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Given an infinite connected regular graph G= (V,E), place at each ver-
tex Poisson(λ) walkers performing independent lazy simple random walks on
G simultaneously. When two walkers visit the same vertex at the same time
they are declared to be acquainted. We show that when G is vertex-transitive
and amenable, for all λ > 0 a.s. any pair of walkers will eventually have a
path of acquaintances between them. In contrast, we show that when G is
nonamenable (not necessarily transitive) there is always a phase transition at
some λc(G) > 0. We give general bounds on λc(G) and study the case that G

is the d-regular tree in more detail. Finally, we show that in the nonamenable
setup, for every λ there exists a finite time tλ(G) such that a.s. there exists an
infinite set of walkers having a path of acquaintances between them by time
tλ(G).

1. Introduction. We consider the following model for a social network which we call
the social network model (SN as a shorthand). The model was proposed by Itai Benjamini
and was first investigated in [4] in the context of finite graphs (see Section 1.2 for further
details). In this work we study the model on infinite graphs. Let G = (V ,E) be an infinite
connected d-regular graph, which is the underlying graph of the SN model. In our model we
have walkers performing independent lazy simple random walks on G, denoted by LSRW (see
Section 2 for a definition). The walkers perform their LSRWs simultaneously (i.e., at each
time unit they all perform one step, which may be a lazy step). The SN model on a graph
G with density λ > 0 is defined by setting (|Wv|)v∈V to be i.i.d. Pois(λ) r.v.’s, where Wv

denotes the set of walkers whose initial position is v (and Pois(λ) is the Poisson distribution
of mean λ). We denote the corresponding probability measure by Pλ.

Let t ∈ Z+ ∪ {∞}. We say that two walkers w,w′ have met by time t , which we denote

by w
t↔ w′, if there exists t0 ≤ t such that they have the same position at time t0. After two

walkers meet they continue their walks independently without coalescing. We write w
∞↔w′

(“meeting by time ∞”), if there exists some finite t , such that w
t↔w′. “Meeting by time t”

is a symmetric relation and thus induces a unique minimal equivalence relation that contains
it. We call this equivalence relation having a path of acquaintances by time t and denote it

by
t∼ (note that w

∞∼w′ iff there exists some finite t such that w
t∼w′). More explicitly, two

walkers a and b have a path of acquaintances by time t iff there exist k ∈N, and walkers a =
c0, c1, . . . , ck, ck+1 = b such that ci

t↔ ci+1, for all 0≤ i ≤ k. Note that we are not requiring
the sequence of times in which the walkers met to be nondecreasing, which is the main
difference between the SN model and some existing models for spread of rumor/infection
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(e.g., the A+B 	→ 2B model [11] and the frog model [1, 10, 14, 16]). Consequently, the SN
model typically evolves much faster than such models.

We are interested in the coalescence process of the equivalence classes, and in particular
in the number of equivalence classes of

∞∼ and in the existence of an infinite equivalence class

of
t∼ for some finite t .

Let W :=⋃
u∈V Wu be the set of all walkers. Denote by Con (a shorthand for “connected”)

the event that w
∞∼ w′ for all w,w′ ∈W (i.e., Con is the event that every pair of walkers

eventually have a path of acquaintances between them). The following question was proposed
to us by Itai Benjamini [2].

QUESTION 1.1. Let Td be the infinite d-regular tree. Does Pλ[Con] = 1 for all λ > 0?

We give a negative answer to this question (Theorem 2). This raises the problem of iden-
tifying for which graphs Con occurs Pλ-a.s. for all λ > 0.

DEFINITION 1.2 (Critical density). Let G = (V ,E) be an infinite connected regular
graph. The critical density for the SN model on G is defined to be

λc(G) := inf
{
λ : ∃p > 0 such that inf

u,v∈V
Pλ[u∞∼ v |Wu �=∅,Wv �=∅] ≥ p

}
,

where for a pair of vertices u, v and t ∈ Z+ ∪ {∞} we write u
t∼ v (respectively, u

t↔ v) if

there exist some w ∈Wv and w′ ∈Wu such that w
t∼w′ (respectively, w

t↔w′).

The following phase transition occurs around the critical density:

PROPOSITION 1.3. Let G be an infinite connected regular graph. Then

(1.1) Pλ[Con] =
{

0 if 0 < λ < λc(G),

1 if λ > λc(G).

A graph G = (V ,E) is called vertex transitive if the action of its automorphisms group,
Aut(G), on its vertices is transitive (i.e., {ϕ(v) : ϕ ∈Aut(G)} = V for all v). The spectral ra-
dius of a random walk on G= (V ,E) with transition kernel P is ρ := lim supn(P

n(v,u))1/n

(the limit is independent of u, v ∈ V ). A graph G is called amenable if ρ = 1 for LSRW
on G (otherwise, it is called nonamenable). We review some consequences of amenabil-
ity/nonamenability in Section 2.5 and Section 4.

There are numerous characterizations of amenability. Most characterizations describe a
certain dichotomy between amenable graphs and nonamenable graphs. In particular, several
probabilistic models exhibit very different behaviors in the amenable setup and the nona-
menable setup. However, proving a sharp dichotomy may be an extremely challenging task
for some models. For instance, it is a major open problem in percolation theory to establish
that for vertex transitive graphs, the existence of a nonuniqueness regime for Bernoulli perco-
lation is equivalent to nonamenability. For further details see [13], Chapter 7. For a different
recent characterization of nonamenability via percolation see [8]. The following theorem as-
serts that for transitive graphs, amenability can be characterized by the SN model (note that
there is no transitivity assumption in the nonamenable setup).

THEOREM 1. For every infinite connected vertex transitive amenable graph of finite de-
gree, λc = 0. Conversely, for every infinite nonamenable connected regular graph λc > 0.
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REMARK 1.4. A similar dichotomy is believed to hold for the frog model (in the context
of recurrence), however the only family of nonamenable graphs for which a phase transition
is known to exist in the frog model is the infinite d-regular tree for all d ≥ 3 [9]. The frog
model in the amenable setup is studied in [15].

REMARK 1.5. Using our analysis of the nonamenable setup it is not hard to verify that
by attaching the root of an infinite binary tree to the origin of Zd we obtain a nontransitive
amenable graph with λc > 0. Thus the transitivity assumption is necessary in Theorem 1.

A question which arises naturally is what can be said about λc in the nonamenable setup.
We give general lower and upper bounds on λc(G) (Theorems 8.1 and 5.1, respectively) in
terms of the spectral radius ρ of the walk and the degree d of the underlying graph. It turns
out that the holding probability (which obviously affects ρ) can drastically change λc, which
is somewhat counter-intuitive at first sight. As an illustrating example we consider the infinite
d-regular tree.

THEOREM 2. Let Td = (V ,E) be the infinite d-regular tree for some d ≥ 3. There exist
absolute constants c,C > 0 such that when the holding probability of the walks is taken to be
1/(d + 1) we have that

(1.2) c
√

d ≤ λc(Td)≤ C
√

d.

In contrast, Theorem 5.1 asserts that when the holding probability is taken to be 1/2, there
exists an absolute constant C such that for all d ≥ 3 and all infinite connected d-regular
graphs G we have that λc(G) ≤ C logd . In Section 9.1 we state and provide a sketch of
proof of Theorem 9.1, which refines Theorem 8.1 and asserts the following. There exists an
absolute constant c > 0 such that for every connected, infinite, regular graph G, when the
holding probability is 1/2 we have that λc(G)≥ c log(1/ρ), where ρ is the spectral-radius of
simple random walk on G (rather than of lazy simple random walk with holding probability
1/2).

Combining these two results we obtain as a corollary that c logd ≤ λc(Td) ≤ C logd ,
when the holding probability is 1/2. In fact, the same bounds hold for all infinite connected

Ramanujan graph, which are by definition d-regular graphs with ρ = 2
√

d−1
d

. (For SRW on

infinite connected d-regular graphs one always has that ρ ≥ 2
√

d−1
d

and for Td this is an
equality—see e.g., [13], Theorem 6.10.)

We strongly believe that up to the value of the absolute constants, the same bounds hold
for the continuous-time analog of the SN model, as the ones holding in discrete-time when
the holding probability is 1/2.

1.1. Infinite friend clusters in finite time. We now turn our attention to the problem of

determining the existence of an infinite equivalence class of
t∼ for some finite t .

Let t ∈ Z+ ∪ {∞}. For each walker w we call the set walkers in the same equivalence

class of
t∼ as w, the friend cluster of w at time t and denote it by FCt (w). When t =∞

we call this set the friend cluster of w and denote it by FC(w) := FC∞(w). More generally,
when t =∞ we often omit it from our terminology and notation. Recall that for u, v ∈ V

and t ∈ Z+ ∪ {∞} we denote u
t↔ v and u

t∼ v iff there exist w ∈Wu and w′ ∈Wv so that

w
t↔w′ and w

t∼w′, respectively. Let

� := {
u ∈ V : |Wu|> 0

}
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be the set of initially occupied vertices. It will be convenient to define the friend cluster of
a vertex u at time t , which by abuse of notation we denote by FCt (u), which is defined as
follows. If u ∈� then we define FCt (u) to be the friend cluster of the walkers in Wu at time
t , that is, FCt (u) := FCt (w) for some (and hence every) w ∈Wu. Otherwise, we set FCt (u)

to be the empty-set. Note that λc(G) is equal to

inf
{
λ : ∃p > 0 such that ∀u, v ∈ V,Pλ

[
FC(u)= FC(v) | u, v ∈�

]≥ p
}
.(1.3)

Minor adjustments to the analysis of the frog model on (Z/nZ)d from [3] show that when the
underlying graph is Zd with d > 1, for every λ > 0 there is indeed an infinite friend cluster
in finite time a.s.

CONJECTURE 1.6 (Benjamini [2]). Let G be an infinite connected graph of bounded
degree. Assume that for some 0 < p < 1 Bernoulli bond percolation on G with survival
probability p has an infinite connected component with probability 1. Then for all λ > 0,
there exists tλ(G) > 0 such that

∀t > tλ(G), Pλ

[
max

w

∣∣FCt (w)
∣∣=∞]

= 1.

The following theorem provides a partial answer.

THEOREM 3. Let G= (V ,E) be a regular connected infinite nonamenable graph. De-
note the spectral radius of LSRW with some arbitrary holding probability 0≤ p < 1 by ρ. Let
IC(t) be the event that maxv∈V |FCt (v)| =∞. Then there exists an absolute constant C > 0
(independent also of G) such that for all λ ∈ (0,1] and t ≥ � C

λ(1−ρ)
� =: tC,λ

Pλ

[
IC(t)

]= 1.

REMARK 1.7. Theorem 6 in [4] asserts that (for λ = 1) if G is a d-regular expander
of size n, then there exists some constants t, c1 (depending only on the spectral gap of the
walk on G and on d) such that after t steps maxv |FC(v)| ≥ n/6 with probability at least
1 − e−c1n. However, the techniques from the finite setup do not carry over to the infinite
setup of Theorem 3.

1.2. Related work. The SN model, proposed by Itai Benjamini, was first investigated in
the context of finite graphs and λ = 1 in [4], where it was shown that there exist constants
c,C > 0 such that for every finite connected graph G= (V ,E) of average degree d ,

P
[
c log |V | ≤ inf

{
t : FCt (u)= FCt (v) for all u, v ∈�

}≤ Cd6 log3 |V |]
≥ 1− |V |−1.

That is (when λ= 1 and the holding probability is taken to be 1/2), the first time at which all
walkers have a path of acquaintances between them is with high probability poly-logarithmic
in the number of vertices, provided that the average degree is at most poly-logarithmic. For
d-regular graphs the term d6 is improved to d . Further improvements are given under appro-
priate heat-kernel decay assumption or under a certain isoperimetric assumption.

1.3. Organization of the paper and discussion of our techniques. In Section 2 we present
some preliminaries about Poisson thinning, percolation and random walks on nonamenable
graphs. In Section 3 we prove Proposition 1.3.

In Section 4 we prove the assertion of Theorem 1 in the transitive amenable setup (namely,
that λc = 0). The main tools used in Section 4 are borrowed from the study of percolation.



906 HERMON, MORRIS, QIN AND SLY

Namely, we consider the graph with vertex set V in which all vertices in V \� are isolated
and each pair of vertices u, v ∈� are connected if FC(u)= FC(v) (i.e., if eventually there is
a path of acquaintances between the walkers whose initial location is u and the ones whose
initial location is v). We wish to show that for every λ > 0 a.s. all u ∈ � lie in the same
connected component (this is the same as saying Pλ[Con] = 1).

We show that this percolation process stochastically dominates an auxiliary translation-
invariant percolation process possessing insertion tolerance (see Section 2.3 for the relevant
definitions), in which for each u ∈� the connected component of u is infinite. Using standard
machinery from the theory of percolation on transitive amenable graphs (see Theorem 4.1)
we deduce that the auxiliary percolation process a.s. has a unique infinite cluster. The vertex
set of the unique infinite cluster must be �, as if some u ∈ � does not lie in the unique
infinite cluster, then there would be more than one infinite cluster (as the cluster of u is
infinite, as is the cluster of every v ∈�). The aforementioned stochastic domination implies
that Pλ[Con] = 1.

In Section 5 we bound λc from above in the nonamenable setup. The idea of the argument
is to argue that if λ is sufficiently large, then any two friend clusters have a drift toward each
other. Clearly, if λ is large enough (in terms of the degree) this is true in the first step. The
idea is to exploit Poisson thinning, and to somehow use just a fraction of the walkers, in a
manner that guarantees that at each step we have a sufficient amount of “unused” walkers to
maintain a drift. The key fact used in the analysis is the exponential decay (w.r.t. time) of the
transition probabilities of the random walk.

In Section 6 we consider the d-ary tree and prove Theorem 2. Here we use a certain
comparison between the SN model with parameter λ and a Bernoulli bond percolation, with
parameter proportional to (λ/d)2, on a certain copy of T�d/2� inside Td . This percolation is
supercritical if λ > C

√
d , which by the nature of the comparison we establish, in turn implies

the supercriticality of the SN model.
In Section 7 we prove Theorem 3. Here we use a variant of an exploration process of Ben-

jamini, Nachmias and Peres [5] which they used to prove locality of the critical percolation
probability for nonamenable graphs of large girth. Their analysis establishes some connection
between percolation and random walks, and hence it is perhaps not surprising that a variant
of it is useful also in our setup.

In Section 8 we conclude the proof of Theorem 1 by proving a general lower bound on λc in
the nonamenable setup. Here we explore the friend cluster in a way which we then dominate
by a branching random walk with mean offspring distribution 1 + 2λ. Such a branching
random walk is known to be transient provided that 1+2λ≤ 1/ρ [7], where ρ is the spectral-
radius of the corresponding walk (see Section 2.5 and Section 8 for definitions). Transience
of the branching random walk implies that a.s. there are some vertices which are never visited
by walkers in the friend cluster of the origin.

If we only considered paths of acquaintances which are monotone in time (as in the afore-
mentioned A+ B 	→ 2B and frog models—see the discussion at page 903), then as we now
explain it would have been relatively easy to dominate the friend cluster via a branching
random walk with offspring distribution whose law is the same as that of 1 + X, where
X ∼ Pois(λ). For this consider the exploration process in which at each time unit t we re-
cruit to the exploration process (the yet unrecruited) walkers that met at time t one of the
walkers already recruited to the exploration process before time t . Using Poisson thinning it
is not hard to argue that each recruited walker contributes at each stage at most Pois(λ) new
walkers.

In Section 8 we describe a variant of this exploration process, which actually captures the
evolution of FC(o). Exploring directly the evolution of FCt (o) as time increases is counter-
productive, as it grows too rapidly and by Theorem 3 it becomes infinite in finite time. Instead
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we shall explore the evolution of FC(o) in a slowed down fashion. At each stage we reveal
two steps of each previously recruited walker, one corresponds to moving forward in time, as
above, and the other corresponds to a step backwards in time. Namely, if a walker is recruited
to the exploration process at stage t , due to an acquaintance made at time s ≤ t , then at stage
t + i (for i > 0) we reveal its location at time s+ i (forward step) and if i ≤ s also its location
at time s − i (backwards step).

Crucially, using reversibility (and the fact that the transition kernel P of the walk per-
formed by each particle is symmetric, i.e., it satisfies P(x, y) = P(y, x) for all x, y), if
(v0, v1, . . .) is a random walk, then (vt , vt−1, . . . , v1, v0) is also a random walk. That is, the
backwards evolution of each walker still has the law of a random walk. Thus we may think of
each recruited walker as two distinct particles, one corresponding to the forward trajectory,
and one to the backwards trajectory (from the time at which the walker was recruited until
time 0). This accounts for the multiplicative term 2 in 1+2λ above. Namely, we dominate the
exploration process via a branching random walk with offspring distribution 1+ 2X, where
X ∼ Pois(λ).

Finally, in Section 9 we give a refinement of the lower bound on λc from Section 8 which
is specialized to the case where the holding probability is large. It is used to determine the
asymptotic behavior of λc(Td) as d →∞ when the holding probability is 1/2, as described
after the statement of Theorem 2.

2. Preliminaries and additional notation. LSRW is defined as follows. If a walker’s
current position is v, then the walker either stays in its current position w.p. 1/2, which we
refer to as the holding probability, or moves to one of the neighbors of v w.p. 1

2d
. We shall

also consider the case of holding probability 1/(d + 1) in which 1/(2d) and 1/2 above are
both replaced by 1/(d + 1).

2.1. Reversibility, Poisson thinning, stationarity of the occupation measure and indepen-
dence of the number of walkers performing different walks. Let G = (V ,E) be a regular
graph. Then the transition kernel P of LSRW on G is symmetric (i.e., P(x, y)= P(y, x) for
all x, y ∈ V ) and so P t is also symmetric for all t ∈ N. In other words, P is reversible w.r.t.
the counting measure on V . We now establish a certain independence property for walks in
G, which in particular implies stationarity of the occupation measure for the SN model.

A walk of length k in G is a sequence of k + 1 vertices (v0, v1, . . . , vk) such that for
all 0 ≤ i < k either vi = vi+1 or {vi, vi+1} ∈ E. Let �k be the collection of all walks of
length k in G. Throughout, we denote the set of walkers whose initial position is v by
Wv := {wv

1, . . . ,wv
Nv
}. We denote by wv

i (t) the position of the walker wv
i at time t . We

say that a walker wv
i performed a walk γ ∈ �k if (wv

i (0), . . . ,wv
i (k)) = γ . For a walk

γ = (γ (0), . . . , γ (k)) ∈ �k for some k ≥ 1, we denote p(γ ) := ∏k−1
i=0 P(γi, γi+1). This is

precisely the probability that some given walker w ∈Wγ (0) performed the walk γ .
Let γrev be the reversal of γ ∈ �k . That is γrev(i) = γ (k − i) for all 0 ≤ i ≤ k.

Then by reversibility p(γ ) = p(γrev). We denote the number of walkers whose position
at time t is v by Yv(t). By reversibility, for all v ∈ V and t > 0 we have Eλ[Yv(t)] =∑

u∈V Eλ[Yv(0)]P t(u, v)= λ
∑

u∈V P t (v, u)= λ. Thus by Poisson thinning:

FACT 2.1. Let G = (V ,E) be a regular graph. Denote the number of walkers who
performed a walk γ (in the above sense) by Xγ . For every λ > 0, under Pλ we have that
Xγ ∼ Pois(λp(γ )), for all t > 0 and γ ∈ �t . Moreover, (Xγ )γ∈�t are independent for each
fixed t > 0. Consequently, (Yv(t))v∈V are i.i.d. Pois(λ) random variables for each fixed t > 0.
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2.2. Further notation, monotonicity and the regeneration lemma. Let t ∈ Z+∪{∞}. The
acquaintances graph at time t , denoted by ACt (G) = (V ,Et), is a random graph in which

two distinct vertices u, v ∈ V are connected by an edge iff u
t↔ v. We denote AC(G) :=

AC∞(G). We denote the connected component of v in ACt (G) by Ct(v). Note that FCt (v)=⋃
u∈Ct (v)Wu, where as before Wu is the set of walkers which initially occupy vertex u. When

clear from context, we omit G from the notation. When we want to emphasize the density
of the walkers we write ACλ

t (G). We denote the collection of walkers which occupy vertex
v (respectively, the set A ⊆ V ) at time t by Wv(t) (respectively, WA(t)) and set WA :=
WA(0)=⋃

a∈AWa (this is the set of walkers whose initial position is in A).

PROPOSITION 2.2. Let G= (V ,E) be a regular graph. There exists a probability space
on which the SN model on G is defined for all λ > 0 simultaneously, such that deterministi-
cally, for all t ∈ Z+ ∪ {∞} we have that ACλ1

t is a subgraph of ACλ2
t for all λ1 ≤ λ2.

The construction is fairly straightforward and is very similar to the one in [3]. We present
it in Appendix B for the sake of completeness.

LEMMA 2.3 (Regeneration lemma). Let G= (V ,E) be an infinite d-regular graph. Let
Yv,B(t) be the number of walkers belonging to WB which are at vertex v at time t . Then for
every finite set A⊂ V and each fixed t , (Y

v,A�(t))v∈V are independent Poisson r.v.’s, where

A� := V \A is the complement of A. Moreover, limt→∞ infv Eλ[Yv,A�(t)] = λ.

LEMMA 2.4. Let G = (V ,E) be an infinite, connected, regular graph. Let w :=
(w0,w1, . . .) ∈ V Z+ . For t ∈ N ∪ {∞} let Nt(w) be the number of walkers not belonging
to Ww0 which for some i ≤ t visited wi at time i. Then Nt(w) has a Poisson distribution
for all t and w whose mean (under Pλ) is at least cλ

√
t for some constant c. In particular,

N∞(w) is infinite a.s.

The proofs of the last two lemmas involve straightforward applications of Fact 2.1 com-
bined with the general bound supx,y∈V P t (x, y)≤ C√

t+1
and are thus deferred to Appendix A.

2.3. Insertion tolerance, translation invariance, ergodicity. We now show how the SN
model on a graph G with a countable vertex set V can be viewed as a long-range bond
percolation process on G. This will allow us to use existing machinery from percolation
theory in our study of the SN model.

Let S := {{v,u} : v �= u, v,u ∈ V }. The standard form of a probability space of a long-
range bond percolation process on G is ({0,1}S,P,Fcylinder), where Fcylinder is the the cylin-
der σ -algebra, the minimal σ -algebra w.r.t. which {x ∈ {0,1}S : x(s)= 1} is measurable for
all s ∈ S. Each x ∈ {0,1}S can be viewed as a graph graph(x)= (V ,E(x)), where s ∈ E(x)

iff x(s)= 1, in which case we say s is open in the configuration x. If x(s)= 0 we say that s

is closed in the configuration x. For B ⊆ {0,1}S we write graph(B) := {graph(b) : b ∈ B}.
Let (	,P,F) be a probability space in which there exist zero-one valued random variables

(Zs)s∈S (S as above). This probability space gives rise to a (long-range bond) percolation
process on G as follows. For every ω ∈ 	 we construct a graph graph(ω) = (V ,E(ω)) by
setting s ∈E(ω) iff Zs(ω)= 1. Note that ω 	→ graph(ω) need not be bijective.

Several definitions which we soon give take a simple form when the percolation process is
given in the standard form. These definitions extend to the general case as follows. There is
a canonical correspondence between (	,P,F) and a probability space having the standard
form. For every ω ∈	, we define ψ(ω) ∈ {0,1}S by setting ψ(ω)(s)= Zs(ω). For every B ∈
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F set ψ(B) := {ψ(b) : b ∈ B} ⊆ {0,1}S . Conversely, for every x ∈ {0,1}S we set ψ−1(x) :=
{ω ∈ 	 : ψ(ω) = x} and for every B ⊆ {0,1}S we set ψ−1(B) :=⋃

x∈B ψ−1(x). By abuse
of notation, we identify the restriction of P to the σ -algebra generated by (Zs)s∈S with the
space ({0,1}S,Pcylinder,Fcylinder), where for every B ∈ Fcylinder, Pcylinder(B) := P(ψ−1(B)).
That is, we identify x ∈ {0,1}S and B ∈Fcylinder with ψ−1(x) and ψ−1(B), respectively, and
by abuse of notation write P(B) for P(ψ−1(B)). In particular, we say that P satisfies one of
the properties defined below if Pcylinder satisfies this property.

For every x ∈ {0,1}S and s ∈ S, we define x+s ∈ {0,1}S by setting

x+s
(
s′

) := {
1 s′ = s,

x
(
s′

)
otherwise.

That is, x+s is obtained from x by flipping the value at s to 1 if necessary, while keeping the
the configuration unchanged elsewhere. For every s ∈ S and B ⊆ {0,1}S we define

B+s :=
{
b+s : b ∈ B

}
.

Note that graph(B+s )= {(V ,E(b) ∪ {s}) : b ∈ B} (where as before graph(b)= (V ,E(b)); In
other words, if we identify B+s and B with collections of graphs, then the former is obtained
from the latter by adding to each graph in B the edge s, if it did not already appear in it).
We say that P is insertion tolerant (also known as having positive finite energy) if for all
B ∈Fcylinder such that P(B) > 0 also P(B+e ) > 0, for all e ∈E.

Every ϕ ∈ Aut(G) acts on {0,1}S (ϕ : {0,1}S → {0,1}S ) via ϕ(x)(s)= x(ϕ(s)). Clearly,
graph(ϕ(x)) is isomorphic to graph(x). We say that an event A ∈ Fcylinder is translation
invariant if for all ϕ ∈ Aut(G) we have that A= ϕ(A), where ϕ(A) := {ϕ(a) : a ∈A}. We
denote the σ -algebra of all translation invariant events by I . We say that P is translation
invariant if for all A ∈Fcylinder we have that P(A)= P(ϕ(A)) for all ϕ ∈Aut(G). When the
percolation process is defined via Bernoulli random variables (Zs)s∈S , this is equivalent to

the requirement that for all ϕ ∈Aut(G) we have that (Zs)s∈S
d= (Zϕ(s))s∈S , where d= denotes

equality in distribution. We say that P is ergodic if P(A) ∈ {0,1} for all A ∈ I .

PROPOSITION 2.5. Let G = (V ,E) be an infinite connected vertex-transitive graph.
Then for all λ > 0 we have that the law of ACλ

t (G) is translation invariant and ergodic
for all λ > 0 and t ∈ Z+ ∪ {∞}.

When G is a Cayley graph, it is straightforward to see that ACλ
t (G) is a factor of i.i.d.’s and

hence is indeed translation invariant and ergodic. When G is only assumed to be transitive
one can still present ACλ

t (G) as a factor of i.i.d.’s, but this requires some care. We defer the
proof of Proposition 2.5 to Appendix C.

2.4. Couplings and stochastic domination. Let G = (V ,E) be a graph. As before, let
S := {{v,u} : v �= u, v,u ∈ V }. Equip {0,1}S with the partial order ≤, where x ≤ y iff x(s)≤
y(s) for all s ∈ S. We say that A ∈ Fcylinder is increasing if x ∈ A and x ≤ y imply that
also y ∈A. For any two probability measures on ({0,1}S,Fcylinder), μ and ν, we say that μ

stochastically dominates ν if μ(A)≥ ν(A) for every increasing event A ∈Fcylinder.
Let (Xs)s∈S and (Ys)s∈S be Bernoulli random variables defined on the same probability

space (	,P,F). Let the marginal distributions of (Xs)s∈S and (Ys)s∈S under P be μ and
ν, respectively. Such a construction is called a coupling of μ and ν. It is well-known and
straightforward to show that if there exists such a coupling in which for all s ∈ S, Xs ≥ Ys

P-a.s., then μ stochastically dominates ν. Thus by Proposition 2.2:

PROPOSITION 2.6. For every underlying graph G for the SN model we have that for all
t ∈ Z+ ∪ {∞}, the law of ACλ2

t stochastically dominates the law of ACλ1
t for all λ1 ≤ λ2.
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2.5. Nonamenability and the spectral radius. Let G = (V ,E) be a connected infinite
regular graph. Let π be the counting measure on V . The space of L2 functions is given by
�2(V ,π) := {f ∈RV : ‖f ‖2 <∞}, where ‖f ‖2

2 := 〈f,f 〉 and 〈f,g〉 :=∑
v f (v)g(v). Let K

be a symmetric (i.e., K(x,y)=K(y,x) for all x, y ∈ V ) transition kernel of a Markov chain
(Xt)

∞
t=0 on V . We identify it with an operator by setting (Kf )(x) := ∑

y K(x, y)f (y) =
Ex[f (X1)]. Its operator norm is given by

‖K‖ := sup
{‖Kf ‖2

‖f ‖2
: f ∈ �2(V ,π), f �= 0

}

= sup
{〈Kf,f 〉
‖f ‖2

2

: f ∈ �2(V ,π), f �= 0
}(2.1)

(e.g., [13], Ex. 6.7). Let x, y ∈ V be arbitrary vertices. The spectral radius of K is

(2.2) ρ(K) := lim sup
n→∞

[
Kn(x, y)

]1/n
.

It is standard that (see e.g., [13], pages 182–183):

(1) The limit is independent of the choice of x, y.
(2) ρ(K)= ‖K‖.
(3) Kn(x, y)≤ [ρ(K)]n for all x, y and n≥ 0 (use Kn(x, y)= 〈Kn1x,1y〉 and (2)).

Let 0≤ p < 1. Let Pp be the transition kernel of LSRW on G with holding probability p

(i.e., Pp = pI+(1−p)P0, where P0 corresponds to simple random walk on G). Let x, y ∈ V

be arbitrary vertices. We denote the spectral radius of Pp by

(2.3) ρp := ρ(Pp)= lim sup
n→∞

(
P n

p (x, y)
)1/n

.

We denote the spectral radius of the SRW by ρ(G) := ρ0. By (3) above

(2.4) P n
p (x, y)≤ ρn

p, for all x, y ∈ V and n≥ 0.

Thus having ρp < 1 is equivalent to having uniform exponential decay of the transition prob-
abilities w.r.t. Pp . By (2) above, (2.1) and the fact that

〈Ppf,f 〉 = p〈f,f 〉 + (1− p)〈Pf,f 〉
we have that

(2.5) ρp = p+ (1− p)ρ(G),

and so ρ(G) < 1 iff ρp < 1 for all p ∈ [0,1).

3. Proof of Proposition 1.3. We first note that if λc > 0 and 0 < λ < λc, then there
exists a sequence (un, vn)n∈N ⊂ V × V such that Pλ[FC(un) = FC(vn) and un, vn ∈ �] ≤
2−n, for all n. By (both parts of) the Borel–Cantelli Lemma, Pλ-a.s. there exists some n such
that FC(un) �= FC(vn) and un, vn ∈ �. Indeed, on the one hand, a.s. there are only finitely
many n’s such that FC(un)= FC(vn) and un, vn ∈�, while on the other hand, a.s. there are
infinitely many n’s such that un, vn ∈ �. Thus a.s. there exists some n such that un, vn ∈ �

and FC(un)= FC(vn). Thus Pλ[Con] = 0, as desired.
Conversely, fix some λ > λc ≥ 0. We shall show that Pλ[Con] = 1. By definition of λc (and

the monotonicity of the model w.r.t. λ) there exists some p > 0 such that infu,v Pλ′ [FC(u)=
FC(v) | u, v ∈ �] ≥ p for all λ′ ≥ λ+λc

2 . (Actually, we are using here also the fact that the
Poisson(λ) distribution conditioned on being positive is stochastically increasing in λ. To see
this, consider the number of points in [0,1] for a rate λ Poisson process. Observe that condi-
tioned on having at least 1 point, the location of the first point is stochastically decreasing in
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λ. Given that the first point is at x the number of additional points has a Pois(λ(1−x)) distri-
bution (which is stochastically decreasing in x and increasing in λ). We leave the remaining
details to the reader.)

Fix some u, v ∈ V . Let us condition on u, v ∈ �. Let Br be the ball of radius r around
u. Let Dt be the event that there exist some k ∈ N and some u1 = u,u2, . . . , uk+1 = v all

belonging to Bt such that ui
t↔ ui+1 for all 1≤ i ≤ k. Since Dt ↗ {u∞∼ v} as t →∞ (recall

that a path of acquaintances has a finite length) there exists a finite time t1 and some finite
set A1 ⊂ V (both may depend on u, v), such that w.p. at least p/2, there exists a path of
acquaintances between the walkers from Wu and Wv by time t1, which only uses walkers
from WA1 :=

⋃
w∈A1

Ww . We think of this as the “first trial” to connect the walkers in Wu to
those in Wv .

Using the regeneration Lemma we show that after each failed trial, there will be another
trial whose success probability is at least p/2, regardless of the information exposed in all
previous trials. All trials involve some finite set of walkers and a finite amount of time (both
may depend on the information exposed in previous trials).

Denote by Ya,1(t) the number of walkers not from WA1 which are at vertex a at time
t . By Lemma 2.3, there exists some s1 so that (Ya,1(s))a∈V stochastically dominate i.i.d.
Pois(λ2) random variables for all s ≥ s1, where λ2 := λc + 3(λ−λc)

4 . We may assume that
s1 = t1 by increasing one of them if necessary. Pick some wu ∈Wu and wv ∈Wv and let
(wu(t))

∞
t=0, (wv(t))

∞
t=0 be the LSRWs they perform, respectively. Let Wa(t) be the collection

of walkers which are at vertex a at time t .
Repeating the same reasoning as before (with λ2 = λc + 3(λ−λc)

4 in the role of λ) yields
that there must exist some t2 > t1 and some finite set A2 ⊂ V (both may depend on
(wv(t1),wu(t1))) such that given the walks performed by the walkers in A1 :=WA1 by time
t1 (and that the first trial failed) we have that (i)–(ii) below hold:

(i) The conditional probability that wu and wv have a path of acquaintances by time t2
which uses only walkers from (A2 \A1)∪ {wv,wu} where A2 :=⋃

a∈A2
Wa(t1), and all the

acquaintances along this path were made between time t1 and t2 (ignoring possible earlier
acquaintances if such occurred), is at least p/2.

(ii) (Ya,2(t2))a∈V stochastically dominate i.i.d. Pois(λ3) r.v.’s, where λ3 := λc + 5(λ−λc)
8

and Ya,2(t2) is the number of walkers, not from A1 ∪A2, which are at a at time t2.

It is clear how to continue. Namely, by induction on i one can argue that there exist ti+1 and
finite sets A1, . . . ,Ai+1 ⊂ V and Aj :=⋃

a∈Aj
Wa(tj−1) for j ∈ [i + 1] (where t0 := 0 and

both ti+1 and Ai+1 may depend on (wv(ti+1),wu(ti+1))) such that ti+1 > ti and given the
walks performed by the walkers in

⋃
j∈[i]Aj by time ti we have that (i)–(ii) below hold:

(i) The conditional probability that wu and wv have a path of acquaintances by time ti+1
which uses only walkers in (

Ai+1 \
i⋃

j=1

Aj

)
∪ {wv,wu},

and all the acquaintances along this path were made between time ti and ti+1 (ignoring pos-
sible earlier acquaintances if such occurred) is at least p/2.

(ii) (Ya,i+1(ti+1))a∈V stochastically dominate i.i.d. Pois(λi+2) random variables, where

λi+2 := λc+ (2i+1+1)(λ−λc)

2i+2 and Ya,i+1(ti+1) is the number of walkers, not from
⋃

j∈[i+1]Aj ,
which are at a at time ti+1.

As each trial has success probability at least p/2, regardless of the result of the previous
rounds, a.s. one of the trials will be successful, where here success means that the event from
(i) occurs. �
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4. The amenable case. We shall utilize the following theorem, taken from [6], in our
analysis of the amenable case. We note that in [6] only the graphs Zd for d ∈ N (or some
half spaces) were considered. However their analysis can easily be extended to all amenable
vertex-transitive graphs.

THEOREM 4.1. Let G = (V ,E) be an infinite connected vertex-transitive amenable
graph. Let (	,P) be a translation invariant long range bond percolation process on G pos-
sessing insertion tolerance. Then

P[there exists at most one infinite connected component] = 1.

For B ∈Fcylinder and e ∈E let

B̂e := {
(V ,F ) : e ∈ F,F ⊇ F ′ for some

(
V,F ′

) ∈ graph(B)
}

be the collection of all graphs obtained by adding to each graph in graph(B) some collection
of edges containing e.

Note that for all B ∈ Fcylinder and e = {u, v} ∈ E, by planting additional walkers at u and
v (this is done in the proof below) we see that

Pλ

[
AC ∈ graph(B)

]
> 0 =⇒ Pλ[AC ∈ B̂e]> 0.

The problem is that planting additional walkers at u and v might add more than just the
edge {u, v} to AC. Thus this idea cannot be used to establish insertion tolerance. In order to
utilize Theorem 4.1, we construct an auxiliary model, stochastically dominated by the SN
model, to which this idea applies. In order to ensure we can add to the obtained graph with
positive probability an edge e and only that edge, in the auxiliary model the planted walkers
can only make acquaintances at time 1.

THEOREM 4.2. Let G = (V ,E) be an infinite connected vertex-transitive amenable
graph. Then λc = 0.

PROOF. Let λ > 0. We partition the particles into two independent sets, W1,W2 of den-
sity λ/2 each. We may consider the evolution of the model only w.r.t. W1 (as if W2 did not
exist). Denote the obtained acquaintances graph w.r.t. W1 for time ∞ by H := (V ,E1). De-
note the degree of G by d . We now partition W2 into d sets of density λ/(2d) as follows. For
v ∈ V let N(v) := {u ∈ V : {u, v} ∈ E} be the set of its neighbors. Let W i

v be the particles
in W i (where i ∈ {1,2}) which initially occupy v. We partition it into d sets: W(v, u) for
u ∈ N(v). Let E2 ⊆ E be the collection of edges {u, v} ∈ E such that there is some particle
w ∈W(v, u) and some particle w′ ∈W(u, v) which met at time 1 (note that this is always
possible as we take the holding probability to be positive).

Let H1 := (V ,E1∪E2). Note that by Poisson thinning the events {e ∈E2} are independent
for different e ∈ E and thus H1 is insertion tolerant. The proof of translation invariance of
the SN model, with minor adaptations can easily be extended to show that the law of H1 is
translation invariant.

We may switch the roles of W1 and W2 in the above construction and now partition
each W1

v further into d sets Ŵ(v, u) for u ∈ N(v) to get: Ĥ := (V , Ê1) the acquaintances
graph for time ∞ defined only w.r.t. W2 and Ê2 ⊆ E the collection of {u, v} ∈ E such that
there is some particle w ∈ Ŵ(v, u) and some particle w′ ∈ Ŵ(u, v) which met at time 1. By
symmetry also H2 := (V , Ê1 ∪ Ê2) is insertion tolerant and translation invariant.

Clearly, H̃ := (V ,E1 ∪ E2 ∪ Ê1 ∪ Ê2) is a subgraph of the (usual) acquaintances graph
for time∞ (when the walkers are not partitioned into different sets). Thus it suffices to argue
that a.s. it has a unique infinite connected component containing all u ∈�= {v :Wv �=∅}.
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It follows from Theorem 4.1 that both H1 and H2 a.s. have at most one infinite connected
component. Now if Wv �= ∅, then W i

v �= ∅ for some i ∈ {1,2}. It is not hard to verify that
for all positive λ′, the SN model with particle density λ′ satisfies that every u ∈� lies in an
infinite connected component of the acquaintances graph for time ∞, as every walker meets
infinitely many other walkers by time ∞ (this follows from Lemma 2.4). By uniqueness it
follows that every v such that W i

v �=∅ lies in the same infinite connected component of Hi .
As a.s. there is some v such that both W1

v �=∅ and W2
v �=∅ it follows that H̃ has a unique

infinite connected component containing all u ∈�. �

5. An upper bound on the critical density in the nonamenable setup.

THEOREM 5.1. Let G= (V ,E) be a d-regular connected infinite nonamenable graph.
Denote the spectral radius of LSRW with holding probability 1/(d + 1) (respectively, 1/2) by
ρ (respectively, ρ1/2). If the holding probability of the walks is 1/(d + 1) (respectively, 1/2)
then λc ≤ (d + 1+ 2

1−ρ
) log 8 (respectively, λc ≤ 20 logd

1−ρ1/2
).

We first explain the main idea behind the proof of Theorem 5.1 in simple words, in a
slightly simpler setup. We concentrate here on the case that the holding probability is 1

d+1 .
Let u, v ∈ V . We want to bound the conditional probability, given that u ∈ � (i.e., that u

is initially occupied), that the friend cluster of some walker w ∈Wu eventually contains
some walker which visited v. (Note that this need not imply that u

∞∼ v. Thus in the proof
of Theorem 5.1 we will have to work with two “paths,” rather than one. Namely, we will
construct also a path starting from v in such a way that the two paths will collide.)

Note that the number of particles in Wu \ {w} does not have a Pois(λ) distribution. To deal
with this, in the proof of Theorem 5.1 we shall use the regeneration lemma. But for the sake
of the current discussion, let us assume that the walker w was planted at u at time 0, so that
Wu \ {w} ∼ Pois(λ). Pick some û1 ∼ u which is closer to v than u is. The number of walkers
from Wu \ {w} which crossed from u= u0 to û1 has a Pois(λ/(d + 1)) distribution.

Fix some α ≤ λ/(d+1) to be determined shortly. By Poisson thinning we can look at time
one at a subset W(1) of them whose size has a Pois(α) distribution (namely, by including in
it each walker which crossed from u0 to û1 at time 1 w.p. α/[λ/(d + 1)] independently). If it
is not empty, we set u1 := û1, otherwise, we set u1 to be the location of w at time 1.

Assume by induction that we have defined the vertices u0, u1, . . . , ui and û1, . . . , ûi as
well as disjoint sets of walkers W(1), . . . ,W(i), such that:

• For all j ∈ [i] the size of W(j) has a Pois(α) distribution (given the information exposed
up to the time W(j) was defined; i.e., given W(1), . . . ,W(j − 1) as well as u0, u1, . . . , uj−1
and û1, . . . , ûj−1).
• For all j ∈ [i] the set W(j) is a subset of the set of walkers which was at uj−1 at time

j − 1 and then moved to ûj at time j , where ûj is some neighbor of uj−1 which is closer to
v than uj−1 is.
• If |W(j)|> 0 we set uj = ûj . Otherwise, we set uj to be a vertex closest to v which is

occupied at time j by some walker from
⋃j−1

m=0 W(m) (where W(0) := {w}).
Observe that if α is sufficiently large, then the sequence (ui : i ∈ Z+) has a positive drift

toward v. In order for this construction to work, it is necessary that the distribution of the
number of walkers which are at ui at time i, which do not belong to

⋃i
m=0 W(m), will

stochastically dominate the Pois(α(d + 1)) distribution. In fact, it is not hard to prove by
induction that for all a1, . . . , ai, â1, . . . , âi−1 ∈ V , conditioned on u0 = a0, u1 = a1, . . . , ui =
ai and û1 = â1, . . . , ûi−1 = âi−1, the aforementioned law is a Poisson with parameter λ −
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α
∑i

j=1 pj , where pj = P i−j (aj , ai) is the probability of a given walker from W(j) to be

at ui at time i. Clearly, pj ≤ supx,y P i−j (x, y) ≤ ρi−j . We get that λ− α
∑i

j=1 pj ≤ λ−
α/(1− ρ), and thus the construction is indeed possible, provided that λ is sufficiently large.
Crucially, after conditioning on u0 = a0, u1 = a1, . . . , ui = ai and û1 = â1, . . . , ûi−1 = âi−1
as above, using the induction hypothesis, the induction step requires only a standard use of
Poisson thinning.

PROOF OF THEOREM 5.1. First consider the case that the holding probability is (d +
1)−1. Fix some u, v ∈� and λ > (d + 1+ 2

1−ρ
) log 8. We shall construct two random paths

(more precisely, two sequences of vertices) γ, γ ′ such that the walkers which are at γt (re-
spectively, γ ′t ) at time �+ t (for some � to be determined below) are in FC(v) (respectively,
FC(u)).

Denote the natural filtration of (γt , γ
′
t )t≥0 by Ft . We will show that there exists some c > 0

such that for all t on the event d(γt , γ
′
t ) > 0 we have Eλ[d(γt+1, γ

′
t+1)− d(γt , γ

′
t ) |Ft ] ≤ −c

(where d(·, ·) is the graph distance, i.e., the paths have a bias toward each other). This clearly
implies that given that u, v ∈�, we have that FC(u)= FC(v) Pλ-a.s.

Fix some α > log 8 such that λ > (d + 1+ 2
1−ρ

)α. At time 0 expose some wv ∈Wv =:
A0,wu ∈Wu =: B0 and their locations at time � and set γ0 and γ ′0 to be these locations, resp.,
where � is sufficiently large so that the distribution of the number of walkers, not belonging
to A0 ∪ B0 at the different vertices of G at all times t ≥ �, stochastically dominates that of
i.i.d. Pois(λ′) random variables, where λ′ := α(d + 1+ 2

1−ρ
). In other words,

(5.1) inf
t≥�,a∈V

κt (a)≥ λ′, where κt (a) := λ
(
1− P t(u, a)− P t(v, a)

)
.

Recall that for v ∈ V and t ∈ Z+ we define Wv(t) as the set of walkers occupying v at
time t . For an oriented edge (possibly a loop) e= (e−, e+) let

We(t) :=We−(t)∩We+(t + 1)

be the collection of all walkers whose positions at times t and t + 1 are e− and e+, respec-
tively. Clearly, it suffices to describe the construction of γ, γ ′ only until the first k for which
γk = γ ′k . We define γ, γ ′ inductively as follows. Assume that (γi, γ

′
i )

k−1
i=0 and some collection

of oriented edges e1, f1, . . . , ek−1, fk−1, have already been defined and that for all 1≤ i < k

in the ith step of the construction we first define ei , then (as described in (3) below) expose
a certain set of walkers Ai ⊆Wei

(�+ i − 1) and define γi (as described below in (2)), after
which we define fi , expose a set of walkers Bi ⊆Wfi

(�+ i − 1) and finally define γ ′i , such
that the following hold (the construction is described only in (2) and (3), while (4)–(5) are
included as part of the induction hypothesis only for the purpose of facilitating the induction
step):

(1) γi �= γ ′i for all i < k (otherwise, the construction is concluded before stage k).
(2) For all 1 ≤ i < k, the edge ei = (e−i , e+i ) is some oriented edge in G of the form

ei = (γi−1, vi) satisfying that d(vi, γ
′
i−1) = d(γi−1, γ

′
i−1) − 1 (i.e., vi is some neighbor of

γi−1 which is closer to γ ′i−1 than γi−1 is). The sets A0,B0, . . . ,Ai−1,Bi−1 have already
been defined, as described in (3) below. The set Ai is then defined inductively in a manner
described in (3) below so that given |A0|, |B0|, | . . . |, |Ai−1|, |Bi−1|, e1, f1, . . . , ei−1, fi−1
and (γj , γ

′
j )

i−1
j=0

(5.2) Ai ⊆Ri :=Wei
(�+ i − 1) \

i−1⋃
j=0

(Aj ∪Bj ) and |Ai | ∼ Pois(α).
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If |Ai | ≥ 1, we set γi = vi = e+i . Otherwise, we define γi to be some vertex occupied at time
�+ i by some walker in

⋃i−1
j=0 Aj of minimal distance from γ ′i−1.

Similarly, after defining γi , we set fi = (f−i , f+i ) to be of the form fi = (γ ′i−1, ui) satis-
fying that d(γi, ui) = d(γi, γ

′
i−1) − 1 if γi �= γ ′i−1; otherwise, we set ui := γi . As before,

we then define the set Bi inductively in a manner described in (3) below so that given
|A0|, |B0|, | . . . |, |Ai−1|, |Bi−1|, |Ai |, e1, f1, . . . , ei−1, fi−1, ei, γi and (γj , γ

′
j )

i−1
j=0

(5.3) Bi ⊆R′
i :=Wfi

(�+ i − 1) \
i−1⋃
j=0

(Aj ∪Bj ) and |Bi | ∼ Pois(α).

If |Bi | ≥ 1, we set γ ′i = ui = f+i . Otherwise, we define γ ′i to be some vertex occupied at time
�+ i by some walker in

⋃i−1
j=0 Bj of minimal distance from γi .

(3) The sets A1,B1, . . . ,Ak−1,Bk−1 are all disjoint and their sizes are i.i.d. Pois(α). De-
note

βi(y) :=
i−1∑
j=1

(
Eλ

[|Aj |]P i−j−1(
e+j , y

)+Eλ

[|Bj |]P i−j−1(
f+j , y

))

= α

i−2∑
j=0

(
P j (

e+i−j−1, y
)+ P j (

f+i−j−1, y
))

≤ 2α
∑
j≥0

ρj = 2α/(1− ρ).

(5.4)

Let Ri and R′
i be as in (5.2)–(5.3). Let κt (·) and βi(·) be as in (5.1) and (5.4). Then, for all

i < k given e1, f1, . . . , ei−1, fi−1, we have that |Ri−1| and |R′
i−1| are independent Poisson

r.v.’s,

E
[|Ri | | e1, f1, . . . , ei−1, fi−1, ei

]= P
(
e−i , e+i

)[
κi+�−1

(
e−i

)− βi

(
e−i

)]
≥ 1

d + 1

(
λ′ − 2α/(1− ρ)

)≥ α,

E
[∣∣R′

i

∣∣ | e1, f1, . . . , ei, fi

]= P
(
f−i , f+i

)[
κi+�−1

(
f−i

)− βi

(
f−i

)]
≥ α.

(5.5)

For all i < k, the set Ai (respectively, Bi ) is a random subset of Ri (respectively, R′
i) ob-

tained from it by including in Ai (respectively, Bi ) every element of Ri (respectively, R′
i)

independently with probability pi := α/E[|Ri | | e1, f1, . . . , ei−1, fi−1, ei] (and respectively,
p′i := α/E[|R′

i | | e1, f1, . . . , ei, fi]). Note that by (5.5) pi,p
′
i ≤ 1.

(4) For i < k and every walk w := (w0, . . . ,w�+i) with w0 /∈ {u, v}, given e1, f1, . . . , ei−1,

fi−1, the number Qw of walkers not belonging to
⋃i−1

j=0(Aj ∪Bj ) which performed the walk
w has a Poisson distribution. (The exact expression for the mean shall not be used in what
comes. It is given by λp(w)

∏
j∈Iw

(1− pj )
∏

j ′∈Jw
(1− p′j ′), where pj and p′j are as in (3)

and p(w) is as in Section 2.1, and where

Iw := {
1≤ j < i : (w�+j−1,w�+j )= ej

}
and

Jw := {
1≤ j < i : (w�+j−1,w�+j )= fj

}
.
)

Moreover, for each fixed i < k, given e1, f1, . . . , ei−1, fi−1, the Qw’s (where w is as above,
of length �+ i).
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(5) Consequently, for all i ≤ k the number Ui
y of walkers not belonging to

⋃i−1
j=0 (Aj ∪Bj )

which are at vertex y at time � + i − 1, has a Poisson distribution (by (4)) with mean
κi+�−1(y) − βi(y). Finally, for each fixed i ≤ k we have that (Ui

y)y∈V are mutually inde-
pendent.

In order to define ek,Ak, γk, fk,Bk, γ
′
k (in this order) we apply steps (2) and (3) with k in the

role of i. It is not hard to see that by the induction hypotheses (3)–(5) together with Poisson
thinning and (5.5) (with i = k), this extends the construction by one step so that (2)–(5)
remain valid for k+ 1 in the role of k. We leave the details to the reader.

Note that d(γk, γ
′
k−1)− d(γk−1, γ

′
k−1) ≤ 1 and that d(γk, γ

′
k)− d(γk, γ

′
k−1) ≤ 1. By step

(2) the first increment equals −1 w.p. at least P(Pois(α) > 0)= 1− e−α > 7/8 and the same
holds for the second increment, unless γk = γ ′k−1, in which case the second increment equals
0 w.p. at least 1− e−α > 7/8. Thus γ and γ ′ are indeed biased toward each other as desired.

We now consider the case of holding probability 1/2. We explain the necessary adaptations
leaving some of the details to the reader. Set λ = 20 logd

1−ρ1/2
. As before let γ0 and γ ′0 be the

positions of wv and wu at time �, respectively, where � is so that the distribution of the
number of walkers, other than wu and wv , at the different vertices of G at time � stochastically
dominates that of i.i.d. Pois(λ′) for some λ′ > 20 logd

1−ρ1/2
− 1.

Assume that for some collection of oriented edges e1, f1, . . . , ek−1, fk−1 the sequence
(γi, γ

′
i )

k−1
i=0 has been defined and that in the ith step of the construction we exposed sets of

walkers
Ai ⊆Wei

(�+ i − 1),

Ci ⊆W(γi−1,γi−1)(�+ i − 1)=Wγi−1(�+ i − 1)∩Wγi−1(�+ i),

Bi ⊆Wfi
(�+ i − 1)

and

Di ⊆W(γ ′i−1,γ
′
i−1)

(�+ i − 1)=Wγ ′i−1
(�+ i − 1)∩Wγ ′i−1

(�+ i),

so that:

(i) A1,B1,C1,D1, . . . ,Ak−1,Bk−1,Ck−1,Dk−1 are all disjoint;
(ii) |A1|, |B1|, . . . , |Ak−1|, |Bk−1| are i.i.d. Pois(2d−1 logd);

(iii) |C1|, |D1|, . . . , |Ck−1|, |Dk−1| are i.i.d. Pois(4 logd) and
(iv) |A1|, |B1|, |C1|, |D1|, . . . , |Ak−1|, |Bk−1|, |Ck−1|, |Dk−1| are independent.

We set ek = (γk−1, vk) to be some oriented edge in G so that d(vk, γ
′
k−1)= d(γk−1, γ

′
k−1)−1

and expose a subset Ak of Wek
(�+ k) and a subset Ck of Wγk−1(�+ k − 1)∩Wγk−1(�+ k),

disjoint of the previously exposed sets of walkers, so that |Ak| ∼ Pois(2d−1 logd) and |Ck| ∼
Pois(4 logd). A similar calculation as in the case of holding probability 1/(d + 1) shows that
one can construct such (Ak,Ck). We defer the calculation to the end of the proof, as to not
disrupt the flow of the argument.

If |Ak|> 0 we set γk = vk . If |Ak| = 0 but |Ck|> 0 we set γk = γk−1. If |Ak| = 0= |Ck|,
we define γk to be some vertex occupied at time �+ k by some walker in

⋃k−1
i=0 (Ai ∪ Ci ) of

minimal distance from γ ′k−1.
We define Bk,Dk and γ ′k in an analogous manner (with γk here taking the role of γ ′k−1 in

the construction of Ak,Ck and γk). Finally, note that each of the increments d(γk, γ
′
k−1)−

d(γk−1, γ
′
k−1) and d(γk, γ

′
k)− d(γk, γ

′
k−1) is in {0,±1} and has mean at most

−1× Pλ

[|Ak| ≥ 1
]+ 1× Pλ

[|Ak| = 0
]
Pλ

[|Ck| = 0
]

=−P
[
Pois

(
2d−1 logd

)≥ 1
]+ P

[
Pois

(
2d−1 logd

)= 0
]
P
[
Pois(4 logd)= 0

]
=−(

1− e−2d−1 logd)+ e−2d−1 logde−4 logd <−d−1 logd + d−4 < 0.
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To conclude the proof we now provide a sketch proof for the existence of (Ak,Ck) and
(Bk,Dk) as above. The key calculation is that by induction, given e1, f1, . . . , ek−1, fk−1, for
all i < k the loss to the expected number of particles at γk−1 at time k−1+� due to the fact we
are not counting particles from Ai ,Bi ,Ci ,Di is respectively, 2d−1 logd × P k−i(e+i , γk−1),
4 logd×P k−i (e−i , γk−1), 2d−1 logd×P k−i(f+i , γk−1) and 4 logd×P k−i(f−i , γk−1). Sum-
ming over these four sets and over i < k, the total contribution is at most(

8 logd + 4d−1 logd
)
/(1− ρ1/2).

Thus given e1, f1, . . . , ek−1, fk−1, the the number of walkers at γk−1 at time k− 1+ � which
do not belong to either of the sets A1,B1,C1,D1, . . . ,Ak−1,Bk−1, Ck−1,Dk−1 has a Poisson
distribution with mean at least

λ′ − (
8 logd + 4d−1 logd

)
/(1− ρ1/2)≥ 8 logd.

The existence of (Ak,Ck) now follows from Poisson thinning. The proof of the existence of
(Bk,Dk) is analogous. �

6. The d-regular tree—Proof of Theorem 2. Let us first explain the main idea behind
the proof of Theorem 2. As explained below, the lower bound on λc follows from Theo-
rem 8.1. So our goal is to sketch the proof that for some C,p > 0, when λ≥ C

√
d we have

that for all u, v ∈ V we have that u
∞∼ v w.p. at least p. We now sketch a construction from

which we deduce that with positive probability there are infinitely many times t at which u is
visited by some walker w which is at time t in the friend cluster of some walker in Wu, and
t is the first time that w visits u.

With slightly more care, in the proof below we manage to perform a small modification of
the construction, and deduce that in fact w.p. at least p there are infinitely many times t as
above at which we have that in addition v is visited by some walker w′ which is at time t in
the friend cluster of some walker in Wv , and t is the first time that w′ visits v. Clearly, on
this event a.s. u

∞∼ v (as at each such time t we get two new walkers at u and v, and this pair
of walkers have some probability of meeting each other).

For simplicity assume that d := 2�+ 1 is odd and that �≥ 2. Set u as the root of Td . We
say that a child of u is a left child if it is one of the �+ 1 leftmost children of u and otherwise
it is a right child. Similarly, for z �= u we say that a child of z is a left child if it is one of
the � leftmost children of z and otherwise it is a right child. Let T be the induced tree on u

and the vertices which are right children and the path between them and u contains only right
children (apart from u).

Observe that T is an �-ary tree. For every site z in T we may look at the subtree Tz

containing z, its left children and all of their descendants. The number of walkers whose
initial position lie in Tz to reach z for the first time at some time t , denoted by Zz(t), can
be shown to have a Poisson distribution with parameter at least cλ. Moreover, for different
times we have independence, by Poisson thinning. Moreover, as the trees Tz are disjoint for
different z’s in T we see that Zz := (Zz(t) : t ∈ Z+) are independent for different z’s. (This
follows from the requirement that the initial position of the walker is in Tz.)

Now, one scenario in which u is occupied at time 2t by a walker belonging at time 2t to the
friend cluster some walker in Wu is that for some path (u0 = u,u1, . . . , ut ) in T we have that
for all i ∈ {0, . . . , t − 1}, Zui

(i) > 0 and one of the corresponding walkers moved from ui to
ui+1 at time i + 1, while for all i ∈ {1, . . . , t}, Zui

(2t − i) > 0 and one of the corresponding
walkers moved from ui to ui−1 at time 2t − i + 1.

As on each edge {ui, ui+1} we have two independent requirements, each occurring w.p. at
least P[Pois(cλ/(d + 1)) > 0], we get that if λ ≥ C

√
d for some sufficiently large C, then

we can lower-bound the probability that such a path (u0 = u,u1, . . . , ut ) as in the previous
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paragraph exists in T , by the probability of the event that the cluster of u in a Bernoulli bond
percolation on T (which is an �-ary tree) with parameter, say 2/(�−1), contains some vertex
at distance t from u. This probability is at least the probability that u is in an infinite open
cluster, which is positive.

The difficulty is that we seek to argue that with positive this happens for infinitely many
t’s. However, this strengthening of the previous conclusion requires only a few simple obser-
vations concerning Bernoulli percolation on trees, which we defer for the proof of Theorem 2.

PROOF OF THEOREM 2. The lower bound on λc follows from Theorem 8.1 and the fact
that the spectral radius of SRW on Td is ρ(Td) = 2

√
d−1
d

(cf. [13], Theorem 6.10) and so
by (2.5) the spectral radius of LSRW with holding probability 1/(d + 1) on Td is 1

d+1 +
d

d+1
2
√

d−1
d

. We now prove the upper bound. By Theorem 5.1 we may assume that d ≥ 4. Fix

some u, v ∈ V . We shall show that if λ≥ C
√

d for some absolute constant C to be determined
later, then Pλ[FC(u)= FC(v) | u, v ∈�]> c1 for some constant c1 = c1(d) > 0 independent
of (u, v).

Throughout the proof we condition on the event that u, v ∈�. We now set u to be the root
of Td . This induces a partial order ≤, where a ≤ b iff the path from b to u goes through a.
The children of a ∈ V are given by {b : d(a, b)= 1, a ≤ b} = {b∼ a : d(b,u)= d(a,u)+ 1}
(where d(•,•) is the graph distance). Denote � := �(d − 1)/2�.

For each a ∈ V we distinguish between its � leftmost children, denoted by La , and its
d − �− 1 rightmost children Ra (apart from a = u, for which Ru is taken to be the d − �

rightmost children of u). Let R be the collection of all vertices such that the path between
them and u is contained in {u} ∪ (

⋃
a∈V Ra). By symmetry, we may assume that v ∈R.

For each a ∈R we denote by Ta,L the tree rooted at a with vertex set

Va := {a} ∪
( ⋃

b′∈La

{
b : b′ ≤ b

})

(where Ta,L is the induced graph on this set; in other words, this is the tree containing a and
its left children, along with all of their descendants). For each a ∈R and t ≥ 1 let Wa,L(t)

be the set of walkers whose initial position is in Va \ {a} that reached a for the first time at
time t . Set Wa,L(0) :=Wa . For a ∈ R and b ∼ a let W(a,b),L(t) be the set of walkers in
Wa,L(t) whose location at time t + 1 is b (i.e., this is the set of walkers whose initial position
is in Va \ {a}, who reached a for the first time at time t and moved to b in their next step). As
Ta,L and Ta′,L are disjoint for all a �= a′ ∈R we have that (W(a,b),L(t))a,b,t :a∈R,b∼a,t∈Z+ are
disjoint. Hence by Poisson thinning the following hold:

(1) (|W(a,b),L(t)|)a,b,t :a∈R,b∼a,t∈Z+ are independent and for each fixed t , we have that
(|W(a,b),L(t)|)a,b:a∈R,b∼a are i.i.d. Pois(αt ), where by reversibility (used in the second equal-
ity)

αt(d + 1)/λ= ∑
b∈Va

Pb(Ta = t)= Pa

(
S1, . . . , St ∈ Va \ {a}),

where (Sk)k≥0 is a LSRW (with holding probability 1
d+1 ), Ta := inf{s : Ss = a} is the hitting

time of a and Pb denotes the law of a LSRW (with holding probability 1
d+1 ) started from b.

Thus if C is taken to be sufficiently large we get that

(6.1) αt ≥ λ

d + 1
Pa

({Sk : k ≥ 1} ⊆ Va \ {a}) >
∣∣log(1− 2/

√
d − �− 1)

∣∣,
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where we have used the fact that Pa({Sk : k ≥ 1} ⊆ Va \ {a}) is bounded from below, uni-
formly in d and that �= �(d − 1)/2� and so | log(1− 2/

√
d − �− 1)| ≤ C0/

√
d .

Denote by Tu = (Uu,Eu) and Tv = (Uv,Ev) the induced graphs on

(6.2) Uu := {a ∈R : v � a} and Uv := {a ∈R : v ≤ a},
respectively. Crucially, by construction, Uu and Uv are disjoint.

For each s ≥ 0, a ∈R and a′ ∼ a we denote by J(a,a′)(s) the indicator of |W(a,a′),L(s)|>
0. Note that by (6.1)

(6.3) p := inf
t>0

(
1− e−αt

)≥ 2/
√

d − �− 1.

By (1) we have that:

(2) The joint distribution of (J(a,a′)(s))a,a′,s:a∈R,a′∼a,s≥0 stochastically dominates that of
independent Bernoulli(p) random variables.

We say that u (respectively, v) is good at time 2t if there exists some path (γ0 =
u,γ1, . . . , γt ) in Tu (respectively, (γ0 = v, γ1, . . . , γt ) in Tv) such that both J(γi ,γi+1)(i) = 1
and J(γi+1,γi )(2t− i−1)= 1, for all 0≤ i ≤ t−1. We denote the indicator of u (respectively,
v) being good at time 2t by Zu(2t) (respectively, Zv(2t)). Note that if u (respectively, v) is
good at time 2t then there is some walker w ∈ FC2t (u) (respectively, FC2t (v)) which reached
u (respectively, v) for the first time at time 2t . Thus on the event that both u and v are good
(simultaneously) for infinitely many even times, we get that a.s. FC(u) = FC(v). Hence in
order to conclude the proof, it suffices to show that u and v are good (simultaneously) for
infinitely many even times with probability at least q > 0, for some q independent of u, v.
We do so by comparison with super-critical Bernoulli bond percolation (on Tv and Tu) which
we now define.

Bernoulli bond percolation on a graph H = (U,F ) with density q is a random graph
Hq := (U,Fq) such that Fq ⊆ F is defined by including in it every edge f ∈ F independently
w.p. q . The critical density for Bernoulli bond percolation on H , denoted by pc(H), is defined
as

inf{q :Hq has an infinite connected component with positive probability}.
Then

pc(Tu)= 1/(d − �− 1)= pc(Tv).

Moreover, for all q > pc(Tu) we have that a.s. (Tu)q satisfies that

pc

(
(Tu)q

)= pc(Tu)/q = pc

(
(Tv)q

)
(where (Tu)q is the graph obtained from Bernoulli bond percolation with density q on Tu).
In fact, for every q >

√
pc(Tu) we have that:

(3) The connected component C(Tu)q (u) of u in (Tu)q is infinite with positive probability.
(4) Let T̄ := ((Tu)q)q be the graph obtained by Bernoulli bond percolation with density q

on (Tu)q . Given that |C(Tu)q (u)| =∞, the connected component CT̄ (u) of u in T̄ is infinite
with positive probability.

(5) There exist β, δ > 0 such that w.p. at least β over the choice of (Tu)q , the graph (Tu)q
satisfies that |CT̄ (u)| =∞ w.p. at least δ, conditioned on (Tu)q .

The same applies for Tv (with v in the role of u above). Note that by (6.3)

(6.4) p >
√

pc(Tu).
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Let b ∈ Uu (respectively, ∈ Uv) and b′ ∈ Rb, where Uu and Uv are as in (6.2). Denote the
distance of b from u (respectively, v) by r . We say that the edge {b, b′} is forward good if
J(b,b′)(r)= 1 and that it is backwards good for time 2t (for t > r) if J(b′,b)(2t − r − 1)= 1.
This gives raise to the following random subgraphs of Tu = (Uu,Eu) and Tv = (Uv,Ev):

Let T̃u (respectively, T̃v) be a graph with vertex set Uu (respectively, Uv) and edge set

Ẽu := {e ∈Eu : e is forward good}(
resp. Ẽv := {e ∈Ev : e is forward good}).

Let T̃u,t := (Uu, Ẽu,t ) be the random subgraph of T̃u, defined by setting Ẽu,t to be the collec-
tion of all e ∈Eu,t which are backwards good for time 2t , where Eu,t is the set of edges in Tu

having both end-points within distance t from u. Define T̃v,t := (Uv, Ẽu,t ) in an analogous
manner. Note that:

(6) T̃u and T̃v are independent (as Uv∩Uv =∅) and (by (2)) T̃u (respectively, T̃v) stochas-
tically dominates Bernoulli bond percolation on Tu (respectively, Tv) with parameter p,
where p is as in (6.3).

(7) The collection of random forests (T̃w,t )w,t :w∈{u,v},t≥1 are conditionally mutually inde-
pendent, given (T̃u, T̃v) (this follows from (2)).

(8) Given Ẽu ∩ Eu,t , the joint law of (1
e∈Ẽu,t

)
e∈Ẽu∩Eu,t

stochastically dominates that of
i.i.d. Bernoulli p random variables, where p is as in (6.3) (this follows from (2)).

We say that T̃u (respectively, T̃v) is δ-excellent if the connected component of u (respec-
tively, v) in T̃u (respectively, T̃v) is infinite and the probability that the connected component
of u (respectively, v) in a Bernoulli bond percolation on T̃u (respectively, T̃v) with parameter
p is infinite is at least δ. Note that by (6), the event that T̃u is δ-excellent is independent of
the event that T̃v is δ-excellent. By (3)–(6) and (6.4) there exist some β, δ > 0 (independent
of (u, v)) so that T̃u and T̃v are both δ-excellent with probability at least β .

By (7)–(8), conditioned on T̃u and T̃v both being δ-excellent, the conditional joint distri-
bution of (Zw(2t))w,t :w∈{u,v},t>0 stochastically dominates that of i.i.d. Bernoulli(δ) r.v.’s, and
so by the Borel–Cantelli Lemma indeed a.s. Zu(2t)= 1= Zv(2t) for infinitely many t’s, as
desired.

Indeed, by (7) it suffices to show that Pλ[Zw(2t) = 1 | T̃w is δ-excellent] ≥ δ, for each
w ∈ {u, v} and t > 0. By (8), for each fixed t , (given T̃u) the (conditional) probability that u

is connected in T̃u,t to some vertex of distance t from it (i.e., that Zu(2t)= 1) is at least the
probability that the connected component of u in (T̃u)p is infinite, which by definition of the
notion of δ-excellence is at least δ, given that T̃u is δ-excellent (an analogous statement holds
for v). �

7. Proof of Theorem 3. Before turning to the proof of Theorem 3 let us explain our
strategy. Consider the following naive exploration process. Expose the first t steps of some
walker w ∈Wv for some v ∈ V . Let G1 be the set of walkers that w met by time t . Pick
t = t (λ, ρ) so that the expectation of |G1| is at least some large constant L (uniformly in v).
Then sequentially expose the first t steps of the walks performed by the walkers in G1 and
let G2 be the collection of walkers not in G1 ∪ {w} which met some walker from G1 by time
t . Inductively, let Gk+1 be the collection of walkers not in (

⋃k
i=1 Gi) ∪ {w} which met some

walker from Gk by time t .
The problem with this naive approach is that it is not clear that for large k, “typically”:

for w′ ∈ Gk (or even for at least some fixed small fraction of w′ ∈ Gk) we have that the
expectation of the contribution of w′ to |Gk+1| is large, because the contribution is restricted
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to walkers not in (
⋃k

i=1 Gi ) ∪ {w} (plus we need to avoid double-counting contributions of
different walkers in Gk , corresponding to the case that two or more walkers in Gk discover the
same walker). However, as follows from our analysis below, if ρ is sufficiently small (some
precise version of) the statement of the previous sentence indeed holds.

Below we consider “s-walks” (defined by looking at a walk only at times which are multi-
ples of s for some sufficiently large s = s(ρ)) in order to obtain walks with sufficiently small
spectral radius. Instead of the aforementioned naive aforementioned exploration process, we
work with a variant of an exploration process due to Benjamini, Nachmias and Peres [5]
which allows us to perform effectively the bookkeeping of which “active but still unchecked”
walkers (i.e., walkers already recruited to the exploration process, such that the s-walk per-
formed by them is yet unexposed) are likely to recruit “many” new walkers to the exploration
process.

PROOF OF THEOREM 3. Recall that tC,λ := � C
λ(1−ρ)

�, where ρ is the spectral radius
of LSRW on G = (V ,E). Fix some v ∈ V . By a standard use of Kolmogorov’s 0–1 law,
it suffices to show that Pλ[|FCtC,λ

(v)| = ∞] > 0, provided that C is sufficiently large. In
particular, we may condition on v ∈�. Denote

s := ⌈
8K/(1− ρ)

⌉
and M := �32K/λ�, where K ≥ 3

shall be determined later. Consider the random walk obtained by replacing the transition
kernel P by Q := P s (i.e., every step of this walk is s steps of the original LSRW). We
refer to such walks as s-walks and denote it by (S

(s)
t )t≥0 and the corresponding probability

measure (for initial state u) by P(s)
u (similarly, when the initial distribution of the walk is μ

we write P(s)
μ ).

Our strategy is to expose a subset of FCsM(v) via a variant of an exploration process due
to Benjamini, Nachmias and Peres [5]. Recall that Wu(t) is the set of walkers which are at
vertex u at time t . Our exploration process produces increasing sets of space-time coordinates
{A�}�≥0, which are subsets of V × {st : 0≤ t ≤M} so that for all � and all (u, st) ∈A� we
have that Wu(st)⊆ FCsM(v). Start with A0 := {(v,0)}. We proceed by exposing the first sM

steps of the walk (wv(i))0≤i≤sM performed by some walker in Wv and set

A1 := {(
wv(ts), ts

) : 0≤ t ≤M,wv(ts) /∈ {
wv

(
t ′s

) : t ′ < t
}}

(in simple words, these are the space time co-ordinates of the first M steps of the cor-
responding s-walk, after we omit repetitions in the space co-ordinate), C1 := {(v,0)} and
U1 :=A1 \ C1. We will construct inductively sets U�,C�, A� := U� ∪ C� and

(7.1) A� := {
u : (u, st) ∈A� for some t

}
such that A1 ⊆ A2 ⊆ · · · . To avoid double-counting (which may arise since Wu(st) and
Wu′(st ′) need not be disjoint), we consider certain subsets of the Wu(st)’s. Set

(7.2) W�
u(st) :=Wu(st) \

⋃
a∈A�,t

′∈Z+:(a,t ′) �=(u,t)

Wa

(
st ′

)
.

That is, W�
u(st) is the collection of walkers occupying u at time st which avoid A� throughout

their s-walks, apart from at time t of the s-walk (that is, they did not visit any a ∈A� at any
time in sZ+ \ {st}, where sZ+ := {sz : z ∈ Z+}).

From the construction below it will be clear that for all �

|A�| = |A�| and |C�| = �.

At each stage � some of (u, st) ∈A� will be checked, C�, and some unchecked, U�. As long as
U� is nonempty we can proceed with the (�+ 1)th stage, in which we pick some (u, st) ∈ U�
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(the manner in which we choose (u, st) shall be described later) and first expose |W�
u(st)|

and set C�+1 := C� ∪ {(u, st)}. If |W�
u(st)| = 0 we set U�+1 := U� \ {(u, st)}. Otherwise, we

pick one walker w from W�
u(st) and expose its walk by time sM , (w(i))0≤i≤sM and set

U�+1 := (
U� ∪ {(

w(is), is
) : 0≤ i ≤M, i �= t,w(is) /∈ {

w(js) : j < i
}})

\ {
(u, st)

}
(in simple words, we add to U� some of the space time co-ordinates of the first M steps of
the s-walk of w, where we avoid taking more than one pair with the same space co-ordinate,
and then subtract from it {(u, st)}). We conclude the step by setting A�+1 := C�+1∪U�+1. To
motivate what comes, assume for the moment that we can pick (u, st) ∈ U� such that

(7.3) P(s)[∀t ′ �= t, S
(s)
t ′ /∈A� | S(s)

t = u
]≥ 1− 2e−4K.

From the analysis below and Poisson thinning, it follows that for such (u, st) we have that∣∣W�
u(st)

∣∣ > 0 w.p. at least q := 1− exp
[−λ

(
1− 2e−4K)]

and

E
[|U�+1| − |U�| |A�,

∣∣W�
u(st)

∣∣]≥M/4 on the event
∣∣W�

u(st)
∣∣ > 0

(it equals −1 on the complement). As λ ∈ (0,1], provided that K is sufficiently large, in such
stage

E
[|U�+1| − |U�|

]≥ qM/4− (1− q)≥ 8qK/λ− 1≥ 4K.

If we could always pick such (u, st), then it is intuitively clear that with positive probability
|A�| ≥ 2� for all � and thus the construction will have infinitely many stages, implying the
desired result. As we now explain, at least a (1− e−4K)-fraction of (u, st) ∈A� satisfy (7.3),
and thus as long as |A�| ≥ 2�, we will indeed be able to choose (u, st) ∈ U� satisfying (7.3).

Following [5], given some A ⊆ V and α ∈ (0,1) we say that a ∈ V is (A,α)-good if
P(s)

a [T +A <∞]≤ α, where T +A := inf{t > 0 : S(s)
t ∈A}. Denote the uniform distribution on A

by πA. As the spectral radius of Q= P s is ρs ≤ e−8K , it follows from Lemma 2.1 in [5] that
for every finite A⊂ V

(7.4) P(s)
πA

[
T +A <∞]≤ ρs ≤ e−8K.

It follows from (7.4) that for every finite A⊂ V , the set

GA := {
a ∈A : a is

(
A,e−4K)

-good
}

satisfies that

(7.5) |GA|/|A| ≥ 1− e−4K.

Fix some a ∈GA and k ≤M . Let

Wa(A, ks) :=Wa(ks) \ ⋃
�∈Z+,a′∈A:(�,a′) �=(k,a)

Wa′(�s)

be the collection of walkers which are at vertex a at time ks, which avoid A throughout their
s-walks, apart from at time ks (time k of their s-walk). Note that when we take A=A� and
a ∈ A�, we have that Wa(A, ks) =W�

u(ks) (where A� and W�
u(ks) are as in (7.1)–(7.2)).

This allows us to translate the conclusion below into one concerning (7.3).
Observe that by reversibility if a ∈ GA and (w(t))t≥0 is the walk performed by

some walker w ∈ Wa(A, ks), then the walks (wforward(t))t∈Z+ := (w((k + t)s))t∈Z+ and
(wbackward(t))0≤t≤k := (w((k − t)s))0≤t≤k are (independent) s-walks conditioned to avoid
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A, apart from at time 0. In particular, (7.3) holds for A in the role of A� as a ∈GA. Again
using a ∈GA we have that

E
[∣∣Wa(A, ks)

∣∣]≥ E
[∣∣Wa(ks)

∣∣](1− 2P(s)
a

[
T +A <∞])

≥ (
1− 2e−4K )

E
[∣∣Wa(ks)

∣∣]= λ
(
1− 2e−4K)

.

By Poisson thinning if a ∈GA, then for all k we have that |Wa(A, ks)| has a Poisson distri-
bution with mean at least λ(1− 2e−4K).

Using (2.4) it is not hard to show that the expected number of times an s-walk of length
at most M intersects itself is at most Mρs/(1 − ρs) ≤ 9

10Me−8K ≤ e−4K/λ, provided that
K is sufficiently large. Thus by Markov’s inequality, if a ∈ GA and (w(t))t≥0 is the walk
performed by some walker w ∈Wa(A, ks) for some k ≤M , then (w(ts))t :0≤t≤M,t �=k visits
at least M/4≥ 2K/λ distinct vertices with probability at least p := 1− 1

Ke4K(1−2e−4K)
. (The

term 1 − 2e−4K in the denominator is there since instead of taking w ∈Wa(ks) we take
w ∈Wa(A, ks), which means that the law of its walk is conditioned to be in some set of walks
whose probability (w.r.t. the law of a walk of a walker in Wa(ks)) is at least 1− 2e−4K .)

Let

U� := {
u : (u, st) ∈ U� for some t

}
and C� := {

u : (u, st) ∈ C� for some t
}
.

Assume that |A�| ≥ 2�. Then |GA�
| ≥ (1 − e−4K)2� > � and so GA�

\ C� = GA�
∩ U� is

nonempty (as |C�| = �). As long as this is the case, in the �th stage we expose some (u, st) ∈
U� such that u ∈GA�

∩U�, where the choice of (u, st) is made according to some prescribed
order on V × Z+ (or simply according to the lexicographic order on the stage in which the
walkers were discovered and their time coordinate). By the above analysis, provided that K is
sufficiently large, the probability that |A�+1|−|A�| ≥ 2K/λ is at least qp = (1−exp[−λ(1−
2e−4K)])× (1− 1

Ke4K(1−2e−4K)
)≥ λ/2 (for λ≤ 1 and large K), and so

E
[|A�+1| − |A�| | |A�| ≥ 2�

]≥ (2K/λ)pq ≥K ≥ 3.

Combining this with Azuma inequality (applied to the Doob’s martingale of (|A�|)�≥0), it is
not hard to verify that with positive probability |A�| ≥ 2� for all � (cf. the proof of Theo-
rem 1.1 in [5]) as desired. �

8. A lower bound on λc in the nonamenable case.

THEOREM 8.1. Let G = (V ,E) be an infinite connected nonamenable regular graph.
Denote the spectral radius of LSRW on G (with an arbitrary holding probability p) by ρ.
Then the SN model on G with holding probability p satisfies

Pλ[Con] = 0 for all λ <
1

2

(
ρ−1 − 1

)
.

Throughout the section we fix the holding probability of the walks to be some constant
0 ≤ p < 1. Let μλ (respectively, νλ) be the distribution of 1+ 2Xλ (respectively, 1+ Xλ),
where Xλ ∼ Pois(λ). A lazy branching random walk on G with offspring distribution μλ

started at a vertex o, denoted by LBRW(μλ, o), is defined as follows. At time 0 there are a
random number of particles distributed according to νλ which are all positioned at vertex o.
Call the set of these particles generation number 0. The process is then defined inductively.
At stage t each particle w belonging to the t th generation performs one step of LSRW on
G from its position at time t , where steps performed by different particles are independent.
Then it gives birth to a random number of particles (referred to as its offsprings) Yw ∼ μλ,
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at its current position, independently of all other particles. The set of all the offspring of the
particles from the t th generation is defined to be the (t + 1)th generation.

The following interpretation of LBRW(μλ, o) is useful for our purposes. First, by includ-
ing the previous generations as part of the current generation, we may think of the offspring
distribution as being the same as that of 2Xλ, where Xλ ∼ Pois(λ). Equivalently, in this inter-
pretation, a particle does not “die” after giving birth to some offspring at a certain step, and
may give birth to additional offspring in future stages (alternatively, we may view the particle
as an “offspring of itself”).

We may think of each particle as giving birth to Pois(λ) “regular particles” which then
clone themselves. By reversibility, we may think of the regular particles as performing in-
dependent LSRWs, while the clones perform a LSRW moving backwards in time in the fol-
lowing sense. The law of LSRW started from v is the same as the law of (Ys)

∞
s=0, where

Ys :=X−s for all s ≥ 0 and (Xs)s∈Z is a bi-infinite LSRW conditioned on being at v at time
0. Hence we may assume the walk of the clone particle is sampled in that manner.

We now describe a process which, based on the previous two observations, is essentially
equivalent to LBRW(μλ, o). In particular, the expected total number of visits to each ver-
tex (including multiplicities) is the same for the two processes. While the definition of this
process is somewhat cumbersome, it will be transparent that this process stochastically dom-
inates the exploration process used below in order to “expose” FC(o), the friend cluster of
Wo. We intentionally use similar notation to describe this variant of LBRW(μλ, o) as the one
used later in the exploration process of FC(o).

In the 0th generation, V0,0, we start with 1+Pois(λ) walkers v0,0,1, . . . , v0,0,|V0,0| at o. Let
each v0,0,j perform a Z-indexed (bi-infinite) random walk (v0,0,j (t))t∈Z on G, conditioned to
be at o at time 0. Such a walk can be sampled by taking two independent Z+-indexed walks
started at v, (fv0,0,j (t))t≥0 and (bv0,0,j (t))t≥0 (which can be thought of as 2 independent
walks performed by 2 separate particles) and concatenating one to the reversal of the other as
follows v0,0,j (t) := fv0,0,j (t) and v0,0,j (−t) := bv0,0,j (t) for all t ≥ 0.

In the first stage we expose v0,0,j (±1) for all j (in the above interpretation, we expose
one step of the walk of the forward particle fv0,0,j (1) and one of the backward particle
bv0,0,j (1)) and plant at v0,0,j (±1) (independently for different j ’s and for ±1) Pois(λ)

walkers performing (independent) Z-indexed random walks on G conditioned to be at
v0,0,j (±1) at time ±1, respectively. Denote the set of walkers planted at stage 1 at time ±1
by V1,±1 = {v1,±1,1, . . . , v1,±1,|V1,±1|}, respectively. The construction continues inductively
as follows:

By the end of stage r , for all 0 ≤ i ≤ r and −i ≤ j ≤ i such that i − j is even, we have
already defined Vi,j = {vi,j,1, . . . , vi,j,|Vi,j |} the set of walkers planted at stage i and time
j , and for all 1 ≤ k ≤ |Vi,j | exposed (vi,j,k(t))t :|t−j |≤r−i , where vi,j,k is the kth walker in
Vi,j and (vi,j,k(t))t∈Z is the walk she performs. In the (r + 1)th stage we expose for all
i, j, k as before vi,j,k(j ± (r + 1 − i)) and plant at vi,j,k(j ± (r + 1 − i)) (independently
for different (i, j, k)’s and for j ± (r + 1− i)) Pois(λ) walkers performing (independent) Z-
labeled random walks on G conditioned to be at vi,j,k(j ± (r+1− i)) at time j ± (r+1− i),
respectively. Finally, we denote the set of walkers planted at stage r+1 at time � by Vr+1,� =
{vr+1,�,1, . . . , vr+1,�,|Vr+1,�|}.

Below we expose FC(o) in “slow motion” using an exploration process. At each stage t

of the exploration process, new walkers are “recruited” to the friend cluster by meeting at
some time s ≤ t walkers already belonging to the exploration process. The walkers recruited
at stage t can be thought of as the t th generation of the exploration process.

Let w be some walker in the t th generation of the exploration process who was recruited
at stage t due to an acquaintance which occurred at time s (the set of such walkers shall be
denoted below by Wt,s ). Instead of exposing in the (t + 1)th stage the entire trajectory of w,
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we expose its position at times s+ 1 and s− 1. At stage t + 2 we expose its position at times
s + 2 and s − 2 (if s ≥ 2), and so on (at stage t + i we expose its position at time s + i and if
s ≥ i also at time s − i).

Let (w(n))n≥0 be the infinite walk performed by w. We can think of w as two separate
particles, one a forward particle performing the forward walk (w(t + n))n≥0 and the other a
clone performing the reversed walk (w(t−n))n:0≤n≤t . At each stage, for every previously ex-
posed walker w we expose one step of its forward walk and one step of its reversed walk (or
in the above terminology, one step of the walk performed by its clone), if it was not fully ex-
posed already. The particle (or clone) recruits new walks if she meets them at the space-time
coordinate of her walk which was exposed at the current stage, and if those walkers avoided
all the space-time coordinates previously exposed by the exploration process (otherwise these
walkers would have already been recruited to the exploration process).

Using Poisson thinning, we can dominate this exploration process by the equivalent for-
mulation of LBRW(μλ, o), involving the Z-valued walks and the sets Vt,s . Indeed there are
two differences between the two. The first is that in the latter the walks of the particles mov-
ing backwards in time continue all the way to time −∞ instead of stopping at time 0. The
second difference is that in the exploration process of FC(o) each particle can only recruit
“new” walkers (and their clones), which means that these walkers have to avoid certain space-
time coordinates previously exposed by the exploration process. Thus, by Poisson thinning
her offspring (= new walkers recruited by her at each stage and their clones) distribution is
stochastically dominated by the 2 Pois(λ) distribution.

Unfortunately, while the aforementioned stochastic domination is intuitively clear, its
proof requires some cumbersome bookkeeping and not much additional insights beyond the
ones described in the above intuitive explanation. For this reason we defer the proof of Propo-
sition 8.2 to Appendix D.

By Lemma 2.4 every vertex is visited infinitely often a.s. Thus on the event Con∩ {o ∈�}
(assuming it has a positive probability) we have that FC(o) (the friend cluster of Wo) is
the set of all walkers, and so o is visited by walkers in FC(o) infinitely often a.s. Note that if
Pλ[Con]> 0, then there must be some o such that Pλ[Con∩{o ∈�}]> 0, and so the expected
number of times in which vertex o is visited by walkers from FC(o) including multiplicities
(here we count also visits made by a walker w ∈ FC(o) at time t in which w /∈ FCt (o), i.e.,
before the walker w joined the friend cluster of the walkers in Wo) is infinite, as on the event
Con∩{o ∈�} the last expectation is simply the expected number of visits to o by all particles
(with multiplicities; The number of such visits is a.s. infinite and so this expectation is infinite
even on the event Con∩ {o ∈�}). Hence the assertion of Theorem 8.1 follows by combining
the following proposition and lemma.

PROPOSITION 8.2 (Proof deferred to Appendix D). Let Xv be the number of times vertex
v was visited by a walker from FC(o) (including multiplicities) when the density of the walkers
is taken to be λ. Let Yv be the number of times that vertex v was visited by a particle in
LBRW(μλ, o) (where if a particle in the lazy branching random walk LBRW(μλ, o) is born
at vertex v this also contributes to Yv). Let ν1 and ν2 be the laws of (Xv)v∈V and (Yv)v∈V ,
respectively. Then ν2 stochastically dominates ν1.

LEMMA 8.3. For v ∈ V and n≥ 0, let Qn(v) be the the number of particles belonging
to the nth generation of LBRW(μλ, o) which were born at vertex v. Then for all v and n≥ 1,

(8.1) E
[
Qn(v)

]= (1+ λ)(1+ 2λ)n−1P n(o, v)≤ [
(1+ 2λ)ρ

]n
.

In particular, if λ < 1
2(ρ−1 − 1) we have that

∑∞
n=0 Qn(o) <∞ a.s.
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The proof of the equality in (8.1) is obtained by a simple induction on n, performed simul-
taneously over all vertices (we omit the details). The inequality in (8.1) follows from (2.4).
We note that it is shown in [7] that the critical mean offspring distribution for a branching
random walk is 1/ρ and that a critical branching random walk is transient (i.e., it a.s. visits
every vertex only finitely many times). Hence if (1 + 2λ)ρ = 1 then the LBRW(μλ, o) is
transient.

9. Concluding remarks.

9.1. Refined lower bound when the holding probability is 1/2. In this subsection we give
a rough sketch of a proof of the following theorem.

THEOREM 9.1. Let G = (V ,E) be an infinite connected nonamenable regular graph.
Denote the spectral radius of SRW on G by ρ. Then the SN model on G with holding proba-
bility 1/2 satisfies

(9.1) Pλ[Con] = 0, for all λ such that 1+ 2λ
(
1+ 2eλ/2)≤ ρ−1.

Note that while in (9.1) we are considering the SN model with holding probability 1/2, the
term 1/ρ is defined w.r.t. SRW. For instance, for the d-ary tree this shows that λc ≥ c logd

when the holding probability is 1/2, whereas in this case Theorem 8.1 yields a weaker lower
bound which does not diverge as d →∞. Combining Theorem 9.1 with Theorem 5.1 yields
the following.

COROLLARY 9.2. There exist absolute constants c,C > 0 such that for all d ≥ 3 we
have that c logd ≤ λc(Td)≤ C logd for SN model with holding probability is 1/2. The same
holds for every connected infinite d-regular Ramanujan graph, with the same c and C.

The reason we provide here a much less detailed analysis than in Section 8 (and Ap-
pendix D) is that the ideas here are extremely similar to those from Section 8. Like in
Appendix D, in order to rigorously justify the claim that the below exploration process for
FC(o) is indeed dominated by the branching random walk described below, one can introduce
“dummy particles.” This is meant to justify the following fact that is used implicitly below:

• The number of walkers at vertex v at time t which avoid a certain collection of space-
time co-ordinates (u1, t1), . . . , (ur, tr ) (where u1, . . . , ur ∈ V and t1, . . . , tr ∈ Z+, possibly
ti > t for some i’s) is independent of X := (|Wti (ui)| : i ∈ [r]), where |Wti (ui)| is the number
of walkers at vertex ui at time ti .
• Moreover, it is stochastically dominated by the Poisson(λ) distribution.
• Furthermore, for each path (v0, v1, . . . , vs) that avoids the above space time co-

ordinates, in the sense that for all i ≤ s we have that vi /∈ {uk : tk = i}, we have that the
number of walkers which performed this path is independent of X .

However, in order to facilitates analysis analogous to the one of Appendix D, the notation and
bookkeeping required here are much more cumbersome compared to the already cumbersome
notation from Section 8. For the sake of clarity of presentation, we chose to present the
exploration process below using as little notation as possible, and to leave it to the reader to
verify the details of the claimed stochastic domination.

The idea of the proof is to explore FC(o) in an “ultra slowed down” fashion which exploits
the laziness of the walks. The exploration process below is still be dominated by a branching
random walk, but in a much less wasteful fashion than as in the proof of Theorem 8.1.
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Consider the case that a walker x jumps at time tx to some site v from some neighboring
site u, and that x left v at time t ′x + 1. The walkers W1 she met at v during [tx, t ′x] must
all be in FC(x). Each walker w ∈W1 entered v at some time tw and left it at time t ′w + 1
such that [tw, t ′w] ∩ [tx, t ′x] = ∅. Let W2 be the collection of walkers z not belonging to
{x} ∪W1 such that they entered v at some time tz ≥ 0 and left at time t ′z + 1 such that
[tz, t ′z] ∩ (

⋃
w∈W1

[tw, t ′w]) �=∅.
We can continue defining Wi’s in this fashion inductively until the first i0 such that

Wi0+1 = ∅. Namely, if Wi �= ∅ let Wi+1 be the collection of walkers z not belonging to
{x} ∪⋃i

j=1 Wj such that they entered v at some time tz ≥ 0 and left at time t ′z + 1 such that
[tz, t ′z] ∩ (

⋃
w∈Wi

(tw, t ′w]).
Clearly,

⋃i0
j=1 Wj must all be in FC(x). For each walker w ∈⋃i0

j=1 Wj we can now reveal
(“backwards step”) from what vertex did it jump to v (provided tw > 0) and to which vertex
it jumped to when leaving v (“forward step”). Each such walker w starts in its forward and
backwards step a new process with the same description as (Wi )

i0
i=1 above. However, at each

stage we wish to not count walkers already recruited to the exploration process at previous
stages (or earlier on at the same stage).

As in Section 8, for each particle recruited to the exploration process we will expose at each
stage its trajectory one step forward and one step backwards. However, one crucial difference
is that now we reveal its nonlazy trajectory. By this, we mean the following. The nonlazy
trajectory corresponding to a SRW trajectory (u0, u1, . . .) is obtained by deleting consecutive
repetitions. That is, it is (v0, v1, . . .) where vi := uτi

and τi := inf{j > τi−1 : uj �= uτi−1}.
Let x be a particle recruited to the exploration process at some stage k. Let (v0, v1, . . .) be

its nonlazy trajectory. Assume that w was recruited at location vm during the time interval
[τm, τm+1 − 1] (with τ· as above). At a stage i > k we reveal (forward step) vm+i−k and
if i − k ≤ m also vm−(i−k) (backwards step). We can then define U0 to be the collection of
particles y not previously recruited to the exploration process, that jumped to vm+i−k at some
time ty ≥ 0 and stayed there until time t ′y + 1 so that [ty, t ′y] ∩ [τm+i−k, τm+i−k+1 − 1] �=∅.
Recruit the walkers from U0 to the exploration process. Let U1 be the collection of walkers
y not previously recruited to the exploration process, who jumped to vm+i−k at some time
ty ≥ 0 and stayed there until time t ′y + 1 so that [ty, t ′y] ∩ (

⋃
z∈U1

[tz, t ′z]) �= ∅. Recruit the
walkers from U1 to the exploration process. We can continue defining Uj+1 inductively in
this fashion as long as Uj �=∅. Let j0 be the minimal integer such that Uj0+1 =∅. Then the

collection of particles recruited by x at stage i via its forward step is
⋃j0

j=0 Uj .
We now define the collection of particles recruited by x at stage i via its backwards step.

We assume that i−k ≤m as otherwise there is no such backwards step. Let B0 to be the parti-
cles y who jumped to vm−(i−k) at some time ty ≥ 0 and stayed there until time t ′y+1 such that
[ty, t ′y]∩ [τm−(i−k), τm−(i−k)+1−1] �=∅ and have not been previously recruited to the explo-
ration process. Recruit the walkers from B0 to the exploration process. Let B1 be the collec-
tion of walkers y not previously recruited to the exploration process, who jumped to vm−(i−k)

at some time ty ≥ 0 and stayed there until time t ′y + 1 so that [ty, t ′y] ∩ (
⋃

z∈B1
[tz, t ′z]) �=∅.

Recruit the walkers from B1 to the exploration process. We can continue defining Bj+1 induc-
tively in this fashion as long as Bj �=∅. Let j ′0 be the minimal integer such that Bj ′0+1 =∅.

Then the collection of particles recruited by x at stage i via its backwards step is
⋃j ′0

j=0 Bj .
As in Section 8 at each stage we reveal the backwards and forward steps of all recruited

particles sequentially according to some predetermined order. This affects the notion of “not
being previously recruited to the exploration process” used above (during each stage this
notion is updated as the stage progresses). Moreover, in order to be at Ui (respectively, Bi)
we require a walker to not be in Uj (respectively, Bj ) for all j < i.
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As mentioned above, we shall dominate this exploration process via a branching random
walk. The offspring distribution of this branching random walk has the same law as 1+ 2W ,
where W has a rather complicated law we shall soon describe. The source of the+1 term and
of the multiplicative term 2 is exactly the same as in Section 8 (particles don’t die explains the
term +1, and the fact each particle progresses in both directions of time explains the term 2).

We seek to take the law of W to be one which dominates the laws of
⋃j0

j=0 Uj and
⋃j ′0

j=0 Bj

described above.
To do so, it is useful to describe the evolution of U :=⋃j0

j=0 Uj one time unit at a time, from
τm+i−k to maxw∈U t ′w (rather than one index at a time, from U0 to Uj0 ; a similar description

applies to
⋃j ′0

j=0 Bj ). However, we also need to consider its evolution backwards in time
(which takes place between time minw∈U tw and τm+i−k), as some walkers in U0 could have
been at vm+i−k both at time τm+i−k and at time τm+i−k − 1.

Moving forward in time, each particle stays in vm+i−k with probability 1/2. By Poisson
thinning, the number of new (i.e., not previously recruited) particles to jump to vm+i−k at
each time is stochastically dominated by the Pois(λ/2) distribution.

For the evolution forward in time, we are interested in the number of the walkers recruited
between time τm+i−k and maxw∈U t ′w . The latter is the first time t > τm+i−k at which no
particles that were in vm+i−k at time t − 1 stayed at vm+i−k at time t . If we reverse time,
the same description is valid backwards in time—that is, provided some walkers in U0 were
at vm+i−k both at time τm+i−k and at time τm+i−k − 1, we are looking at the maximal time
t < τm+i−k at which there are no particles at vm+i−k that were there also at time t + 1.

Consider the Markov chain (Xt)t≥0 that at time t + 1 evolves to Xt+1 = Yt+1 + Zt+1,
where Z1,Z2, . . . are i.i.d. Pois(λ/2), and given Xt we have that Yt+1 has a Bin(Xt ,1/2)

distribution and is independent of Zt+1. We extend this process to a bi-infinite process by
setting for all t ≥ 0, X−t−1 = Y−t−1 +Z−t−1, where Z−1,Z−2, . . . are i.i.d. Pois(λ/2), and
given X−t we have that Y−t−1 has a Bin(X−t ,1/2) distribution and is independent of Z−t−1.
Let

σ = inf{t : Yt+1 = 0} and σ ′ = inf{t : Y−t−1 = 0}.
We consider the case that X0 ∼ 1+ Pois(λ). It is not hard to see that by reversibility we can
take

W = (X0 − 1)+
σ∑

i=1

Zi +
−1∑

i=−σ ′
Zi.

By abuse of notation, if ξ ∼ Pois(a) then we refer to the law of 1+ ξ as 1+Pois(a). Using
similar reasoning as in the second paragraph in the proof of Proposition 1.3, we argue that
given σ > 1, we have that Y1 is stochastically dominated by the law 1+ Pois(λ/2). Indeed,
we may think of Y1 as the number of successes in X0 Bernoulli(1/2) trials. We are interested
in the conditional law of Y1 given Y1 > 0. If the first trial is a success, then the conditioning
on Y1 > 0 does not affects the number of successes in the remaining Pois(λ) trials, and so by
Poisson thinning the law of the number of additional successes has the Pois(λ/2) distribution.

If the first trial is a failure, then the conditional law of the total number of success is,
again by Poisson thinning, the law of a Pois(λ/2) random variable conditioned on being
positive. As in the proof of Proposition 1.3, by considering the number of arrivals in [0,1] in
a rate λ Poisson process, and conditioning on the location of the first arrival, we see that the
aforementioned law is stochastically dominated by the 1+ Pois(λ/2) distribution.

It follows by induction that given σ > t , we have that Xt is stochastically dominated by
the 1 + Pois(λ) distribution. Hence σ is stochastically dominated by the Geometric dis-
tribution with parameter 1/(2eλ/2) (which is the probability that 1 + Pois(λ) independent
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Bernoulli(1/2) trials all fail). Likewise, the same applies to σ ′ by reversibility. By Wald’s
equation we have that E[W ] = λ(1+2eλ/2). As in Section 8, the condition 1+2E[W ] ≤ 1/ρ

implies the branching (simple) random walk on G with offspring distribution 1+ 2W is tran-
sient, which as in Section 8, can be used to argue that the above exploration process for FC(o)

a.s. does not visit all vertices. This concludes the sketch of the proof of Theorem 9.1.

9.2. Improving the dependence on the distance of the spectral-radius from 1. As we now
explain, with a bit more care, the terms 2

1−ρ
and 20

1−ρ1/2
from Theorem 5.1 can be replaced by

c1√
1−ρ

and c2√
1−ρ1/2

, respectively, for some constants c1, c2 > 0. Similarly, in Theorem 3 we

could have taken tC,λ to be � C

λ
√

1−ρ
�, rather than � C

λ(1−ρ)
�.

Let P be the transition kernel of SRW or lazy SRW with holding probability p ≤ 1/2 on
an infinite connected regular graph G = (V ,E). Let ρ(P ) be the spectral-radius of P . By
inspecting the proofs of Theorem 5.1 and Theorem 3, such improvements can be derived
from the estimate

(9.2)
∞∑
t=0

sup
x,y

P t (x, y)≤ C0/
√

1− ρ(P ),

rather than the estimate
∑∞

t=0 supx,y P t (x, y)≤ C1/(1− ρ(P )) that we use.
Similar to (3) from Section 2.5, for all s, t ≥ 0 and all x ∈ V we have that

P 2t+2s(x, x)= 〈
P 2t+2s1x,1x

〉= ∥∥P t+s1x

∥∥2
2

≤ ρ(P )2s
∥∥P s1x

∥∥2
2 = ρ(P )2sP 2t (x, x).

Combining the above with the fact that maxx,y P t (x, y) ≤ supx P 2�t/2�(x, x) (Proposi-
tion A.1) yields that

∞∑
t=0

sup
x,y

P t (x, y)≤ 2
∞∑
t=0

sup
x

P 2t (x, x)≤ 2e

e− 1

�1/(1−ρ(P ))�∑
t=0

sup
x

P 2t (x, x).

Finally, we obtain (9.2) using the fact that there exists an absolute constant C > 0 such that
supx P t (x, x)≤ C√

t+1
for all t (the same constant C works for all p ≤ 1/2 and all graphs G

as above, e.g., [12]—see the discussion in the proof of Lemma 2.3).

APPENDIX A: PROOF OF THE REGENERATION LEMMA & LEMMA 2.4

PROOF OF LEMMA 2.3. The independence and the fact that the marginal distributions
are Poisson follow from Poisson thinning. Denote P(v,A) :=∑

a∈A P (v, a). By reversibility,
Eλ[Yv,A(t)] = λP t(v,A) and so

λ−Eλ

[
Y

v,A�(t)
]= Eλ

[
Yv,A(t)

]= λP t(v,A)≤ λ|A| sup
x,y∈V

P t (x, y)≤Cλ|A|/√t,

where we have used the fact that supx,y P t (x, y)≤ supx P 2�t/2�(x, x) for all t ≥ 1 (see Propo-
sition A.1 below) and supx P t (x, x) ≤ C/

√
t (e.g., [12], where this is proved for SRW and

lazy SRW with holding probability 1/2—the case of any other holding probability bounded
away from 1 can be deduced from the SRW case, by averaging over the number of lazy
steps the walk performs by time t and using the concentration of the Binomial distribution
around its mean. Indeed, if P is SRW and Pp is lazy SRW with holding probability p then
P t

p(x, x)=∑
i P[Bin(t,p)= i]P i(x, x)). �
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PROPOSITION A.1. SRW on a regular graph satisfies supx,y P t (x, y) ≤ supx P 2� t
2 �(x,

x).

PROOF. By reversibility (used in the second equality and to argue that
∑

z[P t(a, z)]2 =∑
z P t (a, z)P t (z, a)= P 2t (a, a)) and the Cauchy–Schwartz inequality (first inequality)

P 2t (x, y)=∑
z

P t (x, z)P t (z, y)=∑
z

P t (x, z)P t (y, z)

≤
√

P 2t (x, x)P 2t (y, y)≤ sup
x

P 2t (x, x).

Similarly, P 2t+1(x, y)≤
√

P 2t+2(x, x)P 2t (y, y)≤ sup
x

P 2t (x, x).

(A.1)

�

PROOF OF LEMMA 2.4. The fact that the distribution of Nt(w) is Poisson follows from
Poisson thinning. Let Mt(w) :=∑t

i=1 |Wwi
(i)|. By stationarity of the law of the occupation

measure (Fact 2.1) we have that Eλ[Mt(w)] = λt . Decomposing the last expectation accord-
ing to the first time i at which a walker is at wi (and noting that the contribution correspond-
ing to time i is (Eλ[Ni(w)]−Eλ[Ni−1(w)])∑t−i

j=0 P j (wi ,wi+j ), which can be bounded from

above by (Eλ[Ni(w)] −Eλ[Ni−1(w)])∑t
j=0 supx,y∈V P j (x, y)) we get that

λt = Eλ

[
Mt(w)

]≤ Eλ

[
Nt(w)

] t∑
j=0

sup
x,y∈V

P j (x, y)≤ Eλ

[
Nt(w)

]
C
√

t .
�

APPENDIX B: EXPLICIT CONSTRUCTION OF THE SN MODEL

PROOF OF PROPOSITION 2.2. For every v ∈ V let Mv(t) be a homogeneous Poisson
process on R+ with rate 1 (all of which defined on the same probability space so that they
are independent). For each λ > 0, when the density of walkers is taken to be λ, we take
|Wλ

v | := Mv(λ), where Wλ
v denotes the the set of walkers whose initial position is v (in

the case of density λ). Thus if λ1 < λ2 then for all v ∈ V we have that Wλ1
v ⊆Wλ2

v . The
assertion of the Proposition is already clear at this point. For the sake of completeness, we
give additional details concerning the construction.

We continue by constructing at each site v an infinite collection of independent walks,
where in practice, only Mv(λ) of them shall be involved in the dynamics associated with
the SN model with density λ. For each v ∈ V and n ∈ N, let wv

n = (wv
n(t))t∈Z+ be a LSRW

on G, started at v (throughout we denote the law of such a walk by Pv , where the holding
probability is either clear from context or irrelevant). We take all the walks to be independent.
Moreover, we take W := (wv

n)n∈N,v∈V and M := (Mv)v∈V to be independent. We think of wv
n

as the walk performed by the nth particle whose initial position is v.
We are now in the position to define ACλ

t := (V ,Et,λ). Denote by Z
u,v
i,j (t) the indicator of

the event that the ith particle from u met the j th particle from v by time t (i.e., Z
u,v
i,j (t) :=

1{wu
i (s)= wv

j (s) for some s ≤ t}). We want the last event to imply that {u, v} ∈ Et,λ iff i ≤
|Wλ

u | =Mu(λ) and j ≤ |Wλ
v | =Mv(λ) (because we want the number of particles starting at

each site which are involved in the dynamics to have a Pois(λ) distribution). Hence we define
Q

(λ)
u,v(t) = max{Zu,v

i,j (t) : i ≤ |Wλ
u |, j ≤ |Wλ

v |} (this is the indicator of the event that some

w ∈Wλ
v met by time t some w′ ∈Wλ

u ) and set {u, v} ∈Et,λ iff Q
(λ)
u,v(t)= 1. �
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APPENDIX C: PROOF OF TRANSLATION INVARIANCE AND ERGODICITY

Using the notation from Section 2.2, let Wv := ((wv
i (t))t≥0)

|Wv |
i=1 be the infinite walks that

the walkers in Wv performed.

LEMMA C.1. Let G = (V ,E) be an infinite connected graph. Let λ > 0, ε > 0 and
t ∈ Z+ ∪ {∞}. Then for every A ∈ Fcylinder, there exist a finite set B = B(A, ε, t)⊂ V and
Aε such that the event ACλ

t (G) ∈ graph(Aε) is in the σ -algebra generated by (Wu : u ∈ B)

and

Pλ

[
ACλ

t (G) ∈ graph(Aε �A)
]≤ ε.

This follows via elementary measure theoretical considerations, and so we omit the proof.

PROOF OF PROPOSITION 2.5. We first establish translation invariance. Let ϕ ∈Aut(G).
We shall show that there exists a coupling of ACλ

t (G) and ϕ(ACλ
t (G)) (i.e., a probability

space in which both are realized) such that ACλ
t (G)= ϕ(ACλ

t (G)). This clearly implies the
desired equality of the corresponding laws.

Note that if (w(s))s≥0 has law Pv then (ϕ(w(s)))s≥0 has law Pϕ(v). Recall the construction
of the SN model from Section 2.2 via (Mv, ((wv

n(s))s∈Z+)n∈N)v∈V , where (Mv)v∈V are i.i.d.
Pois(λ) and ((wv

n(s))s∈Z+)n∈N are independent LSRWs started from v (i.e., having law Pv).
Denote this realization of ACλ

t (G) by H := (V ,E(H)). Now consider a different realization

obtained by replacing the walks ((wv
n(s))s∈Z+)n∈N by ((ϕ(wϕ−1(v)

n (s)))s∈Z+)n∈N and replac-
ing Mv by Mϕ−1(v), for all v ∈ V . Denote it by H ′ := (V ,E(H ′)). Note that {u, v} ∈ E(H ′)
iff there is some k ≤Mϕ−1(u), m≤Mϕ−1(v) and s ≤ t such that wϕ−1(u)

k (s)=wϕ−1(v)
m (s). This

occurs iff {ϕ−1(u),ϕ−1(v)} ∈ E(H), or equivalently iff {u, v} is an edge in ϕ(H). That is
H ′ = ϕ(H).

We now prove ergodicity. Let A ∈ I . Fix some t ∈ Z+ ∪ {∞}. We seek to show that
Pλ[ACλ

t ∈ graph(A)] ∈ {0,1}. Let ε > 0. By Lemma C.1, there exist a finite set Bε ⊂ V and
an event Aε such that {ACλ

t (G) ∈ graph(Aε)} is in the σ -algebra generated by (Wb(t))b∈Bε

and Pλ[ACλ
t (G) ∈ graph(Aε � A)] ≤ ε. Let rε := max{dist(u, v) : u, v ∈ Bε}. Let ϕε ∈

Aut(G) be such that dist(v,ϕε(v)) > 2rε for all v ∈ V .
The event {ACλ

t (G) ∈ graph(ϕε(Aε))} is in the σ -algebra generated by (Wϕε(b)(t))b∈Bε .
By our choice of ϕε , the sets Bε and {ϕε(b) : b ∈ Bε} are disjoint. Hence the events
{ACλ

t (G) ∈ graph(ϕε(Aε))} and {ACλ
t (G) ∈ graph(Aε)} are independent, as they depend

on disjoint sets of walkers. By translation invariance and the fact that A ∈ I (and so
ϕε(Aε)�A= ϕε(Aε �A))

Pλ

[
ACλ

t (G) ∈ graph
(
ϕε(Aε)�A

)]= Pλ

[
ACλ

t (G) ∈ graph(Aε �A)
]≤ ε.

Hence Pλ[ACλ
t (G) ∈ graph((Aε ∩ ϕε(Aε))�A)] ≤ 2ε and thus

Pλ

[
ACλ

t (G) ∈ graph(A)
]

= lim
ε→0

Pλ

[
ACλ

t (G) ∈ graph
(
Aε ∩ ϕε(Aε)

)]
= lim

ε→0
Pλ

[
ACλ

t (G) ∈ graph(Aε)
]
Pλ

[
ACλ

t (G) ∈ graph
(
ϕε(Aε)

)]
= lim

ε→0
Pλ

[
ACλ

t (G) ∈ graph(Aε)
]2 = Pλ

[
ACλ

t (G) ∈ graph(A)
]2

.

Thus indeed Pλ[ACλ
t (G) ∈ graph(A)] ∈ {0,1}, as desired. �
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APPENDIX D: PROOF OF PROPOSITION 8.2

We denote the walk performed by a walker w by (w(t))t≥0. Recall that Wv(t) is the set of
walkers whose location at time t is v and that for B ⊆ V and t ≥ 0, WB(t) :=⋃

b∈B Wb(t)

is the set of walkers occupying B at time t . We denote the lexicographic order by ≺. Our use
of the lexicographic order below is just a mean of preforming the bookkeeping in a manner
which avoids double-counting (so that each walker is recruited to the exploration process at
most once). It plays no additional role in the argument.

PROOF OF PROPOSITION 8.2. At stage zero, we start the exploration process of FC(o)

by setting W0,0 := Wo and A0,0 = {v}. We label the walkers in W0,0 as w0,0,1, . . . ,

w0,0,|W0,0|.
If Wo is empty the exploration process is completed. Otherwise, at stage one we set

A1,1 := {
w(1) :w ∈W0,0

}
and W1,1 := {

w ∈WA1,1(1) :w /∈W0,0
}

to be the collection of walkers not belonging to W0,0, which have the same position at time 1
as some walker in W0,0. We say that w ∈W1,1 is an offspring of w0,0,j if w(1)= w0,0,j (1)

and j is the minimal integer such that this holds. Finally, we label the elements of W1,1 as
w1,1,1, . . . ,w1,1,|W1,1|.

The first “interesting” stage of the process is stage 2, thus we describe it before proceeding
to the description of a general stage. Let

A2,0 := {
w(0) :w ∈W1,1

}
and A2,2 := {

w(2) :w ∈W0,0 ∪W1,1
}
.

We set

W2,0 := {
w ∈WA2,0(0) :w /∈W1,1

}
and

W2,2 :=
{
w ∈WA2,2(2) :w /∈ ⋃

(i,j)≺(2,2)

Wi,j

}
.

In words, Wi,j is the set of walkers recruited to the process at stage i of the exploration
process, by meeting at time j some walker which was recruited to the exploration process at
an earlier stage (not necessarily an earlier time). These are the walkers which at time j visit
the set Ai,j but for all (i ′, j ′)≺ (i, j) avoided Ai′,j ′ at time j ′. Once a walker is recruited to
the exploration process by joining Wi,j at stage i, we then expose at each stage i + � (where
� ∈N) its location at time j + � and if �≤ j we also expose its position at time j − �.

In particular, for every t , for some values of s (namely, for s ≤ t such that t − s is even)
we expose at the t th stage of the exploration process the location at time s of some particles
which have been recruited to the exploration process prior to stage t (namely of the ones in
Wi,j for (i, j) such that either j + (t − i)= s or j − (t − i)= s). We denote the collection
of these locations by

At,s :=
⋃

(i,j):j+(t−i)=s or j−(t−i)=s

{
w(s) :w ∈Wi,j

}
.

Finally, we let Wt,s be the collection of walkers in WAt,s (s) (i.e., the ones occupying At,s at
time s) which do not belong to Wt ′,s′ for any (t ′, s′)≺ (t, s).

The parent of w ∈ W2,0 (respectively, W2,2) is defined to be w1,1,k ∈ W1,1 (respec-
tively, wi,j,k ∈W0,0 ∪W1,1) such that w(0)=w1,1,k(0) (respectively, w(2)=wi,j,k(2)) and
(1,1, k) (respectively, (i, j, k)) is minimal w.r.t. ≺. Finally, for (i, j) ∈ {(2,0), (2,2)} we
label the walkers in Wi,j as wi,j,1, . . . ,wi,j,|Wi,j |.

The sets Ar,s and Wr,s = {wr,s,1, . . . ,wr,s,|Wr,s |} (where 0≤ s ≤ r is of the same parity as
r) are defined inductively so that the following hold:
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(1) Ar,s := {w(s) :w ∈⋃
(i,j)∈Fr,s∪Br,s

Wi,j }, where

Fr,s := {
(i, j) : (i, j)≺ (r, s) and r − i = s − j > 0

}
and

Br,s := {
(i, j) : j − s = r − i > 0

}
.

(In simple words, as described above, Ar,s are the positions explored by the exploration
process at stage r corresponding to time s of some walkers. These walkers were recruited
at an earlier stage, either at an earlier time or at a latter time. If they were recruited at stage
i and time j then by construction in the first case (i, j) ∈ Fr,s , while in the second case
(i, j) ∈ Br,s .)

(2) Wr,s := {w ∈WAr,s (s) : w /∈ ⋃
(i,j)≺(r,s)Wi,j }. Note that this is the set of walkers

which joined the exploration process at stage r and time s.

It follows that ⋃
(r,s):r≥s,r−s is even

Wr,s = FC(o).

We now describe the assignment of offspring to walkers. In the r th stage we expose
the sets Ar,s (where 0 ≤ s ≤ r is of the same parity as r) sequentially according to the
order ≺. We expose each Ar,s by exposing sequentially the positions of the walkers in⋃

(i,j)∈Fr,s∪Br,s
Wi,j one walker at a time, according to the order ≺ (over the indices of the

walkers (i, j, k) such that (i, j) ∈ Fr,s ∪ Br,s and 1 ≤ k ≤ |Wi,j |). We say that w ∈Wr,s is
an offspring of wi,j,k (where (i, j) ∈ Fr,s ∪ Br,s and 1 ≤ k ≤ |Wi,j |) if w(s)= wi,j,k(s) but
for all (i ′, j ′, k′) ≺ (i, j, k) such that (i ′, j ′) ∈ Fr,s ∪ Br,s and 1 ≤ k′ ≤ |Wi′,j ′ | we have that
w(s) �= wi′,j ′,k′(s). Moreover, as w /∈⋃

(i′,j ′)≺(r,s)Wi′,j ′ (by the definition of Wr,s and the
assumption that w ∈Wr,s ), we also have that w(�) /∈An,� for all 0≤ �≤ n≤ r (where n− �

is even) such that (n, �)≺ (r, s). If s > j (respectively, j > s) we say that w is a forward (re-
spectively, backward) offspring of wi,j,k . Let Bi,j,k(r − i) and Fi,j,k(r − i) be the backward
and forward (resp.) offspring of wi,j,k at stage r . Denote by Bi,j,k(r− i) and Fi,j,k(r− i) the
collection of space-time coordinates which (as described above) a walker in Bi,j,k(r − i) and
Fi,j,k(r − i) (respectively) has to avoid, in order to have not been recruited to the exploration
process prior to the exposure of Bi,j,k(r − i) or Fi,j,k(r − i), respectively (namely, these are
the space-time coordinates exposed prior to the exposure of Bi,j,k(r − i) and Fi,j,k(r − i),
respectively).

We think of a walker wi,j,k as performing a forward walk, fwi,j,k(�) := w(j + �) and a
backward walk (of length j ) bwi,j,k(�)= w(j − �). At each stage r ≥ i we expose one ad-
ditional step of fwi,j,k (namely, fwi,j,k(r − i) = w(j + (r − i))) and if j ≥ r − i also one
additional step of bwi,j,k (namely, bwi,j,k(r− i)=w(j− (r− i))). Note that the forward (re-
spectively, backward) offspring of wi,j,k at stage r are precisely the collection of all walkers
w whose location at time j + r − i (respectively, j − r + i) is wi,j,k(j + r − i) (respec-
tively, wi,j,k(j − r + i)) so that (w(�), �) /∈ Fi,j,k(r − i) (respectively, /∈ Bi,j,k(r − i)) for all
0≤ �≤ r .

Recall that �r is the collection of all walks of length r in G and that for γ ∈ �r , we
denote the number of walkers which performed the walk γ by Xγ ∼ Pois(λp(γ )), where
p(γ ) :=∏r−1

i=0 P(γi, γi+1).
Let �i,j,k,r,f (respectively, �i,j,k,r,b) be the collection of all γ = (γ0, . . . , γr) ∈ �r such

that (γ�, �) /∈ Fi,j,k(r − i) for all � and γj+r−i = wi,j,k(j + r − i) (respectively, (γ�, �) /∈
Bi,j,k(r − i) for all � and γj−r+i =wi,j,k(j − r + i)). By Poisson thinning, given Fi,j,k(r −
i) and wi,j,k(j + r − i) (respectively, Bi,j,k(r − i) and wi,j,k(j − r + i)), (Xγ )γ∈�i,j,k,r,f

(respectively, (Xγ )γ∈�i,j,k,r,b ) are independent Poisson r.v.’s with mean λp(γ ), respectively.
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Now, consider the case that after exposing wi,j,k(j+r− i) (respectively, wi,j,k(j−r+ i)),
for each

γ ∈ {
γ ′ ∈ �r : γ ′j+r−i =wi,j,k(j + r − i)

} \ �i,j,k,r,f(
respectively, γ ∈ {

γ ′ ∈ �r : γ ′j−r+i =wi,j,k(j − r + i)
} \ �i,j,k,r,b

)
we “plant” λp(γ ) new “dummy particles” (independently for different such γ ’s) which per-
form the path γ , and then continue their walk after time r randomly. The dummy particles do
not discover new walkers in the following stages of the exploration process (i.e., they do not
have any offspring and the trajectory of their walk plays no role in the following stages). If
we count the dummy particles as part of the offspring of wi,j,k corresponding to its forward

step at stage r , then we have that (X
i,j,k,r,f
γ )γ∈�r :γj−r+i=wi,j,k(j−r+i) are independent Poisson

r.v.’s and Eλ[Xi,j,k,r,f
γ ] = λp(γ ) for all γ ∈ {γ ′ ∈ �r : γ ′j−r+i = wi,j,k(j − r + i)}, where

X
i,j,k,r,f
γ is the number of offspring of wi,j,k corresponding to its forward step at stage r who

perform the walk γ . By Poisson thinning, this is the same as having Pois(λ) offspring, each
performing an independent Z+-indexed LSRW on G, conditioned to be at wi,j,k(j + r− i) at
time j + r − i. A similar statement holds for the number of offspring of wi,j,k corresponding
to its backwards step at stage r .

Recall the construction of the sets Vr,s = {vr,s,1, . . . , vr,s,|Vr,s |} from the equivalent repre-
sentation of LBRW(μλ, o). It is not hard to prove that the sets Wr,s and Vr,s can be coupled
(for all 0≤ s ≤ r so that r − s is even) so that Wr,s ⊆ Vr,s . More precisely, this can be done
so that for all k ≤ |Wr,s | we have that vr,s,k(t)= wr,s,k(t) for all t ≥ 0. We leave the details
to the reader. �
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