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The random-cluster model with parameters (p, q) is a random graph
model that generalizes bond percolation (q = 1) and the Ising and Potts mod-
els (q ≥ 2). We study its Glauber dynamics on n × n boxes �n of the in-
teger lattice graph Z2, where the model exhibits a sharp phase transition at
p = pc(q). Unlike traditional spin systems like the Ising and Potts models,
the random-cluster model has non-local interactions. Long-range interactions
can be imposed as external connections in the boundary of �n, known as
boundary conditions. For select boundary conditions that do not carry long-
range information (namely, wired and free), Blanca and Sinclair proved that
when q > 1 and p �= pc(q), the Glauber dynamics on �n mixes in optimal
O(n2 logn) time. In this paper, we prove that this mixing time is polyno-
mial in n for every boundary condition that is realizable as a configuration on
Z2 \�n. We then use this to prove near-optimal Õ(n2) mixing time for “typ-
ical” boundary conditions. As a complementary result, we construct classes
of nonrealizable (nonplanar) boundary conditions inducing slow (stretched-
exponential) mixing at p � pc.

1. Introduction. The random-cluster model [13] is a well studied generalization of in-
dependent bond percolation, with connections to the study of electrical networks and random
spanning trees [21]. Perhaps most importantly, the random-cluster model is closely related to
the ferromagnetic Ising–Potts model, which is the classical model for spin systems in statis-
tical physics. In fact, the random-cluster model is often referred to as the FK-representation
of this model and is a key tool in the analysis of its phase transition; see, for example, the
recent breakthroughs on the infinite 2-dimensional integer lattice graph Z2 [2, 10, 11]. It also
plays an indispensable role in the design of efficient Markov Chain Monte Carlo (MCMC)
algorithms, like the Swendsen–Wang algorithm [34], for studying the Ising–Potts model.

For a graph G = (V ,E) and parameters p ∈ (0,1) and q > 0, random-cluster configura-
tions are subsets of edges in � = {S ⊆ E}, with the probability of S ⊂ E given by

πG,p,q(S) = 1

Z
p|S|(1 − p)|E\S|qc(S),(1)

where c(S) is the number of connected components (including isolated vertices) in the sub-
graph (V ,S), and the partition function Z = Zp,q is the normalizing constant that makes
πG,p,q a probability measure.

In addition to being interesting in its own right as a random graph and dependent percola-
tion model, the random-cluster model provides a unifying framework for the study of several
important probabilistic models. For example, for integer q ≥ 2 the random-cluster model is
dual, in a precise sense, to the q-state Ising–Potts model, where configurations are assign-
ments of spin values {1, . . . , q} to the vertices of G. Each configuration σ ∈ [q]V has prob-
ability μG(σ) ∝ exp(βH(σ)), where H(σ) is the number of edges connecting vertices with
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the same spin values, and β > 0 is a model parameter associated with the inverse temperature
of the system. When β = − ln(1 − p) > 0, it is straightforward to check via a probabilistic
coupling [12] that correlations in the Ising–Potts model correspond to connectivities in the
random-cluster setting; this has illuminated much of the study of these models and has made
the random-cluster model an accepted generalization of the Ising–Potts model to noninteger
values of q .

The random-cluster model, however, is not a spin system in the usual sense: the weight of
a configuration S is not a function of local interactions between edges in G, but instead of
global connectivity properties. This nonlocality is a crucial feature of the model but signifi-
cantly complicates its analysis. The present paper studies the influence of this nonlocality on
the speed of convergence of the Glauber dynamics (i.e., local Markov chains) on subsets of
Z2, where the model has been of particular interest.

On the infinite graph Z2, both the random-cluster and the Ising–Potts model undergo phase
transitions corresponding to the sudden emergence of long-range correlations as some param-
eter of the system is continuously varied (p and β in this case). A classical result of Onsager
[31] established that the Ising model (the q = 2 case) undergoes a phase transition at a crit-
ical β = βc(2) = ln(1 + √

2). Recently, it was shown in a celebrated result of Beffara and
Duminil-Copin [2] that the Potts model (q ≥ 3 integer), and more generally the random-
cluster model for any q > 1, also undergo phase transitions at the critical points βc(q) =
ln(1 + √

q) and pc(q) = √
q/(

√
q + 1), respectively. Note that βc(q) = − ln(1 − pc(q)).

These phase transitions can also be understood as transitions in the number of (unique vs.
multiple) infinite-volume Gibbs measures on Z2. The infinite-volume measures on Z2 are
obtained by taking limits of the distributions on finite boxes with a sequence of “boundary
conditions.”

We begin with the notion of boundary conditions in the Ising–Potts model. Let �n be a
n × n square region of Z2 with nearest-neighbor edges E(�n), and let ∂�n be its (inner)
boundary (i.e., those vertices in �n that are adjacent to vertices in Z2 \ �n). An Ising–Potts
boundary condition τ is a fixed assignment of spins to ∂�n, and μτ

�n
is the Gibbs distribution

on �n conditional on the assignment τ to ∂�n. (Since the interactions are nearest-neighbor,
this is the same as conditioning on a configuration on all of Z2 \ �n.)

For the random-cluster model on �n, a boundary condition ξ on ∂�n is a partition
{ξ1, ξ2, . . .} of the boundary vertices such that all vertices in ξi are always in the same con-
nected component of a configuration S via “ghost” (or external) wirings; these connections
are considered in the counting of c(S) in (1) and can therefore impose highly nonlocal in-
teractions. Of particular interest are boundary conditions for the random-cluster model cor-
responding to configurations on Z2 \ �n: that is, where the boundary partition is induced by
the connections of a random-cluster configuration on E(Z2) \E(�n). We call such boundary
conditions realizable. (In fact, many works, including the standard text [21], often restrict at-
tention to realizable boundary conditions.) We note that boundary conditions are fundamental
to the study of static and dynamic properties of the random-cluster and Ising–Potts models,
especially in finite subsets of Z2.

In this paper, we consider the Glauber dynamics for the random-cluster model on the finite
subgraph (�n,E(�n)) of Z2, in the presence of boundary conditions. This Markov chain is
of significant interest: it provides a simple Markov chain Monte Carlo (MCMC) algorithm
for sampling configurations of the system; and is, in many cases, a plausible model for the
evolution of the underlying system.

Specifically, we consider the following discrete-time variant of the Glauber dynamics
chain, which we refer to as the FK-dynamics. For t ∈ N, from St ⊆ E(�n), transition to
St+1 ⊆ E(�n) as follows:

1. Choose an edge e ∈ E(�n) uniformly at random;
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2. let St+1 = St ∪ {e} with probability

π�n,p,q(St ∪ {e})
π�n,p,q(St ∪ {e}) + π�n,p,q(St \ {e})

=
⎧⎨
⎩

p

q(1 − p) + p
if e is a “cut-edge” in (�n,St );

p otherwise;

3. else let St+1 = St \ {e}.
We say e is a cut-edge in (�n,St ) if the number of connected components in St ∪ {e} and
St \ {e} differ. Under a boundary condition ξ , the property of e being a cut-edge is defined
with respect to the augmented graph (�n,S

ξ
t ), where S

ξ
t adds external wirings between all

pairs of vertices in the same element of ξ . This Markov chain converges to π�n,p,q and we
study its speed of convergence.

A standard measure for quantifying the speed of convergence of a Markov chain is the
mixing time: the time until the dynamics is close (in total variation distance) to its stationary
distribution, starting from a worst-case initial state. We say the dynamics is rapidly mixing if
the mixing time is polynomial in |V |, and torpidly mixing when the mixing time is exponen-
tial in |V |ε for some ε > 0.

The corresponding Glauber dynamics for the Ising–Potts model (which updates spins one
at a time according to the spins of their neighbors), is by now quite well understood on finite
regions of Z2. In the high-temperature region β < βc (corresponding to p < pc), the Glauber
dynamics has optimal mixing time �(n2 logn) on boxes �n [1, 2, 7, 28]. These bounds
rely on the exponential decay of correlations of the model at β < βc, which holds even near
the boundary for arbitrary Ising–Potts boundary conditions; this property is known as strong
spatial mixing. Therefore, this �(n2 logn) mixing time bound holds for every boundary con-
dition. In contrast, when β > βc, the speed of convergence of the Glauber dynamics is ex-
pected to depend crucially on the boundary conditions and understanding its behavior for
general boundaries is a long-standing open problem. At the moment, it is known that Glauber
dynamics is torpidly mixing for free (no boundary) and periodic (toroidal) boundary con-
ditions [6, 16, 35] and in the special case of the Ising model (q = 2), has a subexponential
mixing time for uniform (e.g., all “1”) boundaries [25, 29].

The FK-dynamics is quite powerful since the self-duality of the model on Z2 implies that
it is rapidly mixing in the low-temperature regime where the Ising–Potts Glauber dynamics is
torpidly mixing. For the FK-dynamics on �n, [4] showed that the mixing time is �(n2 logn)

for all q > 1 whenever p �= pc(q) for certain “nice” boundary conditions that have the rel-
evant strong spatial mixing property. Specifically, the tight mixing time bound in [4] holds
under boundary conditions that are free, wired or periodic. More recently, [15] examined the
cutoff phenomenon in the FK-dynamics at p � pc(q); they also restricted attention to peri-
odic boundaries. The behavior of the FK-dynamics under arbitrary random-cluster boundary
conditions (not having strong spatial mixing) remained unclear. At the critical p = pc(q),
the FK dynamics may exhibit torpid mixing depending on the “order” of the phase transi-
tion [16, 17]; notably when q � 1 and p = pc(q), the mixing time may be exponential or
subexponential depending on the boundary conditions.

We prove that the FK-dynamics at p �= pc(q) is rapidly mixing for all realizable boundary
conditions.

THEOREM 1.1. For every q > 1, p �= pc(q), there exists a constant C > 0 such that the
mixing time of the FK-dynamics on the n × n box �n ⊂ Z2 with any realizable boundary
condition is O(nC).
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We pause to comment on the proof of Theorem 1.1. As mentioned above, proofs of fast
mixing when p �= pc(q) have relied crucially on a strong spatial mixing property, which in
the random-cluster model, would say that correlations between edges (even near the boundary
∂�n) decay exponentially in the graph distance between them. It is easy to construct examples
of realizable boundary conditions where this correlation does not decay at all, even if p �
pc(q), as the boundary can enforce long-range interactions. Since the exponential decay of
correlations does hold for edges in the “bulk” of �n (i.e., at distance �(logn) away from its
boundary), we are able to reduce the proof of Theorem 1.1 to proving a polynomial upper
bound for the mixing time of the FK-dynamics on thin rectangles of dimension n ×�(logn)

with realizable boundary conditions. This will be the key technical difficulty for us and is
established in Theorem 4.1.

In the setting of spin systems, or boundary conditions that do not encode long-range inter-
actions, a polynomial upper bound on n × �(logn) rectangles would follow from standard
canonical paths arguments [23, 26, 27, 33]. However, even realizable boundary conditions can
heavily distort the graph with external wirings, preventing this approach from succeeding. In-
stead, to prove Theorem 4.1 we devise a novel application of a recursive (block dynamics)
scheme common in the analysis of spin systems. In lieu of splitting rectangles into two over-
lapping subrectangles, for example, the first two-thirds and the second two-thirds, as is done
for spin systems, our choice of smaller subsets at every step of the recursion is delicately
dictated by the boundary conditions. As a consequence, the subsets we recurse over are no
longer restricted to rectangles, but can be arbitrary “groups of rectangles” that are “compat-
ible” with the realizable boundary conditions. We point the reader to Section 4 for a more
detailed proof overview.

Theorem 1.1 shows a polynomial upper bound on the mixing time, uniformly over all real-
izable boundary conditions. Utilizing this theorem, we prove near-optimal O(|V |(log |V |)C)

mixing time for “typical” boundaries as we detail now. The notion of typicality should be un-
derstood as with high probability under some probability distribution over realizable bound-
ary conditions, with a natural choice being the marginal distribution of the infinite random-
cluster measure πZ2,p,q on Z2 \ �n.

As mentioned earlier, a key obstacle to proving mixing time upper bounds are long, dis-
tinct boundary connections that enforce long-range correlations. For any realizable boundary
condition ξ corresponding to a partition {ξ1, ξ2, . . .} of ∂�n, let L(ξi) be the smallest con-
nected subgraph of ∂�n containing all vertices in ξi . The key class of boundary conditions
we consider are those where all the L(ξi) are small.

DEFINITION 1.2. We say a boundary condition ξ on ∂�n with corresponding partition
{ξ1, ξ2, . . .} is in Cα if maxi |L(ξi)| ≤ α logn. We say that a realizable boundary condition ξ

is in C

α if its dual boundary condition ξ
 is in Cα ; see Section 2 for the definition of dual

configuration. We refer to the classes Cα and C

α as α-localized boundaries.

It is straightforward to see that if one samples a “random” boundary condition from the
infinite-volume measure πZ2,p,q , then with high probability, the induced boundary condition
on ∂�n is α-localized for some α > 0. Since there is a unique random-cluster measure on Z2

when p �= pc(q), this is well defined.

THEOREM 1.3. For all q > 1, p �= pc(q), let ω be a random-cluster configuration sam-
pled from πZ2,p,q . If ξω is the boundary condition on ∂�n induced by the connections of ω in

E(Z2) \E(�n), then with probability 1 − o(1), ξω is α-localized for α > 0 sufficiently large.
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There are other similar ways of defining typicality of realizable boundary conditions that
may also be of interest. For example, if ω were sampled from the random-cluster measure in a
large concentric box containing �n, with probability 1−o(1), ξω would again be α-localized;
see Remark 8.

We are able to prove nearly-optimal mixing time Õ(n2) for α-localized boundaries, and
hence, with high probability, for a random boundary sampled from any off-critical random-
cluster measure.

THEOREM 1.4. For every q > 1, p < pc(q) (resp., p > pc(q)), and every α > 0, there
exists a constant C > 0 such that for every realizable boundary condition ξ ∈ Cα (resp.,
ξ ∈ C


α) on ∂�n, the mixing time of the FK-dynamics on the n × n box �n with boundary
condition ξ is O(n2(logn)C).

The proof of Theorem 1.4 uses Theorem 1.1 in a crucial way. Typical boundary conditions
do not exhibit the strong spatial mixing property from [4]; however, for boundary conditions
in Cα we are able to prove that correlations between edges near the boundary decay exponen-
tially in their graph distance divided by α logn. Using this correlation bound, together with
the aforementioned general framework in Section 3 to derive mixing time estimates from spa-
tial mixing properties, we reduce bounding the mixing time on �n with typical boundaries to
bounding the mixing time on �((logn)2) × �((logn)2) rectangles with arbitrary realizable
boundary conditions. Theorem 1.1 then implies that the mixing time of the FK-dynamics in
these smaller rectangles is at most poly-logarithmic in n. Similar classes of typical boundary
conditions were considered in [16, 17] at p = pc(q); there, comparison methods were used
to disregard the influence of long boundary connections at the expense of super-polynomial
factors in the mixing time.

Given that our rapid mixing result for realizable boundaries relies heavily on the planarity
of the boundary connections in Z2 \ �n, one may wonder whether rapid mixing holds for all
possible FK boundary conditions (including those not realizable as configurations on Z2 \
�n). We answer this in the negative, showing that there exist (nonrealizable) boundaries for
which the FK-dynamics is torpidly mixing even while p �= pc(q). In fact, this torpid mixing
holds at p � pc(q), which may sound especially surprising as correlations in the Gibbs
measure π�n,p,q die off faster as p decreases.

THEOREM 1.5. Let q > 2. For every α ∈ (0, 1
2 ] and λ > 0, there exists a boundary con-

dition ξ , such that when p = λn−α the mixing time of the FK-dynamics on the n × n box �n

with boundary condition ξ is exp(�(nα)).

Our proof of this theorem is constructive: we take any graph G on m edges for which
torpid mixing of the FK-dynamics is known at some value of p(m) < pc(q), and show how
to embed G into the boundary of �n. We then develop a procedure to transfer mixing time
bounds from G to �n. The high-level idea is that for sufficiently small p(m) the effect of
the configuration away from the boundary is negligible, and so the mixing time of the FK-
dynamics on G completely governs the mixing time of FK-dynamics near the boundary ∂�n.
We can then use known torpid mixing results for the mean-field random-cluster model (the
case where G is the complete graph) in its critical window at q > 2 [3, 14, 19, 20].

We remark about the condition q > 2 in Theorem 1.5. In [22], it was shown that the mixing
time of FK-dynamics when q = 2 is at most polynomial in the number of vertices on any
graph and at every p ∈ (0,1). It is believed that this rapid mixing holds for all q ≤ 2; hence
the requirement q > 2 appears to be sharp for Theorem 1.5. We believe that the above torpid
mixing result may also extend to small, but �(1) values of p < pc(q), though our current
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proof does not allow for this. In principle, one would want to embed a bounded degree graph
into ∂�n, so that its critical point at which it exhibits slow mixing is �(1). Note that there
are several examples of bounded degree graphs where torpid mixing is known [5, 6, 9, 16,
18].

Finally, we remark that mixing times of the FK-dynamics on a graph G are comparable,
up to polynomial factors in |E| to mixing times of the Chayes–Machta dynamics [8], as well
as of the Swendsen–Wang algorithm that walks on the FK configurations of G [3, 36, 37]. By
slight adaptations of the comparison results in [3, 36, 37], our theorems thus provide upper
and lower bounds for these nonlocal dynamics in the presence of FK boundary conditions.

The rest of the paper is organized as follows. In Section 2, we formally define various
preliminary notions that are used in our proofs. In Section 3, we introduce our general frame-
work to deduce mixing time estimates on �n from spatial and local mixing properties. We
then present our key rapid mixing result for thin rectangles (Theorem 4.1) in Section 4, be-
fore completing the proof of Theorem 1.1 in Section 5. This is boosted to nearly-optimal
mixing time for typical boundaries (Theorem 1.4) in Section 6. Finally, the torpid mixing
result (Theorem 1.5) is proved in Section 7.

2. Preliminaries: The random-cluster model in Z2. In this section, we introduce a
number of definitions, notation and background results that we will refer to repeatedly. More
details and proofs can be found in the books [21, 24]. We will be considering the random-
cluster model on rectangular subsets of Z2 of the form

�n,l = {0, . . . , n} × {0, . . . , l} = [[0, n]] × [[0, l]].
When n = l, we use �n for �n,n. For simplicity, in this preliminary section we shall focus on
the n = l case, but everything stated here holds more generally for rectangular subsets with
n �= l. Abusing notation, we will also use �n for the graph (�n,E(�n)) where E(�n) con-
sists of all nearest neighbor pairs of vertices in �n. We denote by ∂�n the (inner) boundary
of �n; that is the vertex set consisting of all vertices in �n adjacent to vertices in Z2 \�n. The
north, east, south, west, boundaries of �n will be delineated ∂N�n, ∂E�n, ∂S�n and ∂W�n,
respectively.

A boundary condition ξ of �n is a partition of the vertices in ∂�n. When u, v ∈ ∂�n are
in the same element of ξ , we say that they are wired in ξ . If there exists a random-cluster
configuration ω on E(Z2) \ E(�n) such that, for all u, v ∈ ∂�n, u and v are in the same
connected component of ω if and only if they are wired in ξ , then we say that the boundary
condition ξ is realizable.

REMARK 1. Realizable boundary conditions are the most natural class of boundary con-
ditions (see [21]) since they enforce the planarity of Z2. However, nonrealizable boundary
conditions are still relevant in some cases; for example, when considering the random-cluster
model on nonlattice graphs such as trees. In Section 7, we consider the mixing time of the
FK-dynamics under nonrealizable boundary conditions.

For p ∈ (0,1) and q > 0, the random-cluster model on �n with a boundary condition ξ is
the probability measure over the subsets S ⊆ E(�n) given by

π
ξ
�n,p,q(S) = 1

Z
p|S|(1 − p)|E(�n)\S|qc(S;ξ),

where c(S; ξ) corresponds to the number of connected components in the augmented graph
(V ,Sξ ) and Sξ adds auxiliary edges between all pairs of vertices in ∂�n that are in the
same element of ξ . Every subset S ⊆ E(�n), can be naturally identified with some edge
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configuration ω : E(�n) → {0,1} via ω(e) = 1 if e ∈ S (e is open) and ω(e) = 0 if e /∈
S (e is closed). We sometimes interchange vertex sets with the subgraph they induce; for
example,the random-cluster configuration on a set R ⊂ Z2 corresponds to the random-cluster
configuration in the subgraph induced by R. We omit the subscripts p, q when understood
from context.

Monotonicity. Define a partial order over boundary conditions by ξ ≤ η if the partition
corresponding to ξ is finer than that of η. The extremal boundary conditions then, are the free
boundary where ξ = {{v} : v ∈ ∂�n}, which we denote by ξ = 0, and the wired boundary
where ξ = {∂�n}, denoted by ξ = 1. When q > 1, the random-cluster model satisfies the
following monotonicity in boundary conditions: if ξ , η are two boundary conditions on ∂�n

with ξ ≤ η, then π
ξ
�n

� π
η
�n

, where � denotes stochastic domination.

Planar duality. Let �∗
n = (�∗

n,E(�∗
n)) denote the planar dual of �n. That is, �∗

n corre-
sponds to the set of faces of �n, and for each e ∈ E(�n), there is a dual edge e∗ ∈ E(�∗

n)

connecting the two faces bordering e. The random-cluster distribution satisfies π�n,p,q(S) =
π�∗

n,p∗,q(S∗), where S∗ is the dual configuration to S ⊆ E (i.e., e∗ ∈ S∗ iff e /∈ S), and

p∗ = q(1 − p)

q(1 − p) + p
.

Under a realizable boundary condition ξ , this distributional equality becomes π
ξ
�n,p,q(S) =

π
ξ∗
�∗

n,p∗,q∗(S), where ξ∗ is the boundary condition induced by taking the dual configuration of

the configuration on Z2 \ �n identified with ξ . Notice that Z2 is isomorphic to its dual. The
unique value of p satisfying p = p∗, denoted psd(q), is called the self-dual point.

Infinite-volume measure and phase transition. A random-cluster measure πZ2,p,q can be
defined on the infinite lattice Z2 as the limit as n → ∞ of the sequence of random-cluster
measures on n × n boxes with free boundary conditions. The measure πZ2,p,q exhibits a
phase transition corresponding to the appearance of an infinite connected component. That
is, there exists a critical value p = pc(q) such that if p < pc(q) (resp., p > pc(q)), then,
almost surely, all components are finite (resp., there exists an infinite component). For q ≥ 1,
the exact value of pc(q) for Z2 was recently settled in [2], proving

pc(q) = psd(q) =
√

q√
q + 1

.

Exponential decay of connectivities (EDC). A consequence of the results in [1, 2] is that
for every q > 1 and p < pc(q), there is a c = c(p, q) > 0 such that for every boundary
condition ξ and all u, v ∈ �n,

π
ξ
�n,p,q(u

�n←→ v) ≤ e−cd(u,v),(2)

where d(u, v) is the graph distance between u, v in Z2 and u
�n←→ v denotes that there is an

open path between u and v in the FK configuration on E(�n) (not using the connections of
ξ ).

2.1. Random-cluster dynamics. In this section, we overview some preliminaries related
to Markov chain mixing times and the FK dynamics.
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Mixing and coupling times. Consider an ergodic (i.e., irreducible and aperiodic) Markov
chain M with finite state space �, transition matrix P and stationary distribution μ. Let

tMIX(ε) = min
{
t : max

X0∈�

∥∥P t(X0, ·) − μ
∥∥

TV ≤ ε
}
,

where ‖ · ‖TV is the total-variation distance. The mixing time of M is given by tMIX :=
tMIX(1/4), and for any positive ε < 1/2, by submultiplicativity, we have tMIX(ε) ≤
�log2 ε−1�tMIX. We use tMIX(�

ξ
n) to denote the mixing time of the FK-dynamics on �n ⊂ Z2

with boundary condition ξ .
A (one step) coupling of the Markov chain M specifies, for every pair of states (Xt , Yt ) ∈

� × �, a probability distribution over (Xt+1, Yt+1) such that the processes {Xt } and {Yt },
viewed in isolation, are faithful copies of M, and if Xt = Yt then Xt+1 = Yt+1. The coupling
time, denoted Tcoup, is the minimum T such that Pr[XT �= YT ] ≤ 1/4, starting from the worst
possible pair of configurations X0, Y0. The following inequality is standard: tMIX ≤ Tcoup.

Spectral gap and conductance. If P is irreducible and reversible with respect to μ, then
it has real eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λ|�| ≥ −1. The absolute spectral gap of P is
defined by gap(P ) = 1 − λ∗ where λ∗ = max{|λ2|, |λ|�||}. Let μmin = minω∈� μ(ω); the
following is then a standard inequality:

(3) gap(P )−1 − 1 ≤ tMIX ≤ gap(P )−1 log
(
2e · μ−1

min

)
.

For A ⊂ �, the conductance of A is defined as

(4) �(A) = Q(A,Ac)

μ(A)
=

∑
ω∈A,ω′∈Ac μ(ω)P (ω,ω′)

μ(A)
.

The conductance of the chain is given by �
 = minA:μ(A)≤1/2 �(A), and we have

(5)
�2




2
≤ gap(P ) ≤ 2�
.

FK-dynamics and duality. Each run of the FK-dynamics on �n, with realizable bound-
ary conditions ξ and parameters p, q , determines a valid run of the FK-dynamics on the
dual graph �∗

n with boundary conditions ξ∗ and parameters p∗, q . (Simply identify the FK
configuration in each step with its dual configuration; it can be straightforwardly verified that
the transitions of the FK-dynamics on the dual graph occur with the correct probabilities.)
Hence, the two dynamics have the same mixing times.

REMARK 2. The edge-set of the dual graph �∗
n is not exactly in correspondence with the

edge-set of a rectangle �∗ = {−1
2 , . . . , n + 1

2} × {−1
2 , . . . , n + 1

2} as it does not include any
edges that are between boundary vertices of �∗. All the proofs in the paper carry through,
only with the natural minor geometric modifications, to the case of rectangles �n with modi-
fied edge-set that only contains edges edges with at least one endpoint in �n \ ∂�n. The dual
of this modified graph is then an (n− 1)× (n− 1) rectangle with all nearest-neighbor edges.

We note that the definition of realizability of the boundary condition is slightly different
depending on the above choice of edge-set for a rectangle: while ξ is encoded in a config-
uration on E(Z2) \ E(�n), its dual ξ∗ would be encoded in a configuration on E((Z2)∗) \
(E(�∗) \ E(∂�∗)). However, it is straightforward to check that these two notions of realiz-
ability are equivalent: a partition of ∂�n can be encoded in a configuration on E(Z2)\E(�n)

if and only if it can be encoded in a configuration on E(Z2) \ (E(�n) \E(∂�n)). With these
considerations, it often suffices for us to prove our theorems for p < pc(q). For example, it
is sufficient to prove Theorem 1.1 for p < pc(q).
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Boundary condition modification. Finally, we will often appeal to a comparison inequal-
ity between mixing times of the FK-dynamics under different boundary conditions. This in-
equality is a consequence of a simple comparison between random-cluster measures.

DEFINITION 2.1. For two partitions ρ and ρ′ of the vertex set of a graph G = (V ,E),
we say that ρ ≤ ρ′ if ρ is a finer partition than ρ′ (so that the partition consisting only of sin-
gletons is the minimal element of this partial order). Then for two partitions ρ ≤ ρ ′ we define
D(ρ,ρ′) = c(ρ) − c(ρ′) where c(ρ) is the number of components in ρ. For two partitions ρ,
ρ′ that are not comparable, let ρ′′ be the smallest partition such that ρ′′ ≥ ρ and ρ′′ ≥ ρ′ and
set D(ρ,ρ ′) = c(ρ) − c(ρ′′) + c(ρ′) − c(ρ′′).

LEMMA 2.2. Let G = (V ,E) be an arbitrary graph, p ∈ (0,1) and q > 0. Let ρ and ρ′
be two partitions of V encoding two distinct external wirings on the vertices of G. Let π

ρ
G,

π
ρ′
G be the resulting random-cluster measures. Then, for all FK configurations ω ∈ {0,1}E ,

we have

q−2D(ρ,ρ′)πρ′
G (ω) ≤ π

ρ
G(ω) ≤ q2D(ρ,ρ′)πρ′

G (ω).

With this in hand, the variational form of the spectral gap implies the following (see,
e.g., [32]).

LEMMA 2.3. Let G = (V ,E) be an arbitrary graph, p ∈ (0,1) and q > 0. Consider the
FK-dynamics on G with the external wirings ρ and ρ′, and let tMIX(Gρ), tMIX(Gρ′

) denote
their mixing times. Then

tMIX

(
Gρ) ≤ qO(D(ρ,ρ′))|E|tMIX

(
Gρ′)

.

3. Mixing time upper bounds: A general framework. In this section, we introduce a
general framework for bounding the mixing time of the FK-dynamics on �n = (�n,E(�n))

by its mixing times on certain subsets. In [4], it was shown that a strong form of spatial mixing
(encoding exponential decay of correlations uniformly over subsets of �n) implies optimal
mixing of the FK-dynamics. However, this notion, known as strong spatial mixing (SSM) and
described in Remark 3, does not hold for most boundary conditions for which fast mixing of
the FK-dynamics is still expected. To circumvent this, we introduce a weaker notion, which
we call moderate spatial mixing (MSM).

Notation. We introduce some notation first. For a set R ⊆ �n, let E(R) ⊆ En be the set
of edges of E(�n) with both endpoints in R. We will denote by Rc the vertex set �n \R and
by Ec(R) the edge-complement of R; that is, Ec(R) := E(�n) \ E(R). For a configuration
ω : E(�n) → {0,1}, we will use ω(R), or alternatively ω(E(R)), for the configuration of ω

on E(R). With a slight abuse of notation, for an edge set F ⊆ E(�n), we use {F = ω} for
the event that the configuration on F is given by ω; when ω is the all free or the all wired
configuration, we simply use {F = 0} and {F = 1}, respectively.

DEFINITION 3.1. Let ξ be a boundary condition for �n = (�n,E(�n)) and let B =
{B1,B2, . . . ,Bk} be a collection of subsets of �n. We say that moderate spatial mixing
(MSM) holds on �n for ξ , B and δ > 0 if for all e ∈ E(�n), there exists Bj ∈ B such that

(6)
∣∣πξ

�n,p,q

(
e = 1 | Ec(Bj ) = 1

) − π
ξ
�n,p,q

(
e = 1 | Ec(Bj ) = 0

)∣∣ ≤ δ.

In words, MSM holds for B if for every edge e ∈ E(�n) we can find Bj such that e ∈
E(Bj ) and the “influence” of the configuration on Ec(Bj ) on the state of e is bounded by δ.
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REMARK 3. SSM as defined in [4] holds when MSM holds for a specific sequence of
collections of subsets: if Br is the set of subsets containing all the square boxes of side length
2r centered at each e ∈ E(�n) (intersected with E(�n)), then SSM holds if MSM holds for
Br for every r ≥ 1 with δ = exp(−�(r)).

MSM does not capture the fast mixing of the FK-dynamics the way SSM does. Namely,
it is easy to find collections of subsets for which MSM holds for all boundary conditions,
including those boundary conditions for which we later prove slow mixing; see Theorem 1.5.
However, if, for a collection B = {B1,B2, . . . ,Bk}, we also bound the mixing time of the FK-
dynamics on every Bj , we can deduce a mixing time bound for the FK-dynamics on �n. Let
tMIX(Bτ ) denote the mixing time of the FK-dynamics on the subset B ⊆ �n with boundary
condition τ . (Recall that τ corresponds to a partition of ∂B and that ∂B consists of those
vertices in B that are adjacent to vertices in Z2 \ B .)

DEFINITION 3.2. Let ξ be a boundary condition for �n = (�n,E(�n)) and let B =
{B1,B2, . . . ,Bk} with Bj ⊂ �n. We say that local mixing (LM) holds for B and T > 0, if

tMIX

(
B

(1,ξ)
j

) ≤ T and tMIX

(
B

(0,ξ)
j

) ≤ T for all j = 1, . . . , k,

where (1, ξ) (resp., (0, ξ)) denotes the boundary condition on Bj induced by the event
{Ec(Bj ) = 1} (resp., {Ec(Bj ) = 0}) and the boundary condition ξ .

REMARK 4. Observe that when Bj ∩ ∂�n = ∅, (1, ξ) and (0, ξ) are simply the wired
and free boundary condition on Bj , respectively. When Bj ∩ ∂�n �= ∅, the connectivities
from ξ could also induce some connections in (1, ξ) and (0, ξ).

Our next theorem, roughly speaking, establishes the following implication:

MSM + LM =⇒ upper bound for mixing time of FK-dynamics,

with the quality of the bound depending on the T for which LM holds. A similar (and inspir-
ing) implication for the Glauber dynamics of the Ising model in graphs of bounded degree
was established by Mossel and Sly in [30]; there the notion of MSM is replaced by a form of
spatial mixing which is stronger than SSM.

THEOREM 3.3. Let ξ be a boundary condition on �n = (�n,E(�n)) and let B =
{B1,B2, . . . ,Bk} with Bj ⊂ �n for all j = 1, . . . , k. If for ξ and B, moderate spatial
mixing holds for some δ ≤ 1/(12|E(�n)|) and local mixing holds for some T > 0, then
tMIX(�

ξ
n) = O(T n2 logn).

PROOF. Consider two copies {Xt }, {Yt } of the FK-dynamics. We couple the evolution of
{Xt } and {Yt } by using the same random e ∈ E(�n) and the same uniform random number
r ∈ [0,1] to decide whether to add or remove e from the configurations. This is a standard
coupling of the steps of the FK-dynamics (see, e.g., [4, 21]); we call it the identity coupling.
It is straightforward to verify that, when q ≥ 1, the identity coupling is a monotone coupling,
in the sense that if Xt ⊆ Yt then Xt+1 ⊆ Yt+1 with probability 1.

We bound the coupling time Tcoup of the identity coupling for the FK-dynamics. The result
then follows from the fact that tMIX ≤ Tcoup. Since the identity coupling can be extended to
a simultaneous coupling of all configurations that preserves the partial order ⊆, the coupling
time starting from any pair of configurations is bounded by the coupling time for initial
configurations Y0 =∅ and X0 = E(�n).
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We prove that there exists T̂ = O(T n2 logn) such that the identity coupling P satisfies

P
[
X

T̂
(e) �= Y

T̂
(e)

] ≤ 1

4|E(�n)|
for every e ∈ E(�n). A union bound over e ∈ E(�n) then implies that Tcoup ≤ T̂ .

Fix any edge e ∈ E(�n) and let Bj ∈ B be a subset for which (6) is satisfied (such a subset
exists since moderate spatial mixing holds). To bound P[X

T̂
(e) �= Y

T̂
(e)], we introduce two

additional instances {Z+
t }, {Z−

t } of the FK-dynamics. These two copies update only edges
with both endpoints in Bj and reject all other updates. We set Z+

0 = E(�n) and Z−
0 = ∅.

The four Markov chains {Xt }, {Yt }, {Z+
t } and {Z−

t } are coupled with the identity coupling,
with updates outside Bj ignored by both {Z+

t } and {Z−
t }. The monotonicity of this coupling,

along with a triangle inequality, implies that for all t ≥ 0,

P
[
Xt(e) �= Yt (e)

] ≤ ∣∣P[
Z+

t (e) = 1
] − π

ξ
�n

(
e = 1|Ec(Bj ) = 1

)∣∣(7)

+ ∣∣πξ
�n

(
e = 1|Ec(Bj ) = 1

) − π
ξ
�n

(
e = 1|Ec(Bj ) = 0

)∣∣(8)

+ ∣∣πξ
�n

(
e = 1|Ec(Bj ) = 0

) − P
[
Z−

t (e) = 1
]∣∣.(9)

Observe that the restrictions of the chains {Z+
t } and {Z−

t } to Bj are lazy versions of FK-

dynamics on Bj with stationary measures π
ξ
�n

(·|Ec(Bj ) = 1) and π
ξ
�n

(·|Ec(Bj ) = 0), re-
spectively. The laziness comes from the fact that they only accept updates that are in Bj , and
by the local mixing assumption, once T updates have been done in Bj , the chains {Z+

t } and
{Z−

t } will be mixed.
Now, after T̂ = CT |E(�n)| log2�24|E(�n)|� steps, the expected number of updates in Bj

is

CT
∣∣E(�n)

∣∣ log2
⌈
24

∣∣E(�n)
∣∣⌉ |E(Bj )|

|E(�n)| ≥ CT log2
⌈
24

∣∣E(�n)
∣∣⌉.

Let A
T̂

be the event that the number of updates in Bj after T̂ steps is at least T log2�24 ×
|E(�n)|�. A Chernoff bound then implies that, for a large enough constant C > 0,

Pr
[
Ac

T̂

] ≤ 1

24|E(�n)| .
Therefore,

(10)
∣∣Pr

[
Z+

T̂
(e) = 1 |A

T̂

] − Pr
[
Z+

T̂
(e) = 1

]∣∣ ≤ Pr
[
Ac

T̂

] ≤ 1

24|E(�n)| .

By the local mixing property, and the fact that tMIX(ε) ≤ �log2 ε−1� · tMIX for any positive
ε < 1/2, we have

(11)
∣∣Pr

[
Z+

T̂
(e) = 1 |A

T̂

] − π
ξ
�n

(
e = 1|Ec(Bj ) = 1

)∣∣ ≤ 1

24|E(�n)| .

It then follows from (10), (11) and the triangle inequality that when t = T̂ the right-hand side
in (7) is at most 1

12|E(�n)| . The same bound can be deduced for (9) in a similar manner.

Finally, since moderate spatial mixing holds for some δ < 1
12|E(�n)| , we have

∣∣πξ
�n

(
e = 1|Ec(Bj ) = 1

) − π
ξ
�n

(
e = 1|Ec(Bj ) = 0

)∣∣ ≤ 1

12|E(�n)| ;

see Definition 3.1. Putting these together, we see that P[X
T̂
(e) �= Y

T̂
(e)] ≤ 1

4|E(�n)| as de-
sired. �
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4. Fast mixing on thin rectangles. The main difficulty in proving Theorem 1.1 using
the general framework from Section 3 is obtaining mixing time estimates on thin rectangles of
dimension �(n)×�(logn) with realizable boundary conditions. To motivate this, we notice
that since p < pc(q), the influence of the boundary is lost, with high probability, at a distance
�(logn). Thus the main difficulty will be to bound the mixing time of the FK-dynamics in
the annulus of width �(logn) with realizable boundary conditions on the outside. As such,
the key ingredient in the proof of Theorem 1.1 will be the following mixing time bound on
thin rectangles.

For an n × l rectangle �n,l = [[0, n]] × [[0, l]], we use ∂N�n,l , ∂E�n,l , ∂S�n,l and ∂W�n,l

for its north, east, south and west boundaries, respectively. Recall that for a, b ∈ Z, we set
[[a, b]] = {a, a + 1, . . . , b} and [[a, b]]c = [[0, n]] \ [[a, b]].

THEOREM 4.1. Consider �n,l = (�n,l,E(�n,l)) for l ≤ n with an arbitrary realizable
boundary condition ξ that is either free or wired on ∂E�n,l ∪∂W�n,l ∪∂S�n,l . Then, for every
q > 1 and p �= pc(q), the mixing time of the FK-dynamics on �n,l is at most exp(O(l +
logn)).

Observe that when l = O(logn), this implies the mixing time is nO(1), which will be the
setting of interest in our proofs. Moreover, we note that it suffices for us to prove Theorem 4.1
for the set of realizable boundary conditions ξ that are free on ∂E�n,l ∪ ∂W�n,l ∪ ∂S�n,l and
all p �= pc(q), as the set of boundary conditions dual to these are exactly the set of realizable
boundary conditions that are wired on ∂E�n,l ∪ ∂W�n,l ∪ ∂S�n,l ; see Remark 2.

In Section 4.1, we give a overview of the main ideas in the proof of this theorem. In
Sections 4.2–4.4, we introduce some crucial notions regarding groups of rectangular subsets
of �n,l and their relations with the boundary conditions ξ . Sections 4.5–4.6 bound the mixing
time of the block dynamics with respect to a suitably-chosen set of subsets of �n,l . The
recursive proof of Theorem 4.1 is then completed in Section 4.7.

4.1. Outline of proof of Theorem 4.1. We first mention some obstructions that boundary
conditions present to proving Theorem 4.1 using approaches that are common in analogous
problems for spin systems. A traditional approach to proving mixing time bounds for thin
rectangles is the canonical paths method ([23, 26, 27, 33]), which gives an upper bound
that is exponential in the shorter side length; however, boundary conditions can significantly
distort the augmented graph with external wirings, preventing this approach from succeeding.

A sharper approach would be to use an inductive scheme [7, 17, 27], whereby, we bound
the mixing time of the FK-dynamics on n × l rectangles by the mixing times in smaller
rectangular blocks, for example,

BW =
[[

0,
2

3
n

]]
× [[0, l]] and BE =

[[
1

3
n,n

]]
× [[0, l]].(12)

This method requires bounding by the mixing time of the so-called block dynamics.

DEFINITION 4.2. The block dynamics {Xt } with blocks BW,BE ⊂ �n,l such that
E(BW) ∪ E(BE) = E(�n,l) is the discrete-time Markov chain that, at each t , picks i uni-
formly at random from {W, E} and updates the configuration in E(Bi) with a sample from the
stationary distribution of the chain conditional on the configuration of Xt on Ec(Bi).

The spectral gap of the FK-dynamics on �n,l is bounded from below by the spectral gap
of the block dynamics times the worst gap of the FK-dynamics in any Bi with worst-case
configuration on Ec(Bi); see Theorem 4.17 for a precise statement. With the choice of blocks
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FIG. 1. (a) A boundary condition for which no configuration in BW ∩ BE isolates BW \ BE from BE \ BW. (b)
A boundary condition ξ where every pair of overlapping rectangles (as in (12)) must interact through ξ ; however,
the two groups of rectangles R1, R2 do not interact through ξ .

in (12), applying this recursively, one would bound the spectral gap of the FK-dynamics
on �n,l by the gap of the block dynamics raised to a �(logn) power. Hence, establishing
Theorem 4.1 would require an �(1) lower bound on the spectral gap of the block dynamics.

The mixing time and spectral gap of the block dynamics is typically bounded by showing
that after the first block update in either BW or BE, the configuration in BW ∩ BE will be such
that it disconnects the influence of the configuration on BW \BE from BE \BW with probability
�(1); this then allows a standard coupling argument to be used to bound the mixing time. In
the presence of long-range boundary connections, however, it may be that no configuration
on BW ∩ BE would disconnect the two sides from one another and facilitate coupling; see
Figure 1(a) for such an example. As such, our choices of blocks will depend on the boundary
conditions and will be chosen to allow for the block dynamics to couple in O(1) time, while
ensuring that the blocks are still at most a fraction of the size of the original rectangle, so that
after O(logn) recursive steps we arrive at a sufficiently small base scale.

In particular, we will show that for every realizable boundary condition ξ on �n,l , there
exists a choice of two blocks, whose widths are at most 4

5n, such that they are sufficiently
isolated from one another in ξ . As Figure 1(b) demonstrates, there are realizable boundary
conditions that would force these blocks to not be single rectangles, as in (12), but rather
collections of rectangular subsets of �n,l . Thus, our recursive argument will proceed instead
on groups of rectangles,

R= ⋃
Ri, where Ri = [[ai, bi]] × [[0, l]] ⊂ �n,l

are disjoint, with boundary conditions induced by ξ and the configuration of the chain on
�n,l \R.

We formally define groups of rectangles (Definition 4.7), and their boundary conditions
in Section 4.3. We consider next the notion of compatibility of a group of rectangles R ⊂
�n,l with the boundary condition ξ . Roughly speaking, we say a group of rectangles R is
compatible with ξ if ξ limits the boundary interactions between the rectangles of R for every
possible configuration on �n,l \R; see Definition 4.8. In Section 4.5, we provide an algorithm
(see Lemma 4.9) that, for a group of rectangles R compatible with ξ , finds two suitable
subsets for the block dynamics: these subsets will each be group of rectangles compatible
with ξ , of width between 1/5 and 4/5 of the width of R. This will allow us to induct on
groups of rectangles compatible with ξ , while ensuring that number of recursive steps is
O(logn). Specifically, our splitting algorithm will find interior and exterior subsets AINT and
AEXT with no boundary connections between the two; see Figure 3(a). These will be the cores
of the two blocks for R, but in order to bound the coupling time of the block dynamics, we
want the two blocks to overlap and, therefore, we enlarge AINT and AEXT by m = �(log l) to
form the blocks RINT and REXT for the block dynamics; see Figure 3(b).

Finally, in Section 4.6, we bound the coupling time of this block dynamics by some
sufficiently large constant to conclude the proof. This follows by leveraging the fact that
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FIG. 2. The rectangle �n,l with a boundary condition ξ inducing disconnecting intervals. For example,
[[a1, a4]], [[a3, a4]] and [[a7, a10]] are disconnecting intervals of free-type; [[a1, a2]], [[a0, a6]], [[a7, a8]] and
[[a9, a10]] are of free-wired-type; [[a0, a5]] and [[a5, a6]] are of wired-type.

p < pc (p > pc) to condition on the existence of certain disconnecting dual (primal) paths in
RINT ∩REXT that have �(1) probability.

We emphasize that in order to push through this recursion, it will be crucial that our notion
of compatibility with ξ is strong enough to yield a uniform bound on this block dynamics
coupling time, while being broad enough that the splitting algorithm always succeeds in
finding subblocks that are themselves groups of rectangles compatible with ξ .

4.2. Disconnecting intervals. In this section, we introduce the notion of disconnecting
intervals, one of the building blocks of our recursive proof of polynomial mixing. Recall that
we use ∂N�n,l , ∂E�n,l , ∂S�n,l and ∂W�n,l for the north, east, south and west boundaries of
the rectangle �n,l , respectively.

DEFINITION 4.3. For a realizable boundary condition ξ on �n,l that is free on ∂E�n,l ∪
∂S�n,l ∪ ∂W�n,l , an interval [[a, b]] ⊂ [[0, n]] is called disconnecting of:

1. free-type: if there are no boundary connections in ξ between [[a, b]]× {l} and [[a, b]]c ×
{l};

2. wired-type: if there is a boundary component in ξ that contains the vertices (a, l) and
(b, l).

Observe that an interval can be both of free-type and of wired-type if (a, l) and (b, l) are
connected through ξ but are not connected to any boundary vertex in [[a, b]]c × [[0, l]]; in
this case, we may refer to the interval as being of free-wired-type; see Figure 2 for several
examples.

The following properties concerning the union and intersection of disconnecting intervals
will be crucial to our proofs.

LEMMA 4.4. Let ξ be a realizable boundary condition on �n,l that is free on ∂S�n,l ∪
∂E�n,l ∪ ∂W�n,l and let a < b < c. If both [[a, b]] and [[b, c]] are disconnecting intervals of
wired-type, then so is [[a, c]]. If both [[a, b]] and [[b + 1, c]] are disconnecting intervals of
free-type, then so is [[a, c]].

PROOF. If [[a, b]] and [[b, c]] are disconnecting intervals of wired-type, then by definition
the vertices (a, l), (b, l) and (c, l) are all in the same component of ξ ; hence [[a, c]] is a dis-
connecting interval of wired-type. If [[a, b]] and [[b+1, c]] are disconnecting intervals of free-
type, then by definition there are no connections in ξ between [[a, b]] and [[a, b]]c ⊃ [[a, c]]c
or between [[b + 1, c]] and [[b + 1, c]]c ⊃ [[a, c]]c. Consequently, there are not connections
in ξ between [[a, c]] = [[a, b]] ∪ [[b + 1, c]] and [[a, c]]c, and [[a, c]] is thus a disconnecting
interval of free-type. �

LEMMA 4.5. Let ξ be a realizable boundary condition on �n,l that is free on ∂S�n,l ∪
∂E�n,l ∪ ∂W�n,l . Suppose there exist a < b ≤ c < d such that [[a, c]] and [[b, d]] are discon-
necting intervals. Then either both [[a, c]] and [[b, d]] are of free-type or both are of wired-
type.



432 A. BLANCA, R. GHEISSARI AND E. VIGODA

PROOF. Suppose by way of contradiction and without loss of generality that [[a, c]] is
only of free-type (i.e., free-type but not free-wired-type) and [[b, d]] is of wired-type. By
definition, there exists a component of ξ that contains both (b, l) and (d, l). Since a < b ≤
c < d , there is therefore a connection in ξ between [[a, c]] × {l} and [[a, c]]c × {l}. Hence,
[[a, c]] cannot be a disconnecting interval of free-type yielding the desired contradiction. �

LEMMA 4.6. Let ξ be a realizable boundary condition on �n,l that is free on ∂S�n,l ∪
∂E�n,l ∪ ∂W�n,l . Suppose there exist a < b < c < d such that [[a, c]] and [[b, d]] are discon-
necting intervals.

1. If [[a, c]] and [[b, d]] are both of wired-type, then [[a, b]], [[b, c]], [[c, d]] and [[a, d]] are
all disconnecting intervals of wired-type.

2. If [[a, c]] and [[b, d]] are both of free-type, then [[a, b − 1]], [[b, c]], [[c + 1, d]] and
[[a, d]] are all disconnecting intervals of free-type.

PROOF. For the first part, suppose that both [[a, c]] and [[b, d]] are disconnecting intervals
of wired-type. By definition, the vertices (a, l) and (c, l) are in the same component of ξ , as
are (b, l) and (d, l). By the planarity of realizable boundary conditions, it must be the case
that these two components of ξ are indeed the same and, therefore, (a, l), (b, l), (c, l), (d, l)

are all in the same boundary component of ξ . As such, [[a, b]], [[b, c]], [[c, d]] and [[a, d]] are
all disconnecting intervals of wired-type.

For the second part, suppose first by way of contradiction that [[a, b − 1]] is not a discon-
necting interval of free-type. Then there must be a boundary component in ξ with vertices in
[[a, b−1]]×{l} and [[a, b−1]]c ×{l}. If it is a component containing a vertex in [[a, c]]c ×{l},
it would violate the fact that [[a, c]] is disconnecting of free-type, while if it is a component
containing a vertex in [[b, c]] × {l}, it would violate that [[b, d]] is disconnecting of free-type
as [[a, b − 1]] ⊂ [[b, d]]c. By analogous reasoning [[c + 1, d]], [[b, c]] and [[a, d]] are all dis-
connecting intervals of free-type. �

4.3. Groups of rectangles. In this section, we define groups of rectangles and their
boundary conditions, which constitute the other building blocks of our recursive proof of
polynomial mixing for the FK-dynamics on thin rectangles. As in the previous section, we
consider an n × l rectangle �n,l = [[0, n]] × [[0, l]] with a realizable boundary condition ξ

that is free on ∂E�n,l ∪ ∂S�n,l ∪ ∂W�n,l .
Henceforth, we take

m = m(l) = C
 log l,

where C
 is a large constant such that C
 > c−1 which we choose later, with c being the
constant from (2).

A rectangular subset R ⊂ �n,l is a rectangle of the form [[a, b]] × [[0, l]] for some
0 ≤ a < b ≤ n. For such a rectangular subset, we denote by W(R) its width; that is,
W(R) = b − a. For the union of distinct and disjoint rectangular subsets R = ⋃N(R)

i=1 Ri ,
where Ri = [[ai, bi]] × [[0, l]] and a1 < b1 < a2 < · · · < aN(R) < bN(R), its width is defined

by W(R) = ∑N(R)
i=1 W(Ri) and its boundary is given by ∂R = ⋃N(R)

i=1 ∂Ri . Moreover, we

let ∂NR = ⋃N(R)
i=1 ∂NRi and similarly define ∂SR; on the other hand, ∂ER will be the eastern

boundary of the right-most rectangle Ri and ∂WR, the western boundary of the left-most.

DEFINITION 4.7. A group of rectangles R = ⋃N(R)
i=1 Ri is the union of N(R) disjoint

rectangular subsets Ri of �n,l such that W(Ri) ≥ 2m for every i = 1, . . . ,N(R).
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REMARK 5. The requirement that W(Ri) ≥ 2m for every i, which may seem arbitrary
at the moment, is because in our recursive argument, we want our groups of rectangles R to
have interiors that are not influenced by the configuration on E(�n,l) \ E(R). When a group
of rectangles has a thin constituent rectangle Ri , the influence of the outside configuration
can permeate through all of Ri .

We will be considering blocks dynamics with blocks consisting of groups of rectangles.
If we want to update the configuration on a group of rectangles R ⊂ �n,l , the boundary
condition induced on ∂R will consist of the boundary condition on �n,l which will be fixed
to be ξ , together with a fixed random-cluster configuration ωRc on Ec(R) = E(�n,l)\E(R).
Hence, our boundary conditions on R will be of this form, and we denote them by the pair
ζ = (ξ,ωRc ).

4.4. Compatible boundary conditions. We now define the notion of compatibility of
groups of rectangles with boundary conditions ξ . This is crucial in our inductive argument;
our algorithm for finding suitable blocks for the block dynamics will guarantee that if the
starting group rectangles is compatible with respect to a given boundary condition, so will
each of the blocks, enabling an inductive procedure.

Let ξ be a realizable boundary condition on ∂�n,l that is free on ∂S�n,l ∪∂E�n,l ∪∂W�n,l ,
and free in all vertices in ∂N�n,l at distance at most m from ∂E�n,l ∪∂W�n,l (i.e., they appear
as singletons in the corresponding boundary partition). This latter requirement for vertices
near the corners of �n,l allows us to always choose blocks in our recursion whose boundaries
are at least distance m from ∂E�n,l ∪ ∂W�n,l ; this simplifies our analysis.

The following will be the distinguishing property of our choice of blocks for the block
dynamics.

DEFINITION 4.8. Let R = ⋃N(R)
i=1 Ri be a group of rectangles with Ri = [[ai, bi]] ×

[[0, l]] and a1 < b1 < a2 < b2 < · · · < aN(R) < bN(R) (with bi − ai ≥ 2m for all i). We say R
is compatible with ξ , if

1. Between every two consecutive rectangles Ri = [[ai, bi]] × [[0, l]] and Ri+1 = [[ai+1,

bi+1]] × [[0, l]] the interval [[bi − m,ai+1 + m]] is a disconnecting interval; and
2. The interval [[a1 + m,bN(R) − m]] is also a disconnecting interval.

REMARK 6. It is clear from the definition that �n,l is compatible with ξ : the first
condition is vacuous, while the second is satisfied since all vertices a distance at most
m from ∂E�n,l ∪ ∂W�n,l are free. Observe also that bi − ai ≥ 2m for every i and so
bN(R) − m ≥ a1 + m; see Definition 4.7.

4.5. Defining the blocks for the block dynamics. Now that we have introduced discon-
necting intervals, group of rectangles and the notion of compatibility, we describe our al-
gorithm for picking two blocks RINT,REXT for the block dynamics, based on the boundary
condition ξ . Recall the definitions of width W(·) of a rectangular subset and width of a
collection of rectangles W(R) = ∑N(R)

i=1 W(Ri). It will also be convenient to have the fol-

lowing notation ∂‖R = ⋃N(R)
i=1 ∂WRi ∪ ∂ERi for the vertical sides of the group of rectangles

R= ⋃N(R)
i=1 Ri . The following lemma provides the basis for our splitting algorithm.

LEMMA 4.9. Let ξ be a realizable boundary condition on ∂�n,l that is free on
∂S�n,l ∪ ∂E�n,l ∪ ∂W�n,l and free in all vertices in ∂N�n,l at distance at most m from
∂E�n,l ∪ ∂W�n,l . For every group of rectangles R compatible with ξ , with W(R) ≥ 100m,
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there exists a disconnecting interval [[c
, d
]] such that both (c
, l) and (d
, l) are in ∂NR, are
distance at least m from ∂‖R, and

1

4
W(R) ≤ W

(
R∩ ([[c
, d
]] × [[0, l]])) ≤ 3

4
W(R).

We pause to comment on why a disconnecting interval with such properties provides the
desired blocks for the block dynamics. The interval [[c
, d
]] from the lemma will be used
to define AINT = R ∩ ([[c
, d
]] × [[0, l]]) and AEXT = R \ AINT; their enlargements by m

will form the blocks RINT and REXT (see Figure 3). The requirement that W(AINT) be a
fraction of W(R) bounded away from 0 and 1 is so that we only recurse O(logn) times
before reaching small enough widths. The requirement that the corners of [[c
, d
]] × [[0, l]]
are a distance at least m from ∂‖R is so that when we enlarge the sets AINT, AEXT by m,
we do not overflow beyond the rectangles containing (c
, l) and (d
, l). Crucially, our ability
to pick disconnecting segments that satisfy this latter requirement will be guaranteed by the
compatibility of R with ξ .

PROOF OF LEMMA 4.9. We begin by finding a candidate disconnecting interval [[c, d]]
with (c, l), (d, l) ∈ ∂NR satisfying

1

3
W(R) ≤ W

(
R∩ ([[c, d]] × [[0, l]])) ≤ 2

3
W(R).(13)

In the second part of the proof, we show how to modify the interval [[c, d]] to obtain a dis-
connecting interval [[c
, d
]] with the added property that both (c
, l) and (d
, l) are distance
at least m from ∂‖R.

If there exist a pair of vertices (x, l), (y, l) ∈ ∂NR such that 1
3W(R) ≤ W(R ∩ ([[x, y]] ×

[[0, l]])) ≤ 2
3W(R) with (x, l) connected to (y, l) through ξ , then we take c = x, d = y;

that is, we use [[c, d]] = [[x, y]] as our candidate disconnecting interval. Suppose otherwise
that there does not exist any such boundary connection: then every pair (x, l), (y, l) ∈ ∂NR
connected through ξ is such that

W
(
R∩ ([[x, y]] × [[0, l]]))

<
1

3
W(R), or

W
(
R∩ ([[x, y]] × [[0, l]]))

>
2

3
W(R).

(14)

If the latter holds, then there is a pair, say (x0, l), (y0, l) ∈ ∂NR, for which the latter holds
with a minimal width. The interval [[x0, y0]] would be a disconnecting interval of wired-type
and there is no other vertex (z, l) ∈ ∂NR with z ∈ [[x0 + 1, y0 − 1]] connected to (x0, l) and
(y0, l) in ξ since if there were such a z it would violate the assumption that [[x0, y0]] is of
minimal width with W(R ∩ ([[x0, y0]] × [[0, l]])) > 2

3W(R) or that every pair of vertices
(x, l), (y, l) ∈ ∂NR connected in ξ satisfy (14). Consequently, all other connections through
ξ between vertices (x1, l), (y1, l) ∈ ∂NR∩ ([[x0 + 1, y0 − 1]] × [[0, l]]) will be such that

W
(
R∩ ([[x1, y1]] × [[0, l]]))

<
1

3
W(R).

We can then partition the vertices of ∂NR∩([[x0 +1, y0 −1]]×{l}) into disjoint disconnecting
intervals of free-wired-type using the following procedure:

1. Let ρ = {C1, . . . ,Ck} be the partition of the vertices of ∂NR∩ ([[x0 + 1, y0 − 1]] × {l})
induced by the boundary condition ξ ; every Ci corresponds to a distinct connected compo-
nent of ξ ;
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2. For each Ci , consider the disconnecting interval Li of free-wired-type determined by
the left-most and right-most vertices of Ci in ∂NR ∩ ([[x0 + 1, y0 − 1]] × {l}). Notice that
some of the Ci ’s may be singletons, which we view as disconnecting intervals of the free-
wired-type;

3. Let {Li1,Li2, . . . ,Li�} be those disconnecting intervals which are maximal, in the sense
that there does not exist j and k such that Lij ⊂ Lk .

The set of disconnecting intervals {Li1,Li2, . . . ,Li�} partitions [[x0 + 1, y0 − 1]] into disjoint
disconnecting intervals of free-wired-type with the property that W(R ∩ (Lij × [[0, l]])) ≤
1
3W(R) for every j ∈ {1, . . . , �}. We can then use Lemma 4.4 to merge adjacent disconnecting
intervals until we obtain a candidate disconnecting interval [[c, d]] ⊂ [[x0, y0]] (of free-type),
having width W(R∩ ([[c, d]] × [[0, l]]) ∈ [1

3W(R), 2
3W(R)].

Now that we have found a candidate disconnecting interval [[c, d]] satisfying (13), we
modify it to obtain a disconnecting interval [[c
, d
]] with the property that both (c
, l) and
(d
, l) are distance at least m from ∂‖R.

If (c, l) is at distance at least m from ∂‖R, set c
 = c, and similarly if (d, l) is at distance
at least m from ∂‖R, then set d
 = d . Otherwise, suppose (c, l) is at distance less than m

from ∂WRi for some constituent rectangular subset Ri = [[ai, bi]] × [[0, l]] of R. Since R is
compatible with ξ , the interval Ic = [[bi−1 − m,ai + m]] is a disconnecting interval, and we
set

c
 =
{
ai + m, if Ic is of wired-type, or i = 1, or W(Ri) = 2m;

ai + m + 1, if Ic is only of free-type, and W(Ri) > 2m;

note that the first case includes when Ic is of free-wired-type, whereas the second case only
applies when the interval is of free-type and not of wired-type. When (c, l) is instead at
distance less than m from ∂ERi for some i, then we simply set c
 = bi − m.

Symmetrically, if (d, l) is at distance less than m from ∂ERi for some Ri = [[ai, bi]] ×
[[0, l]], let Id = [[bi − m,ai+1 + m]],

d
 =
{
bi − m, if Id is of wired-type, or i = N(R), or W(Ri) = 2m;

bi − m − 1, if Id is only of free-type, and W(Ri) > 2m.

When (d, l) is at distance less than m from ∂WRi , let d
 = ai + m. To see that this process
is well defined, notice that since W(Ri) ≥ 2m for every i, the points (c, l), (d, l) cannot be
both less than m away from ∂ERi and less than m away from ∂WRi .

We claim that in all of these cases the interval [[c
, d
]] is a disconnecting interval. The fact
that (c
, l), (d
, l) ∈ ∂NR are a distance at least m away from ∂‖R follows directly from the
construction.

First, observe that when (c, l), (d, l) are both a distance at least m from ∂‖R, then we
set c
 = c and d
 = d; in this case [[c
, d
]] is disconnecting since [[c, d]] was chosen to be
disconnecting.

Next, suppose that d was at least a distance m from ∂‖R while c was at distance less than
m from ∂WRi for some i. In this setting, we establish that [[c
, d
]] is a disconnecting interval
by considering the following four cases:

Case 1: i = 1. Note that [[a1 + m,bN(R) − m]] and [[c, d]] are disconnecting intervals by
compatibility and construction, respectively. Also, W(R ∩ ([[c, d]])) ≥ 100m

3 since W(R) ≥
100m. Hence, c < a1 + m < d < bN(R) − m and Lemma 4.6 implies that [[c
, d
]] = [[a1 +
m,d]] is disconnecting.

Case 2: i > 1 and [[bi−1 − m,ai + m]] is of wired-type. Since W(R ∩ ([[c, d]])) ≥ 100m
3 ,

we have bi−1 −m < c < ai +m < d . Then, by Lemma 4.5, [[c, d]] is a disconnecting interval
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of wired-type, and Lemma 4.6 implies that [[c
, d
]] = [[ai +m,d]] is a disconnecting interval
of wired-type.

Case 3: i > 1, [[bi−1 −m,ai +m]] is of free-type and W(Ri) > 2m. We again have bi−1 −
m < c < ai + m < d , and by Lemma 4.5 [[c, d]] is a disconnecting interval of free-type.
Therefore, by Lemma 4.6, [[c
, d
]] = [[ai + m + 1, d]] is a disconnecting interval of free-
type.

Case 4: i > 1, [[bi−1 − m,ai + m]] is only of free-type and W(Ri) = 2m. In this case,
it must be that i < N(R). Therefore, by the compatibility of R and ξ , [[bi − m,ai+1 +
m]] = [[ai + m,ai+1 + m]] is also a disconnecting interval. In fact, by Lemma 4.5, [[bi −
m,ai+1 + m]] is a disconnecting interval of free-type. Applying Lemma 4.6 with respect to
[[ai + m + 1, d]] and [[ai + m,ai+1 + m]] implies [[c
, d
]] = [[ai + m,d]] is a disconnecting
interval.

Suppose otherwise that c was at distance less than m from ∂ERi for some i, and d was
still at least a distance at least m from ∂‖R. In this case, W(R ∩ ([[c, d]])) ≥ 100m

3 implies
N(R) > 1 as well as i < N(R). Moreover, [[bi − m,ai+1 + m]] is a disconnecting interval
by the compatibility of R and ξ . Since bi − m < c < ai+1 + m < d , Lemma 4.5 then implies
that when [[bi − m,ai+1 + m]] is of wired-type (resp., of free-type) then [[c, d]] is also of
wired-type (resp., of free-type) and, therefore, by Lemma 4.6, [[c
, d
]] = [[bi − m,d]] is a
disconnecting interval of wired-type (resp., of free-type).

The symmetric cases where (c, l) is a distance at least m from ∂‖R, and (d, l) is a distance
less than m from ∂‖R can be checked analogously. The remaining case in which both (c, l)

and (d, l) are a distance less than m from ∂‖R can also be checked similarly, by first mod-
ifying the candidate interval on one side in order to obtain a disconnecting interval [[c
, d]]
having (c
, l) a distance at least m from ∂‖R, and then performing the modification on d to
obtain the desired disconnecting interval [[c
, d
]].

Finally, we claim that in all such situations, [[c
, d
]] satisfies

1

4
W(R) ≤ W

(
R∩ ([[c
, d
]] × [[0, l]])) ≤ 3

4
W(R).

This follows from the facts that W(R) ≥ 100m, |c − c
| ≤ m and |d − d
| ≤ m. �

We will now use the disconnecting interval given by Lemma 4.9 to define two subsets AINT

and AEXT of R, and set RINT and REXT to be their enlargements by m.

DEFINITION 4.10. For a group of rectangles R compatible with ξ , let [[c
, d
]] be the
disconnecting interval given by Lemma 4.9. Then define the interior and exterior cores as

AINT =R∩ ([[c
, d
]] × [[0, l]]) and AEXT =R∩ ([[c
, d
]]c × [[0, l]]);
see Figure 3(a). Using the disconnecting interval [[c
, d
]] define the interior and exterior
blocks as follows:

1. Let c− = c
 − m and c+ = c
 + m. Let d− = d
 − m and d+ = d
 + m.
2. Define RINT = R ∩ ([[c−, d+]] × [[0, l]]) and REXT = R ∩ (([[0, c+]] ∪ [[d−, n]]) ×

[[0, l]]); see Figure 3(b).

We will demonstrate that this choice of RINT and REXT has certain fundamental properties
that will facilitate the recursive argument in the proof of Theorem 4.1.

PROPOSITION 4.11. If R is a group of rectangles compatible with ξ , and moreover,
W(R) ≥ 100m, then the sets RINT and REXT are groups of rectangles satisfying the following
properties:
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FIG. 3. (a) The cores AINT and AEXT and (b) the blocks RINT and REXT. The blocks RINT and REXT are the
enlargements of AINT and AEXT by exactly m, and are thus, themselves, groups of rectangles.

1. 1
5W(R) ≤ W(RINT) ≤ 4

5W(R) and likewise 1
5W(R) ≤ W(REXT) ≤ 4

5 × W(R);
2. Both RINT and REXT are compatible with ξ .

PROOF. We show first that RINT and REXT are groups of rectangles (see Definition 4.7).
By construction RINT and REXT are unions of rectangular subsets of �n,l . Since R is a group
of rectangles, every constituent rectangular subset Ri of R has W(Ri) ≥ 2m by definition.
By Lemma 4.9, (c
, l), (d
, l) were such that they are a distance at least m from ∂‖R; as
a consequence [[c−, c+]] × [[0, l]] and [[d−, d+]] × [[0, l]] are subsets of R. Moreover, every
constituent rectangular subset of RINT and REXT is either a constituent rectangle of R, or
contains one of [[c−, c+]] × [[0, l]] and [[d−, d+]] × [[0, l]], implying that every rectangular
subset of RINT and REXT has width at least 2m. Together, these verify that RINT and REXT

are indeed groups of rectangles.
The first property follows from the facts that, by Lemma 4.9, 1

4W(R) ≤ W(AINT) ≤
3
4W(R) and 1

4W(R) ≤ W(AEXT) ≤ 3
4W(R), while W(R) ≥ 100m, W(RINT) − W(AINT) =

2m and W(REXT) − W(AEXT) = 2m.
To verify the second property, consider REXT first and label its rectangular subsets

REXT
1 , . . . ,REXT

N(REXT) (from left to right) with REXT
j = [[aEXT

j , bEXT
j ]]. Let i, i + 1 be the indices

of the two distinct rectangular subsets containing REXT \ AEXT. As before, R1, . . . ,RN(R)

are the constituent rectangular subsets of R. Then, for every j ∈ {1, . . . ,N(REXT) − 1} \ {i},
there is a k ∈ {1, . . . ,N(R) − 1} such that bEXT

j = bk and aEXT
j+1 = ak+1. Hence, the compat-

ibility of R with ξ guarantees that the interval [[bEXT
j − m,aEXT

j+1 + m]] is disconnecting for
every j �= i.

To see that [[bEXT
i − m,aEXT

i+1 + m]] is disconnecting, notice that by construction of REXT,
[[bEXT

i − m,aEXT
i+1 + m]] = [[c
, d
]]. Finally, since (c
, l), (d
, l) were at distance at least m

from ∂‖R, the interval [[aEXT
1 + m,bEXT

N(REXT) − m]] matches the interval [[a1 + m,bN(R) −
m]], and thus by compatibility of R with ξ implies the former is a disconnecting interval,
altogether these imply the compatibility of REXT with ξ .

Similarly, label the constituent rectangles of RINT as RINT
1 , . . . ,RINT

N(RINT) and notice that
1 and N(RINT) are the indices of the two rectangles containing RINT \AINT. Every interval
of the form [[bINT

i − m,a INT
i+1 + m]] corresponds (up to change of index) to such an interval

for R, so that by compatibility of R with respect to ξ , these are all disconnecting intervals.
The interval [[a INT

1 + m,bINT
N(RINT) − m]] is exactly the interval [[c
, d
]] given by Lemma 4.9

and, therefore, this is disconnecting by construction. Together, these imply the compatibility
of RINT with ξ . �

4.6. Block dynamics coupling time. Here, we consider the block dynamics on R with
blocks RINT and REXT as defined in Section 4.5; see also Figure 3(b). We begin by defining
the block dynamics for a group of rectangles.

DEFINITION 4.12. Let R be a group of rectangles with boundary condition ζ . The block
dynamics {Xt } with blocks B = {B1, . . . ,Bk} such that Bi ⊂ R and

⋃k
i=1 E(Bi ) = E(R) is

the discrete-time Markov chain that at each t , selects i uniformly at random from {1, . . . , k}
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and updates the configuration on E(Bi ) from the stationary distribution conditional on the
configuration Xt(E

c(Bi )).

Fix B = {RINT,REXT} and let gap(Rζ ;B) be the spectral gap of this block dynamics on
R with boundary condition ζ = (ξ,ωRc ), where ξ is a realizable boundary condition on �n,l

and ωRc is a configuration on Ec(R).

LEMMA 4.13. Let ξ be a realizable boundary condition on ∂�n,l that is free on ∂S�n,l ∪
∂E�n,l ∪ ∂W�n,l and free on vertices in ∂N�n,l at distance at most m from ∂E�n,l ∪ ∂W�n,l .
For every q > 1 and p �= pc(q), there exists K = K(p,q) ≥ 1 such that for every group of
rectangles R compatible with ξ , and every configuration ωRc ,

gap
(
R(ξ,ω(Rc));B) ≥ K−1.

PROOF. We consider the p < pc(q) case first. Let {Xt }, {Yt } be two instances of the
block dynamics on R with boundary condition ζ = (ξ,ωRc ) started from initial configura-
tions X0, Y0. We design a coupling P for the steps of {Xt } and {Yt } and bound its coupling
time. This yields upper bounds for both the mixing time and the inverse spectral gap of the
block dynamics; see Section 2 for a brief overview of the coupling method. For this, we will
show that for any two initial configurations X0, Y0

P(X2 = Y2) = �(1).(15)

Since this bound will be uniform over X0, Y0, we can make independent attempts at coupling
the two chains every two steps. Hence, there would exist T = O(1) such that

max
X0,Y0

P(XT �= YT ) ≤ 1

4
,

bounding the coupling time by T = O(1) concluding the proof.
First, observe that with probability 1/4 the first block to be updated is RINT and the second

is REXT. Suppose this is the case and let us consider the update on block RINT. Observe that
X1(RINT) is distributed according to the random-cluster measure πθX on RINT, where θX

is the boundary condition induced on ∂RINT by the boundary condition ζ on R and the
configuration of X0 in E(R) \E(RINT). Likewise, Y1(RINT) has law πθY , with the boundary
condition θY defined analogously but considering the configuration of Y0 in E(R) \E(RINT)

instead. Therefore, any coupling for the random-cluster measures πθX , πθY yields a coupling
for the first steps of {Xt } and {Yt }.

Let θ1 be the boundary condition on ∂RINT induced by ζ and the configuration that is all
wired on E(R)\E(RINT); let πθ1 be the corresponding random-cluster measure on RINT. Let
QW,QE ⊂RINT be the two rectangles of width m that contain all the vertices in RINT \AINT;
that is, QW ∪ AINT ∪ QE = RINT, QW ∩ AINT = ∅ and QE ∩ AINT = ∅ (see Figure 4(a)).
Let ∂E(QW) be the set edges with one endpoint in QW and the other in AINT, and similarly
define ∂E(QE).

Let �W be the set of configurations in RINT that have a dual-path in E(QW) ∪ ∂E(QW)

connecting the top-most edge in ∂E(QW) to an edge in ∂SQW, and similarly define �E as the
set of configurations in RINT that have a dual-path in E(QE) ∪ ∂E(QE) from the top-most
edge in ∂E(QE) to an edge in ∂SQE. (A dual-path is an open path in the dual configuration.)
Let � = �E ∩ �W; see Figure 4(b). The following lemma supplies the desired coupling.

LEMMA 4.14. Let q > 1 and p < pc(q). There exists a coupling P1 of the distributions
πθX , πθY , πθ1 such that if (ωθX,ωθY ,ωθ1) is sampled from P1, then all of the following hold:
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FIG. 4. (a) The block RINT with its subsets AINT, QW and QE. (b) The block RINT with the dual-paths
(dotted) of a configuration in �. (c) The block RINT with the dual-paths (dotted) of a configuration in
�NS

W ∩ �WE
W ∩ �NS

E ∩ �WE
E ⊂ �.

1. P1(ω
θX,ωθY ,ωθ1) > 0 only if ωθX ≤ ωθ1 and ωθY ≤ ωθ1 ;

2. P1(ω
θX(AINT) = ωθY (AINT) | ωθ1 ∈ �) = 1;

3. There exists a constant ρ = ρ(p, q) > 0 such that P1(ω
θ1 ∈ �) ≥ ρ.

Hence, if we use the coupling P1 from Lemma 4.14 to couple the first step of the chains,
then X1 and Y1 will agree on E(AINT) with probability at least ρ > 0. If this occurs,
then we can easily couple the update on REXT in the second step so that X2 = Y2, since
X1(E(AINT)) = Y1(E(AINT)) implies X1(E(R) \ E(REXT)) = Y1(E(R) \ E(REXT)), and
thus the boundary conditions induced by the two instances of the chain on REXT are identi-
cal. As a consequence, we obtain that for any X0, Y0,

P(X2 = Y2) ≥ρ

4
.

which gives (15) and thus concludes the proof for p < pc(q). �

The case when p > pc(q) follows by an analogous dual argument. In this case, the set �

has o(1) probability and we therefore replace it by the set �∗ = �∗
E ∩�∗

W, where �∗
W is the set

of configurations in RINT that have an open path in E(QW)∪∂E(QW) connecting the top-left
corner of AINT (c
, l) to ∂SQW; similarly, �∗

E is the set of configurations in RINT that have
an open path in E(QE) ∪ ∂E(QE) connecting the top-right corner (d
, l) of AINT to ∂SQE.
Let θ0 be the boundary condition on ∂RINT induced by ζ and the all-free configuration on
E(R) \ E(RINT); let πθ0 be the resulting random-cluster distribution on RINT. The constant
bound on the coupling time of the block dynamics would then follow as above from the
following dual analogue of Lemma 4.14.

LEMMA 4.15. Let q > 1 and p > pc(q). There exists a coupling P0 of the distributions
πθX , πθY , πθ0 such that if (ωθX,ωθY ,ωθ0) is sampled from P0, then all of the following hold:

1. P0(ω
θX,ωθY ,ωθ0) > 0 only if ωθX ≥ ωθ0 and ωθY ≥ ωθ0 ;

2. P0(ω
θX(AINT) = ωθY (AINT) | ωθ0 ∈ �∗) = 1;

3. There exists a constant ρ = ρ(p, q) > 0 such that P0(ω
θ0 ∈ �∗) ≥ ρ.

We proceed with the proof of the key Lemma 4.14. Parts 1 and 2 of the lemma follow from
a fairly standard coupling technique; see, for example, [1, 4]. We shall also use this approach
later in the proof of Lemma 5.4. Part 3 will be a consequence of the EDC property (2); see
proof of Claim 4.16.

PROOF OF LEMMA 4.14. Let

L = ∂WQW ∪ ∂NQW ∪ ∂EQE ∪ ∂NQE;
note that L ∩AINT =∅. For a FK configuration ω on RINT, let

F(ω) :=RINT

∖ ⋃
v∈L

C(v,ω),
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where C(v,ω) is the vertex set of the connected component of v in ω, ignoring the boundary
connections.

Clearly, πθ1 � πθX and πθ1 � πθY , and thus there exist monotone couplings PX (resp.,
PY ) for πθX and πθ1 (resp., πθY and πθ1 ). We use PX and PY to construct the coupling P1 as
follows:

1. sample (ωθX,ωθ1) from PX and sample ωθY from PY (· | ωθ1);
2. if AINT ⊆ F(ωθ1), sample ω� from π

η1
� —where � = �(ωθ1) is the subgraph induced

by F(ωθ1) and η1 is the boundary condition on ∂F (ωθ1) induced by θ1 and the configuration
of ωθ1 on E(RINT) \ E(F(ωθ1))—and make ωθ1(F (ωθ1)) = ωθX(F (ωθ1)) = ωθY (F (ωθ1)) =
ω�.

Let P1 be the resulting distribution of (ωθX,ωθY ,ωθ1). After step (i), P1 has the desired
marginals. Moreover, we claim that replacing the configuration in F(ωθ1) with ω� in step
(ii) has no effect on the distribution, provided AINT ⊆ F(ωθ1). For this, we show that the
three boundary conditions η1, ηX , ηY induced on ∂F (ωθ1) by the configurations of ωθX , ωθY ,
ωθ1 on E(RINT) \ E(F(ωθ1)), respectively, and the corresponding boundary conditions θX ,
θY , θ1 are all the same.

First, observe that the boundary condition on ∂SAINT is, in all three cases, free by assump-
tion. Also, from the definition of F(ωθ1) it follows that every edge of E(RINT) \ E(F(ωθ1))

incident to ∂F (ωθ1) is closed in ωθ1 ; hence the same holds for ωθX and ωθY . The remain-
ing portion of ∂F (ωθ1) is precisely the set of vertices (∂AINT ∩ ∂R) \ ∂SR. To show that
η1, ηX,ηY also agree on (∂AINT ∩ ∂R) \ ∂SR, we use the fact that top-left and top-right
corners of AINT correspond to the endpoints of the disconnecting interval [[c
, d
]]. Indeed,
for the boundary conditions η1, ηX,ηY to disagree on (∂AINT ∩ ∂R) \ ∂SR it must be the
case that there are at least two distinct connected components of ζ = (ξ,ωRc ) connecting
(∂AINT ∩ ∂R) \ ∂SR and ∂R \ ∂AINT. Since (c
, l), (d
, l) /∈ ∂‖R and ξ is free on ∂SR,
this would require at least two distinct connected components of ξ connecting vertices in
[[c
, d
]] × {l} to vertices in [[c
, d
]]c × {l}. However, when [[c
, d
]] is a disconnecting in-
terval of free-type, there are no such connected components, and when it is disconnecting of
wired-type, the planarity of realizable boundary conditions implies that there can be at most
one such connected component, which is exactly the component of ξ containing both (c
, l)

and (d
, l).
Altogether, these together imply that when AINT ⊆ F(ωθ1), the three boundary conditions

η1, ηX,ηY induced on ∂F (ωθ1) are the same. The domain Markov property of random-cluster
measures (see, e.g., [21]) then guarantees that replacing the configuration in F(ωθ1) with ω�

had no effect on the distributions.
Finally, note that if ωθ1 ∈ �, then the vertices in the boundary components of L, that is,⋃
v∈L C(v,ωθ1), will be confined to QW ∪QE, in which case AINT ⊆ F(ωθ1). This establishes

parts 1 and 2, and part 3 follows directly from the following claim, which will conclude the
proof. �

CLAIM 4.16. Let q > 1 and p < pc(q). There exists ρ = ρ(p, q) > 0 such that
πθ1(�) ≥ ρ.

PROOF. Let �NS
W (resp., �NS

E ) be the set of configurations on RINT such that there is
dual-path from ∂NQW to ∂SQW (resp., from ∂NQE to ∂SQE) in E(QW) ∪ ∂E(QW) (resp.,
E(QE) ∪ ∂E(QE)). Also, let �WE

W (resp., �WE
E ) be the set of configurations on RINT such that

there is dual-path in E(QW) ∪ ∂E(QW) (resp., in E(QE) ∪ ∂E(QE)) between the left-most
edge in ∂NQW (resp., the right-most edge in ∂NQE) and the top-most edge of ∂E(QW) (resp.,
∂E(QE)); see Figure 4(c). Note that �NS

W ∩ �WE
W ∩ �NS

E ∩ �WE
E ⊂ �.
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The width of QW is m = C
 log l. Hence, the EDC property (2) implies that when C
 is
large enough there exists a constant ρ0 = ρ0(p, q) > 0 such that πθ1(�NS

W ) ≥ ρ0 and similarly
for �NS

E . The EDC property (2) also implies that πθ1(�WE
W ) ≥ ρ1 and πθ1(�WE

E ) ≥ ρ1, for a
suitable ρ1 = ρ1(p, q) > 0. We justify this as follows. By the EDC property (2), there exists
some constant D such that with probability �(1), no pair of vertices whose distance is at
least D, one of which is in ∂NQW \ ∂WQW and the other in ∂EQW ∪ ∂SQW ∪ ∂EQW, will
be connected in QW. At the same time, with probability �(1), we can force O(D) edges
bordering those pairs of vertices that are distance less than D to be closed so that no pair of
vertices that are closer than D are connected in QW either. The analogous reasoning holds
for �WE

E and QE. Since each of the events �NS
W ,�WE

W ,�NS
E ,�WE

E are decreasing events, by the
FKG inequality (see, e.g., [21]) we get

πθ1(�) ≥ πθ1
(
�NS

W ∩ �WE
W ∩ �NS

E ∩ �WE
E

)
≥ πθ1

(
�NS

W

)
πθ1

(
�WE

W

)
πθ1

(
�NS

E

)
πθ1

(
�WE

E

) ≥ ρ2
0ρ2

1 ,

and thus we can take ρ = ρ2
0ρ2

1 to have the desired estimate. �

PROOF OF LEMMA 4.15. The proof of Lemma 4.14 carries to Lemma 4.15 with certain
natural modifications we describe next. As before, we let L = ∂WQW ∪∂NQW ∪∂EQE ∪∂NQE

and let (L∗,E(L∗)) be the dual-graph induced by the set of dual-edges intersecting E(L) in
(Z2)∗; its vertex set consists of exactly 2E(L) − 1 vertices, and we refer to those outside
of RINT as ∂EXTL

∗. Similarly, let (R∗
INT,E(R∗

INT)) and (A∗
INT,E(A∗

INT)) be the dual-graphs
induced by the dual-edges intersecting E(RINT) and E(AINT) in (Z2)∗, respectively.

For a FK configuration ω on E(RINT), we define a dual version of F(ω) as

F ∗(ω) :=R∗
INT

∖ ⋃
v∗∈∂EXTL∗

C∗(
v∗,ω

)
,

where C∗(v∗,ω) is the dual-vertex set of the connected component of v∗ in the dual-
configuration ω∗ (ignoring the boundary connections).

Using monotone couplings for πθ0 and πθX , and for πθ0 and πθY , we can define P0 anal-
ogously to P1 with the configuration on E(F ∗(ωθ0)) being resampled whenever A∗

INT ⊆
F ∗(ωθ0). Observe that updating the dual configuration on E(F ∗(ωθ0)) is equivalent to updat-
ing the primal edges intersecting E(F ∗(ωθ0)). The fact that resampling the configuration in
E(F ∗(ωθ0)) has no effect on the distribution when A∗

INT ⊆ F ∗(ωθ0) follows in similar fashion
to the proof of Lemma 4.14. Indeed, from the definition of F ∗(ωθ0), when A∗

INT ⊆ F ∗(ωθ0)

there is a primal connection between (c
, l) and ∂SQW in E(QW) ∪ ∂E(QW) together with
a primal connection between (d
, l) and ∂SQE in E(QE) ∪ ∂E(QE), so that A∗

INT ⊆ F ∗(ωθ0)

implies the event �∗. Together with the fact that [[c
, d
]] is a disconnecting interval and the
assumptions that ξ is free on ∂SAINT and (c
, l), (d
, l) /∈ ∂‖R, this ensures that the three
induced boundary conditions on E(F ∗(ωθ0)) coincide.

Finally, part 3 of the lemma follows by an analogous argument to that in Claim 4.16, only
replacing the EDC property by the matching exponential decay of dual-connectivities when
p > pc(q). �

4.7. Proof of Theorem 4.1. In this section, we put together the results from Sections 4.3–
4.6 to prove Theorem 4.1. We first remind the reader of the following standard inequality
concerning the spectral gaps of the FK and block dynamics.

THEOREM 4.17 ([27], Proposition 3.4). Consider the FK-dynamics on a group of rectan-
gles R with boundary condition ζ . Let gap(Rζ ) and gap(Rζ ;B), respectively, be the spectral
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gaps of the FK-dynamics on R and of the block dynamics with blocks B = {B1, . . . ,Bk} such
that Bi ⊂R and

⋃k
i=1 E(Bi ) = E(R). For every p, q , there exists γ = γ (p, q) ∈ (0,1) such

that

gap
(
Rζ ) ≥ γ ·

(
max

e∈E(R)
#

{
i : E(Bi ) � e

})−1 · gap
(
Rζ ;B) · min

i=1,...,k
η∈�(Bc

i )

gap
(
B(ζ,η)

i

)
,

where �(Bc
i ) denotes the set of FK configurations on E(R) \ E(Bi ).

The proposition in [27] is written in the spin system setting, but the proof follows mutatis
mutandis for the random-cluster model and its proof is thus omitted. Also, we note that this
theorem holds in more generality for arbitrary graphs with arbitrary boundary conditions, but
for clarity we choose to state it here for groups of rectangles.

The final ingredient is the following spectral gap bound for the base case in our recursive
proof.

LEMMA 4.18. Consider a group of rectangles R0 ⊂ �n,l with W(R0) ≤ 100m. For ev-
ery q > 1 and p �= pc(q), there exists κ = κ(p, q) > 0 such that for every boundary condition
ζ on R0,

gap
(
Rζ

0

) ≥ 1

l(log l)2 · qκl
.

PROOF. Note that |∂R0| = O(m + l). Hence, we can first modify the boundary condi-
tions to be all free on all of ∂R0, incurring a cost of a qO(l) factor in the spectral gap by
Lemma 2.3; recall that m = O(log l). Then we can use the fast mixing result of [4], for in-
stance, to bound the mixing time on R0 with free boundary condition by O(l(log l)2). This
translates into a lower bound for the spectral gap and the result follows. �

PROOF OF THEOREM 4.1. Fix q > 1, p �= pc(q) and �n,l with a realizable boundary
condition ξ ′ that is free on ∂E�n,l ∪ ∂S�n,l ∪ ∂W�n,l . By Lemma 2.3, we may modify ξ ′ to
a boundary condition ξ that is also free on all vertices a distance at most m = C
 log l from
∂E�n,l ∪∂W�n,l at a cost of an exponential in m factor in the mixing time of the FK-dynamics.
Let ξ be the resulting realizable boundary condition.

We wish to prove, by induction, that for every 100m ≤ s ≤ n, every group of rectangles
Rs ⊂ �n,l that is compatible with ξ and has W(Rs) = s satisfies

gap
(
R

(ξ,ωRc
s
)

s

) ≥ 1

l(log l)2qκl · blog s
(16)

for some b = b(p, q) > 0 to be chosen, uniformly over all configurations ωRc
s

on Ec(Rs).
Equation (16) concludes the proof since �n,l is a group of rectangles with W(�n,l) = n and
is compatible with ξ .

The base case of this induction was shown in Lemma 4.18. Now suppose inductively that
this holds for all 1 ≤ k ≤ s − 1 for some s ≤ n; we show that it also holds for s. Fix any Rs

that is compatible with ξ , and any configuration ωRc
s
. Then, if we let RINT = RINT(Rs) and

REXT = REXT(Rs) be the blocks given by Definition 4.10 and Bs the block-dynamics with
respect to these blocks, by Theorem 4.17

gap
(
R

(ξ,ωRc
s
)

s

) ≥ γ

2
· gap

(
R

(ξ,ωRc
s
)

s ;Bs

) · min
i∈{INT,EXT} min

ωRc
i

gap
(
R

(ξ,ωRc
i
)

i

)

≥ γ

2K
· min
i∈{INT,EXT} min

ωRc
i

gap
(
R

(ξ,ωRc
i
)

i

)
,
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FIG. 5. (a) The subsets CNE, CNW, CSE, and CSW. (b) The subsets RN, RE, RW and RS. (c) B(e, r) for two
edges e of �n.

where the second inequality follows from Lemma 4.13. By Proposition 4.11, max{W(RINT),

W(REXT)} ≤ 4
5s, and we can apply the inductive hypothesis to bound the second term

on the right-hand side above. Combined with Lemma 4.18, we see that the choice of

b = (2γ −1K)
1

log(5/4) ensures that (16) holds also for Rs . (Note that 2γ −1K ≥ 1.)
This establishes the result for the case when the boundary condition is free on ∂E�n,l ∪

∂S�n,l ∪ ∂W�n,l . As noted earlier (see Remark 2), this implies by duality the same bound for
the class of realizable boundary conditions ξ that are wired on ∂E�n,l ∪ ∂S�n,l ∪ ∂W�n,l for
all p �= pc(q). �

5. Polynomial mixing time for realizable boundary conditions. In this section, we
prove Theorem 1.1. This theorem is proved for p < pc(q) using the technology introduced
in Section 3; namely, we construct a collection of subsets B for which we can establish LM
and MSM; see Definitions 3.1–3.2. To establish LM, we crucially use Theorem 4.1. The
results for p > pc(q) follow from the self-duality of the model and of realizable boundary
conditions, as explained in Section 2.1.

For general realizable boundary conditions, proving LM for a collection of subsets B for
which MSM holds is the main challenge. This is because, for MSM to hold for a collec-
tion B for all realizable boundary conditions, a subset in B needs to contain �(n) edges.
In particular, some element of B must include most (or all) edges near ∂�n, as otherwise it
is straightforward to construct examples of realizable boundary conditions for which MSM
does not hold. Thus, a trivial (exponential in the perimeter) upper bound for the mixing time
on those subsets with �(n) edges would be unhelpful and we use Theorem 4.1.

We now define the collection of blocks for which we can establish both LM and MSM.
Let r ∈N and let CNE,CNW,CSE,CSW ⊂ �n be the four square boxes of side length 5r with a
corner that coincides with a corner of �n; see Figure 5(a). Let RN ⊂ �n be the (n− 6r)× 2r

rectangle at distance 3r from both ∂W�n and ∂E�n whose top boundary is contained in ∂N�n

and let RE,RW,RS be defined analogously; see Figure 5(b). Let R = RN ∪ RE ∪ RW ∪ RS.
Now, for e ∈ E(�n), let B(e, r) ⊂ �n be the set of vertices in the minimal square box around
e such that d({e},�n \B(e, r)) ≥ r . Note that if d({e}, ∂�n) > r , then B(e, r) is just a square
box of side length 2r + 1 centered at e; otherwise B(e, r) intersects ∂�n; see Figure 5(c).
Finally, let

(17) Br = {CNE,CNW,CSE,CSW,R} ∪ {
B(e, r) : e ∈ E(�n), d

({e}, ∂�n

)
> r

}
.

We claim that LM holds for Br with r = �(logn) and T = O(nC) for some constant
C > 0.

THEOREM 5.1. Let q ≥ 1, p < pc(q) and r = c0 logn with c0 > 0 independent of n.
There exists a constant C > 0 such that LM holds for every realizable boundary condition ξ

and Br with T = O(nC).
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The subsets B(e, r) in Br and the corner boxes CNE, CNW, CSE and CSW are small
enough that crude bounds for their mixing times are sufficient. As mentioned earlier, the
main challenge for proving local mixing for Br is to derive a mixing time bound for
R = RN ∪ RE ∪ RW ∪ RS as it intersects the boundary of �n and contains �(n) vertices.
To establish such a bound, we rely on Theorem 4.1. In particular, we relate the mixing time
of the FK-dynamics on R to that of the FK-dynamics on a single thin rectangle by concate-
nating the four rectangles constituting R, one after another, such that the union of their outer
boundaries make up the northern boundary of the new rectangle.

The final ingredient of the proof is establishing MSM for the collection Br . We show that
MSM holds for Br with r = �(logn) for all realizable boundary conditions ξ where the
vertices in ∂�n at distance 5r from the corners of �n are free in ξ . This is sufficient since
any realizable boundary condition can be turned into a realizable boundary condition with
this property by simply removing all connections in ξ involving vertices near the corners of
�n; this modification can change the mixing time of the FK-dynamics by a factor of at most
exp(O(r)); see Lemma 2.3. Theorem 1.1 then follows from Theorems 5.1, 5.2 and 3.3.

THEOREM 5.2. Let q ≥ 1, p < pc(q) and r = c0 logn with c0 > 0 independent of n. Let
ξ be a realizable boundary condition with the property that every vertex v ∈ ∂�n at distance
at most 5r from a corner of �n is free in ξ . Then, for all sufficiently large c0 > 0, MSM holds
for ξ and Br with δ < 1/(12|E(�n)|).

We are now ready to prove Theorem 1.1 using the above.

PROOF OF THEOREM 1.1. As mentioned earlier, by duality of the dynamics and self-
duality of the class of realizable boundary conditions, it suffices to prove the theorem for
p < pc(q). Let P be the set of realizable boundary conditions of �n = (�n,E(�n)). For
η ∈ P , let (η1, η2, . . . , ηk) denote the partition of ∂�n corresponding to η, and let η(�) be the
boundary condition obtained as follows: for each v ∈ ∂�n, if v ∈ ηi and v is at distance at
most � from a corner of �n, remove v from ηi and add it as a singleton to the partition. Let
P� be the set of all boundary conditions obtained in this manner.

Consider �n with arbitrary realizable boundary conditions ξ ∈ P . By Lemma 2.3, we see
that there exists C > 0 such that for every ξ ∈ P , we have

tMIX

(
�ξ

n

) ≤ Cq8C� · n2 · tMIX

(
�ξ(�)

n

)
.

It therefore suffices to prove the mixing time estimate uniformly over all modified boundary
conditions η ∈ P� for � = 5r and r = c0(logn) with c0 taken to be sufficiently large, as q8C�

would only be polynomial in n. By Theorem 5.2, for c0 large enough, uniformly over all such
boundary conditions we have moderate spatial mixing with respect to Br and η ∈ P� with
δ < 1/(12|E(�n)|). Theorem 5.1 implies that LM holds for Br and η ∈ P� with T = O(nc)

where c > 0 constant. The result then follows from Theorem 3.3. �

REMARK 7. We note that Theorem 1.1 also holds for the FK-dynamics on rectangles
�n,l ⊂ Z2 with � ≤ n, provided these rectangles are not too thin. For example, when l =
�((logn)2), our proofs would yield that the mixing time of the FK-dynamics is polynomial
in n.

5.1. Local mixing for realizable boundary conditions. In this subsection, we prove The-
orem 5.1. As mentioned earlier, this theorem may be viewed as a corollary of Theorem 4.1,
which bounds the mixing time of the FK-dynamics on thin rectangles.
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PROOF OF THEOREM 5.1. Let r = c0 logn. We wish to show that each of the subsets
in Br has mixing time O(nc) under the boundary conditions (1, ξ) and (0, ξ). We begin
by bounding the mixing time on the square boxes CNE, CNW, CSE, CSW and B(e, r) of Br .
Since these have side length O(logn), a crude estimate on the mixing time is sufficient.
For instance, by Lemma 2.3, at a cost of exp(O(r)) = nO(1) factor, we can compare the
mixing time in these boxes with boundary condition either (1, ξ) or (0, ξ) to the mixing time
on equally sized boxes with free boundary conditions. In this setting, an upper bound of
O((logn)2 log logn) is known [4], and thus we obtain an nO(1) bound for their mixing times.

It remains to bound the mixing time of the FK-dynamics on the set R = RN ∪RE ∪RW ∪RS.
For this, we use Theorem 4.1. We argue that the mixing time of the FK-dynamics on R is
roughly equal to that of the FK-dynamics on a [4(n − 6r) − 3] × 2r rectangle Q with a
suitably chosen boundary condition. We proceed to construct the rectangle Q and a boundary
condition ξ ′ whose vertices, edges and wirings are identified with those of R and (1, ξ). The
case of R and (0, ξ) is handled later in similar fashion.

We introduce some notation first. For a rectangle S, let Sα denote the rectangle that results
from a clockwise rotation of S by an angle of amplitude α. Also, if S1, . . . , Sk are rectangles
of the same height, let [S1, . . . , Sk] denote the rectangle obtained by identifying the vertices in
∂ESi with those in ∂WSi+1 for all i = 1, . . . , k − 1. When identifying the vertices, the double
edges are removed. We take

Q = [
R

π/2
W ,RN,R

−π/2
E ,R−π

S

]
.

Observe that every vertex of Q, except those where the boundary overlaps occur, correspond
to exactly one vertex in R; vertices in the overlaps correspond to exactly two vertices in R.
Conversely, every vertex in R corresponds to exactly one vertex of Q. The edges of Q and
R are identified using this correspondence between the vertices. Observe also that ∂NQ =
∂R ∩ ∂�n. We construct the boundary condition ξ ′ of Q as follows. If u, v ∈ ∂R ∩ ∂�n are
wired in ξ , the corresponding vertices are also wired in ξ ′. The boundary condition ξ ′ is also
wired along ∂WQ ∪ ∂NQ ∪ ∂EQ.

CLAIM 5.3. The boundary condition ξ ′ of Q is realizable. In particular, ξ ′ can be real-
ized by a FK configuration in the half-plane of Z2 containing only vertices north of ∂NQ, and
a wiring of ∂EQ ∪ ∂SQ ∪ ∂WQ.

Finally, to completely capture the effect of the boundary condition (1, ξ) on R, each of the
three columns in Q that corresponds to overlaps of columns from R, are externally wired.

Now, by Theorem 4.1 and Lemma 2.3, we have

gap
(
Qξ ′) = n−O(1).

We claim next that the FK-dynamics on R with boundary condition (1, ξ) has roughly the
same gap as the FK-dynamics on Q with boundary condition ξ ′. To see this, we add a double
edge to each edge of Q that corresponds to two edges in R. With this modification, there is
now a one-to-one correspondence between the FK configurations in R and Q. Also, adding
these edges has almost no effect on the mixing time of the FK-dynamics in Q, as their end-
points are wired, and so they only need to be updated once to mix. Moreover, by construction,
the boundary condition ξ ′ for Q together with the wiring of the overlapping columns in Q

encode exactly the same connectivities as the boundary condition (1, ξ) for R. Hence, for
every pair of FK configurations on Q, the FK-dynamics have the same transition probabil-
ity as FK-dynamics on R between the corresponding configurations. Consequently, we can
conclude that

gap
(
R(1,ξ)) = n−O(1).
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Finally, for the case of the FK-dynamics on R with boundary condition (0, ξ), we can
simply wire ∂WRN to ∂NRW, ∂SRW to ∂WRS, ∂ERS to ∂SRE and ∂NRE to ∂ERN, which only
incur a penalty of nO(1) by Lemma 2.3 and proceed as in the previous case. �

PROOF OF CLAIM 5.3. First, note that ∂NQ corresponds to ∂R ∩ ∂�n. Let ω be a FK
configuration on Z2 \ �n that realizes ξ . A path from u ∈ ∂R ∩ ∂�n to v ∈ ∂R ∩ ∂�n in
ω splits ∂R ∩ ∂�n into two parts R1 and R2, one containing all the vertices from u to v in
∂R∩∂�n clockwise and the other all the vertices from u to v in ∂R∩∂�n counterclockwise.
The planarity of Z2 implies that any other boundary component will be either completely
contained in R1 or R2. From this property, it follows that if v1, v2 ∈ ∂NQ are wired in ξ ′, then
[[v1, v2]] is a disconnecting interval. This implies that the connectivities of ξ ′ in ∂NQ can
be realized by a configuration on the half-plane of Z2 that contains all the vertices north of
∂NQ. For example, every component C = {c0, . . . , ck} of ξ , with ci to the left of ci+1, can be
realized by the gadget consisting k paths of length hC starting at c0, . . . , ck and going north,
together with one path parallel to ∂NQ that joins the endpoints of all of these path. Since
[[ci, ci+1]] is a disconnecting interval for all i and C, we can choose hC for each C so that
the resulting configuration is a valid configuration in the half-plane. �

5.2. Moderate spatial mixing for realizable boundary conditions. In this section, we
prove Theorem 5.2. We reduce the moderate spatial mixing condition (6) to bounding the
probability of certain connectivities in a FK configuration. Specifically, if e ∈ S ⊂ �n, the
configuration on Ec(S) affects the state of e when there are paths from e to the boundary of
S; the probability of such paths is maximized when we assume an all wired configuration on
Ec(S). Recall that for S ⊂ �n, we let Sc = �n \ S, and we use Ec(S) = E(�n) \ E(S).

LEMMA 5.4. Consider the FK model on �n with arbitrary boundary condition ξ on
∂�n. For any e ∈ E(�n), any S ⊂ �n such that e ∈ E(S), and any pair of configurations ω1,
ω2 on Ec(S): ∣∣πξ

�n

(
e = 1 | Ec(S) = ω1

) − π
ξ
�n

(
e = 1 | Ec(S) = ω2

)∣∣
≤ π

ξ
�n

({e} ξ←→ ∂S \ ∂�n | Ec(S) = 1
)
,

where {e} ξ←→ ∂S denotes the event that there is a path from e to ∂S taking into account the
connections induced by ξ .

In the proof of Theorem 5.2, we use this lemma; its proof via machinery from [1] will be
straightforward.

PROOF OF THEOREM 5.2. We need to show that as long as c0 is large enough, for every
e ∈ E(�n) there exists Be ∈ Br such that (6) holds for some δ < 1/(12|E(�n)|). For each
e ∈ E(�n), the subset Be is chosen as follows:

1. If d({e}, ∂�n) > r , then Be = B(e, r);
2. Otherwise, if e ∈ R and d({e}, ∂R \ ∂�) ≥ r , then Be = R;
3. Otherwise, e ∈ Ci for some i ∈ {NE, NW, SW, SE}, and we take Be = Ci .

By Lemma 5.4, for every e ∈ E(�n),∣∣πξ
�n

(
e = 1 | Ec(Be) = 1

) − π
ξ
�n

(
e = 1 | Ec(Be) = 1

)∣∣
≤ π

ξ
�n

(
e

ξ←→ ∂Be \ ∂�n | Ec(Be) = 1
)
.
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In all three cases above, by construction d({e}, ∂Be \ ∂�n) ≥ r . This together with the fact
that all vertices of ∂�n within distance 5r from the corners have no connections in ξ , implies
that for e to be connected to ∂Be \ ∂�n a path of open edges reaching a distance at least r

is required in the configuration on Be. The EDC property (see (2)) implies that for c0 large
enough

π
ξ
�n

({e} η←→ ∂Be | Ec(Be) = 1
) ≤ 1

12|E(�n)| ,

and the result follows. �

We conclude this section with the proof of Lemma 5.4.

PROOF OF LEMMA 5.4. Let (1, ξ) be the boundary condition induced on S by ξ and the
event {Ec(S) = 1}. Similarly, let θ1 (resp., θ2) be the boundary condition induced on S by
configurations ω1 (resp., ω2) on Ec(S) and ξ . For ease of notation, set πθ1 = π

ξ
�n

(· | Ec(S) =
ω1), πθ2 = π

ξ
�n

(· | Ec(S) = ω2) and π(1,ξ) = π
ξ
�n

(· | Ec(S) = 1). For a FK configuration ω

on S, let

�(1,ξ)(ω) := S
∖ ⋃

v∈∂S\∂�n

C(v,ω),

where C(v,ω) is the set of vertices in the connected component of v in ω, taking into ac-
count the connectivities induced by (1, ξ). In words, �(1,ξ)(ω) is the set of vertices of S not
connected to ∂S \ ∂�n in ω using possibly the boundary connections.

We claim that there exists a coupling P of the distributions πθ1 , πθ2 and π(1,ξ) such that
P(ω1,ω2,ω) > 0 only if ω1 ≤ ω and ω2 ≤ ω on E(S) and ω1, ω2 agree on all edges with
both endpoints in �(1,ξ)(ω). Given this coupling P, we have∣∣πξ

�n

(
e = 1 | Ec(S) = ω1

) − π
ξ
�n

(
e = 1 | Ec(S) = ω2

)∣∣
≤ P

(
ω1(e) �= ω2(e)

)
≤ P

(
e /∈ E

(
�(1,ξ)(ω)

))
= π

ξ
�n

(
e

ξ←→ ∂S \ ∂�n | Ec(S) = 1
)
,

as claimed. The construction of the coupling P is standard and is thus ommitted; see, for
example, [1, 4] and the proof Lemma 4.14 for similar constructions. �

6. Near optimal mixing for typical boundary conditions. In this section, we provide
the proof of Theorem 1.4, where we establish a sharper Õ(n2) mixing time upper bound for
the FK-dynamics on �n = (�n,E(�n)) for the class of boundary conditions we call typical.

DEFINITION 6.1. Let ω be a random-cluster configuration on Z2, and let ξω be the
boundary condition on ∂�n induced by the edges of ω in E(Z2) \ E(�n). Suppose ω is
sampled from πZ2,p,q . A set C of realizable boundary conditions for �n is called typical
(with respect to (p, q)) if ξω ∈ C with probability 1 − o(1).

Recall from Definition 1.2 the classes of boundary conditions Cα and C

α , consisting of

realizable boundary conditions whose distinct boundary components consist only of vertices
at most distance α logn apart in ∂�n. The following is a straightforward consequence of the
EDC property (2) when p < pc(q).
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LEMMA 6.2. For every q ≥ 1 and p < pc(q), the class of boundary conditions Cα is
typical with respect to (p, q) for sufficiently large α > 0. Similarly, for every q ≥ 1 and
p > pc(q), the class C


α is typical with respect to (p, q) for sufficiently large α > 0.

PROOF. By planar duality (namely the duality of the sets of boundary conditions Cα and
C


α , it suffices to prove the case p < pc(q)). For any u, v ∈ Z2, by the EDC property (2),
we have that for q ≥ 1 and p < pc(q) there exists c = c(p, q) > 0 such that πZ2(u ↔ v) ≤
e−cd(u,v). Let u, v ∈ ∂�n and suppose d(u, v) ≥ α logn. Then there exists some C(p,q) > 0
such that for sufficiently large α > 0,

πZ2\�n
(u

Z2\�n←→ v) = πZ2(u
Z2\�n←→ v) ≤ πZ2(u ↔ v) ≤ Ce−cα logn ≤ 1

n3 ,

where recall that u
Z2\�n←→ v denotes the event that there exists a path from u to v in Z2 \ �n.

A union bound over all pairs of vertices in ∂�n implies that if ω is sampled from πZ2 and ξω

is the resulting boundary condition on ∂�n, then ξω ∈ Cα with probability 1 − o(1), and thus
Cα is typical. �

REMARK 8. As mentioned in the Introduction, one may also be interested in the follow-
ing notion of typicality, which sometimes comes up in recursive mixing time upper bounds.
Let q ≥ 1 and p < pc(q) (resp., p > pc(q)) and consider a random-cluster sample from
π

ζ
R2n,p,q , where R2n is the concentric box of side length 2n containing �n with arbitrary

boundary condition ζ . One could easily show that the boundary condition induced by the
configuration on R2n \ �n is in Cα (resp., C


α) with probability 1 − o(1). This follows by
coupling this measure to the infinite-volume measure using the fact that Cα is a decreas-
ing event, and finding a dual circuit in the annulus R2n \ �n (which exists with probability
1 − O(e−�(n))).

We now show that when p < pc(q), the mixing time on �n with boundary condition
ξ ∈ Cα satisfies

tMIX

(
�ξ

n

) = O
(
n2(logn)C

)
,

where C = C(p,q,α) > 0 is a constant independent of n and ξ . In particular, we prove
Theorem 1.4 from the introduction in the regime p < pc(q) and ξ ∈ Cα and this translates to
a matching bound at p > pc(q) and ξ ∈ C


α by duality. To prove this theorem, we again use
the general framework from Theorem 3.3. Namely, we construct a collection of subsets of �n

for which we can establish MSM and LM; see Definitions 3.1 and 3.2. The fact that ξ ∈ Cα

will allow us to prove MSM with respect to �((logn)2) × �((logn)2) rectangles along the
boundary, and Theorem 1.1 will provide the LM estimate on these rectangles.

Consider the collection Br = {B(e, r) : e ∈ E(�n)}. Recall that for r ≥ 0 and e ∈ E(�n),
we set B(e, r) ⊂ �n to be the set of vertices in the minimal square box around e such that
d({e},�n \ B(e, r)) ≥ r ; see Figure 5(c). We first show that MSM holds for Br and ξ ∈ Cα

when r = �((logn)2) and δ < n−3.

LEMMA 6.3. Let q ≥ 1, p < pc(q), α > 0, η ∈ Cα , r = c0(logn)2 and B = {B(e, r) : e ∈
E(�n)}. For large enough c0 > 0, MSM holds for η, B for some δ < n−3.

For this lemma, it is crucial that r = �((logn)2), as MSM does not hold for typical bound-
ary conditions for Br when, for example, r = �(logn). This is because in a typical configu-
ration ω on Z2 \�n it is likely that there exist pairs of vertices of ∂�n at distance γ logn, for
a suitably small constant γ > 0, that are connected in ω. Thus, for some e ∈ E(�n) close to
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FIG. 6. If r = �((logn)2) and r ′ = �(logn), influence from outside of B(e, r ′) may be easily propagated to e

through long boundary connections in B(e, r ′); but to propagate influence from the exterior of B(e, r), �(logn)

of them would have to be connected in �n.

∂�n, it is possible for the configuration outside of B(e, r) to exert a strong influence on the
state of e when r = γ ′ logn with constant γ ′ > 0, even if γ ′ � γ ; the presence of a constant
number of open edges on (or near) ∂�n would propagate the influence from �n \ B(e, r) to
e. Taking r = �((logn)2) avoids this issue, since, roughly speaking, �(logn) open edges at
specific points in ∂�n would now be required to propagate the influence from �n \ B(e, r)

to e; see Figure 6(b). The proof of Lemma 6.3 is provided in Section 6.1.
The final ingredient in the proof of Theorem 1.4 is a LM estimate for Br with r =

�((logn)2). Such an estimate is readily provided by Theorem 1.1, with mixing time that
is poly-logarithmic in n.

PROOF OF THEOREM 1.4. Let α > 0 be sufficiently large and let η ∈ Cα . By Lemma 6.3,
MSM holds for η and Br with r = �((logn)2) for some δ < n−3. Observe also that every
B(e, r) ∈ Br with boundary condition (1, η) or (0, η) is a rectangle of side–length at most r =
O((logn)2) with a realizable boundary condition. Then by Theorem 1.1 (see also Remark 7),
for every e ∈ E(�n) we have

max
{
tMIX

(
B(e, r)0,η)

, tMIX

(
B(e, r)1,η)} ≤ (logn)C,

for a suitable C > 0, yielding the desired LM estimate. The result then follows from Theo-
rem 3.3. �

6.1. Moderate spatial mixing for Cα . We now prove Lemma 6.3. The proof involves
showing that if ξ ∈ Cα , when p < pc(q), the correlation between edges e, e′ ∈ E(�n) near
the boundary decays exponentially in d(e, e′)/(α logn)—whereas SSM would entail a decay
rate that is exponential in just d(e, e′).

PROOF OF LEMMA 6.3. Fix an edge e ∈ E(�n) and for ease of notation let B =
B(e, r) ⊂ �n and πη = π

η
�n,p,q . Let (1, η) be the boundary condition induced on B by η

and the event {Ec(B) = 1}.
Lemma 5.4 implies that for every pair of configurations ω1, ω2 on Ec(B),

(18)

∣∣πη(
e = 1 | Ec(B) = ω1

) − πη(
e = 1 | Ec(B) = ω2

)∣∣
≤ π(1,η)({e} η←→ ∂B \ ∂�n

)
,

where {e} η←→ ∂B \ ∂�n denotes the event that there is a path from e to ∂B \ ∂�n taking
into account the connections induced by η. Thus, it is sufficient to bound the right-hand side
of (18).

There are three cases corresponding to the location of e in �n. First, if d({e}, ∂�n) > r ,
then B ∩ ∂�n = ∅ and (1, η) is just the wired boundary condition on B . In this case the
right-hand side of (18) is at most n−3 by the EDC property; see (2).
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The second and third cases correspond to whether B intersects one or two sides of ∂�n.
For the second case, assume without loss of generality that B intersects ∂N�n but not ∂W�n

or ∂E�n. That is, d({e}, ∂N�n) ≤ r , but {e} is at distance at least r from ∂W�n and ∂E�n. Let
∂WB , ∂SB , ∂EB be the west, south and east boundaries of B , all of which are wired in ω. By
a union bound,

π(1,η)({e} η←→ ∂B \ ∂�n

) ≤ π(1,η)({e} η←→ ∂WB
) + π(1,η)({e} η←→ ∂EB

)
+ π(1,η)({e} η←→ ∂SB

)
,

where {e} η←→ ∂WB denotes the event that there is a path from e to ∂WB in B , taking into
account those connections inherited from η (and ignoring the connections induced by the

wired configuration on Ec(B)). Define {e} η←→ ∂EB and {e} η←→ ∂SB similarly.

The event {e} η←→ ∂SB implies that there exists a path of length at least r , either from {e}
or from ∂�n to ∂SB . Therefore, the EDC property ((2)) implies that for large enough n,

π(1,η)({e} η←→ ∂SB
) ≤ 1

3n3 .

We bound next π(1,η)({e} η←→ ∂WB). Let η0, . . . , ηd be the boundary components of η.
Since η is realizable, the planarity of Z2 implies that for every i, j ∈ {0, . . . , d} there are
only three possibilities: L(ηi) ∩ L(ηj ) = ∅, L(ηi) ⊂ L(ηj ) or L(ηj ) ⊂ L(ηi). (Recall that
L(ηi) ⊂ ∂�n is the path of minimum length that contains all the vertices in ηi .) Call ηi a
maximal boundary component if �j ∈ {0, . . . , d} such that L(ηi) ⊂ L(ηj ). The set of all
maximal boundary components defines a partition for ∂�n. Since also η ∈ Cα , we deduce
that there exists a sequence of edges e0 = {u0, v0}, e1, . . . , ek = {uk, vk} in B ∩ ∂�n such
that 1) (γ + α) logn ≥ d({ei}, {ei+1}) ≥ γ logn for all i = 0, . . . , k − 1, where γ is a large
constant we choose later and k ≥ c0

2(γ+α)
logn, and 2) the set Si = [[vi, ui+1]] ⊂ B ∩ ∂�n is a

disconnecting interval.
Let Ei be the event that Si is connected to Si+1 by a path of open edges in B . Let et be the

closest edge in the sequence e0, e1, . . . , ek to e and let Êt = ⋂t
i=0 Ei . Since d({e}, ∂WB) ≥ r ,

we also have t ≥ c0
8(γ+α)

logn. Then

(19) π(1,η)({e} η←→ ∂WB
) ≤ π(1,η)({e} η←→ ∂WB | Êc

t

) + π(1,η)(Êt ).

If the event Êc
t occurs, then there exists i < t such that Si is not connected to Si+1 in B . This

implies that there is a dual-path of length at least γ logn separating Si from Si+1. Conse-
quently, a path from e to ∂WB would require two vertices at distance at least γ logn to be
connected by a path of open edges in B . By the EDC property and a union bound, this has
probability at most 1/(9n3) for large enough γ . Thus,

(20) π(1,η)({e} η←→ ∂WB | Êc
t

) ≤ 1

9n3 .

We bound next π(1,η)(Êt ). Let {ui, vi} denote the endpoints of the edge ei , where ui is to
the left of vi for all i. For 1 ≤ i ≤ t , consider the rectangle Qi ⊂ B with corners at vi−1, ui+3
and the other two corners on ∂SB . Then

π(1,η)(Êt ) = π(1,η)(E0, . . . ,Et ) ≤ π(1,η)(E1,E5,E9, . . . ,E�),(21)

where t −4 < � ≤ t . Now, let E ′
i be the event that Si is connected to Si+1 by a path completely

contained in Qi . We have

π(1,η)(E1,E5,E9, . . . ,E�)
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= π(1,η)(E ′
1,E5,E9, . . . ,E�

) + π(1,η)(E1 ∩ (
E ′

1
)c

,E5,E9, . . . ,E�

)
≤ π(1,η)(E ′

1,E5,E9, . . . ,E�

) + 1

n4 ,

where the last inequality follows from the fact that for the event E1 ∩ (E ′
1)

c to occur there
have to be two vertices at distance at least γ logn connected by a path in B; by the EDC
property this only occurs with probability at most n−4 for large γ . Iterating this procedure
for E5,E9, . . . , we get

π(1,η)(E1,E5,E9, . . . ,E�) ≤ π(1,η)(E ′
1,E ′

5,E ′
9, . . . ,E ′

�

) + �

n4 .(22)

Let Q = ⋃(�−1)/4
i=0 Q4i+1. Monotonicity implies that

π(1,η)(E ′
1,E ′

5,E ′
9, . . . ,E ′

�

) ≤ π1(
E ′

1,E ′
5,E ′

9, . . . ,E ′
� | Ec(Q) = 1

)

=
�−1

4∏
i=0

π1(
E ′

4i+1 | Ec(Q) = 1
)
,

where for the last equality we use that the events E ′
1,E ′

5, . . . ,E ′
� are independent under the

wired boundary condition when also conditioning on {Ec(Q) = 1}. We claim that there exists
a constant ρ ∈ (0,1) (independent of n) such that for all i = 0, . . . , �−1

4 ,

(23) π1(
E ′

4i+1 | Ec(Q) = 1
) ≤ 1 − ρ.

To see this, let j = 4i + 1 and note that for for large enough D > 0, by the EDC property
and a union bound imply that there is no connection between any pair of vertices (u, v) with
u ∈ Sj and v ∈ Sj+1 and d(u, v) ≥ D with probability �(1). At the same time, by forcing
an adjacent O(D) edges to be closed at a cost of e−O(D), we see that with �(1) probability,
in fact no other pairs (u, v) with d(u, v) ≤ D are connected either. Thus, (23) holds for a
suitable ρ ∈ (0,1) and so

(24) π(1,η)(E ′
1,E ′

5,E ′
9, . . . ,E ′

�

) ≤ (1 − ρ)
�+3

4 ≤ (1 − ρ)
t−1

4 ≤ 1

9n3 ,

where the last inequality holds for sufficiently large c0 since t ≥ c0
8(γ+α)

logn.
Putting (24), (22), (20), (21) and (19) together, we get

π(1,η)({e} η←→ ∂WB
) ≤ 2

9n3 + �

n4 ≤ 1

3n3 ,

since � = O(logn). Analogously, we get π(1,η)({e} η←→ ∂EB) ≤ 1
3n3 , and thus

π(1,η)({e} η←→ ∂B
) ≤ 1

n3 .

Finally for the third case, suppose without loss of generality that B intersects ∂N�n and
∂W�n, but not ∂E�n or ∂S�n. A union bound implies that

(25) π(1,η)({e} η←→ ∂B \ ∂�
) ≤ π(1,η)({e} η←→ ∂SB

) + π(1,η)({e} η←→ ∂EB
)
,

and each term in the right-hand side of (25) can bounded in the same way as π(1,ξ)({e} η←→
∂WB) in the second case; thus, the result follows. �
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7. Slow mixing under worst-case boundary conditions. In this section, we show that
there are (nonrealizable) boundary conditions for the graph (�n,E(�n)) for which the FK-
dynamics requires exponentially many steps to converge to stationarity. In particular, we
prove Theorem 1.5 from the Introduction.

Theorem 1.5 is a corollary of a more general theorem we establish. This general theorem
enables the transferring of mixing time lower bounds for the FK-dynamics on arbitrary graphs
to mixing time lower bounds for the FK-dynamics on �n, for suitably chosen boundary con-
ditions. The high level idea is that any graph G with fewer than n

4 edges can be “embedded”
into a subset L of the boundary ∂N�n of �n as a boundary condition we shall denote ξ(G).
When p is sufficiently small, the effect of the configuration on �n \ L becomes negligible,
and so the mixing time of the FK-dynamics on �n with boundary condition ξ(G) is primarily
dictated by its restriction to the embedded graph G.

We show first how to embed any graph G = (VG,EG) into a subset L ⊂ ∂N�n. For m ≤
�n/4�, let

L = L(m) = {[[4i,4i + 1]] : i = 0, . . . ,m − 1
} × {n} ⊂ ∂N�n

with edge set E(L) consisting of all edges in E(�n) connecting vertices in L.

DEFINITION 7.1. Let G = (VG,EG) be a graph with |EG| = m for m ≤ �n/4� and let L

be as above. We say a function φ : L → VG is an embedding of G into (L,E(L)) if for every
{u, v} ∈ EG there exists a unique pair x ∈ φ−1(u) ⊆ L and y ∈ φ−1(v) ⊆ L, where φ−1(u)

and φ−1(v) denotes the preimage sets for u and v, respectively, such that {x, y} ∈ E(�n).

Notice that every graph G on m ≤ �n/4� edges can be embedded into L by identifying
each edge in EG with an edge in E(L).

FACT 7.2. For every graph G = (VG,EG) with m ≤ �n
4� edges, there exists an embed-

ding of G into (L,E(L)).

Now let ξ(G) be the boundary condition on ∂�n defined by the partition:{{v} : v ∈ ∂�n \ L
} ∪ {

φ−1(v) : v ∈ VG

}
.

In words, ξ(G) is the boundary condition that is free everywhere except in the vertices of L

and where all the vertices in L that are mapped by φ to the same vertex of G are wired in
ξ(G). We are now ready to state our main comparison result from which Theorem 1.5 follows
straightforwardly.

THEOREM 7.3. Let G = (VG,EG) be a graph and suppose there exist q > 2 and p =
λ|EG|−α with λ > 0, α > 1/3 such that gap(G) ≤ exp(−�(|VG|)). Then, as long as n ≥
4|EG| ≥ εn for some ε > 0, with the same choice of p and q , we have

gap
(
�ξ(G)

n

) ≤ e−�(|VG|).

PROOF OF THEOREM 1.5. It was established in [19] that for every q > 2 and every
� sufficiently large, there exists an interval (λs(q), λS(q)) such that if p′ = λ′/� with λ′ ∈
(λs(q), λS(q)), then the spectral gap at parameters (p′, q) satisfies

gap(K�) ≤ exp
(−�(�)

)
,

where K� denotes the complete graph on � vertices. Therefore, for a fixed p = λn−α there
exists a choice of � = �(nα) such that at parameters (p, q), gap(K�) ≤ exp(−�(�)). Since
the number of edges in K� is �(n2α), the result follows from Theorem 7.3 and (3). �
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7.1. Main comparison inequality: Proof of Theorem 7.3. We now turn to the proof of
Theorem 7.3. A standard tool for bounding spectral gaps is construction of bottleneck sets
with small conductance; see Section 2.1. It will be easier to do so for the following modified
heat-bath (MHB) dynamics, allowing us to isolate moves on E(L), where we have embedded
G, from those in Ec(L) = E(�n) \ E(L).

DEFINITION 7.4. Given a FK configuration Xt , one step of the MHB chain is given by:

1. Pick e ∈ E(�n) uniformly at random;
2. If both endpoints of e lie in L, then perform a heat-bath update on e, that is, replace the

configuration in e with a sample from π
ξ
�n,p,q(· | Xt(E(�n) \ {e}));

3. Otherwise, replace the configuration in E(�n) \ E(L) with a sample from π
ξ
�n,p,q(· |

Xt(E(L))).

The MHB chain is clearly reversible with respect to π
ξ
�n,p,q .

Let gapMHB(�
ξ
n) denote the spectral gap of the MHB dynamics on �n with boundary

condition ξ and parameters p and q . The following comparison inequality allows us to focus
on finding upper bounds for the spectral gap of the MHB dynamics; its proof is deferred to
Section 7.2.

LEMMA 7.5. For all p ∈ (0,1), q > 0, n ∈N and boundary condition ξ for �n, we have

gap
(
�ξ

n

) ≤ gapMHB

(
�ξ

n

)
.

With this in hand, we are now ready to prove Theorem 7.3.

PROOF OF THEOREM 7.3. Recall from (5) that since, by assumption, the FK-dynamics
on G has gap(G) ≤ exp(−�(|VG|)), there must exist S
 ⊂ �G (the set of FK configurations
on G) with πG(S
) ≤ 1

2 such that

�(S
) = QG(S
, S
c

)

πG(S
)
≤ e−�(|VG|).(26)

Here, QG is the edge measure (4) of the FK-dynamics on G and πG = πG,p,q denotes the
random-cluster measure on G. We will construct from this set S
, a set A
 ⊂ �, such that

�(A
) = QMHB(A
,A
c

)

πξ(G)(A
)
≤ e−�(|VG|) and

�
(
Ac




) = QMHB(A
,A
c

)

πξ(G)(Ac

)

≤ e−�(|VG|),
(27)

where QMHB denotes the edge measure (4) of the MHB dynamics on �
ξ(G)
n and πξ(G) =

π
ξ(G)
�n,p,q . This implies Theorem 7.3 by combining it with (3) and (5).
Let {ξ1, . . . , ξk} be the partition of L induced by ξ(G). For a FK configuration ω on Ec(L),

we say that ξi
ω←→ ξj if there is an open path in ω from a vertex in ξi to a vertex in ξj . Let

Sξ(G)(ω) be the set

Sξ(G)(ω) = {
ξi ∈ ξ(G) : ξi

ω←→ ξj for some j �= i, j ∈ {1, . . . , k}},
that is, those ξi that are connected to some ξj in ω. For M ≥ 0, let

Rξ(G)(M) = {
ω ∈ {0,1}Ec(L) : ∣∣Sξ(G)(ω)

∣∣ ≤ M
}
.
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In words, Rξ(G)(M) is the set of FK configurations on E(�n) \ E(L) that connect at most
M elements of the partition {ξ1, . . . , ξk} of the vertex set L.

Observe that any configuration θ on E(L) corresponds to a configuration on EG. Namely,
if θ({u, v}) = 1, then the edge {φ(u),φ(v)} is open in the configuration on G, where φ is
the embedding of G into L. With a slight abuse of notation, we may use θ also for the
corresponding configuration on �G. With this convention, let

AM = {
ω ∈ � : ω(

E(L)
) ∈ S
,ω

(
Ec(L)

) ∈Rξ(G)(M)
}
.(28)

We show that if M = δ|VG| for some δ > 0 sufficiently small, and n is taken to be large
enough, we can take A
 = AM . This will follow from the following two claims.

CLAIM 7.6. The following are true of S
 and AM defined above:

(i) πξ(G)(AM) ≥ q−M(1 − e−�(M))πG(S
);
(ii) πξ(G)(Ac

M) ≥ e−O(M).

CLAIM 7.7. The modified heat-bath dynamics satisfies

QMHB

(
AM,Ac

M

) ≤ πξ(G)(AM)e−�(M logn) + q2M+1

p
QG

(
S
, S

c



)
.

Dividing the bound from Claim 7.7 by πξ(G)(AM) and using the bounds from Claim 7.6,
we see that

QMHB(AM,Ac
M)

πξ(G)(AM)
≤ e−�(M logn) + 2q3M+1

p

QG(S
, S
c

)

πG(S
)

≤ e−�(M logn) + eO(M)e−�(|VG|)

for sufficiently large M , where the last inequality follows from (26) and the facts that M =
δ|VG| and p ≥ λ|VG|−2α . Similarly, we get

QMHB(AM,Ac
M)

πξ(G)(Ac
M)

≤ e−�(M logn) + eO(M)e−�(|VG|).

Then, since M = δ|VG|, for some δ > 0 sufficiently small we obtain (27). �

7.2. Proof of auxiliary facts. In this section, we provide the proofs of Lemma 7.5 and
Claims 7.6 and 7.7.

PROOF OF LEMMA 7.5. For any B ⊂ E(�n), let PB be the transition matrix correspond-
ing to a heat-bath update on the entire set B . For e ∈ E(�n), we use Pe for P{e}. Let PFK and

PMHB be the transition matrices for the FK-dynamics and the MHB dynamics on �
ξ
n, respec-

tively. Let A = E(�n) \ E(L). Then

PMHB = 1

|E(�n)|
( ∑

e∈E(L)

Pe + ∑
e∈A

PA

)
.

For ease of notation, set π = π
ξ
�n,p,q . Then, for any f,g ∈ R|�|, where � denotes the set of

FK configurations on �n, let

〈f,g〉π = ∑
ω∈�

f (ω)g(ω)π(ω).
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If we endow R|�| with the inner product 〈·, ·〉π , we obtain a Hilbert space denoted L2(π) =
(R|�|, 〈·, ·〉π). Recall that if a matrix P is reversible with respect to π , it defines a self-
adjoint operator from L2(π) to L2(π) via matrix vector multiplication, and thus 〈f,Pg〉π =
〈P ∗f,g〉π = 〈Pf,g〉π .

Now, the matrix PMHB is positive semidefinite, since it is an average of positive semidefi-
nite matrices. Hence, it is a standard fact (see, e.g., [24]) that if 〈f,PMHBf 〉π ≤ 〈f,PFKf 〉π
for all f ∈ R|�|, then gapMHB(�

ξ
n) ≥ gap(�

ξ
n). To show this, note that for e ∈ A, we have

PA = PePAPe. Thus, for all f ∈R|�|,

〈f,PAf 〉π = 〈f,PePAPef 〉π = 〈
P ∗

e f,PAPef
〉
π = 〈Pef,PAPef 〉π

≤ 〈Pef,Pef 〉π = 〈
f,P 2

e f
〉
π = 〈f,Pef 〉π ,

where we used that Pe = P ∗
e , Pe = P 2

e and that 〈f,Pf 〉π ≤ 〈f,f 〉π for every f ∈ R|�| and
every matrix P reversible with respect to π . Then

〈f,PMHBf 〉π ≤ 1

|E(�n)|
∑

e∈E(�n)

〈f,Pef 〉π = 〈f,PFKf 〉π ,

and the result follows. �

Recall the notation of Lemma 7.3. In order to compare the marginal distribution in L

to πG, we need to bound the number of connections in Ec(L) between different boundary
components of ξ(G) restricted to L: this will show that typical FK configurations on Ec(L)

do not have much influence on the connectivities among L. This bound follows from the
fact that p = O(n−α) for some α > 1/3 and the (approximate) independence of connections
between ξi and ξj . For the reminder of this section, we set ξ = ξ(G) for ease of notation.
Claims 7.6–7.7 will then be seen as consequences of the following lemma.

LEMMA 7.8. Let q ≥ 1 and let p = λn−α for λ > 0 and α > 1/3. Let ξ be any boundary
condition on ∂N�n and let η be any FK configuration on E(L). For every M ≥ 1,

π
ξ
�n

(
Rξ (M) | η) ≥ 1 − exp

[−�
(
M log

[
Mn3α−1])]

.

PROOF. Let Y be the random variable for the number of vertices of L connected to at
least one other vertex of L in an FK configuration on Ec(L) sampled from the distribution
πξ,η(·) = π

ξ
�n,p,q(· | η). It is sufficient to show that

πξ,η(Y ≥ M) ≤ exp
(−�

(
M log

[
Mn3α−1]))

.

By classical comparison inequalities (see, e.g., [21]), when q ≥ 1, no matter the boundary
conditions ξ , η, the random-cluster measure on Ec(L) is stochastically dominated by the
independent bond percolation distribution on Ec(L) with the same parameter p, which we
denote by ν = ν�n,p . (Recall that ν is the distribution on � that results from adding every
edge in E(�n) independently with probability p.) Hence, if X is defined as Y but for ν on
Ec(L), we get

πξ,η(Y ≥ M) ≤ ν(X ≥ M).

Consider the subgraph �̂ = (�n,E
c(L)). Let Z be the total number of vertices in L that

are connected in a configuration sampled from ν to another vertex at distance 3 in �̂. Then,
since the distance between any two vertices in L in �̂ is at least 3, we see that X ≤ Z and

ν(X ≥ M) ≤ ν(Z ≥ M).
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Thus, it suffices to establish a tail bound for Z. Enumerate the vertices of L as v1, . . . , v2m

and let Zj be the indicator random variable for the event that vj is connected to another
vertex at distance 3 in �̂. For r = 0,1,2,3, split up Z = ∑

r Ẑr , where

Ẑr = ∑
i≥0

Z4i+r+1.

We claim that there is some suitable c > 0 such that under ν, each Ẑr is stochastically dom-
inated by the binomial random variable S ∼ Bin(�n/4�, cn−3α). This is because the ran-
dom variables Z4i+r+1 are jointly dominated by independent Bernoulli random variables,
Ber(cn−3α), for a suitable c > 0, since for every k the events {Zk = 1} and {Zk+4 = 1} de-
pend on disjoint sets of edges. The fact that the success probability of each one is at most
cn−3α follows from the fact that there are at most 16 choices of three adjacent edges from
a vertex in ∂N�n, and p = λn−α . Hence, by the Chernoff–Hoeffding inequality, for every
δ > 0,

ν
(
Ẑr ≥ Eν[S] + δ�n/4�) ≤ exp

[
−n

4
D

(
cn−3α + δ‖cn−3α)]

,

where D(a‖b) is the relative entropy between the Bernoulli random variables Ber(a) and
Ber(b):

D(a‖b) = a log(a/b) + (1 − a) log
(
(1 − a)/(1 − b)

)
.

Since Eν[S] = O(n1−3α), Var(S) = O(n1−3α), α > 1
3 and M ≥ 1, it follows that for every

M ≥ 1,

ν(Ẑr ≥ M/4) ≤ e−�(M log[Mn3α−1]).

We have Z = Ẑ1 + Ẑ2 + Ẑ3 + Ẑ4, and so a union bound implies the matching bound for
ν(Z ≥ M). �

Now recall the definitions of the set S
 and AM from (28).

PROOF OF CLAIM 7.6. For part (i), observe that if ω is sampled from πξ , then

πξ (AM) = πξ (
ω(L) ∈ S
 | ω(

Ec(L)
) ∈Rξ (M)

)
πξ (

ω
(
Ec(L)

) ∈Rξ (M)
)
.

By Lemma 7.8,

πξ (
ω

(
Ec(L)

) ∈Rξ (M)
) ≥ 1 − e−�(M).

Moreover, since

πξ (
ω(L) ∈ S
 | ω(

Ec(L) = 0
)) = πG(S
),

it follows from Lemma 2.2 that

πξ (
ω(L) ∈ S
 | ω(

Ec(L)
) ∈Rξ (M)

) ≥ q−MπG(S
),

and thus,

πξ (AM) ≥ q−M(
1 − e−�(M))πG(S
).

Similarly for part (ii), we have

πξ (
Ac

M

) ≥ πξ (
ω(L) /∈ S
 | ω(

Ec(L)
) ∈Rξ (M)

)
πξ (

ω
(
Ec(L)

) ∈Rξ (M)
)

≥ q−M(
1 − e−�(M))πG

(
Sc




)
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which is at least e−O(M) since πG(S
) ≤ 1
2 . �

PROOF OF CLAIM 7.7. Let PMHB be the transition matrix for the MHB dynamics and for
ease of notation set B = Ec(L). We have

QMHB

(
AM,Ac

M

) ≤ ∑
ω∈AM

∑
ω′∈�:

ω′(B)/∈Rξ (M)

πξ (ω)PMHB

(
ω,ω′)

+ ∑
ω∈AM

∑
ω′∈�:

ω′(L)/∈S


πξ (ω)PMHB

(
ω,ω′).(29)

For the first term in (29), observe by definition of MHB dynamics, for every ω ∈ AM ,∑
ω′∈�:

ω′(B)/∈Rξ (M)

PMHB

(
ω,ω′) ≤ ∑

ω′∈�:
ω′(B)/∈Rξ (M)

πξ (
ω′(B) | ω(L)

) ≤ e−�(M logn),

where the last inequality follows from Lemma 7.8. Hence,∑
ω∈AM

∑
ω′∈�:

ω′(B)/∈Rξ (M)

πξ (ω)PMHB

(
ω,ω′) ≤ πξ (AM)e−�(M logn).

For the second term in (29), observe that ω �= ω′ and that ω and ω′ can differ in at most
one edge e; otherwise PMHB(ω,ω′) = 0. Thus, setting

p+(q) = max
{
p,

q(1 − p)

q(1 − p) + p

}
,

p−(q) = min
{

1 − p,
p

q(1 − p) + p

}
,

we obtain

PMHB

(
ω,ω′) = 1

|E(�n)|π
(
ω′(e) | ω(

E(�n) \ {e}))

≤ p+(q)

|E(�n)|

≤ p+(q)|EG|
p−(q)|E(�n)|PG

(
ω(L),ω′(L)

)
.

Then, since |EG| ≤ |E(�n)| and p+(q)/p−(q) ≤ q/p,∑
ω∈AM

∑
ω′∈�:

ω′(L)/∈S


πξ (ω)PMHB

(
ω,ω′)

≤ q

p

∑
ω∈AM

∑
ω′∈�:

ω′(L)/∈S


πξ (ω)PG

(
ω(L),ω′(L)

)

≤ q

p

∑
θ∈Rξ (M)

πξ (θ)
∑

ω1∈S


∑
ω2 /∈S


πξ (ω1 | θ)PG(ω1,ω2)

≤ q

p
πξ (

Rξ (M)
) ∑
ω1∈S


∑
ω2 /∈S


max
θ∈Rξ (M)

πξ (ω1 | θ)PG(ω1,ω2),
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where ω1, ω2 are FK configurations on E(L) and θ is an FK configuration on B . Lemma 2.2
implies

max
θ∈Rξ (M)

πξ (ω1 | θ) ≤ q2MπG(ω1),

and so ∑
ω∈AM

∑
ω′∈�:

ω′(L)/∈S


πξ (ω)PMHB

(
ω,ω′) ≤ q2M+1

p

∑
ω1∈S


∑
ω2 /∈S


πG(ω1)PG(ω1,ω2)

= q2M+1

p
QG

(
S
, S

c



)
.

Combining these two bounds, we get

QMHB

(
AM,Ac

M

) ≤ πξ (AM)e−�(M logn) + q2M+1

p
QG

(
S
, S

c



)
. �
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