take a Brownian excursion conditioned to reach height 1, and choose two points U1 and
U2 at height 1 uniformly according to local time measure; see Figure 3. Let L1 be the total
local time at level 1, and LU be the total local time between U1 and U2. The event that U1
and U2 are in the same sub-excursion above height s is exactly the event that there is no
excursion from level 1 between U1 and U2 that goes below level s (and stays above level 0);
by the facts about Brownian excursions above, given LU , the number of such excursions is
a Poisson random variable with parameter LU( 1

2(1−s)
− 1

2). Thus the probability that U1 and
U2 are in the same sub-excursion above height s is∫ ∞

0
P(L1 ∈ dx)

∫ x

0
P(LU ∈ dy | L1 = x)e

−y( 1
2(1−s)

− 1
2 )

.

The local time L1 is exponential of parameter 1/2, and the density of the distance between
two uniform random variables on (0, x) is 2(x − y)/x2. Thus the above equals∫ ∞

0

1

2
e−x/2

∫ x

0

2(x − y)

x2 e
−y( 1

2(1−s)
− 1

2 ) dy dx.

Making the substitution z = y/x and swapping integrals, it is easy to integrate directly to
obtain the distribution of the limiting split time S and check that it agrees with (1).

Applying this excursion machinery works well in this simple case. However it becomes
much more difficult to generalise these techniques to obtain the joint distribution of the split
times for three particles; let alone the general formula for k particles that appeared in Theo-
rem 3.

Popovic [23] used the following observation. Condition on the event that there are exactly
k particles alive at time Tk , so that the k particles we choose comprise the whole population,
then rescale by Tk and let k → ∞. If Tk/k → t , then the contour process converges to a
Brownian excursion conditioned to have local time 1 at level t ; and the split times are then
governed by the entire collection of excursions below level t . These excursions form a Pois-
son point process with an explicit intensity measure. This allowed Popovic to give some very
interesting results about critical processes, and similar techniques were built upon in various
ways by her and other authors [2, 9, 17, 19]. Although these are related to our investigation,
they often look at the entire population alive at time T , rather than sampling a fixed number
of individuals, which results in a different scaling regime. Biological motivation for why we
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might like to sample a fixed number of individuals from a fluctuating population—that is, our
regime—can be found in [22].

After this article was released, Lambert [18] constructed a remarkable method for ob-
taining some of our formulas from contour processes. Given a branching process whose
population at time T is geometrically distributed (e.g., a birth–death process), the work in
[20] allows one to sample each particle at time T independently with some fixed probability
y ∈ (0,1) and reconstruct the genealogical tree of the sampled particles. By taking y to be a
realisation of a carefully chosen improper random variable Y , and conditioning the resulting
number of particles sampled to be exactly k, in [18] Lambert produces our Proposition 19.
However, constructing the correct (improper) distribution for Y would have been extremely
difficult without prior knowledge of the answers provided by our results.

Lambert’s results in [18] are for a large class of processes known as coalescent point
processes. However, coalescent point processes necessarily have geometrically distributed
population sizes. As Lambert says in [18], “we consider here possibly non-Markovian and
time-inhomogeneous branching processes, but always binary.” For Galton–Watson processes,
this means only our birth–death process results are in common with Lambert’s coalescent
point process results in [18]. In a more recent private communication, Lambert has told us
that he can carry out his construction even in nonbinary cases, and that his results hold beyond
geometrically distributed population sizes.

Another advantage of our approach is that it does not require a Markovian contour process,
and could be generalised, for example, to Galton–Watson processes with infinite variance, or
spatial branching processes. We plan to carry out these generalisations in future work.

3.3. Reduced trees. For a moment forget about the scaling limit, and consider a birth–
death process (i.e., fix α ≥ 0 and β > 0, and suppose that r = α + β , p0 = α/(α + β) and
p2 = β/(α + β), with pj = 0 for j �= 0,2). Colour any particle that has a descendant alive at
time T purple.

The purple tree, often called the reduced tree in the literature, was first introduced by
Fleischmann and Siegmund–Schultze [8] and is used in several of the references given in
Section 3.1, in particular O’Connell [22]. Harris, Hesse and Kyprianou [11] used a similar
construction for supercritical branching processes.

Now suppose that, rather than running the birth–death process until time T and then
colouring the particles, we want to construct the coloured picture dynamically as the pro-
cess evolves. If we start with one particle and condition on the process surviving until time
T , then the first particle is certainly purple, since at least one of its descendants must survive.

Let pt = P(Nt = 0). Using generating functions one can show that

pt = αe(β−α)t − α

βe(β−α)t − α
, 1 − pt = (β − α)e(β−α)t

βe(β−α)t − α
;

see Section 5.1 for details. If a purple particle branches at time s, then it must have either one
or two purple children. The probability that they are both purple is (1 − pT −s)

2/(1 − p2
T −s),

corresponding to the probability that both descendancies survive given that at least one does.
Similarly one can calculate the probability that exactly one is purple; that purple particles
branch at rate β(1 + pT −s) at time s; and that other particles branch at rate βpT −s at time s.
In particular purple particles give birth to new purple particles at rate

β(1 + pT −s) · (1 − pT −s)
2

1 − p2
T −s

= β(1 − pT −s).

Similar calculations can also be done generally, rather than just for birth–death processes.
See [12], Section 3.3, and [11] for more details.
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Of course, to understand the coalescent structure of the tree drawn out by particles chosen
at time T , we can ignore the red particles. Let us now return to a near-critical scaling limit
by assuming that β = α + γ /T for some γ �= 0. Scaling time [0, T ] onto [0,1] and letting
T → ∞, at time s ∈ (0,1) one can check that the purple tree undergoes binary branching at
rate

(4) lim
T →∞Tβ(1 − pT (1−s)) = γ eγ (1−s)

eγ (1−s) − 1
.

Thus we see that the purple tree in the near-critical scaling limit is the same as a Yule tree
(binary branching at rate 1) observed under the time change

t �→
∫ t

0

γ eγ (1−s)

eγ (1−s) − 1
ds = log

(
eγ − 1

eγ (1−t) − 1

)
.

Following the same route in the critical case α = β gives that the rescaled purple tree
branches at rate (1 − s)−1, corresponding to a Yule tree under the time change t �→
− log(1 − t).

These calculations help to explain the similarities between our formulas in the near-critical
scaling limit (Theorem 3) and in the birth–death process (Theorem 1). In particular, for the
coalescence behaviour, only the purple tree matters. In the large time T limit, only binary
branching occurs in the purple tree, since the chance of any purple particle having more
than one other purple offspring at a time (or in close proximity) becomes negligible. Further,
the purple branching rate is given by the limit of the original branching rate weighted by
the probability of survival, that is, limT →∞ Tβ(1 − pT (1−s)), and this rate corresponds to a
simple deterministic time change of a Yule tree in all near-critical cases.

An anonymous referee pointed out to us that Theorem 2.2 of [22] gives an incorrect for-
mula in place of our (4), although the main Theorem 2.3 of [22] is nevertheless correct.

4. Spines and changes of measure. In this section we lay down many of the technical
tools that we will need to prove the results in the previous sections. Our two most important
signposts will be Proposition 7, which translates questions about uniformly chosen particles
under P into calculations under a new measure Q; and Proposition 16, which is a version of
Campbell’s formula under Q which will be central to our analysis.

First we must introduce Q, and we begin by describing the idea of spines, which introduce
extra information into our tree by allocating marks to certain special particles. Spine methods
are well known; for a thorough treatment see [13]. We give only a brief introduction.

4.1. The k-spine measure Pk . We define a new measure Pk under which there are k

distinguished lines of descent, which we call spines. Briefly, Pk is simply an extension of P
in that all particles behave as in the original branching process; the only difference is that
some particles carry marks showing that they are part of a spine.

Under Pk particles behave as follows:

• We begin with one particle which carries k marks 1,2, . . . , k.
• We think of each of the marks 1, . . . , k as distinguishing a particular line of descent or

“spine”, and define ξ i
t to be the label of whichever particle carries mark i at time t .

• A particle carrying j marks b1 < b2 < · · · < bj at time t branches at rate r , dying and
being replaced by a random number of particles according to the law of L, independently of
the rest of the system, just as under P.

• Given that a particles v1, . . . , va are born at a branching event as above, the j marks
each choose a particle to follow independently and uniformly at random from among the a

available. Thus for each 1 ≤ l ≤ a and 1 ≤ i ≤ j the probability that vl carries mark bi just
after the branching event is 1/a, independently of all other marks.
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FIG. 4. Spines, ordinary particles and residue particles. The horizontal axis represents time. The numbers show
how many marks are carried by each spine.

• If a particle carrying j > 0 marks b1 < b2 < · · · < bj dies and is replaced by 0 particles,
then its marks are transferred to the graveyard �.

Again we emphasise that under Pk , the system behaves exactly as under P except that
some particles carry extra marks showing the lines of descent of k spines. We write ξt =
(ξ1

t , . . . , ξ k
t ). Obviously ξt depends on k too, but we omit this from the notation.

We let nt be the number of distinct spines (i.e., the number of particles carrying marks) at
time t , and for i ≥ 1

ψi = inf
{
t ≥ 0 : nt /∈ {1, . . . , i}}

with ψ0 = 0. We view ψi as the ith spine split time (although, e.g., the first and second spine
split times may be equal—corresponding to marks following three different particles at the
first branching event). We also let ρi

t be the number of marks following spine i.
The set of distinct spine particles at any time t , and the marks that are following those

spine particles, induce a partition Zk
t of {1, . . . , k}. That is, i and j are in the same block

of Zk
t if ξ i

t = ξ
j
t . If we then let Zk

i = Zk
ψi

for i = 0, . . . , k − 1, we have created a discrete
collection of partitions Z0,Z1, . . . ,Zk−1 which describe the topological information about
the spines without the information about the spine split times. It will occasionally be useful
to use the σ -algebra H′ = σ(Z0,Z1, . . .).

For any particle u ∈ Nt , there exists a last time at which u was a spine (which may be t).
If this time equals ψi for some i, then we say that u is a residue particle; if it does not equal
ψi for any i, and u is not a spine, then we say that u is ordinary. Each particle is exactly one
of residue, ordinary, or a spine. See Figure 4.

Of course Pk is not defined on the same σ -algebra as P. We let Fk
t be the filtration contain-

ing all information about the system, including the k spines, up to time t ; then Pk is defined
on Fk∞. For more details see [13], Section 5. Let F0

t be the filtration containing only the infor-
mation about the Galton–Watson tree. Let G̃k

t be the filtration containing all the information
about the k spines (including the birth events along the k spines) up to time t , but none of the
information about the rest of the tree. Finally let Gk

t be the filtration containing information
only about spine splitting events (including which marks follow which spines); Gk

t does not
know when births of ordinary particles from the spines occur.

4.2. A change of measure. We will now introduce a new measure. Under this measure,
the k spines will be uniformly chosen (without replacement) at time T , which will allow
us to represent uniformly chosen particles under P as calculations using the spines under
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our new measure. This very natural new measure has some remarkable properties, including
the fact that it can be fully described forwards in time. Without this new measure we found
calculating with uniformly chosen particles to be intractable.

Throughout the rest of this section we fix k ≥ 1 and assume that P[Lk] < ∞. This condi-
tion will be relaxed later (see (20)), but for now it is required even to define our change of
measure.

For any set S and k ≥ 1, let S(k) be the set of distinct k-tuples from S, and for n ≥ 0, write

n(k) =
{
n(n − 1)(n − 2) · · · (n − k + 1) if n ≥ k,

0 otherwise.

Note that |S(k)| = |S|(k). For t ≥ 0, define

gk,t := 1{ξ i
t �=ξ

j
t ∀i �=j}

k∏
i=1

∏
v<ξi

t

Lv and ζk,t := gk,t

P[N(k)
t ] .

LEMMA 6. For any t ≥ 0, Pk[gk,t | F0
t ] = N

(k)
t . In particular, Pk[ζk,t ] = 1.

PROOF. From the definition of gk,t ,

Pk[gk,t | F0
t

] = Pk

[ ∑
u∈N (k)

t

1{ξt=u}
k∏

i=1

∏
v<ui

Lv

∣∣∣ F0
t

]
= ∑

u∈N (k)
t

(
k∏

i=1

∏
v<ui

Lv

)
Pk(ξt = u | F0

t

)
.

Recall that the marks act independently, and at each branching event choose uniformly among
the available children. Therefore

(5) Pk(ξt = u | F0
t

) =
k∏

i=1

Pk(ξ i
t = ui | F0

t

) =
k∏

i=1

∏
v<ui

1

Lv

.

Thus

Pk[gk,t | F0
t

] = ∑
u∈N (k)

t

1 = ∣∣N (k)
t

∣∣ = N
(k)
t .

This gives the first part of the result, and taking expectations gives the second. �

We now fix T > 0 and define a new probability measure Qk,T by setting

(6)
dQk,T

dPk

∣∣∣∣
Fk

T

:=
1{ξ i

T �=ξ
j
T ∀i �=j}

∏k
i=1

∏
v<ξi

T
Lv

P[NT (NT − 1) · · · (NT − k + 1)] = ζk,T .

Often, when the choice of T and k is clear, we write P instead of Pk (since Pk is an extension
of P this should not cause any problems) and Q instead of Qk,T . Then, by Lemma 6,

(7)
dQk,T

dPk

∣∣∣∣
F0

T

= NT (NT − 1) · · · (NT − k + 1)

P[NT (NT − 1) · · · (NT − k + 1)] = N
(k)
T

P[N(k)
T ] =: Zk,T .

To see why the measure Qk,T will be useful to us, we show how questions about particles
sampled uniformly without replacement under P become questions about the spines under Q.
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PROPOSITION 7. Suppose that f is a measurable functional on the genealogies of k-
tuples of particles. Then

P

[
1

N
(k)
T

∑
u∈N (k)

T

f (u)
∣∣∣ NT ≥ k

]
= P[N(k)

T ]
P(NT ≥ k)(k − 1)!

∫ ∞
0

(
ez − 1

)k−1
Qk,T [

e−zNT f (ξT )
]
dz.

We defer the proof of this result to Section 4.6.

4.3. Description of Qk,T . In this section, we give a full description of the measure Qk,T .
We defer the proofs to Section 4.5.

Our first lemma states that Qk,T satisfies a time-dependent Markov branching property, in
that the descendants of any particle behave independently of the rest of the tree.

LEMMA 8 (Symmetry lemma). Suppose that v ∈ Nt is carrying j marks at time t . Then,
under Qk,T , the subtree generated by v after time t is independent of the rest of the system
and behaves as if under Qj,T −t .

We will see in Section 4.6 (specifically (11) and the discussion following it) that particles
that are not spines behave exactly as under Pk : they branch at rate r and have offspring
distribution L. The behaviour of the spine particles is more complicated.

Recall that τ∅ is the first branching event, and ψ1 is the time of the first spine splitting
event, that is,

ψ1 = inf
{
t ≥ 0 : ∃i, j with ξ i

t �= ξ
j
t

}
.

(Note that if the spines die without giving birth to any children, this counts as a splitting
event.) By the symmetry lemma, in order to understand the split times under Q, it suffices to
understand the distributions of τ∅ and ψ1.

LEMMA 9. For any t ∈ [0, T ] and k ≥ 0, we have

Qk,T (τφ > t) = Pk[N(k)
T −t ]

Pk[N(k)
T ] e−rt , Qk,T (ψ1 > t) = Pk[N(k)

T −t ]
Pk[N(k)

T ] e(m−1)rt

and Qk,T (τφ > t | ψ1 > t) = e−mrt .

The third part of Lemma 9 and the symmetry lemma tell us that given Gk
T (the information

about spine splitting events), under Qk,T each spine gives birth to nonspine particles accord-
ing to a Poisson process of rate mr , independently of everything else. In particular when there
are n distinct spines alive, there are n independent Poisson point processes and the total rate
at which nonspine particles are immigrated along the spines is nmr .

We call birth events that occur along the spines, but which do not occur at spine splitting
events, births off the spine. The following lemma tells us the distribution of the number of
children born at such events.

LEMMA 10. For any j ≥ 0, k ≥ 1 and 0 ≤ t < T , Qk,T (L∅ = j | τ∅ = t,ψ1 > t) = jpj

m
.

A random variable that takes the value j with probability jpj/m for each j is said to be
size-biased (relative to L). Lemma 10 then tells us (in conjunction with the symmetry lemma)
that births off any spine are always size-biased, no matter how many marks are following that
particular spine. (The number of marks therefore only affects spine splitting events.)
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To have a complete description of the behaviour of the process under Qk,T , it remains
to understand how the marks distribute themselves among the available children at a spine
splitting event. To do this, we write Pξ

t for the partition of {1, . . . , k} induced by letting i and
j be in the same block if the ith and j th spines are following the same particle at time t . By
the symmetry lemma, again it suffices to consider the first spine splitting event.

LEMMA 11. Conditional on {ψ1 > t}, the Qk,T -conditional probability that during the
time interval [t, t + h), the spine particle dies and gives birth to l offspring, and at this time
the marks are partitioned according to a partition P with blocks of sizes a1, . . . , an, is given
by

Qk,T (
ψ1 < t + h,Pξ

ψ1
= P,Lξ1

t
= l | ψ1 > t

) = pll
(n)

∏n
i=1 P

k[N(ai)
T −t ]

Pk[N(k)
T −t ]

(
rh + o(h)

)
.

For a collection of positive integers a1, . . . , an whose sum is k, write nj = #{i : ai = j} for
each j ≥ 1. (Note that

∑k
j=1 nj = n and

∑k
j=1 jnj = k.) Then the number of partitions of

{1, . . . , k} into blocks of sizes a1, . . . , an is
k!∏n

i=1 ai !
1∏k

j=1 nj !
.

Combining this observation with Lemmas 9 and 11 gives us the following corollary.

COROLLARY 12.

Qk,T (
ψ1 ∈ [t, t + dt), spines split into groups of sizes a1, . . . , an,Lξ1

t
= l

)

= l(n)pl

P[L(n)]
k!∏n

i=1 ai !∏k−1
j=1 nj !

P
[
L(n)]re(m−1)rt

∏n
i=1 P

k[N(ai)
T −t ]

Pk[N(k)
T ] dt.

4.4. Understanding the measure Qk,T as T → ∞. To help the reader to understand the
results from the previous section, particularly Corollary 12, we let T → ∞ and ask what
happens to the tree drawn out by the spines. For brevity we will concentrate on the critical
case m = 1, although similar calculations could be done in near-critical cases. Take m = 1,
n = 2 and t = sT in Corollary 12; if a1 �= a2 then we get

Qk,T (
ψ1 ∈ [sT , sT + T ds), spines split into two groups of sizes a1, a2,Lξ1

sT
= l

)

= l(l − 1)pl

P[L(L − 1)]
k!

a1!a2!P
[
L(L − 1)

]
r
Pk[N(a1)

T (1−s)]Pk[N(a2)
T (1−s)]

Pk[N(k)
T ] T ds.

We now let T → ∞ and use Kolmogorov’s theorem that T P(NuT > 0) → 2/(σ 2ru), as well
as Yaglom’s theorem which says that conditional on survival, NuT /T converges in distribu-
tion to an exponential random variable of rate 2/(σ 2ru). Letting E1 and E2 be exponentially
distributed with parameters 2/(σ 2r(1 − s)) and 2/(σ 2r), respectively, this gives

lim
T →∞Qk,T (

ψ1 ∈ [sT , sT + T ds), spines split into two groups of sizes a1, a2,Lξ1
sT

= l
)

= l(l − 1)pl

P[L(L − 1)]
k!

a1!a2!P
[
L(L − 1)

]
r

2
T σ 2r(1−s)

T a1Pk[Ea1
1 ] 2

T σ 2r(1−s)
T a2Pk[Ea2

1 ]
2

T σ 2r
T kPk[Ek

2 ] T ds

= l(l − 1)plr
(σ 2r(1 − s)/2)a1−1(σ 2r(1 − s)/2)a2−1

(σ 2r/2)k−1 ds = l(l − 1)pl

2

σ 2 (1 − s)k−2 ds.

If a1 = a2 then there is an extra factor of 1/2 as the two blocks can be re-ordered.
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As there are k − 1 possible (ordered) ways of splitting k into two groups of nonzero size,
and from the above each of these ways is equally likely,

lim
T →∞Qk,T (

ψ1 ∈ [sT , sT + T ds), spines split into two groups,Lξ1
sT

= l
)

= l(l − 1)

σ 2 pl(k − 1)(1 − s)k−2 ds.

We note that if we sum the above quantity over l and integrate over s ∈ [0,1] we obtain 1.
This means that, in the limit as T → ∞, at the first spine splitting event ψ1, the k spines
always split into exactly two groups. We also see that the number of spines in each of the
groups is uniform on {1, . . . , k − 1}, and the total number of offspring at this time is doubly-
size-biased. Finally, the first splitting time, when rescaled by 1/T , converges in distribution
to the minimum of k independent uniform random variables on [0,1].

The symmetry lemma, Lemma 8, tells us that we can extend our understanding of the first
spine splitting event to all spine splitting events. When a collection of spines decides to split,
they always (in the limit as T → ∞) split uniformly into two groups; this property is shared
by the tree drawn out by the Kingman coalescent. Furthermore the k − 1 spine split times,
when rescaled by 1/T , are independent and uniformly distributed on [0,1].

We stress again that this is true only in the critical case; if instead we are in the near-
critical case when m = 1 + μ/T + o(1/T ) (see Section 2.2) then the uniform density for the
independent split times is replaced by rμerμs

erμ−1 ds. In particular, the near-critical case is simply
a deterministic time-change of the critical picture.

4.5. Proofs of properties of Qk,T . The following simple general lemma will be useful.

LEMMA 13. Suppose that μ and ν are probability measures on the σ -algebra F , and
that G is a sub-σ -algebra of F . If

dμ

dν

∣∣∣∣
F

= Y and
dμ

dν

∣∣∣∣
G

= Z,

then for any nonnegative random variable X, Zμ[X | G] = ν[XY | G], ν-almost surely.

PROOF. For any A ∈ G, ν[XY1A] = μ[X1A] = μ[μ[X | G]1A] = ν[Zμ[X | G]1A].
Since Zμ[X | G] is G-measurable, it therefore satisfies the definition of conditional expecta-
tion of XY with respect to G under ν. �

We can now prove the symmetry lemma.

PROOF OF LEMMA 8. Fix t, T and v. Let H be the σ -algebra generated by all the in-
formation except in the subtree generated by v after time t . Then it suffices to show that for
s ∈ (t, T ] and i ≥ 0,

Qk,T (τv > s,Lv = i | H) = Qj,T −t (τ∅ > s − t,L∅ = i)

almost surely. Recall that

gk,T = 1{ξ i
T �=ξ

j
T ∀i �=j}

k∏
i=1

∏
v<ξi

T

Lv and ζk,T = gk,T

P[N(k)
T ] .

Let I be the set of marks carried by v at time t , and let

g̃ = 1{ξ i
T �=ξ

j
T ∀i �=j,i,j∈I c}

∏
i∈I

∏
ξ i
t ≤v<ξi

T

Lv
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and

h = 1{ξ i
T �=ξ

j
T ∀i �=j,i,j∈I c}

(∏
i /∈I

∏
v<ξi

T

Lv

) ∏
i∈I

∏
v<ξi

t

Lv.

Note that h is H-measurable and gk,T = g̃h.
By Lemma 13, Qk,T -almost surely,

Qk,T (τv > s,Lv = i | H) = 1

Pk[ζk,T | H]P
k[ζk,T 1{τv>s,Lv=i} | H].

Cancelling factors of Pk[N(k)
T ] and using the fact that gk,T = g̃h where h is H-measurable,

we get

Qk,T (τv > s,Lv = i | H) = 1

hPk[g̃ | H]hP
k[g̃1{τv>s,Lv=i} |H] = Pk[g̃1{τv>s,Lv=i} | H]

Pk[g̃ | H] .

By the Markov branching property under Pk , the behaviour of the subtree generated by v

after time t is independent of the rest of the system and—on the event that v is carrying j

marks at time t—behaves as if under Pj . Thus

Qk,T (τv > s,Lv = i | H) = Pj [gj,T −t1{τ∅>s−t,L∅=i}]
Pj [gj,T −t ]

almost surely. Applying Lemma 6 establishes the result. �

Next we prove Lemma 9, which gives the distribution of the split times under Qk,T .

PROOF OF LEMMA 9. For the first statement,

Q(τφ > t) = P[ζk,T 1{τ∅>t}] = 1

P[N(k)
T ]P[gk,T 1{τ∅>t}].

By the Markov property and Lemma 6,

P[gk,T 1{τ∅>t}] = P(τ∅ > t)P[gk,T −t ] = e−rtP
[
N

(k)
T −t

]
as required. For the second statement,

Q(ψ1 > t) = P[ζk,T 1{ψ1>t}] = 1

P[N(k)
T ]P[gk,T 1{ψ1>t}],

and by the Markov property and Lemma 6,

P[gk,T 1{ψ1>t}] = P

[( ∏
v<ξ1

t

Lk
v

)
1{ψ1>t}

]
P[gk,T −t ] = P

[( ∏
v<ξ1

t

Lk
v

)
1{ψ1>t}

]
P

[
N

(k)
T −t

]
.

Putting these two lines together we get

(8) Q(ψ1 > t) = Pk[N(k)
T −t ]

Pk[N(k)
T ] P

[( ∏
v<ξ1

t

Lk
v

)
1{ψ1>t}

]
.

Note that ψ > t if and only if all k marks are following the same particle at time t (which
must also be alive); thus

P

[( ∏
v<ξ1

t

Lk
v

)
1{ψ1>t}

]
= P

[ ∑
u∈Nt

(∏
v<u

Lk
v

)
1{ξ1

t =···=ξk
t =u}

]
= P

[ ∑
u∈Nt

1
]

= P[Nt ] = e(m−1)t .
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Substituting into (8) gives the result. The third statement follows easily from the first two.
�

We next prove Lemma 10, which says that births off the spine are size-biased.

PROOF OF LEMMA 10. From the definition of Q,

Q(L∅ = j | τ∅ = t,ψ1 > t) = P[ζk,T 1{L∅=j} | τ∅ = t,ψ1 > t]
P[ζk,T | τ∅ = t,ψ1 > t]

= P[gk,T 1{L∅=j } | τ∅ = t,ψ1 > t]
P[gk,T | τ∅ = t,ψ1 > t]

= P[gk,T 1{L∅=j,ψ1>t} | τ∅ = t]
P[gk,T 1{ψ1>t} | τ∅ = t] .

If the first particle has i offspring, then the product appearing in the definition of gk,T sees
a factor of ik; and the probability that all k spines follow the same one of these offspring is
1/ik−1. Thus, by the Markov property, for any i,

P[gk,T 1{L∅=i,ψ1>t} | τ∅ = t] = pii
k 1

ik−1P[gk,T −t ] = ipiP[gk,T −t ].
Thus

Q(L∅ = j | τ∅ = t,ψ1 > t) = jpjP[gk,T −t ]∑
i ipiP[gk,T −t ] = jpj

m
. �

The final proof in this section is of Lemma 11, which completed the description of Qk,T .

PROOF OF LEMMA 11. By the symmetry lemma, for any h ∈ (0, T − t],
Qk,T (

ψ1 < t + h,Pξ
ψ1

= P,Lξ1
t

= l | ψ1 > t
) = Qk,T −t (ψ1 < h,Pξ

ψ1
= P,L∅ = l

)
.

By the definition of Qk,T −t , this is equal to

1

Pk[N(k)
T −t ]

Pk[gk,T −t1
{
ψ1 < h,Pξ

ψ1
= P,L∅ = l

}]

= 1

Pk[N(k)
T −t ]

Pk(ψ1 < h,Pξ
ψ1

= P,L∅ = l
)
Pk[gk,T −t | ψ1 < h,Pξ

ψ1
= P,L∅ = l

]
.

(9)

First we consider

Pk(ψ1 < h,Pξ
ψ1

= P,L∅ = l
) = Pk(ψ1 < h,L∅ = l)Pk(Pξ

ψ1
= P | ψ1 < h,L∅ = l

)

= l(n)

lk
Pk(ψ1 < h,L∅ = l)

since l(n)/ lk is the probability that k balls put uniformly and independently into l bins give
rise to the partition P .

Next we consider

Pk[gk,T −t | ψ1 < h,Pξ
ψ1

= P,L∅ = l
]
.

Note that on the event {Pξ
ψ1

= P,L∅ = l}, we have

gk,T −t = 1{ξ i
T −t �=ξ

j
T −t ∀i �=j}

k∏
i=1

∏
v<ξi

T −t

Lv = lk
∏
p∈P

1{ξ i
T −t �=ξ

j
T −t ∀i �=j∈p}

∏
i∈p

∏
ξ i
ψ1

≤v<ξi
T −t

Lv.
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Lemma 6 tells us that for each p ∈ P , on the event {Pξ
ψ1

= P,L∅ = l},

Pk

[
1{ξ i

T −t �=ξ
j
T −t ∀i �=j∈p}

∏
i∈p

∏
ξ i
ψ1

≤v<ξi
T −t

Lv

∣∣∣ Fk
ψ1

]
= Pk[N(|p|)

T −t−u

]∣∣
u=ψ1

.

On the event ψ1 < h, we have

Pk[N(|p|)
T −t−u

]∣∣
u=ψ1

= Pk[N(|p|)
T −t

] + o(1)

and therefore

Pk[gk,T −t | ψ1 < h,Pξ
ψ1

= P,L∅ = l
] = lk

n∏
i=1

Pk[N(ai)
T −t

] + o(1).

Putting these calculations back into (9), we have shown that

Qk,T (
ψ1 < t + h,Pξ

ψ1
= P,Lξ1

t
= l | ψ1 > t

)

= 1

Pk[N(k)
T −t ]

(
rh + o(h)

)
pl

l(n)

lk
lk

(
n∏

i=1

Pk[N(ai)
T −t

] + o(1)

)

= pll
(n)

∏n
i=1 P

k[N(ai)
T −t ]

Pk[N(k)
T −t ]

(
rh + o(h)

)

which completes the proof. �

4.6. Proof of Proposition 7. Before we prove Proposition 7, we develop several partial
results along the way.

Applying Lemma 13, we get that for any nonnegative Fk
T -measurable random variable X,

on the event Zk,T > 0,

(10) Qk,T [
X | F0

T

] = 1

Zk,T

Pk[Xζk,T | F0
T

]
,

and on the event ζk,T > 0, since ζk,T is G̃k
T -measurable,

(11) Qk,T [
X | G̃k

T

] = 1

ζk,T

Pk[Xζk,T | G̃k
T

] = Pk[X | G̃k
T

]
.

This last equation (11) tells us in particular that any event that is independent of G̃k
T under P

has the same probability under Q as it does under P. In other words, nonspine particles behave
under Q exactly as they do under P: they branch at rate r and have offspring distribution L.

Also note that under Qk,T , the k spine particles are almost surely distinct at time T , since
directly from the definition of ζk,T , Qk,T (∃i �= j : ξ i

T = ξ
j
T ) = P[ζk,T 1{∃i �=j :ξ i

T =ξ
j
T }] = 0.

In fact, the next lemma tells us that under Qk,T , the spines are chosen uniformly without
replacement from those alive at time T .

LEMMA 14. For any u ∈ N (k)
T , on the event NT ≥ k, we have Qk,T (ξT = u | F0

T ) =
1/N

(k)
T .
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PROOF. Note that if NT ≥ k then Zk,T > 0. Then by (10), for any u ∈ N (k)
T ,

Q
(
ξT = u | F0

T

) = 1

Zk,T

P
[
ζk,T 1{ξT =u} | F0

T

]

= P[N(k)
T ]

N
(k)
T

1

P[N(k)
T ]

(
k∏

i=1

∏
v<ui

Lv

)
P

(
ξT = u | F0

T

)
.

The result now follows by applying (5). �

As part of proving Proposition 7 we will need to calculate quantities like Qk,T [1/N
(k)
T |

Gk
T ]. The next lemma allows us to work with moment generating functions, which are some-

what easier to deal with and will lead to an important product structure from the independent
contributions to NT along different branches of the k spines’ genealogical tree under Qk,T .

LEMMA 15. For any k ∈ N and positive integer valued random variable N under an
expectation operator E, we have

E

[
1

N(N − 1) · · · (N − k + 1)

]
= 1

(k − 1)!
∫ ∞

0

(
ez − 1

)k−1
E

[
e−zN ]

dz.

In particular, for any k ∈ N and T ≥ 0,

Qk,T

[
1

N
(k)
T

∣∣∣ Gk
T

]
= 1

(k − 1)!
∫ ∞

0

(
ez − 1

)k−1
Qk,T [

e−zNT | Gk
T

]
dz.

PROOF. We show, by induction on j , that for all j = 1, . . . , k,

E

[
1

N(j)

]
= 1

(j − 1)!
∫ ∞

0

(
ez − 1

)j−1
E

[
e−zN ]

dz.

The case j = 1 follows from Fubini’s theorem. For the general step, observe that for j ≤
k − 1,∫ ∞

0

(
ez − 1

)j
E

[
e−zN ]

dz =
∫ ∞

0

(
ez − 1

)j−1
E

[
e−z(N−1)] dz −

∫ ∞
0

(
ez − 1

)j−1
E

[
e−zN ]

dz

and by the induction hypothesis, this equals

(j − 1)!E
[

1

(N − 1)(j)

]
− (j − 1)!E

[
1

N(j)

]
= (j − 1)!E

[
N − (N − j)

N(j+1)

]
= j !E

[
1

N(j+1)

]
.

This gives the result. �

We can now prove Proposition 7, which translates questions about particles sampled uni-
formly without replacement under P into questions about the spines under Q.

PROOF OF PROPOSITION 7. First note that

Q
[
f (ξT ) | F0

T

]
1{NT ≥k} = Q

[ ∑
u∈N (k)

T

1{ξT =u}f (u)
∣∣∣ F0

T

]
= ∑

u∈N (k)
T

f (u)Q
(
ξT = u | F0

T

)

almost surely. Applying Lemma 14, we get

Q
[
f (ξT ) | F0

T

]
1{NT ≥k} = 1

N
(k)
T

∑
u∈N (k)

T

f (u)
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almost surely (where we take the right-hand side to be zero if NT < k). Taking P-
expectations,

P

[
1

N
(k)
T

∑
u∈N (k)

T

f (u)

]
= P

[
Q

[
f (ξT ) | F0

T

]
1{NT ≥k}

]
.

Applying (7) and recalling that under Q there are at least k particles alive at time T ,

(12) P

[
1

N
(k)
T

∑
u∈N (k)

T

f (u)

]
=Q

[
1

Zk,T

Q
[
f (ξT ) | F0

T

]] = Q

[
f (ξT )

Zk,T

]
= P

[
N

(k)
T

]
Q

[
f (ξT )

N
(k)
T

]
.

Dividing through by P(NT ≥ k) and applying Lemma 15 gives the result. �

4.7. Campbell’s formula. One of the key elements that we need to carry out our calcu-
lations will be a version of Campbell’s formula. Let Ñt be the number of ordinary particles
alive at time t—that is, they are not spines, and did not split from spines at spine splitting
events. Recall that we also defined nt to be the number of distinct spines alive at time t .

We write F(θ, t) = P[θNt ] and u(θ) = P[θL]− θ . These functions satisfy the Kolmogorov
forwards and backwards equations

(13)
∂

∂t
F (θ, t) = ru(θ)

∂

∂θ
F (θ, t) and

∂

∂t
F (θ, t) = ru

(
F(θ, t)

);
see [5], Chapter III, Section 3. Our main aim is to show the following:

PROPOSITION 16. For any z ≥ 0, Qk,T -almost surely.

Qk,T [
e−zÑT | Gk

T

] =
k−1∏
i=0

(
e−r(m−1)(T −ψi)

u(F (e−z, T − ψi))

u(e−z)

)
.

Notice in particular that the right-hand side depends only on the values of the split times
ψ1, . . . ,ψk−1 of the spines, not any of the other information in Gk

T (e.g., the topological
information about the tree). This—used in conjunction with Proposition 7—is a large part
of the reason that the split times of our k uniformly chosen particles are (asymptotically)
independent of the topological information in the induced tree.

The main step in proving Proposition 16 comes from the next lemma.

LEMMA 17. For any z ≥ 0,

Q
[
e−zÑT | Gk

T

] =
k−1∏
i=0

exp
(
−r(m − 1)(T − ψi) + r

∫ T −ψi

0
u′(P[

e−zNs
])

ds

)
,

Qk,T -almost surely.

PROOF. Let �T be the total number of birth events off the spines (i.e., births along spines
that are not spine splitting events) before time T . Recall (from Lemma 9 and the symmetry
lemma) that under Qk,T each spine gives birth to nonspine particles according to a Poisson
process of rate rm, independently of everything else. Thus at any time s ∈ [0, T ], the total
rate at which spine particles give birth to nonspine particles is rmns . Besides, such births are
size biased (by Lemma 10 and the symmetry lemma). Finally, once a particle is born off the
spines, it generates a tree that behaves exactly as under P (see (11) and the discussion that
follows).
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Thus, letting λT = ∫ T
0 ns ds,

Q
[
e−zÑT | Gk

T

] =
∞∑

j=0

Q
(
�T = j | Gk

T

)(∫ T

0

∞∑
i=1

ipi

m
P

[
e−zNT −s

]i−1 ns

λT

ds

)j

.

Since Q(�T = j | Gk
T ) = e−rmλT (rmλT )j /j !, we get

Q
[
e−zÑT | Gk

T

] = e−rmλT

∞∑
j=0

1

j !
(
r

∫ T

0

∞∑
i=1

ipiP
[
e−zNT −s

]i−1
ns ds

)j

.

Note that
∑∞

i=1 ipiθ
i−1 = d

dθ

∑∞
i=1 piθ

i = u′(θ) + 1 and therefore

Q
[
e−zÑT | Gk

T

] = exp
(
−r(m − 1)λT + r

∫ T

0
u′(P[

e−zNT −s
])

ns ds

)
.

Now, we know that between times ψi−1 and ψi we have exactly i distinct spine particles.
Thus

Q
[
e−zÑT | Gk

T

] =
k−1∏
i=0

exp
(
−r(m − 1)(T − ψi) + r

∫ T

ψi

u′(P[
e−zNT −s

])
ds

)
.

�

PROOF OF PROPOSITION 16. Recalling (13) that F(θ, s) satisfies the backwards equa-
tion ∂

∂s
F (θ, s) = ru(F (θ, s)), by making the substitution t = F(θ, s) we see that

r

∫ b

a
u′(F(θ, s)

)
ds = r

∫ F(θ,b)

F (θ,a)

u′(t)
ru(t)

dt = log
(

u(F (θ, b))

u(F (θ, a))

)
.

Applying this to Lemma 17, we have

Q
[
e−zÑT | Gk

T

] =
k−1∏
i=0

(
e−r(m−1)(T −ψi)

u(F (e−z, T − ψi))

u(F (e−z,0))

)
.

Noting that F(e−z,0) = e−z gives the result. �

5. Birth–death processes. In this section we prove the results from Section 2.1. Recall
the setup: fix α ≥ 0 and β > 0, and suppose that r = α + β , p0 = α/(α + β) and p2 =
β/(α +β), with pj = 0 for j �= 0,2. This is a birth–death process with birth rate β and death
rate α. Since all particles have either 0 or 2 children, and under Q the spines cannot have 0
children, they must always have 2 children. This simplifies the picture considerably.

5.1. Elementary calculations with generating functions. Suppose first that we are in the
noncritical case α �= β . It is easy to calculate the moment generating function under P for a
birth–death process (see [5], Chapter III, Section 5): for α �= β and θ ∈ (0,1),

F(θ, t) := P
[
θNt

] = α(1 − θ)e(β−α)t + βθ − α

β(1 − θ)e(β−α)t + βθ − α
.

We then see that

P(Nt = 0) = lim
θ↓0

F(0, t) = αe(β−α)t − α

βe(β−α)t − α
.

Writing

pt = P(Nt = 0) = αe(β−α)t − α

βe(β−α)t − α
and qt = βe(β−α)t − β

βe(β−α)t − α
,
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we get

F(θ, t) = pt + (1 − pt)
(1 − qt )θ

1 − qtθ
= pt + (1 − pt)(1 − qt )

∞∑
j=1

θjq
j−1
t

and

∂kF (θ, t)

∂θk
= (1 − pt)(1 − qt )

qt

qk
t k!

(1 − qtθ)k+1 .

Therefore

P(Nt ≥ k) = (1 − pt)(1 − qt )

∞∑
j=k

q
j−1
t

= (1 − pt)q
k−1
t = (β − α)e(β−α)tβk−1(e(β−α)t − 1)k−1

(βe(β−α)t − α)k
.

Also, since P[N(k)
t ] = limθ↑1

∂kF (θ,t)

∂θk ,

(14) P
[
N

(k)
t

] = (1 − pt)(1 − qt )

qt

qk
t k!

(1 − qt )k+1 = k!
(

β

β − α

)k−1
e(β−α)t (e(β−α)t − 1

)k−1
.

Thus

(15)
P[N(k)

t ]
P(Nt ≥ k)

= k!(βe(β−α)t − α)k

(β − α)k
and

P[N(k)
T −t ]

P[N(k)
T ] = e−(β−α)t

(
e(β−α)(T −t) − 1

e(β−α)T − 1

)k−1
.

Finally we see that

(16)
∂F (θ, t)

∂t
= −(β − α)2(βθ − α)(1 − θ)e(β−α)t

(β(1 − θ)e(β−α)t + βθ − α)2 .

In the critical case α = β , similar calculations give

(17) F(θ, t) = (1 − θ)βt + θ

(1 − θ)βt + 1
, P

[
N

(k)
t

] = k!(βt)k−1,
P[N(k)

t ]
P(Nt ≥ k)

= k!(βt + 1)k

and

(18)
∂F (θ, t)

∂t
= ∂

∂t

(
1 + θ − 1

(1 − θ)βt + 1

)
= (1 − θ)2β

((1 − θ)βt + 1)2 .

5.2. Split time densities. Recall that H′ is the σ -algebra that contains information about
which marks follow which spines, but does not know anything about the spine split times.

LEMMA 18. Under Qk,T , the spine split times ψ1, . . . ,ψk−1 are independent of H′ and
have a joint probability density function

f
Q
k (s1, . . . , sk−1) =

⎧⎪⎪⎨
⎪⎪⎩

(k − 1)!
(

β − α

e(β−α)T − 1

)k−1 k−1∏
i=1

e(β−α)(T −si ) if α �= β,

(k − 1)!/T k−1 if α = β.
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PROOF. We do the calculation in the noncritical case α �= β . The proof in the critical
case is identical. Recall from Lemma 9 that

Qk,T (ψ1 > s1) = P[N(k)
T −s1

]
P[N(k)

T ] e(m−1)rs1 = P[N(k)
T −s1

]
P[N(k)

T ] e(β−α)s1 .

Then the second part of (15) gives

Qk,T (ψ1 > s1) = e−(β−α)s1

(
e(β−α)(T −s1) − 1

e(β−α)T − 1

)k−1
e(β−α)s1 =

(
e(β−α)(T −s1) − 1

e(β−α)T − 1

)k−1
,

so ψ1 has density

(k − 1)(β − α)e(β−α)(T −s1)
(e(β−α)(T −s1) − 1)k−2

(e(β−α)T − 1)k−1 .

For i = 2, . . . , k − 1, between times ψi−1 and ψi we have exactly i particles carrying marks.
Let Ai be the event that the first of these is carrying a1 marks, the second a2, and so on.
Let ψ

(j)
i be the time at which the marks following the j th of these particles split. By the

symmetry lemma, given ψi−1 = si−1 (where we take s0 = 0), these times are independent
with

Qk,T (
ψ

(j)
i > si | ψi−1 = si−1,Ai

) = Qaj ,T −si−1(ψ1 > si − si−1)

=
(

e(β−α)(T −si ) − 1

e(β−α)(T −si−1) − 1

)aj−1
.

Then, since the event {ψi > si} = ⋂
j {ψ(j)

i > si},

Qk,T (ψi > si | ψi−1 = si−1,Ai) =
i∏

j=1

(
e(β−α)(T −si ) − 1

e(β−α)(T −si−1) − 1

)aj−1
.

Since
∑i

j=1(aj − 1) = k − i, we get

Qk,T (ψi > si | ψi−1 = si−1,Ai) =
(

e(β−α)(T −si ) − 1

e(β−α)(T −si−1) − 1

)k−i

.

This does not depend on a1, . . . , ai , so ψi is independent of H′, and summing over the possi-
ble values we obtain

Qk,T (ψi > si | ψi−1 = si−1) =
(

e(β−α)(T −si ) − 1

e(β−α)(T −si−1) − 1

)k−i

.

Differentiating gives

f
Q
k (s1, . . . , sk−1) = (k − 1)!(β − α)k−1

k−1∏
i=1

e(β−α)(T −si )
(e(β−α)(T −si ) − 1)k−i−1

(e(β−α)(T −si−1) − 1)k−i
.

The product telescopes to give the answer. �

PROPOSITION 19. Let s0 = 0. The vector (Sk
1 (T ), . . . ,Sk

k−1(T )) of ordered split times
under P is independent of H and has a joint density f T

k (s1, . . . , sk−1) equalling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k!(βe(β−α)T − α)k(β − α)2k−1

(e(β−α)T − 1)k−1e(β−α)T

×
∫ 1

0
(1 − y)k−1

k−1∏
j=0

e(β−α)(T −sj )

(β(1 − y)e(β−α)(T −sj ) + βy − α)2
dy α �= β,

k!(βT + 1)k

T k−1

∫ 1

0
(1 − y)k−1

k−1∏
j=0

1

(β(1 − y)(T − sj ) + 1)2 dy α = β.
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PROOF. Again we give the proof in the noncritical case α �= β . The critical case is iden-
tical. We start with Proposition 7, which tells us that for any measurable functional F ,

(19)

P

[
1

N
(k)
T

∑
u∈N (k)

T

F (u)
∣∣∣NT ≥ k

]

= P[N(k)
T ]

P(NT ≥ k)(k − 1)!
∫ ∞

0

(
ez − 1

)k−1
Qk,T [

e−zNT F (ξT )
]
dz.

The independence of the spine split times and H′ under Qk,T (established in Lemma 18),
together with (19) and Proposition 16, imply that the split times under P are independent
of H. (As a reminder, H = σ(P k

1 (T ), . . . ,P k
k−1(T )), so that H contains all the topological

information about the tree generated by U1
T , . . . ,Uk

T , but almost no information about the
split times.)

Returning to (19) again and applying it with F equal to the indicator that the split times of
the k-tuple are in (ds1, . . . ,dsk−1), we find that f T

k (s1, . . . , sk−1) is equal to

P[N(k)
T ]

P(NT ≥ k)(k − 1)!
×

∫ ∞
0

(
ez − 1

)k−1
f
Q
k (s1, . . . , sk−1)Q

[
e−zNT | ψ1 = s1, . . . ,ψk−1 = sk−1

]
dz.

However we also know from Proposition 16 that

Q
[
e−zÑT | ψ1 = s1, . . . ,ψk−1 = sk−1

] =
k−1∏
i=0

(
e−r(m−1)(T −si )

u(F (e−z, T − si))

u(e−z)

)
,

where s0 = 0, F(θ, t) = P[θNt ] and u(θ) = P[θL] − θ . Of course since all births are binary,
all particles are either spines or ordinary; so since there are k spines at time T almost surely
under Q, NT = ÑT + k. Thus, by (13) and (16),

Q
[
e−zNT | ψ1 = s1, . . . ,ψk−1 = sk−1

] = e−zk
k−1∏
i=0

(
β − α

β(1 − e−z)e(β−α)(T −si ) + βe−z − α

)2
.

Plugging this into our formula for f T
k (s1, . . . , sk−1) above gives

f T
k (s1, . . . , sk−1) = P[N(k)

T ]
P(NT ≥ k)(k − 1)!

∫ ∞
0

e−z(1 − e−z)k−1
f
Q
k (s1, . . . , sk−1)

·
k−1∏
i=0

(β − α)2

(β(1 − e−z)e(β−α)(T −si ) + βe−z − α)2 dz.

By the first part of (15) and Lemma 18, this becomes

k!(βe(β−α)T − α)k(β − α)2k−1

e(β−α)T (e(β−α)T − 1)k−1

×
∫ ∞

0
e−z(1 − e−z)k−1

k−1∏
i=0

e(β−α)(T −si )

(β(1 − e−z)e(β−α)(T −si ) + βe−z − α)2 dy.

Making the substitution y = e−z gives the result. �
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5.3. Describing the partition process and proving Theorems 1 and 2. We recall now the
partition Z0,Z1, . . . which contained the information about the marks following each of the
distinct spine particles, without the information about the split times.

LEMMA 20. The partition Z0,Z1, . . . has the following distribution under Qk,T
T :

• If Zi consists of i + 1 blocks of sizes a1, . . . , ai+1, then the j th block will split next with
probability (aj − 1)/(k − i − 1) for each j = 1, . . . , i + 1.

• When a block of size a splits, it splits into two new blocks, and the probability that these
blocks have sizes l and a − l is 1/(a − 1) for each l = 1, . . . , a − 1.

PROOF. Suppose that we are given ψi = s. For the first part, by the symmetry lemma,
the probability that the j th block splits next is∫ T −s

0
Qaj ,T −s(ψ1 ∈ dt)

∏
l �=j

Qal,T −s(ψ1 > t)

which by Lemma 9 equals

∫ T −s

0

(
− d

dt

(
P[N(aj )

T −s−t ]
P[N(aj )

T −s]
e(m−1)rt

)) ∏
l �=j

P[N(al)
T −s−t ]

P[N(al)
T −s]

e(m−1)rt dt.

If α �= β , then applying the second part of (15), the above becomes∫ T −s

0

(
− d

dt

(
e(β−α)(T −s−t) − 1

e(β−α)(T −s) − 1

)aj−1) ∏
l �=j

(
e(β−α)(T −s−t) − 1

e(β−α)(T −s) − 1

)al−1
dt

= (aj − 1)(β − α)

∫ T −s

0
e(β−α)(T −s−t) (e

(β−α)(T −s−t) − 1)aj−2

(e(β−α)(T −s) − 1)aj−1

× ∏
l �=j

(
e(β−α)(T −s−t) − 1

e(β−α)(T −s) − 1

)al−1
dt

= (aj − 1)(β − α)

∫ T −s

0

e(β−α)(T −s−t)

e(β−α)(T −s−t) − 1

(
e(β−α)(T −s−t) − 1

e(β−α)(T −s) − 1

)k−i−1
dt.

Since the integrand does not depend on aj , and we know the sum of the above quantity over
j = 1, . . . , i + 1 must equal 1 (since one of the blocks must split first), we get

(β − α)

∫ T −s

0

e(β−α)(T −s−t)

e(β−α)(T −s−t) − 1

(
e(β−α)(T −s−t) − 1

e(β−α)(T −s) − 1

)k−i−1
dt = 1

k − i − 1

and therefore the probability that the j th block splits next equals aj−1
k−i−1 as claimed. If α = β

then applying (17) in place of (15) gives the same result.
For the second part, let ρ1

t be the number of marks following the first spine particle at
time t . From the definition of Qk,T ,

Qk,T (
ρ1

t = i | τ∅ = t
) = P[gk,T 1{ρ1

t =i} | τ∅ = t]
P[gk,T | τ∅ = t] .

By the Markov property, since each mark chooses uniformly from among the children avail-
able,

P[gk,T 1{ρ1
t =i} | τ∅ = t] = β

β + α

(
k

i

)
P[gi,T −t ]P[gk−i,T −t ].
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Lemma 6 tells us that P[gj,s] = P[N(j)
s ] for any j and s, so

P[gk,T 1{ρ1
t =i} | τ∅ = t] = β

β + α

(
k

i

)
P

[
N

(i)
T −t

]
P

[
N

(k−i)
T −t

]
.

If α �= β , then applying (14) gives

P[gk,T 1{ρ1
t =i} | τ∅ = t] = β

β + α

(
k

i

)
i!(k − i)!

(
β

β − α

)k−2
e(β−α)(T −t)(e(β−α)(T −t) − 1

)k−2

= β

β + α
k!

(
β

β − α

)k−2
e(β−α)(T −t)(e(β−α)(T −t) − 1

)k−2
.

Since this does not depend upon i, the distribution of ρ1
t under Qk,T must be uniform. The

case α = β uses (17) in place of (14). The result now follows from the symmetry lemma. �

PROOF OF THEOREM 1. By Proposition 19, the ordered split times are independent of
H and have density (conditional on NT ≥ k)

k!(βE0 − α)k(β − α)2k−1

(E0 − 1)k−1E0

∫ 1

0
(1 − y)k−1

k−1∏
j=0

e(β−α)(T −sj )

(β(1 − y)e(β−α)(T −sj ) + βy − α)2
dy

for any 0 ≤ s1 ≤ · · · ≤ sk−1 ≤ 1, where s0 = 0. Therefore (see [12], Lemma 36, for details)
the unordered split times are independent of H and have density 1/(k − 1)! times the above.
Integrating over sj for each j = 1, . . . , k − 1 (see [12], Lemma 35, for details), we get

P(S̃1 ≥ s1, . . . , S̃k−1 ≥ sk−1 | NT ≥ k)

= k(βE0 − α)k(β − α)

(E0 − 1)k−1E0

×
∫ 1

0
(1 − y)k−1

(
k−1∏
j=1

Ej − 1

β(1 − y)Ej + βy − α

)
E0

(β(1 − y)E0 + βy − α)2 dy.

Substituting θ = 1 − y, it is an elementary task to calculate this integral and deduce the
desired result. For the details we refer to [12]. �

The proof of the critical case, Theorem 2, is almost identical. It is written in full in [12].

6. The near-critical scaling limit. We now let our offspring distribution depend on T ,
writing PT in place of P. We suppose that Assumption 1 holds, that is, that mT := PT [L] =
1 + μ/T + o(1/T ) for some μ ∈ R, PT [L(L − 1)] = σ 2 + o(1) for some σ > 0, and L2 is
uniformly integrable (i.e., for all ε > 0 there exists M such that supT PT [L21{L≥M}] < ε).
We define Q

k,T
T just as before, except that it is defined relative to Pk

T instead of Pk .
In order to prove our results we would like some conditions on the higher moments of L.

Besides Assumption 1 we will further assume that there exists a deterministic sequence
J (T ) = o(T ) such that PT (L = j) = 0 for all j ≥ J (T ). In particular this implies that for
any j ≥ 3,

(20)
PT

[
L(j)] =

J (T )∑
i=1

i(j)p
(T )
i ≤ J (T )j−2

J (T )∑
i=1

i(i − 1)p
(T )
i

= J (T )j−2(
σ 2 + o(1)

) = o
(
T j−2)

.
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In fact there is no loss of generality in making this further assumption: by [12], Lemma 22,
there exists a coupling between any tree satisfying Assumption 1 and a tree also satisfying
the assumption above, such that for each k, conditionally on NT ≥ k, the two trees are equal
until time T with probability tending to 1 as T → ∞.

6.1. Estimating moments and generating functions under P. The exact calculations car-
ried out in Section 5.1 are no longer possible with our more complicated offspring distribu-
tions. Instead the near-criticality ensures that we can give good approximations.

LEMMA 21. For k ≥ 1, the kth descending moment Mk(t) = P[N(k)
t ] of any continuous-

time Galton–Watson process satisfies

M ′
k(t) = kr(m − 1)Mk(t) + r

k∑
j=2

(
k

j

)
P

[
L(j)]Mk+1−j (t).

PROOF. This is an elementary application of the Kolmogorov forward equation (13). We
omit it here; the details are available in [12], Lemma 23. �

LEMMA 22. The descending moments at scaled times satisfy, for all k ≥ 1 and s ∈ [0,1],

lim
T →∞

PT [N(k)
sT ]

T k−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
σ 2

2μ

)k−1
k!erμs(erμs − 1

)k−1 if μ �= 0,

k!
(

rσ 2s

2

)k−1
if μ = 0.

PROOF. We proceed by induction. Note that both statements are true for k = 1. Letting
Mk(t) = PT [N(k)

t ], by Lemma 21 we have

M ′
k(t) = kr(mT − 1)Mk(t) + r

k∑
j=2

(
k

j

)
PT

[
L(j)]Mk+1−j (t).

Letting M̂k(s) = Mk(sT ) and using the induction hypothesis, we have

M̂ ′
k(s) = T

(
kr(mT − 1)M̂k(s) + r

k∑
j=2

(
k

j

)
PT

[
L(j)]M̂k+1−j (s)

)

= krμM̂k(s) + T r

(
k

2

)
σ 2M̂k−1(s) + o

(
T k−1)

.

(21)

We now consider the cases μ �= 0 and μ = 0 separately. In the case μ �= 0, using the
integrating factor e−krμs , and applying the induction hypothesis again, we get

(22)

d

ds

(
e−krμsM̂k(s)

) = T k−1k!(k − 1)rμ

(
σ 2

2μ

)k−1
e−(k−1)rμs(erμs − 1

)k−2

+ e−krμsO
(
T k−2)

.

Noting that (k −1)rμe−(k−1)rμs(erμs −1)k−2 = d
ds

(e−(k−1)rμs(erμs −1)k−1), by integrating
(22) we obtain

e−krμsM̂k(s) = T k−1k!
(

σ 2

2μ

)k−1
e−(k−1)rμs(erμs − 1

)k−1 + e−krμsO
(
T k−2)

.
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Multiplying through by ekrμs gives the result for μ �= 0. If μ = 0, then from (21) and the
induction hypothesis, we have

M̂ ′
k(s) = T k−1k!

(
rσ 2

2

)k−1
(k − 1)sk−2 + o

(
T k−1)

and integrating directly gives the result. �

6.2. Asymptotics for the generating function. Define

FT (θ, t) = PT

[
θNt

]
, uT (θ) = PT

[
θL] − θ

and

fT (φ, s) = T
(
1 − PT

[
e− φ

T
NsT

]) = T
(
1 − FT

(
e−φ/T , sT

))
.

LEMMA 23. For each φ ≥ 0, in the limit as T → ∞,

fT (φ, s) → f (φ, s) and T 2uT

(
FT

(
e−φ/T , sT

)) → −μf (φ, s) + σ 2

2
f (φ, s)2

uniformly over s ∈ [0,1], where

f (φ, s) = φeμrs

1 + σ 2

2μ
φ(eμrs − 1)

if μ �= 0 and f (φ, s) = φ

1 + rσ 2φs/2
if μ = 0.

PROOF. First we show that for each φ, fT is bounded in T > 0 and s ∈ [0,1]. Note that
x �→ 1 − e−κx is concave and increasing for any κ ≥ 0, so by Jensen’s inequality,

fT (φ, s) = T
(
1 − P

[
e− φ

T
NsT

]) ≤ T
(
1 − e− φ

T
PT [NsT ]) ≤ T

(
1 − e− φ

T
exp(rμ+o(1))).

Applying the inequality 1−e−x ≤ x, we see that fT (φ, s) ≤ φerμ+o(1). Now, with FT (θ, t) =
PT [θNt ], we have

(23)
∂fT (φ, s)

∂s
= ∂

∂s

(
T

(
1 − FT

(
e−φ/T , sT

))) = −T 2 ∂FT (e−φ/T , t)

∂t

∣∣∣∣
t=sT

.

By the Kolmogorov backwards equation (13),

(24)
∂

∂t
FT (θ, t) = ruT

(
FT (θ, t)

) = rPT

[
FT (θ, t)L

] − rFT (θ, t),

so

∂fT (φ, s)

∂s
= T 2r

∞∑
j=0

p
(T )
j

(
F

(
e−φ/T , sT

) − F
(
e−φ/T , sT

)j )

= T 2r

∞∑
j=0

p
(T )
j

(
1 − fT

T
−

(
1 − fT

T

)j)
,

where p
(T )
j = PT (L = j). Expanding (1 − fT /T )j , we get

∂fT (φ, s)

∂s
= T 2r

∞∑
j=0

p
(T )
j

(
(j − 1)

fT

T
− j (j − 1)f 2

T

2T 2 −
j∑

i=3

(
j

i

)(
−fT

T

)i
)

= rμfT − rσ 2

2
f 2

T + o(1) − T 2r

∞∑
j=0

p
(T )
j

j∑
i=3

(
j

i

)(
−fT

T

)i

.
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Swapping the order of summation, this becomes

∂fT (φ, s)

∂s
= rμfT − rσ 2

2
f 2

T + o(1)

− T 2r

∞∑
i=3

1

i!
(
−fT

T

)i ∞∑
j=i

p
(T )
j j (j − 1) · · · (j − i + 1)

= rμfT − rσ 2

2
f 2

T + o(1)

(25)

since fT is bounded and PT [L(i)] = o(T i−2) for each i ≥ 3 by (20). Note in particular that
the o(1) term is uniform in s.

Note that f is the solution to

∂f

∂s
= rμf − rσ 2

2
f 2

with f (φ,0) = φ. Setting hT (φ, s) = fT (φ, s) − f (φ, s) we have

∂hT

∂s
= rμ(fT − f ) − rσ 2

2

(
f 2

T − f 2) + o(1),

where the o(1) term is uniform in s. Integrating over s with φ fixed,

hT (φ, s) = hT (φ,0) + rμ

∫ s

0
hT

(
φ, s′) ds′

− rσ 2

2

∫ s

0
hT

(
φ, s′)(fT

(
φ, s′) + f

(
φ, s′)) ds + o(1).

For fixed φ, both fT and f are bounded in s and T , say by Mφ . Also |hT (φ,0)| =
T (1 − e−φ/T ) − φ = o(1). Thus

∣∣hT (φ, s)
∣∣ ≤ r

∫ s

0

∣∣hT

(
φ, s′)∣∣(μ + σ 2Mφ/2

)
ds′ + o(1),

where again the o(1) term is uniform in s. Gronwall’s inequality then tells us that
|hT (φ, s)| → 0 uniformly in s. This proves the first part of the lemma.

The second part is now implicit in our calculations above: by (24) and then (23),

uT

(
FT

(
e−φ/T , sT

)) = 1

r

∂

∂t
FT

(
e−φ/T , t

)∣∣∣∣
t=sT

= − 1

rT 2

∂fT (φ, s)

∂s
.

Applying (25) tells us that

T 2uT

(
FT

(
e−φ/T , sT

)) = −μfT + σ 2

2
f 2

T + o(1),

and by the first part of the lemma we get

T 2uT

(
FT

(
e−φ/T , sT

)) → −μf + σ 2

2
f 2. �

Our next lemma is not new. The critical case goes back to Kolmogorov [15] (under a third
moment condition, which has since been relaxed by other authors) and the noncritical case
is [22], Theorem 2.1(i). For the noncritical case we give a self-contained proof below which
does not rely on the diffusion approximation used in [22].



1402 S. C. HARRIS, S. G. G. JOHNSTON AND M. I. ROBERTS

LEMMA 24. For any s ∈ (0,1], as T → ∞,

T PT (NsT > 0) → 2μeμrs

σ 2(eμrs − 1)
if μ �= 0 and T PT (NsT > 0) → 2

rσ 2s
if μ = 0.

PROOF. Note that PT (Nt = 0) = FT (0, t), and so satisfies the Kolmogorov backwards
equation (13). Thus the proof of Lemma 23 works exactly the same for

T PT (NsT > 0) = T
(
1 − PT (NsT = 0)

) = T
(
1 − FT (0, sT )

)
,

except for showing T PT (NsT > 0) is bounded as we can no longer apply Jensen’s inequality.
Instead, we note that in the critical case mT = 1 the boundedness is well known (see, e.g.,

[5], Chapter III, Section 7, Lemma 2). When mT �= 1, let

p̄
(T )
0 = p

(T )
0 − (1 − mT ) log(3/2)

and for j ≥ 1,

p̄
(T )
j = p

(T )
j + (1 − mT )2−j /j.

This gives us a new offspring distribution L̄ that is critical (and has finite variance). We can
then easily construct a coupling between Nt and N̄t , where N̄t is the number of particles in a
branching process with offspring distribution L̄, such that:

• if mT < 1, then Nt ≤ N̄t for all t ≥ 0;
• if mT > 1, then Nt ≥ N̄t for all t ≥ 0.

In the case mT < 1, we have T P(NsT > 0) ≤ T P(N̄sT > 0), which is bounded. In the case
mT > 1, we have

PT (NsT > 0) =Q
1,sT
T

[
PT [NsT ]

NsT

]
= er(mT −1)sT Q

1,sT
T

[
1

NsT

]

and similarly for N̄sT with its equivalent measure Q̄
1,sT
T . Since T P(N̄sT > 0) is bounded, we

get that T Q̄
1,sT
T [1/N̄sT ] is bounded, but

Q
1,sT
T

[
1

NsT

]
≤ Q̄

1,sT
T

[
1

N̄sT

]
,

so TQ
1,sT
T [1/NsT ] is bounded and therefore T PT (NsT > 0) is also bounded. �

6.3. Spine split times under Q
k,T
T . We now want to feed our calculations for moments

and generating functions under P into understanding the spine split times under Q, as in
Lemma 18. Unfortunately the spine split times in nonbinary cases do not have a joint density
with respect to Lebesgue measure: for any j = 2, . . . , k−1, there is a positive probability that
ψj = ψj−1. However we show that this probability tends to zero as T → ∞, and therefore
will not have an effect on our final answer.

Recall that nt is the number of distinct spine particles at time t , and ρi
t is the number of

marks carried by spine i at time t .

LEMMA 25. For any i = 1, . . . , k − 1 and t ∈ (0,1),

Q
k,T
T

(
nψ1 = 2, ρ1

ψ1
= i

∣∣∣ ψ1

T
= t

)
→ 1

k − 1
.
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This tells us two things: that with probability tending to 1 we have exactly 2 spines at the
first spine split time; and that the number of marks following each of those spines is uniformly
distributed on 1, . . . , k − 1.

PROOF OF LEMMA 25. We work in the case μ �= 0; the case μ = 0 proceeds almost
identically. From the definition of Q,

Q
k,T
T

(
ntT = 2, ρ1

tT = i | τ∅ = tT , ntT ≥ 2
) =

PT [gk,T 1{ntT =2,ρ1
tT =i} | τ∅ = tT ]

PT [gk,T 1{ntT ≥2} | τ∅ = tT ] .

Let PT (j ;b;a1, . . . , ab) be the probability that at time τ∅, j children are born, b of which
are spines, carrying a1, . . . , ab marks. Then

PT [gk,T 1{ntT =b,ρ1
tT =a1} | τ∅ = tT ] =

∞∑
j=b

∑
a2,...,ab

PT (j ;b;a1, . . . , ab)j
k

b∏
i=1

PT [gai,T (1−t)],

where the sum over a2, . . . , ab runs over 1, . . . , k such that a1 + · · · + ab = k. Now

PT (j ;b;a1, . . . , ab) = p
(T )
j

(
j

b

)
k!

a1! · · ·ab!
1

jk

and from Lemma 22, in the case μ �= 0,

PT

[
N

(ai)
T (1−t)

] = T ai−1
(

σ 2

2μ

)ai−1
ai !erμ(1−t)(erμ(1−t) − 1

)ai−1 + o
(
T ai−1)

.

This gives us

PT [gk,T 1{ntT =b,ρ1
tT =a1} | τ∅ = tT ]

=
∞∑

j=b

∑
a2,...,ab

p
(T )
j

(
j

b

)
k!T k−b

(
σ 2

2μ

)k−b

ebrμ(1−t)(erμ(1−t) − 1
)k−b(

1 + o(1)
)
.

If b = 2, then fixing a1 = i also fixes a2 since a2 = k − a1, so the second sum disappears and
we are left with

PT [gk,T 1{ntT =2,ρ1
tT =i} | τ∅ = tT ]

=
∞∑

j=2

p
(T )
j

(
j

2

)
k!T k−2

(
σ 2

2μ

)k−2
e2rμ(1−t)(erμ(1−t) − 1

)k−2(
1 + o(1)

)

= σ 2

2
k!T k−2

(
σ 2

2μ

)k−2
e2rμ(1−t)(erμ(1−t) − 1

)k−2(
1 + o(1)

)
.

(26)

Notice in particular that this does not depend on the value of i.
Next we bound the probability that there are at least three distinct spines at time ψ1 by

taking a sum over a1 and then over b ≥ 3. For each b, there are certainly at most kb possible
values of a1, . . . , ab that sum to k. Thus we get

PT [gk,T 1{ntT ≥3} | τ∅ = tT ]

≤
∞∑

b=3

PT

[
L(b)]k!

b!k
bT k−b

(
σ 2

2μ

)k−b

ebrμ(1−t)(erμ(1−t) − 1
)k−b(

1 + o(1)
)
.

Recall that we have assumed (20) that PT [L(b)] = o(T b−2) for each b ≥ 3, so

(27) PT [gk,T 1{ntT ≥3} | τ∅ = tT ] = o
(
T k−2)

.
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Dividing (27) by (26), we see that the probability that there are at least 3 distinct spines at
time ψ1 tends to zero as T → ∞; or equivalently, that the probability that there are exactly
2 distinct spines tends to 1. Then since the right-hand side of (26) does not depend on i, the
distribution of ρψ1 must be asymptotically uniform. �

Combined with the symmetry lemma, the previous result tells us that with high proba-
bility the spine split times are distinct. We want to use this to show that away from 0, the
rescaled split times ψ1/T , . . . ,ψk−1/T have an asymptotic density. First we need a prepara-
tory lemma, which will be helpful in describing the topology of our limiting tree as well as
calculating the asymptotic density of the split times.

LEMMA 26. For any s ∈ (0,1] and t ∈ (0, s), as T → ∞,

Q
k,sT
T

(
ψ1

T
> t

)
→

(
erμ(s−t) − 1

erμs − 1

)k−1

and

− d

dt
Q

k,sT
T

(
ψ1

T
> t

)
→ (k − 1)rμ

(erμ(s−t) − 1)k−2

(erμs − 1)k−1 erμ(s−t).

PROOF. The first part follows easily by combining Lemmas 9 and 22. The second part
needs more calculation. As in Lemma 21, we write Mk(t) = PT [N(k)

t ]. By Lemma 9,

Q
k,sT
T (ψ1 > tT ) = P[N(k)

T (s−t)]
P[N(k)

sT ] e(mT −1)rtT = Mk(T (s − t))

Mk(sT )
e(mT −1)rtT ,

so

− d

dt
Q

k,sT
T (ψ1 > tT ) = T

M ′
k(T (s − t))

Mk(sT )
e(mT −1)rtT − T (mT − 1)r

Mk(T (s − t))

Mk(sT )
e(mT −1)rtT

= T

Mk(sT )
e(mT −1)rtT (

M ′
k

(
T (s − t)

) − (mT − 1)rMk

(
T (s − t)

))
.

Applying Lemma 21, this equals

T

Mk(sT )
e(mT −1)rtT

(
(k − 1)r(mT − 1)Mk

(
T (s − t)

)

+ r

k∑
j=2

(
k

j

)
PT

[
L(j)]Mk+1−j

(
T (s − t)

))
.

We now use Lemma 22. Since PT [L(j)] = o(T j−2) for all j ≥ 3 (see (20)), the terms with
j ≥ 3 in the sum above do not contribute in the limit. We obtain

T erμt

( σ 2

2μ
)k−1k!erμs(erμs − 1)k−1T k−1

[
(k − 1)rμ

(
σ 2

2μ

)k−1
k!erμ(s−t)(erμ(s−t) − 1

)k−1
T k−2

+ r
k(k − 1)

2
σ 2

(
σ 2

2μ

)k−2
(k − 1)!erμ(s−t)(erμ(s−t) − 1

)k−2
T k−2 + o

(
T k−2)]

.

Simplifying, this equals

1

(erμs − 1)k−1

[
(k − 1)rμ

(
erμ(s−t) − 1

)k−1 + (k − 1)rμ
(
erμ(s−t) − 1

)k−2 + o(1)
]
,
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so simplifying again we get

− d

dt
Q

k,sT
T (ψ1 > tT ) → (k − 1)rμ

(erμ(s−t) − 1)k−2

(erμs − 1)k−1 erμ(s−t). �

Recall that H′ is the σ -algebra containing topological information about which marks are
following which spines, without information about the spine split times.

PROPOSITION 27. The spine split times ψ1, . . . ,ψk−1 are asymptotically independent of
H′ under Qk,T

T , and for any 0 < s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sk−1 < tk−1 < 1,

lim
T →∞Q

k,T
T

(
ψ1

T
∈ (s1, t1], . . . , ψk−1

T
∈ (sk−1, tk−1]

)

=
∫ t1

s1

· · ·
∫ tk−1

sk−1

fk

(
s′

1, . . . , s
′
k−1

)
ds′

k−1 · · ·ds′
1,

where

fk(s1, . . . , sk−1) =

⎧⎪⎪⎨
⎪⎪⎩

(k − 1)!
(

rμ

erμ − 1

)k−1 k−1∏
i=1

erμ(1−si ) if μ �= 0,

(k − 1)! if μ = 0.

PROOF. This is a generalization of the proof of Lemma 18, and the reader may wish to
compare the two. The main difference is that now there is a chance that spine splitting events
result in more than one new spine particle (since branching events need not be binary), and
therefore we need to take care to ensure that the split times ψ1, . . . ,ψk−1 are distinct.

With this in mind, let ϒj be the event that the first j spine split times are distinct,

ϒj = {ψi �= ψi−1 ∀i = 2, . . . , j}.
We work by induction; fix j ≤ k − 1, T > 0, 0 < s1 < · · · < sj−1 < 1. Then for s ≥ sj−1,

Q

(
ψj

T
> s

∣∣∣ ψj−1

T
= sj−1, . . . ,

ψ1

T
= s1

)

= Q

(
ϒj,

ψj

T
> s

∣∣∣ ψj−1

T
= sj−1, . . . ,

ψ1

T
= s1

)

= Q

(
ψj

T
> s

∣∣∣ ϒj,
ψj−1

T
= sj−1, . . . ,

ψ1

T
= s1

)
Q

(
ϒj

∣∣∣ ψj−1

T
= sj−1, . . . ,

ψ1

T
= s1

)
.

By Lemma 25 and the symmetry lemma,

Q

(
ϒj

∣∣∣ ψj−1

T
= sj−1, . . . ,

ψ1

T
= s1

)
→ 1

for all 0 < s1 < · · · < sj−1 < 1. We also set

D(s) = − d

ds
Q

(
ψj

T
> s

∣∣∣ ϒj,
ψj−1

T
= sj−1, . . . ,

ψ1

T
= s1

)

and claim that

D(s) = (k − j)rμerμ(1−s) (erμ(1−s) − 1)k−j−1

(erμ(1−sj−1) − 1)k−j
+ o(1).

If this claim holds, then applying induction and taking a product over j gives the result. In
particular, since this does not depend on the number of marks following each spine, the split
times are asymptotically independent of H′.
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To prove the claim, fix a1, . . . , aj such that ai ∈ {1, . . . , k} for each i and a1 +· · ·+aj = k.
Let Aj be the event that after time ψj−1, we have j distinct spine particles carrying a1, . . . , aj

marks. Then by the symmetry lemma (letting s0 = 0),

Q
k,T
T

(
ψj

T
> sj

∣∣∣ ϒj,Aj ,
ψj−1

T
= sj−1

)
=

j∏
i=1

Q
ai ,T (1−sj−1)

T (ψ1/T > sj − sj−1).

Thus, differentiating, we have

D(s) = − ∑
a1,...,aj

Pa1,...,aj

j∑
l=1

(
d

ds
Q

al,T (1−sj−1)

T

(
ψ1

T
> s − sj−1

))

× ∏
i �=l

Q
ai ,T (1−sj−1)

T

(
ψ1

T
> s − sj−1

)
,

where Pa1,...,aj
is the probability that Aj occurs. Applying Lemma 26 then establishes the

claim and completes the proof. �

We recall now the partition Z0,Z1, . . . which contained the information about the marks
following each of the distinct spine particles, without the information about the split times.

LEMMA 28. The partition Z0,Z1, . . . has the following distribution under Qk,T
T :

• If Zi consists of i + 1 blocks of sizes a1, . . . , ai+1, then the j th block will split next with

probability
aj−1
k−i−1(1 + o(1)) for each j = 1, . . . , i + 1.

• When a block of size a splits, it splits into two new blocks with probability 1 + o(1),
and the probability that these blocks have sizes l and a − l is 1

a−1(1 + o(1)) for each l =
1, . . . , a − 1.

PROOF. Suppose that we are given ψi = sT . For the first part, by the symmetry lemma,
the probability that the j th block splits next is∫ T (1−s)

0
Q

aj ,T (1−s)

T

(
ψ1

T
∈ dt

) ∏
l �=j

Q
al,T (1−s)
T

(
ψ1

T
> t

)

=
∫ T (1−s)

0

(
− d

dt
Q

aj ,T (1−s)

T

(
ψ1

T
> t

)) ∏
l �=j

Q
al,T (1−s)
T

(
ψ1

T
> t

)
dt.

By Lemma 26, this converges as T → ∞ to

(aj − 1)rμ

∫ T (1−s)

0
erμ(1−s−t) e(rμ(1−s−t) − 1)k−i

e(rμ(1−s) − 1)k−i−1 dt.

Since the integrand does not depend on aj , and we know the sum of the above quantity over
j = 1, . . . , i + 1 must converge to 1 (since one of the blocks must split first), we get

rμ

∫ T (1−s)

0
erμ(1−s−t) e

(rμ(1−s−t) − 1)k−b−1

e(rμ(1−s) − 1)k−b
dt → 1

k − i − 1

and therefore the probability that the j th block splits next converges to aj−1
k−i−1 as claimed.

The second part follows immediately from Lemma 25. �
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6.4. Asymptotics for NT under Q
k,T
T . We now apply our asymptotics for

uT (FT (e−z, sT )) to approximate the distribution of NT when the split times are known.

LEMMA 29. For any φ ≥ 0 and 0 ≤ s1 ≤ · · · ≤ sk−1 ≤ 1,

Q
k,T
T

[
e−φÑT /T

∣∣∣ Gk
T ,

ψ1

T
= s1, . . . ,

ψk−1

T
= sk

]

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k−1∏
i=0

(
1 + σ 2

2μ
φ

(
erμ(1−si ) − 1

))−2
if μ �= 0,

k−1∏
i=0

(
1 + rσ 2

2
φ(1 − si)

)−2
if μ = 0

almost surely as T → ∞.

PROOF. From Proposition 16 we know that

Q
k,T
T

[
e−φÑT /T

∣∣∣ Gk
T ; ψi

T
= si, i ≤ k − 1

]

=
k−1∏
i=0

(
e−r(mT −1)T (1−si )

uT (FT (e−φ/T , T (1 − si)))

uT (e−φ/T )

)
.

Of course (mT − 1)T → μ, and Lemma 23 tells us that

T 2uT

(
FT

(
e−φ/T , T (1 − si)

)) → −μf (φ,1 − si) + σ 2

2
f (φ,1 − si)

2,

where

f (φ, s) = φeμrs

1 + σ 2

2μ
φ(eμrs − 1)

if μ �= 0 or f (φ, s) = φ

1 + rσ 2

2 φs
if μ = 0.

Noting that uT (e−φ/T ) = uT (FT (e−φ/T ,0)), we see that

e−r(mT −1)T (1−si )
uT (FT (e−φ/T , T (1 − si)))

uT (e−φ/T )

→ e−rμ(1−si )
−μf (φ,1 − si) + σ 2

2 f (φ,1 − si)
2

−μf (φ,0) + σ 2

2 f (φ,0)2
.

Now, in the case μ �= 0, we simply write out

−μf (φ,1 − si) + σ 2

2
f (φ,1 − si)

2

= −μφerμ(1−si )(1 + σ 2

2μ
φ(eμr(1−si ) − 1)) + σ 2

2 φ2e2rμ(1−si )

(1 + σ 2

2μ
φ(eμr(1−si ) − 1))2

= −μφerμ(1−si ) + σ 2

2 φ2erμ(1−si )

(1 + σ 2

2μ
φ(eμr(1−si ) − 1))2

,

so since −μf (φ,0) + σ 2

2 f (φ,0)2 = −μφ + σ 2φ2/2, we have

e−rμ(1−si )
−μf (φ,1 − si) + σ 2

2 f (φ,1 − si)
2

−μf (φ,0) + σ 2

2 f (φ,0)2
=

(
1 + σ 2

2μ
φ

(
eμr(1−si ) − 1

))−2
.

The result in the case μ = 0 is very similar. �
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LEMMA 30. For any φ ≥ 0, Qk,T
T -almost surely,

Q
k,T
T

[
e−φ(NT −k)/T | Gk

T

] = Q
k,T
T

[
e−φÑT /T | Gk

T

](
1 + o(1)

)
.

PROOF. Recall that ÑT is the number of ordinary particles alive at time T , and there are
(Q-almost surely) k spines at time T . All other particles are residue particles. Given Gk

T , the
number of residue particles is independent of the number of ordinary particles; therefore it
suffices to show that

Qk,T [
e−φ(NT −k−ÑT )/T | Gk

T

] → 1.

Recall that we assumed that there exists a deterministic function J (T ) = o(T ) such that
our offspring distribution satisfies PT (L = j) = 0 for all j ≥ J (T ). Since Qk,T is absolutely
continuous with respect to PT , we also have Qk,T (L = j) = 0 for all j ≥ J (T ).

Since nonspine particles behave exactly as under PT , the generating function in z for the
number of descendants at time T of any one particle born at time ψi is PT [e−zNT −s ]|s=ψi

.
Therefore

Q
k,T
T

[
e−φ(NT −k−ÑT )/T | Gk

T

] ≥
k−1∏
i=1

PT

[
e−φNT −s/T ]J (T )∣∣

s=ψi
.

By Jensen’s inequality, for any t ∈ [0, T ],
PT

[
e−φNt/T ] ≥ exp

(−φPT [Nt ]/T
) ≥ exp

(−φer(mT −1)T /T
)
,

and thus

Q
k,T
T

[
e−φ(NT −k−ÑT )/T | Gk

T

] ≥ PT

[
exp

(−φer(mT −1)T J (T )/T
)]k−1

.

Since J (T ) = o(T ), the right-hand side converges to 1 as T → ∞, and trivially we have that
Q

k,T
T [e−φ(NT −k−ÑT )/T | Gk

T ] ≤ 1, so we are done. �

Recall that ϒk−1 is the event that all the split times are distinct, and H′ is the σ -algebra
that contains topological information about which marks follow which spines without infor-
mation about the spine split times. Let (ψ̃1, . . . , ψ̃k−1) be a uniform random permutation of
(ψ1, . . . ,ψk−1). We combine several of our results to prove the following.

LEMMA 31. Fix s1, . . . , sk−1 ∈ (0,1). Let

f (ξT ) = 1{ψ̃1/T >s1,...,ψ̃k−1/T >sk−1,ϒk−1}∩H ,

where H ∈ H′. There exists a constant h such that Qk,T
T (H) → h as T → ∞. For any φ ≥ 0,

if μ �= 0 then

lim
T →∞Q

k,T
T

[
e−φ(NT −k)/T f (ξT )

]

=
(

1

erμ − 1

)k−1 h

(1 + σ 2

2μ
φ(erμ − 1))2

k−1∏
i=1

erμ(1−si ) − 1

1 + σ 2

2μ
φ(erμ(1−si ) − 1)

and if μ = 0 then

lim
T →∞Q

k,T
T

[
e−φ(NT −k)/T f (ξT )

] = h

(1 + rσ 2φ/2)2

k−1∏
i=1

1 − si

1 + rσ 2φ(1 − si)/2
.
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PROOF. The fact that Qk,T
T (H) converges follows from Lemma 28. Now, by Proposi-

tion 27 (see also [12], Lemma 36), in the case μ �= 0,

Q
k,T
T

[
e−φ(NT −k)/T f (ξT )

]

= (
1 + o(1)

) ∫ 1

s1

· · ·
∫ 1

sk−1

(
rμ

erμ − 1

)k−1
(

k−1∏
i=1

erμ(1−s′
i )

)

·Qk,T
T

[
1HQ

k,T
T

[
e−φ(NT −k)/T

∣∣∣ Gk
T ,

ψ̃1

T
= s′

1, . . . ,
ψ̃1

T
= s′

k−1

]]
.

By Lemma 30, we may replace NT − k with ÑT ; and then by Lemma 29, the above equals

(
1 + o(1)

) ∫ 1

s1

· · ·
∫ 1

sk−1

(
rμ

erμ − 1

)k−1
(

k−1∏
i=1

erμ(1−s′
i )

)

·Qk,T
T (H)

k−1∏
j=0

(
1 + σ 2

2μ
φ

(
e
rμ(1−s′

j ) − 1
))−2

ds′
k−1 · · ·ds′

1

almost surely. After some small rearrangements this becomes

(
1 + o(1)

)( rμ

erμ − 1

)k−1 h

(1 + σ 2

2μ
φ(erμ − 1))2

k−1∏
i=1

∫ 1

si

erμ(1−s′
i )

(1 + σ 2

2μ
φ(erμ(1−s′

i ) − 1))2
ds′

i ,

and then integrating out over s′
i for each i gives the result (see [12], Lemma 35, for details).

The case μ = 0 is similar. �

6.5. The final steps in the proof of Theorem 3. PROOF OF THEOREM 3. Let

PT (f, k) = PT

[
1

N
(k)
T

∑
u∈N (k)

T

f (u)
∣∣∣ NT ≥ k

]
.

By Proposition 7, for any measurable f ,

PT (f, k) = PT [N(k)
T ]

PT (NT ≥ k)(k − 1)!
∫ ∞

0

(
ez − 1

)k−1
Q

k,T
T

[
e−zNT f (ξT )

]
dz.

Substituting z = φ/T and rearranging, this equals

1

(k − 1)!
PT [N(k)

T ]
T k−1

1

T PT (NT ≥ k)

×
∫ ∞

0

(
T

(
1 − e−φ/T ))k−1

Q
k,T
T

[
e−φ(NT −k)/T f (ξT )

]
e−φ/T dφ.

By Lemma 22,

PT [N(k)
T ]

T k−1 →
(

σ 2

2μ

)k−1
k!erμ(

erμ − 1
)k−1 if μ �= 0

and

PT [N(k)
T ]

T k−1 →
(

rσ 2

2

)k−1
k! if μ = 0,
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and by Lemma 24,

T PT (NT ≥ k) → 2μerμ

σ 2(erμ − 1)
if μ �= 0 and T PT (NT ≥ k) → 2

rσ 2 if μ �= 0.

Therefore

1

(k − 1)!
PT [N(k)

T ]
T k−1

1

T PT (NT ≥ k)
→

{
k
(
σ 2/2μ

)k(
erμ − 1

)k if μ �= 0,

k
(
rσ 2/2

)k if μ = 0.

We deduce that, when μ �= 0,

(28)
PT (f, k) = (

1 + o(1)
)
k

(
σ 2

2μ

)k(
erμ − 1

)k
×

∫ ∞
0

(
T

(
1 − e−φ/T ))k−1

Q
k,T
T

[
e−φ(NT −k)/T f (ξT )

]
e−φ/T dφ

and, when μ = 0,

PT (f, k) = (
1 + o(1)

)
k

(
rσ 2

2

)k ∫ ∞
0

(
T

(
1 − e−φ/T ))k−1

Q
k,T
T

[
e−φ(NT −k)/T f (ξT )

]
e−φ/T dφ.

Our aim now is to choose f as in Lemma 31, and apply dominated convergence and
Lemma 31 to complete the proof. We do this only in the case μ �= 0; the case μ = 0 is very
similar. Let

A(φ,T ) = (
T

(
1 − e−φ/T ))k−1

Q
k,T
T

[
e−φ(NT −k)/T f (ξT )

]
and

B(φ,T ) = (
T

(
1 − e−φ/T ))k−1

Q
k,T
T

[
e−φ(NT −k)/T ]

.

Then 0 ≤ A(φ,T ) ≤ B(φ,T ) for all φ, T . By letting s1, . . . , sk−1 ↓ 0 in Lemma 31, we have

lim
T →∞Q

k,T
T

[
e−φ(NT −k)/T 1ϒk−1

]

=
(

1

erμ − 1

)k−1 1

(1 + σ 2

2μ
φ(erμ − 1))2

(
erμ − 1

1 + σ 2

2μ
φ(erμ − 1)

)k−1

=
(

1 + σ 2

2μ
φ

(
erμ − 1

))−(k+1)

.

Also, by Lemma 25, Qk,T
T [e−φ(NT −k)/T 1ϒc

k−1
] ≤ Q

k,T
T (ϒc

k−1) → 0, so

lim
T →∞B(φ,T ) = φk−1

(
1 + σ 2

2μ
φ

(
erμ − 1

))−(k+1)

.

On the other hand, by (28) with f ≡ 1,

1 = PT (1, k) = (
1 + o(1)

)
k

(
σ 2

2μ

)k(
erμ − 1

)k ∫ ∞
0

B(φ,T )dφ,

so

lim
T →∞

∫ ∞
0

B(φ,T )dφ = 1

k

(
2μ

σ 2(erμ − 1)

)k

;
and as a result we see that limT →∞

∫ ∞
0 B(φ,T )dφ = ∫ ∞

0 limT →∞ B(φ,T )dφ. Therefore,
by dominated convergence,

(29) lim
T →∞

∫ ∞
0

A(φ,T )dφ =
∫ ∞

0
lim

T →∞A(φ,T )dφ.
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Lemma 31 tells us that

A(φ,T ) →
(

φ

erμ − 1

)k−1 h

(1 + σ 2

2μ
φ(erμ − 1))2

k−1∏
i=1

erμ(1−si ) − 1

1 + σ 2

2μ
φ(erμ(1−si ) − 1)

,

where h = limT →∞Q
k,T
T (H), so by (28) and (29), as T → ∞

PT (f, k) → k

(
σ 2

2μ

)k(
erμ − 1

)

×
∫ ∞

0
φk−1 h

(1 + σ 2

2μ
φ(erμ − 1))2

k−1∏
i=1

erμ(1−si ) − 1

1 + σ 2

2μ
φ(erμ(1−si ) − 1)

dφ

= kσ 2

2μ

(
erμ − 1

) ∫ ∞
0

h

(1 + σ 2

2μ
φ(erμ − 1))2

k−1∏
i=1

(
1 − 1

1 + σ 2

2μ
φ(erμ(1−si ) − 1)

)
dφ.

Note that, for any μ �= 0, we have σ 2

2μ
(erμ(1−si ) − 1) > 0 for all i; elementary calculations

(see [12], Lemma 34, for details) give

lim
T →∞PT (f, k) = hk

(
k−1∏
i=1

ei

ei − e0

)
+ hke0

k−1∑
j=1

ej

(ej − e0)2

(
k−1∏
i=1
i �=j

ei

ei − ej

)
log

e0

ej

,

where ej = σ 2

2μ
(erμ(1−sj ) − 1) for each j (including j = 0, where s0 = 0). �

6.6. Proof of construction of the scaling limit. In this section we prove Theorems 4 and 5.

PROOF OF THEOREM 4. Relabel T1, . . . , TI−1, TI+1, . . . , Tk as T̃1, . . . , T̃k−1. Since
P(Mk ≤ θ) = P(X1 ≤ θ)k , we have

P(T̃1 ∈ ds1, . . . , T̃k−1 ∈ dsk−1)

=
∫ ∞

0
P(Mk ∈ dθ)P(T̃1 ∈ ds1, . . . , T̃k−1 ∈ dsk−1 | Mk = θ)

=
∫ ∞

0
kP(X1 ∈ dθ)P(X1 ≤ θ)k−1

× P

(
1 − X1

θ
∈ ds1, . . . ,1 − Xk−1

θ
∈ dsk−1

∣∣∣ X1 ≤ θ, . . . ,Xk−1 ≤ θ

)

=
∫ ∞

0

k

(1 + θ)2P(X1 ≤ θ)k−1
k−1∏
i=1

P

(
1 − Xi

θ
∈ dsi

∣∣∣ Xi ≤ θ

)
dθ

=
∫ ∞

0

k

(1 + θ)2

k−1∏
i=1

P

(
1 − Xi

θ
∈ dsi

)
dθ =

∫ ∞
0

k

(1 + θ)2

(
k−1∏
i=1

θ

(1 + θ(1 − si))2 dsi

)
dθ.

This is exactly the density that we saw for (S̃k
1 , . . . , S̃k

k−1) in Section 2.3.
To see that our tree has the topology claimed, start by assigning k marks to the top of the

tallest line, that is, at the point (UI ,1 − TI ). Colour this line green. Next colour the second
tallest line blue; let its index be J . Since it is positioned uniformly on the horizontal axis,
the number L of shorter lines to its left is uniformly distributed on {0, . . . , k − 2}, and so is
the number k − 2 − L to its right. Suppose without loss of generality that the blue line is to
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FIG. 5. Constructing the tree by moving downwards through our picture. The number of marks are shown in
circles. The as yet “unseen” parts of the tree are left blank. Here k = 5, I = 4 and J = 1.

the left of the green line, and assign L + 1 marks to the top of the blue line, that is, at point
(UJ ,1 − TJ ), and k − (L + 1) marks to the point (UI ,1 − TJ ). (If the blue line were to the
right of the green line, we would assign k − (L + 1) marks to (UJ ,1 − TJ ) and L + 1 marks
to (UI ,1 − TJ ).) Thus the number of marks assigned to the top of the blue line is uniform on
{1, . . . , k − 1}.

Moving downwards, the next horizontal line to appear corresponds to the third-tallest ver-
tical line. We ask which of the two coloured lines this next horizontal line will join to, that
is, which of the branches in the tree will split next. By our construction, the event that the
third tallest line joins the blue line (given that the blue line is left of the green line) is exactly
the event that the third tallest line is left of the blue line. Since the lengths of the branches are
independent and identically distributed, this has probability L/(k − 2). Furthermore, observe
that the position of the third tallest line, conditionally on it falling to the left (respectively
right) of the blue line, is uniformly distributed on (0,UJ ) (respectively (UJ ,1)). See Fig-
ure 5.

More generally, once we have seen the n tallest vertical lines, and assigned ai marks to
line i for each line i that we have seen, the (n + 1)st tallest vertical line has probability
(ai − 1)/(k − n) of joining line i; and the number of marks this new line gets is uniformly
distributed on {1, . . . , ai − 1}. This is exactly the topology outlined in Theorem 3. �

PROOF OF THEOREM 5. Rather than doing the calculation directly, this follows from
Theorem 4 by noting that making the substitution

ti = erμ − erμ(1−si )

erμ − 1
in the density fk recovers the critical case from the noncritical. �
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