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We show that repulsive random variables can yield Monte Carlo meth-
ods with faster convergence rates than the typical N−1/2, where N is the
number of integrand evaluations. More precisely, we propose stochastic nu-
merical quadratures involving determinantal point processes associated with
multivariate orthogonal polynomials, and we obtain root mean square errors
that decrease as N−(1+1/d)/2, where d is the dimension of the ambient space.
First, we prove a central limit theorem (CLT) for the linear statistics of a class
of determinantal point processes, when the reference measure is a product
measure supported on a hypercube, which satisfies the Nevai-class regularity
condition; a result which may be of independent interest. Next, we introduce
a Monte Carlo method based on these determinantal point processes, and
prove a CLT with explicit limiting variance for the quadrature error, when the
reference measure satisfies a stronger regularity condition. As a corollary, by
taking a specific reference measure and using a construction similar to im-
portance sampling, we obtain a general Monte Carlo method, which applies
to any measure with continuously derivable density. Loosely speaking, our
method can be interpreted as a stochastic counterpart to Gaussian quadrature,
which at the price of some convergence rate, is easily generalizable to any
dimension and has a more explicit error term.
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1. Introduction. Numerical integration or quadrature refers to algorithms that approxi-
mate integrals

(1.1)
∫

f (x)μ(dx),

where μ is a finite positive Borel reference measure, and where f ranges over some class of
test functions C . We assume for convenience that the support Supp(μ) of μ is included in
the d-dimensional hypercube I d = [−1,1]d , since one can recover this setting in most ap-
plications by means of appropriate transformations. For any given N , a quadrature algorithm
outputs N nodes x1, . . . ,xN ∈ I d and weights w1, . . . ,wN ∈ R so that the approximation

(1.2)
N∑

i=1

wif (xi ) ≈
∫

f (x)μ(dx)

is reasonable for every f ∈ C . The nodes and weights depend on N , μ, and can be real-
izations of random variables, but they are not allowed to depend on f . The quality of a
quadrature algorithm is assessed through the approximation error

(1.3) EN(f ) =
N∑

i=1

wif (xi ) −
∫

f (x)μ(dx)

and specifically its behaviour as N → ∞.
Many quadrature algorithms have been developed: variations on Riemann summation [18],

Gaussian quadrature [27], Monte Carlo methods [67], etc. In the remainder of Section 1, we
quickly review three families of such methods to provide context for our contribution, which
we then introduce in Section 1.5.

1.1. Gaussian quadrature. Let us first assume d = 1, so that μ is supported on I =
[−1,1]. Let (ϕk)k∈N be the orthonormal polynomials associated with this measure, that
is, the family of polynomials such that ϕk has degree k, positive leading coefficient, and∫

ϕk(x)ϕ�(x)μ(dx) = δk� for every k, � ∈ N. Gaussian quadrature (see, e.g., [11, 18, 27] for
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general references) then corresponds to taking for nodes x1, . . . ,xN the zeros of the N th de-
gree orthonormal polynomial ϕN(x), which are real and simple. As for the weights, Gaussian
quadrature corresponds to

(1.4) wi = 1

KN(xi ,xi)
,

where we introduced the N th Christoffel–Darboux kernel associated with μ,

(1.5) KN(x, y) =
N−1∑
k=0

ϕk(x)ϕk(y).

This celebrated method is characterized by the property to be exact, that is, EN(f ) = 0,
for every polynomial function f of degree up to 2N − 1. This is the highest possible degree
such that this holds. Gaussian quadrature is thus particularly suitable when the test functions
f look like polynomials. For instance, EN(f ) decays exponentially fast when f is analytic
[29]. However, although Gaussian quadrature is now two centuries old [25], optimal rates of
decay for the error EN(f ) do not seem to be known for less regular test functions, say f ∈ C 1,
in general. By using Jackson’s approximation theorem for algebraic polynomials, one can see
that EN(f ) = O(1/N) when f ∈ C 1. Optimal decays have been recently investigated in the
particular case of the Gauss–Legendre quadrature [79, 80]. However, even in the familiar
Gauss–Jacobi quadrature, optimal rates are only conjectured.

Efficient computation of the nodes and weights in Gaussian quadrature has been an active
topic of research. Classical approaches are based on the QR algorithm, such as the Golub–
Welsch algorithm; see, for example, [27], Section 3.5, for a discussion. The computational
cost of these QR approaches usually scales as O(N2). More recently, O(N) approaches have
been proposed for specific choices of the reference measure [30, 33], with parallelizable
methods [10] further taking down costs.

Let us stress that Gaussian quadrature is intrinsically a one-dimensional method. Indeed,
in the higher-dimensional setting where Supp(μ) ⊂ I d , although one may define multivariate
orthonormal polynomials associated with μ, it is not possible to take for nodes the zeros of a
multivariate polynomial. However, if μ is a product measure μ = μ1 ⊗· · ·⊗μd with each μj

supported on I , one could build a grid of nodes using d one-dimensional Gaussian quadra-
tures. But this has for consequence to rise up the one-dimensional error estimate for EN(f )

to a power 1/d , which essentially makes Gaussian quadrature ineffective in higher dimen-
sions than one or two. In fact, the same phenomenon arises for any other grid-like product of
one-dimensional quadratures; this is commonly referred to as the curse of dimensionality.

1.2. Monte Carlo methods. Monte Carlo methods [67] correspond to picking up the N

nodes (xi ) in (1.2) as the realizations of random variables in I d . For instance, assuming μ in
(1.2) has a density ω with respect to the Lebesgue measure, importance sampling refers to
taking the (xi ) to be i.i.d. realizations with a so-called proposal density q , and the weights to
be

(1.6) wi = 1

N

ω(xi )

q(xi )
.

That way, EN(f ) has mean zero. Provided that

(1.7) Var
[
f (X)ω(X)

q(X)

]
< ∞,

where X has density q , EN(f ) has a standard deviation decreasing as N−1/2, and satisfies
the classical central limit theorem:√

NEN(f )
law−−−−→

N→∞ N
(
0, σ 2

f

)
,
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where σ 2
f equals (1.7). Let us stress that the cost of importance sampling is O(N), and that it

can be easily parallelized.
When the ambient dimension d becomes large, practitioners typically prefer Markov chain

Monte Carlo (MCMC) methods over importance sampling. This means taking wi = 1/N and
nodes (xi ) to be the realization of a Markov chain with stationary distribution μ, such as the
Metropolis–Hastings chain. Under relatively weak conditions on the Markov chain and the
integrand,

√
NEN(f ) then converges in distribution to a centered Gaussian variable; see,

for example, [23], Theorem 7.32. The limiting variance usually grows more slowly with the
dimension d than for importance sampling; see [4] for a proof in a simplified setting. This
justifies the preferential use of MCMC for large d . In any case, the typical order of magnitude
of the error EN(f ) for Monte Carlo methods is N−1/2, which is often deemed a rather slow
decay.

To retain the simplicity of implementation of Monte Carlo and achieve rates faster than
N−1/2, several authors have proposed postprocessing steps. For instance, Delyon and Portier
[19] proposed a variant of importance sampling that still takes nodes as independent draws
from some proposal density q , but takes weights to be

(1.8) wi = 1

N

ω(xi )

q̌−i (xi )
,

where q̌−i is the so-called leave-one-out kernel estimator of the density q of the nodes. Per-
haps surprisingly, for smooth enough products f ω and the right tuning of kernel parameters,√

NEN(f ) then converges in probability to zero. Exact rates are investigated by Delyon and
Portier [19], and a central limit theorem is proven. We further discuss their results in Sec-
tion 4.

Another postprocessing technique with fast convergence relies on control variates [31].
Oates, Girolami and Chopin [57], for instance, sample nodes i.i.d. from q , and then split
the nodes into two batches. The first batch is used to build an approximation f̂ of the inte-
grand f , with the constraint that

∫
f̂ (x)μ(dx) is known. The second batch is used to build

an importance sampling estimator like (1.6) but targeting the residual f − f̂ . By carefully
designing f̂ and controlling the rate at which both batch sizes grow, Oates, Girolami and
Chopin [57], Theorem 2, obtain a mean square error in N−7/6 under rather weak assump-
tions on measure μ. The assumptions on the integrand f are stronger, with f to belong to
a specific reproducing kernel Hilbert space. We note that Liu and Lee [50] also propose a
similar postprocessing approach, but the improvement on the rate is less explicit.

1.3. Quasi-Monte Carlo methods. Quasi-Monte Carlo methods (QMC; [21, 22]) are de-
terministic constructions that focus on the uniform case, μ(dx) = dx in (1.2). The corner-
stone of classical QMC is the Koksma–Hlawka inequality [21], equation (3.15). This inequal-
ity bounds the error EN(f ) in (1.3) by the product of the star discrepancy of the nodes and the
Hardy–Krause variation of f . The star discrepancy measures the departure of the empirical
measure of the N nodes from the uniform measure. Classical QMC methods aim at proposing
efficient node constructions that minimize this star discrepancy. Some constructions guaran-
tee a star discrepancy that asymptotically decreases as fast as N−1 logd−1 N . This implies the
same rate for EN(f ) provided f has finite Hardy–Krause variation. While this seems faster
than typical Monte Carlo methods in Section 1.2, the rate as a function of N does not decrease
until N is exponential in d . Moreover, the Hardy–Krause variation is hard to manipulate in
practice.

Modern QMC methods come up with more practical rates [21]. For example, scrambled
nets [59, 60] are randomized QMC methods, meaning that a stochastic perturbation is ap-
plied to a deterministic QMC construction. The perturbation is built so that EN(f ) has
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mean 0. Owen [59] shows that only assuming f is L2, the standard deviation of EN(f )

is o(N−1/2), that is, converges to zero faster than the traditional Monte Carlo rate. When
f is smooth enough, which requires at least that all mixed partial derivatives of f of or-
der less than d are continuous, Owen [60] further shows that the standard deviation is
O(N−3/2−1/d log(d−1)/2 N). Again, this rate decreases only when N is exponential in the
dimension, but Owen [59] shows that for finite N , randomized QMC cannot perform signifi-
cantly worse than Monte Carlo.

Finally, we note that nonparametric control variates have also been studied for QMC and
randomized QMC [56]. While bounds on the error still depend on the rather strong hypotheses
of QMC, in particular the smoothness of the integrand, this postprocessing has the advantage
of partially bypassing the need for the user to know the degree of smoothness in advance.

1.4. Bayesian quadrature. O’Hagan [55] remarked that if we put a Gaussian process
prior [65] over the integrand, then the conditional of its integral given N evaluations is a
univariate Gaussian, with a closed-form mean and variance. Picking up nodes by sequentially
minimizing this posterior variance yields a range of recent algorithms, such as kernel herding
[16] or Bayesian quadrature [36]. There is empirical evidence [36] that the error EN(f ) in
Bayesian quadrature decreases faster than the Monte Carlo rate N−1/2. There are theoretical
results for hybrid methods between Monte Carlo and Bayesian quadrature [14]; see Section 4
for further discussion.

The nodes and weights of Bayesian quadrature require inverting a N ×N matrix, and thus
the computational cost of the method is O(N3). Although this cost may seem prohibitive, the
approach is justified in some important applications where this cubic computational cost is
negligible compared to the cost of one evaluation of the integrand.

1.5. Our contribution. Our main goal is to leverage repulsive particle systems to build
a Monte Carlo method with standard deviation of the error decaying as o(N−1/2). More
precisely, the idea is to use correlated random variables for the quadrature nodes, interacting
as strongly repulsive particles. Our motivation comes from specific models in random matrix
theory (see Section 2.2 for references), for which the linear statistic

∑
f (xi) converges in

distribution to a Gaussian, without requiring any normalizing factor. In this work, we focus
on determinantal point processes (DPPs), which have received a lot of attention recently in
probability and related fields; see, for instance, [35, 39, 46, 49, 51, 74] for a general overview.

In any dimension d , we construct DPPs generating the nodes x1, . . . ,xN and appropriate
weights wi ’s so that the error EN(f ) in (1.3) decreases rapidly, as N → ∞. The general
construction of our DPP for an arbitrary μ is relatively sophisticated, and will be the topic of
Section 2.1. At this stage, we illustrate our results in the specific case where μ is the uniform
measure on the hypercube I d .

THEOREM 1.1. Let (Pk)k∈N be the Legendre polynomials defined by recurrence,

P0(x) := 1, P1(x) := x, Pk+1(x) := 2k + 1

k + 1
xPk(x) − k

k + 1
Pk−1(x),

and consider, for any M ≥ 1 and x, y ∈ Rd , the kernel

KN(x, y) :=
d∏

j=1

M−1∑
k=0

(
k + 1

2

)
Pk(xj )Pk(yj ),

where N := Md . Let x1, . . . ,xN be sampled with density on I d

(1.9)
1

N ! det
[
KN(xk, x�)

]N
k,�=1.
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Then, for any C 1 function f that is compactly supported within the open hypercube (−1,1)d ,

E

[
N∑

i=1

f (xi )

KN(xi ,xi )

]
=
∫
Id

f (x)dx

and the quadratic error satisfies

E

[
N∑

i=1

f (xi )

KN(xi ,xi)
−
∫
Id

f (x)dx

]2

= O
(

1

N1+1/d

)
,

as N → ∞. Moreover, we have a central limit theorem

√
N1+1/d

(
N∑

i=1

f (xi )

KN(xi ,xi)
−
∫
Id

f (x)dx

)
law−−−−→

N→∞ N
(
0,�2

f,1
)
,

where �f,1 has an explicit expression involving the regularity of f ; see (2.17) below.

Sampling the distribution in (1.9), which is called a multivariate Legendre ensemble, can
be done exactly in time O(N3), if we neglect the cost of rejection sampling steps; see Sec-
tion 2.4. For the sake of illustration, a sample is shown in Figure 1(a) in the case d = 2. For
each i, the area of the disk centered at xi is proportional to its weight 1/KN(xi ,xi) in the
quadrature rule of Theorem 1.1. Points are well spread throughout the square, more so than
under independent uniform sampling, with a visible accumulation along the border of the
square compensated by smaller weights. The green lines on the side plots show the marginals
of the uniform measure on the square. The histograms on the side plots are weighted empiri-
cal histograms of the sample.

In this paper, we prove a more general result than Theorem 1.1, where we consider a gen-
eral class of measures instead of the uniform, and relax the assumption that the number of
nodes N is a dth power; see Theorem 2.2. For the latter, we need to introduce an ordering
on multivariate monomials; see Section 2.2. We also provide an importance sampling (The-
orem 2.3) and self-normalized importance sampling (Theorem 2.4) version of this result,
having applications to Bayesian inference in mind.

Computationally, our method requires sampling from a DPP. The standard algorithm is
O(N3), plus some overhead due to using rejection sampling routines [35]. As it stands, the
applications of Monte Carlo with DPPs are thus naturally the same settings as Section 1.4,

FIG. 1. 1(a) A weighted sample of size N = 150 of the bivariate Legendre ensemble. 1(b) The graded lexi-
cographic order in d = 2: the lower left corner marks the origin (0,0) ∈ N2, and the circle with mark k is at
coordinates b(k).
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where the bottleneck is the evaluation of the integrand, not the generation of the nodes. Such
settings arise in Bayesian inference for simulation-heavy sciences such as astrophysics [78],
ecology [64] or cell biology [24], where one evaluation of the integrand requires numerically
solving large systems of differential equations. We comment in Section 2.4 on open avenues
for faster sampling of specific DPPs, which would further widen the applicability of Monte
Carlo with DPPs.

It turns out that, when d = 1, our method is formally very similar to Gaussian quadra-
ture, as described in Section 1.1. We basically replace the zeros of orthogonal polynomials
by particles sampled from orthogonal polynomial ensembles (OP Ensembles), DPPs whose
building blocks are orthogonal polynomials. Our contribution also has the advantage of gen-
eralizing more naturally to higher dimensions than Gaussian quadrature through multivariate
OP Ensembles.

Monte Carlo with DPPs is to be classified somewhere between classical Monte Carlo meth-
ods and QMC methods, respectively, described in Sections 1.2 and 1.3. It is very much simi-
lar to importance sampling, but with negatively correlated nodes. Simultaneously, it is more
Monte Carlo than scrambled nets, as it does not randomize a posteriori a low discrepancy
deterministic set of points, but rather incorporate the low discrepancy constraint into the ran-
domization procedure. Our approach also bears similarity with postprocessing approaches to
Monte Carlo with fast convergence of Section 1.2. Indeed, the fast convergence in our CLT is
due to approximation results, much like nonparametric control variates. We further comment
on this in Section 4.

The rest of the paper is organized as follows. In Section 2, we state our quadrature rules
and theoretical results on the convergence of its error. In Section 3, we demonstrate our
results in simple experimental settings. We conclude with some perspectives in Section 4.
In Appendix A, we introduce key technical notions and give the outline of our proofs, the
technical parts of the proofs being detailed in Appendices B and C. Appendix D contains
additional experimental results.

2. Statement of the results.

NOTATION. All along this work, we write for convenience I = [−1,1] and I d =
[−1,1]d . Also, for any 0 < ε < 1, we set Iε = [−1 + ε,1 − ε] and I d

ε = [−1 + ε,1 − ε]d . Fi-
nally, except when specified otherwise, a reference measure is a positive finite Borel measure
with support Supp(μ) ⊂ I d .

2.1. Determinantal point processes and multivariate OP Ensembles.

2.1.1. Point processes and determinantal correlation functions. A simple point process
(hereafter point process) on I d is a probability distribution P on finite subsets S of I d . A clas-
sical exhaustive reference is [17], but we also refer the reader to [35], which is shorter and
contains everything needed in this paper. Given a reference measure μ, a point process has a
n-correlation function ρn if one has

(2.1)

E

[ ∑
xi1 ,...,xin∈S
xi1 
=···
=xin

ϕ(xi1, . . . ,xin)

]

=
∫
(I d )n

ϕ(x1, . . . , xn)ρn(x1, . . . , xn)μ
⊗n(dx1, . . . , dxn)

for every bounded Borel function ϕ : (I d)n → R, where the sum in (2.1) ranges over all
pairwise distinct n-uplets of the random finite subset S. The function ρn, provided it exists,
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thus encodes the correlations between distinct n-uplets of the random set S. For instance, a
Poisson process with intensity λ : I d →R+ is characterized by

(2.2) ρn(x1, . . . , xn) =
n∏

i=1

λ(xi)

and dμ(x) = 1Id (x)dx. In that particular case, the correlation functions (2.2) are products
of univariate terms, which can be paraphrased as there is no interaction between points in
a Poisson point process. Finally, our definition (2.1) is easily seen to be equivalent to [35],
Definition 1, where correlation functions are also called joint intensities. For ease of refer-
ence, we also note that correlation functions are called factorial moment densities in [17],
Section 5.4.

A point process is determinantal (DPP) if there exists an appropriate kernel K : I d ×I d →
R or C such that the n-correlation function exists for every n and reads

(2.3) ρn(x1, . . . , xn) = det
[
K(xk, x�)

]n
k,�=1, x1, . . . , xn ∈ I d .

The kernel of a DPP thus encodes how the points in the random configurations interact. The
existence of a point process with (2.3) as its correlation functions is, in general, a difficult
question. It is easy to see that the kernel has to be positive definite, so that the right-hand side
of (2.3) is always nonnegative. But nonnegativity is not sufficient for (2.3) to consistently
define a point process.

A canonical way to construct DPPs is to define so-called projection DPPs, which gen-
erate configurations of N points P-almost surely, that is, S = {x1, . . . ,xN }. More precisely,
consider N orthonormal functions ϕ0, . . . , ϕN−1 in L2(μ), that is,

∫
ϕk(x)ϕ�(x)μ(dx) = δk�,

and take for kernel

(2.4) KN(x, y) =
N−1∑
k=0

ϕk(x)ϕk(y).

In this setting, it turns out that the (permutation invariant) random variables x1, . . . ,xN with
joint probability distribution

(2.5)
1

N ! det
[
KN(xi, x�)

]N
i,�=1

N∏
i=1

μ(dxi)

generate a DPP with kernel KN(x, y). [35], Section 2, gives a proof that (2.5) yields (2.3)
with K = KN .

For further information on determinantal point processes, we refer the reader to [35, 39,
46, 49, 51, 53, 73].

2.1.2. Multivariate OP Ensembles. In the one-dimensional setting, we can for instance
build a DPP using (2.5) with ϕ0, . . . , ϕN−1 the N lowest degree orthonormal polynomials
associated with the reference measure μ. Such DPPs are known as OP Ensembles and have
been popularized by random matrix theory; see, for example, [43] for an overview.

Our contribution involves a higher-dimensional generalization of OP Ensembles, rely-
ing on multivariate orthonormal polynomials, which we now introduce. Given a refer-
ence measure μ, assume it has well-defined multivariate orthonormal polynomials, mean-
ing that

∫
P 2(x)μ(dx) > 0 for every nontrivial polynomial P . This is for instance true if

μ(A) > 0 for some nonempty open set A ⊂ I d . Now choose an ordering for the multi-indices
(α1, . . . , αd) ∈ Nd , that is, pick a bijection b : N → Nd . This gives an ordering of the mono-
mial functions (x1, . . . , xd) �→ x

α1
1 · · ·xαd

d , to which one applies the Gram–Schmidt algo-
rithm. This yields a sequence of orthonormal polynomial functions (ϕk)k∈N, the multivariate
orthonormal polynomials. In this work, we use a specific bijection b defined in Section 2.1.3.
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Equipped with this sequence (ϕk)k∈N of multivariate orthonormal polynomials, we finally
consider for every N the DPP associated with the associated kernel (2.4), that we refer to as
the multivariate OP Ensemble associated with a reference measure μ. When d = 1, it reduces
to the classical OP Ensemble.

2.1.3. The graded lexicographic order and the bijection b. We consider the bijection
b associated with the graded (with respect to the sup norm) alphabetic order on Nd . We
start with the usual lexicographic order on Nd , defined by saying that (α1, . . . , αd) <lex
(β1, . . . , βd) if there exists j ∈ {1, . . . , d} such that αi = βi for every i < j and αj < βj . Now
we define the graded lexicographic order as follows. We say that (α1, . . . , αd) < (β1, . . . , βd)

if either max{α1, . . . , αd} < max{β1, . . . , βd} or max{α1, . . . , αd} = max{β1, . . . , βd} and
(α1, . . . , αd) <lex (β1, . . . , βd). Moreover, from now on we specify the bijection b to be the
unique bijection N → Nd increasing for this order. Otherwise put, set b(0) = (0, . . . ,0) and
b(n) = minNd \ {b(0), . . . ,b(n − 1)} by induction, where the minimum refers to the graded
lexicographic order. An important feature of this ordering on which our proofs rely is that,
for every M ≥ 1, the set of the first Md indices {b(0), . . . ,b(Md − 1)} matches the discrete
hypercube

(2.6) CM = {
n ∈ Nd : 0 ≤ n1, . . . , nd ≤ M − 1

}
.

The indices between b(Md − 1) and b(Md+1 − 1) then fill the layer CM+1 \ CM by follow-
ing the usual lexicographic order. For better intuition, we illustrate the order b for d = 2 in
Figure 1(b); observe how each layer is filled one after the other.

We are now in position to state our first result on multivariate OP Ensembles, which is the
cornerstone for the Monte Carlo methods we introduce later in Section 2.3.

2.2. A central limit theorem for multivariate OP Ensembles. Several central limit theo-
rems (CLTs) have been obtained for determinantal point processes and related models in ran-
dom matrix theory, but only when the random configurations lie in a one- or two-dimensional
domain. See, for instance, [1, 2, 7, 12, 13, 20, 37, 38, 40, 44, 47, 48, 61, 63, 66, 71, 74] for a
non-exhaustive list. Although DPPs on higher-dimensional supports have attracted attention
in complex geometry [5, 6, 8, 9], in statistics [49, 54], and in physics [69, 77], it seems no
CLT has been established yet when d ≥ 3.

Our first result for multivariate OP Ensembles is a CLT for C 1 test functions when the
reference measure μ is a product of d Nevai-class probability measures on I . The exact defi-
nition of the Nevai class is postponed until Definition 1, but we now give a simple sufficient
condition. As a consequence of Denisov–Rakhmanov’s theorem (see Theorem A.1), if a mea-
sure on I has for Lebesgue decomposition μ(dx) = ω(x)dx + μs (where μs is orthogonal
to the Lebesgue measure) with ω(x) > 0 almost everywhere, then μ is Nevai-class. Denote
by (Tk)k∈N the normalized Chebyshev polynomials, defined on I by

T0 = 1, Tk(cos θ) = √
2 cos(kθ), k ≥ 1.

THEOREM 2.1. Let μ be a reference measure with Supp(μ) ⊂ I d , and assume μ =
μ1 ⊗ · · · ⊗ μd where each μj is Nevai class (see Definition 1). If x1, . . . ,xN stands for the
associated multivariate OP Ensemble associated with μ, then for every f ∈ C 1(I d,R), we
have

1√
N1−1/d

(
N∑

i=1

f (xi ) −E

[
N∑

i=1

f (xi )

])
law−−−−→

N→∞ N
(
0, σ 2

f

)
,
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where

(2.7) σ 2
f = 1

2

∞∑
k1,...,kd=0

(k1 + · · · + kd)f̂ (k1, . . . , kd)
2

and

(2.8) f̂ (k1, . . . , kd) =
∫
Id

f (x1, . . . , xd)

d∏
j=1

Tkj
(xj )

dxj

π
√

1 − x2
j

.

When d = 1, Theorem 2.1 was obtained by [13] (see also [47] for an alternative proof)
but the higher-dimensional case d ≥ 2 is novel. We shall restrict to d ≥ 2 for the proof of
the theorem, which is deferred to Section B. Let us now make a few remarks concerning the
statement of Theorem 2.1.

REMARK 1. The limiting variance σ 2
f does not depend on the reference measure μ.

REMARK 2. By making the change of variables xj = cos θj , we obtain

f̂ (k1, . . . , kd) = (
√

2)|{j :kj 
=0}|

πd

∫
[0,π ]d

f (cos θ1, . . . , cos θd)

d∏
j=1

cos(kj θj )dθj ,

which is, up to a multiplicative factor, a usual Fourier coefficient.

As a side note, we obtain that the limiting variance in Theorem 2.1 is dominated by an
explicit integral, that may be of interest to bound σ 2

f in practice.

PROPOSITION 1. For any f ∈ C 1(I d,R), we have the inequality

(2.9) σ 2
f ≤ 1

2

d∑
α=1

∫
Id

(√
1 − x2

α∂αf (x1, . . . , xd)
)2 d∏

j=1

dxj

π
√

1 − x2
j

.

It will appear from the proof we provide in Section A.3 that this inequality is sharp, since
equality holds whenever f is a linear combination of monomials x

α1
1 · · ·xαd

d with αj ∈ {0,1};
see (A.26).

We now turn to Monte Carlo methods based on Theorem 2.1.

2.3. Monte Carlo methods based on determinantal point processes. Consider a reference
measure μ with support inside I d , having well-defined multivariate orthonormal polynomials
(say, μ(A) > 0 for some open set A ⊂ I d ). Let KN(x, y) be the N th Christoffel–Darboux
kernel for the associated multivariate OP Ensemble, namely

(2.10) KN(x, y) =
N−1∑
k=0

ϕk(x)ϕk(y),

where (ϕk)k∈N is the sequence of multivariate orthonormal polynomials associated with μ

and the graded lexicographic order; see Section 2.1.3. Our quadrature rule is as follows: take
for nodes x1, . . . ,xN the random points coming from the multivariate OP Ensemble, namely
with joint density (2.5), and for weights wi = 1/KN(xi ,xi). Thus, for any μ-integrable func-
tion f , our estimator of

∫
f (x)μ(dx) reads

(2.11)
N∑

i=1

f (xi )

KN(xi ,xi)
.
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One can readily see by taking n = 1 in (2.1)–(2.4) that the estimator (2.11) is unbiased,

(2.12) E

[
N∑

i=1

f (xi )

KN(xi ,xi)

]
=
∫

f (x)μ(dx).

REMARK 3. For d = 1, comparing (2.11) to (1.4)–(1.5) yields that our method matches
Gaussian quadrature except for the nodes, since we replace the zeros of the univariate orthog-
onal polynomial ϕN by random points drawn from an OP Ensemble. In fact, this replacement
is not aberrant since zeros of orthogonal polynomials and particles of associated OP Ensem-
bles get arbitrarily close with high probability as N → ∞; see [34] for further information
and generalizations. Notice however that our quadrature rule has the advantage to make sense
in any dimension d .

Our next result is a CLT for (2.11), thus giving a precise rate of decay for the error made
in the approximation, provided we make regularity assumptions on μ and on the class C of
test functions f . More precisely, recalling the notation I d

ε = [−1 + ε,1 − ε]d , we consider

(2.13) C = {
f ∈ C 1(I d,R

) : Supp(f ) ⊂ I d
ε for some ε > 0

}
.

As for the reference measure, we shall assume μ is a product measure with a density which
is C 1 and positive on the open set (−1,1)d . Set for convenience

(2.14) ω⊗d
eq (x) =

d∏
j=1

1

π
√

1 − x2
j

, x ∈ I d .

THEOREM 2.2 (Crude Monte Carlo with OP Ensembles). Let μ(dx) = ω(x)dx be a
product reference measure with ω(x) = ω1(x1) · · ·ωd(xd) and Supp(μ) ⊂ I d . Assume ω is
C 1 and positive on the open set (−1,1)d , and satisfies: for every ε > 0,

(2.15)
1

N
sup
x∈Id

ε

∣∣∇KN(x, x)
∣∣< ∞.

If x1, . . . ,xN stands for the multivariate OP Ensemble associated with μ, then for every
f ∈ C , we have for the mean square error of the estimator,

(2.16) lim
N→∞N1+1/dE

[(
N∑

i=1

f (xi )

KN(xi ,xi )
−
∫

f (x)μ(dx)

)2]
= �2

f,ω,

where (see (2.8))

(2.17) �2
f,ω = 1

2

∞∑
k1,...,kd=0

(k1 + · · · + kd)

(̂
f ω

ω⊗d
eq

)
(k1, . . . , kd)2.

Moreover, we have the central limit theorem,

√
N1+1/d

(
N∑

i=1

f (xi )

KN(xi ,xi )
−
∫

f (x)μ(dx)

)
law−−−−→

N→∞ N
(
0,�2

f,ω

)
.

We will discuss the assumptions of Theorem 2.2 in Section A.4 but let us already state that,
as it will appear in the proof, (2.15) can be replaced by the weaker but technically involved
Assumption 1. We restricted ourselves to (2.15) for the sake of presentation, as it already
covers the Jacobi case. Indeed, we prove the following result in Section A.4.
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PROPOSITION 2. Given any parameters α1, β1, . . . , αd, βd > −1, the reference measure

(2.18) μ(dx) =
d∏

j=1

(1 − xj )
αj (1 + xj )

βj 1I (xj )dxj ,

satisfies the assumptions of Theorem 2.2.

Hereafter, we call measures of the form (2.18) Jacobi measures. From a practical point
of view, Theorem 2.2 requires knowledge on the measure μ, in particular all its moments
should be known, since we need the corresponding orthonormal polynomials. This is the
case for most applications of Gaussian quadrature, where the reference measure is such that
orthonormal polynomials are computable, like Jacobi measures (2.18) for instance. When the
moments of μ are not known or when μ is not separable, we propose an importance sampling
result in Theorem 2.3, which shifts most hypotheses onto an instrumental density q . Note
however that Theorem 2.3 still requires that we can evaluate the density ω of μ pointwise.

THEOREM 2.3 (Importance sampling with OP Ensembles). Let μ(dx) = ω(x)dx be a
reference measure on I d with a C 1 density ω on the open set (−1,1)d . Consider a measure
q(x)dx satisfying the assumptions of Theorem 2.2, let KN(x, y) be the N th Christoffel–
Darboux kernel associated with q(x)dx, and x1, . . . ,xN the associated multivariate OP En-
semble. Then, for every f ∈ C , we have

(2.19) E

[
N∑

i=1

f (xi )

KN(xi ,xi )

ω(xi )

q(xi )

]
=
∫

f (x)μ(dx),

and we have for the mean square error of the estimator,

(2.20) lim
N→∞N1+1/dE

[(
N∑

i=1

f (xi )

KN(xi ,xi)

ω(xi )

q(xi )
−
∫

f (x)μ(dx)

)2]
= �2

f,ω,

where �2
f,ω is the same as (2.17). Moreover, we have the central limit theorem,

(2.21)
√

N1+1/d

(
N∑

i=1

f (xi )

KN(xi ,xi )

ω(xi )

q(xi )
−
∫

f (x)μ(dx)

)
law−−−−→

N→∞ N
(
0,�2

f,ω

)
.

Indeed, Theorem 2.3 follows from Theorem 2.2 by taking f ω/q for test function with
f ∈ C and q(x)dx for reference measure.

REMARK 4. From a classical importance sampling perspective, it is surprising that the
limiting variance in (2.21) does not depend on the proposal density q .

In most applications to Bayesian inference, μ is a probability measure, but its density ω

can only be evaluated up to a multiplicative constant. A classical trick is to rely on self-
normalized importance sampling. Theorem 2.4 states a central limit theorem for such an
estimator.

THEOREM 2.4 (Self-normalized importance sampling with OP Ensembles). Let
μ(dx) = ω(x)dx = ωu(x)dx/Z be a reference probability measure on I d with a C 1 density
ω on the open set (−1,1)d . We further assume that μ is supported in I d

ε = [−1 + ε,1 − ε]d .
As in Theorem 2.3, consider a measure q(x)dx satisfying the assumptions of Theorem 2.2,
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let KN(x, y) be the N th Christoffel–Darboux kernel associated with q(x)dx, and x1, . . . ,xN

the associated multivariate OP Ensemble. Finally, for convenience, we let

IN(g) =
N∑

i=1

g(xi )

KN(xi ,xi )

ωu(xi )

q(xi )
, g : I d →R.

Then, for every f ∈ C , we have√
N1+1/d

(
IN(f )/IN(1) −

∫
f (x)μ(dx)

)
law−−−−→

N→∞ N
(
0,�2

f,ω

)
,(2.22)

where

�2
f,ω = �2

f,ω − 2cf,ω

∫
f dμ + �2

1,ω

(∫
f dμ

)2
≥ 0,

and

cf,ω = 1

2

∞∑
k1,...,kd=0

(k1 + · · · + kd)

(̂
f ω

ω⊗d
eq

)
(k1, . . . , kd) ×

(̂
ω

ω⊗d
eq

)
(k1, . . . , kd).

We prove Theorem 2.4 in Section A.5 using the same arguments as for classical importance
sampling [70], Section 7.1.3, but replacing the standard CLT by Theorem 2.3.

2.4. Sampling a multivariate OP Ensemble. For Monte Carlo with DPPs to be a practical
tool, we need to be able to sample realizations of the random variables x1, . . . ,xN with joint
density (2.5). [35] give an algorithm for sampling generic DPPs, which we use here; see also
[49, 58, 69] for more details. In terms of code, a companion Python package to the current
paper is available,1 which implements the OPE sampling described in this section and used
later for the experiments in Section 3. A more efficient implementation of the same OPE
sampling algorithm, along with most known DPP sampling algorithms, can also be found in
the Python package DPPy2 26.

The algorithm is based on the fact that the chain rule for the joint distribution (2.5) is
available as

(2.23)

1

N ! det
[
KN(xi, x�)

]N
i,�=1

N∏
i=1

μ(dxi)

=
N∏

i=1

1

N − i + 1

∥∥PHi−1KN(xi, ·)
∥∥2
L2(μ)μ(dxi).

In (2.23), PH is the orthogonal projection onto a subspace H of L2(μ),

H0 = Span(ϕ0, . . . , ϕN−1),

and Hi−1 is the orthocomplement in H0 of

Span
(
KN(x�, ·),1 ≤ � ≤ i − 1

)
for every i > 1. In particular, all the terms in the product of the RHS of (2.23) are probability
measures [35], Proposition 19. Notice that the factorization (2.23) is the equivalent of the
“base times height” formula that computes the squared volume of the parallelotope generated
by the vectors (ϕ0(xi), . . . , ϕN−1(xi)) for 1 ≤ i ≤ N .

1https://github.com/rbardenet/dppmc
2https://github.com/guilgautier/DPPy

https://github.com/rbardenet/dppmc
https://github.com/guilgautier/DPPy
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Using the normal equations, we can also rewrite each term in the product (2.23)

(2.24)

∥∥PHi−1KN(xi, ·)
∥∥2
L2(μ)

=
{
KN(x1, x1) if i = 1,

KN(xi, xi) − k1:i−1(xi)
T K−1

1:i−1k1:i−1(xi) else,

where

k1:i−1(·) = (
KN(x1, ·), . . . ,KN(xi−1, ·))T

and

K1:i−1 = [
KN(xk, x�)

]
1≤k,�≤i−1.

REMARK 5. Equation (2.24) will be familiar to users of Gaussian processes (GPs; Ras-
mussen and Williams [65]): the unnormalized conditional densities (2.24) are the incremental
posterior variances in a GP model with the same kernel.

REMARK 6. Evaluating (2.24) requires evaluating KN , or equivalently the polynomials
ϕk for k = 0, . . . ,N − 1. This can be efficiently implemented using the three-term recurrence
relations for orthogonal polynomials, when the recurrence coefficients are known; see, for
example, [27], Section 1.3, for whom this recurrence is “arguably the single most important
piece of information for the constructive and computational use of orthogonal polynomials.”

In a nutshell, sampling a multivariate OPE amounts to sampling from each conditional
(2.24) in the chain rule (2.23), one after the other. The only thing left to specify is how we
sample each conditional. In this paper, we propose to sample each conditional by rejection
sampling [67], Section 2.3. This requires proposal densities (qi)1≤i≤N and tight bounds on
the density ratios

(2.25)
‖PHi−1KN(x, ·)‖2

L2(μ)
ω(x)

qi(x)
, 1 ≤ i ≤ N,

when μ(dx) = ω(x)dx. A theorem of Totik, which we recall later as Theorem A.4, gives
light conditions on ω, under which

N

KN(x, x)
→ ω(x)

ωeq(x)
,

uniformly on I d
ε . This suggests choosing

qi(x) = q(x) = ω⊗d
eq (x) =

d∏
j=1

1

π
√

1 − x2
j

1[−1,1](xj ), 1 ≤ i ≤ N.

To bound (2.25), it is enough to bound KN(x, x)ω(x)/ω⊗d
eq (x) since KN is a positive defi-

nite kernel. Obtaining tight bounds is problem-dependent. Interestingly, for Jacobi measures,
these bounds have been an active topic of research and we can use, for example, the bounds
in [28] for our rejection sampling. This means that in practice, we can apply our method in
the classical cases where Gaussian quadrature is applied.

We now discuss the cost of sampling a multivariate OP Ensemble. Without taking into ac-
count the evaluation of orthogonal polynomials nor rejection sampling,3 the number of basic

3The cost of the rejection steps, in particular, depends on the tightness of the bound of (2.25) and would need
further study.
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operations is as much as for Gram–Schmidt orthogonalization of N vectors of dimension N ,
that is of order N3 [32], Section 5.2. This means that Monte Carlo with DPPs is to be used
when the gain in accuracy in Theorem 2.3 is worth spending a cubic computational budget to
obtain the quadrature nodes. Such settings arise in Bayesian inference with expensive mod-
els in the natural sciences, where evaluating the integrand once can easily be a question of
hours or more. Those are the same application areas as discussed for Bayesian quadrature in
Section 1.4.

Additionally, we note that our central limit Theorems 2.2, 2.3 and 2.4 are independent
of the algorithm we use to sample the multivariate OP Ensemble. Should a faster algorithm
come out, this would further augment the applicability of Monte Carlo with DPPs. Fast sam-
pling algorithms are out of the scope of this paper, but there are reasons to think they do
exist. First, when d = 1 and the reference measure is Jacobi (2.18), sampling the OP En-
semble can already be done rejection-free and in time O(N2) by diagonalizing a tridiagonal
random matrix that only requires sampling independent beta variables [42]. Second, some
discrete examples of DPPs can also be sampled in time O(N logN) [52], Chapter 4. Third,
since Monte Carlo with DPPs closely connects with methods such as QMC (Section 1.3) and
Bayesian quadrature (Section 1.4), inspiration could be drawn from fast methods that exist
for these families of algorithms [3, 15, 21].

3. Experimental illustration. In this section, we illustrate Theorems 2.2 and 2.3 with
three toy experiments. In particular, for both CLTs, we investigate how fast the Gaussian limit
appears in each theorem and we estimate the rate of decay of the variance.

3.1. The common setting. We consider OP Ensembles with reference measure the prod-
uct Jacobi measure (2.18) with α1 = β1 = −1/2, and αj , βj drawn i.i.d. uniformly on
[−1/2,1/2] for 1 < j ≤ d . As proposed in Section 2.4, we use ω⊗d

eq for the density of the
proposal in the rejection sampling steps, and the bounds in [28]. For various N ∈ [10,400]
and each dimension d ∈ {1,2,3}, we sample Nrepeat = 100 independent realizations of
{x1, . . . ,xN }. We refer to Section 2.4 for details on the sampling algorithm and references
to implementations.

Figure 2(a) depicts one of the obtained samples when d = 2 and N = 150. Each disk
is centered at a node xi in the sample, and the area of the disk is proportional to the weight
1/KN(xi ,xi ). The marginal plots on each axis depict the marginal histograms of the weighted

FIG. 2. 2(a) A weighted sample of the Jacobi OPE described in Section 3.1. 2(b) The test function (3.1) when
d = 1, along with the proposal and the target used for demonstrating the importance sampling procedure in
Theorem 2.3.
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sample, with a green curve indicating the density of the marginal Jacobi measures corre-
sponding to j = 1,2 in (2.18). Good agreement is observed for the marginals, as expected
from the unbiasedness in (2.12).

We now proceed to investigating the Gaussianity and estimating the variance decay of the
linear statistics in Theorems 2.2 and 2.3, with three integration tasks. All our confidence inter-
vals include a Bonferroni correction to take into account the fact that these three experiments
share the same OPE samples.

3.2. Crude Monte Carlo: Illustrating Theorem 2.2. We define a simple “bump” test func-
tion that is C ∞ on I d = [−1,1]d and vanishes outside I d

ε = [−1 + ε,1 − ε]d ,

(3.1) f (x) = 1Id
ε
(x)

d∏
j=1

exp
(
− 1

1 − ε − x2
j

)
,

so that f ∈ C and thus satisfies the assumptions of Theorem 2.2. We set ε = 0.05 and plot f

for d = 2 in Figure 3(a).
We summarize our results for each dimension d in Figure 4. On each quadrant and for

each N , we plot in black circles the sample variance of

N∑
i=1

f (xi )

KN(xi ,xi)
,

computed over the Nrepeat realizations. Blue and red dots indicate standard confidence inter-
vals, for indication only. For comparison, we also plot in white circles the sample variance
of a standard crude Monte Carlo estimator of the same integral, using i.i.d. samples of the
reference measure.

For a given dimension d , we want to infer the rate of decay of the variance, in order to
confirm the rate in the CLT of Theorem 2.2. We proceed as follows. We first select the values
of N for which the Nrepeat realizations give a p-value larger than 0.05 in a Kolmogorov–
Smirnov test of Gaussianity. This is meant to eliminate the small values of N for which the
Gaussian in the CLT (2.21) is a bad approximation for our samples. We do not claim to
perform any multiple testing, but rather use the p-value as a loose indicator of Gaussianity.
The bottom plot of each quadrant of Figure 4 shows the p-values as a function of N . Note how
Gaussianity is hinted even for small N in d = 1,2, while for d = 3, it takes larger N to kick in.
Then we perform a standard frequentist linear regression on the selected log variances versus

FIG. 3. The two test functions.
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FIG. 4. Summary of the crude Monte Carlo results.

log(N). For visualization, we plot on each quadrant of Figure 4 the maximum likelihood
(MLE) line in green and indicate its slope in the legend. The usual Student-t confidence
intervals for the slope are given in the column of Table 1 labeled Crude MC.

The confidence intervals are in very good agreement with Theorem 2.2 for each dimen-
sion d . The combined plots in Figure 4 hint that the CLT approximation is strikingly accurate
for all d , even for small N . For d = 3, the Gaussianity appears slightly later in terms of N ,
which confirms the intuition that the convergence to a Gaussian is slower when the dimen-
sion increases. Relatedly, the intercept of the various straight lines increases with d , and this
increase seems to be faster for DPPs than crude Monte Carlo. This entails that the value of
N above which OPEs become significantly more efficient than crude Monte Carlo increases
with d .

3.3. Importance sampling: Illustrating Theorem 2.3. We now illustrate the importance
sampling result in Theorem 2.3. As proposal reference measure, we use the OPEs described
in Section 3.1. More precisely, we take q(x)dx in Theorem 2.3 to be the product Jacobi
measure described in Section 3.1. The goal is still to estimate the integral of ϕ in (3.1), but

TABLE 1
Confidence intervals for the variance decay, for all three experiments of Section 3. In bold, we highlight the only

confidence interval that does not contain the corresponding theoretical rate given in the second column

d −1 − 1/d Crude MC Importance sampling Assumption violation

1 −2 [−2.05,−1.92] [−2.13,−1.99] [−2.08,−1.92]
2 −1.5 [−1.55,−1.43] [−1.61,−1.44] [−1.60,−1.42]
3 −1.33 [−1.49,−1.33] [−1.42,−1.16] [−1.24,−1.07]
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this time with respect to a target distribution μ that is a truncated mixture of two Gaussians,
with density

ω(x) = 1

2
exp

[
−‖x − 0.5‖2

(0.3)2

]
+ exp

[
−‖x + 1‖2

(0.5)2

]

with respect to the Lebesgue measure on I d . The target measure μ, the proposal reference
measure and the test function are illustrated in d = 1 in Figure 2(b).

For the sake of shortness, we defer the figure displaying the results of the regression to
Figure 5 in Appendix D. We only report here the resulting confidence intervals on the rate
of decay of the variance, in the column of Table 1 labeled importance sampling. Again, the
confidence intervals are in very good agreement with the CLT in Theorem 2.3.

3.4. An integrand that violates the assumptions of Theorem 2.2. We again copy the set-
ting of Section 3.1, but we change the integrand to

f (x) = d−1‖x‖1.

This test function is plotted in Figure 3(b) for d = 2. It does not belong to the class C that we
authorize in Theorem 2.2: it is not C 1, and it does not vanish at the border of I d . Again, we
defer the display of the regression to Figure 6 in Appendix D, and we limit ourselves here to
the confidence intervals on the slope, which are given in the last column of Table 1. This time,
while the decay of the mean square error is still significantly better than crude Monte Carlo,
the confidence intervals do not all match the conclusion of Theorem 2.2: we have written
in bold the confidence interval for d = 3, which suggests a rate of decay that is slower than
−1 − 1/d . This is a hint that the assumptions of Theorem 2.2 are essentially tight.

4. Discussion and perspectives. As detailed in Remark 3, Monte Carlo with DPPs is
a stochastic counterpart to Gaussian quadrature, introduced in Section 1.1. Compared to the
Monte Carlo methods introduced in Section 1.2, and 1.3, Theorem 2.3 is an importance sam-
pling procedure, with negatively correlated importance samples. This negative correlation
results in a variance reduction that impacts the decay rate of the variance. Loosely speak-
ing, this is reminiscent of the surprising kernel density approach to importance sampling of
[19] described in Section 1.2. Our rates are better for equivalent smoothness in d = 1, but
for d > 1, the theoretical comparison is less clear. In terms of sampling cost, [19] scales
as O(N2) not taking into account the tuning of the kernel parameters. Naively sampling
orthogonal polynomial ensembles is O(N3), without taking rejection sampling into account.
Tackling the cubic cost of sampling DPPs is a natural sequel to our work; see also Section 2.4.

Monte Carlo with DPPs is also reminiscent of randomized quasi-Monte Carlo methods
such as scrambled nets [59], discussed in Section 1.3. The important difference is that ran-
domness and discrepancy are tied in our DPP proposal. The similarities with QMC are an
interesting lead for future research. In particular, fast constructions of nets in QMC [21]
could yield fast sampling algorithms for DPPs.

Monte Carlo with DPPs also connects with Bayesian quadrature, introduced in Section 1.4.
As pointed out in Section 2.4, sampling projection DPPs is related to sequentially maximiz-
ing the variance of a Gaussian process, while Bayesian quadrature is about sequentially min-
imizing the variance of the integral of f when a Gaussian process prior is assumed on f ; see
Section 1.4. A formal connection with Bayesian quadrature would facilitate the transfer of
CLTs such as our Theorem 2.3 to Bayesian quadrature. Conversely, the efficient Frank–Wolfe
optimization procedures given for herding [3, 15] could influence fast sampling algorithms
for DPPs.
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Additionally, theoretical rates have been provided for hybrid integral estimators [14], The-
orem 1, which mix classical Monte Carlo nodes with Bayesian quadrature weights, effectively
reducing the influence of close-by pairs of Monte Carlo samples. Together with [19], the lat-
ter approach uses a kernel to introduce anti-correlation in a postprocessing reweighting step.
In comparison, Monte Carlo with DPPs also uses a kernel to encode repulsiveness, but the
repulsiveness not only appears in the weights: it is embedded in the sampling procedure.

The same reason that sampling and approximation are both encapsulated in the same DPP
object is the major difference with the postprocessing approaches of [50, 57]. With DPPs, we
lose the algorithmic simplicity and often low cost of postprocessing, but we gain a CLT with
weaker, dimension-independent smoothness requirements. Also, our importance reweighted
estimator in Theorem 2.3 bypasses the need to know the moments of the target measure,
which is akin to removing the constraint of knowing the integral of the control approximation
to the integrand in [57]. There are interesting avenues to try to obtain a hybrid algorithm that
would get the best of both worlds.

Finally, we comment on our focus on orthogonal polynomials and projection kernels. Re-
lying on orthogonal polynomials made available technology that we extensively used in the
proofs, such as precise asymptotic results and the use of recurrence coefficients. First, with
slightly stronger estimates, one may allow the reference measure to depend on N , so as to
replace the equilibrium measure μ⊗d

eq by a measure putting less mass on the boundary of the
integration domain. This would prevent part of the quadrature nodes to clutter close to the
boundary of the hypercube. Second, any projection kernel onto an N -dimensional subspace
of L2(μ) yields an appropriate DPP for numerical integration, and orthogonal polynomials
may not be the most natural choice of basis for a given integrand. It is easy to imagine kernels
built on wavelets or other bases of L2(μ), and a clever choice of basis may also yield faster
sampling algorithms, but the difficulty lies in obtaining such variance estimates as we ob-
tained for orthogonal polynomials. Third, one should keep in mind that not every projection
kernel leads to small variance. For instance, the projection kernel onto

Span
(
e2ikπθ : k = 0, . . . ,N − 1

)
yields a DPP on [−1,1] such that Var[∑f (xi )] ∼ N for any odd function of L2(−1,1).
On the positive side, extra complex structure can buy us further variance reduction in even
dimensions for analytic test functions. For instance, one can show along the lines of Sec-
tion B.2, that the projection onto Span(zk : k = 0, . . . ,N − 1) yields a DPP on the unit disc
with Var[∑f (xi )] ∼ 1 instead of N1−1/2 provided the function f is analytic. Fourth, one
may be tempted to use contraction kernels instead of projection kernels, but besides the prob-
lem that the number of points drawn from the DPP becomes random, contraction DPPs are
bound to augment the variance of linear statistics.

To conclude, DPPs are a new way to connect numerical integration with rich analytic tools.

APPENDIX A: PRELIMINARY MATERIAL

In this section, we provide some general background on orthogonal polynomials, we prove
short results and we outline the proofs of the main theorems.

A.1. Orthogonal polynomials and the Nevai class. In the following, we use the equi-
librium measure μeq of I , defined by

(A.1) μeq(dx) = ωeq(x)dx, ωeq(x) = 1

π
√

1 − x2
1I (x).

The name comes from its characterization as the unique minimizer of the logarithmic energy∫∫
log |x−y|−1μ(dx)μ(dy) over Borel probability measures μ on I [68]. It is also the image
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of the uniform measure on the unit circle through the map eiθ �→ x = cos θ . The associated
orthonormal polynomials are the normalized Chebyshev polynomials of the first kind, defined
on I by

(A.2) Tk(cos θ) =
{√

2 cos(kθ) if k ≥ 1,

1 if k = 0,
θ ∈ [0, π].

They satisfy the three-term recurrence relation

(A.3) xTk(x) = a∗
kTk+1(x) + b∗

kTk(x) + a∗
k−1Tk−1(x), k ∈N,

where

(A.4) a∗
k =

⎧⎪⎪⎨
⎪⎪⎩

0 if k = −1,

1/
√

2 if k = 0,

1/2 if k ≥ 1

and b∗
k = 0.

More generally, given a reference measure μ on I with orthonormal polynomials (ϕk), we
always have the three-term recurrence relation

(A.5) xϕk(x) = akϕk+1(x) + bkϕk(x) + ak−1ϕk−1(x), k ∈ N,

where a−1 = 0 and ak > 0 and bk ∈ R for every k ≥ 0. The existence of the recurrence coeffi-
cients (ak)k∈N and (bk)k∈N follows by decomposing the polynomial xϕk into the orthonormal
family (ϕ�)

k+1
�=0 of L2(μ) and observing that 〈xϕk,ϕ�〉 = 〈ϕk, xϕ�〉 = 0 as soon as � < k − 1

by orthogonality.

DEFINITION 1. A measure μ supported on I is Nevai-class if the recurrence coefficients
for the associated orthonormal polynomials satisfy

lim
k→∞ak = 1/2, lim

k→∞bk = 0.

Notice the respective limits of the ak’s and bk’s for Nevai class measures are the recurrence
coefficients (A.4) of the measure μeq when k ≥ 1.

The next theorem gives a sufficient condition for a measure to be Nevai class [72], Theo-
rem 1.4.2.

THEOREM A.1 (Denisov–Rakhmanov). Let μ be a reference measure on I with
Lebesgue decomposition μ(dx) = ω(x)dx + μs . If ω(x) > 0 almost everywhere, then μ

is Nevai-class.

Consider now the Christoffel–Darboux kernel

(A.6) KN(x, y) =
N−1∑
k=0

ϕk(x)ϕk(y),

and notice 1
N

KN(x, x)μ(dx) is a probability measure. One of the interesting properties of
Nevai-class measures is that this probability measure has μeq for weak limit as N → ∞ [75].

THEOREM A.2. Assume μ supported on I is Nevai-class. Then, for every f ∈ C 0(I,R),∫
f (x)

1

N
KN(x, x)μ(dx) −−−−→

N→∞

∫
f (x)μeq(dx).
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Now, consider instead a reference measure μ on I d with associated multivariate orthogonal
polynomials (ϕk)k∈N (see Section 2.1) and Christoffel–Darboux kernel KN(x, y) defined
as in (A.6). Assume further that μ = μ1 ⊗ · · · ⊗ μd is a product of d measures μj on I ,

and denote by ϕ
(j)
k and K

(j)
N (x, y) the respective orthogonal polynomials and Christoffel–

Darboux kernel associated with μj . Then we have

(A.7) ϕk(x) = ϕ
(1)
k1

(x1) · · ·ϕ(d)
kd

(xd),

where (k1, . . . , kd) = b(k). Moreover,

(A.8) KMd (x, y) =
d∏

j=1

K
(j)
M (xj , yj ).

As a consequence, Theorem A.2 easily yields the following.

COROLLARY 1. Let μ = μ1 ⊗ · · · ⊗ μd with μj supported on I and Nevai-class. Then,
for every f ∈ C 0(I d,R),

(A.9)
∫

f (x)
1

N
KN(x, x)μ(dx) −−−−→

N→∞

∫
f (x)μ⊗d

eq (dx).

PROOF. By the Stone–Weierstrass theorem, it is enough to show (A.9) when f (x) =∏d
j=1 fj (xj ) with fj ∈ C 0(I,R). Without loss of generality, one can further assume the

functions fj are non-negative. Let M = �N1/d� be the unique integer satisfying Md ≤ N <

(M + 1)d . Since we have KMd (x, x) ≤ KN(x, x) ≤ K(M+1)d (x, x) and, by (A.8),

Md

N

d∏
j=1

∫
fj (x)

1

M
K

(j)
M (x, x)μj (dx)

≤
∫

f (x)
1

N
KN(x, x)μ(dx)

≤ (M + 1)d

N

d∏
j=1

∫
fj (x)

1

M + 1
K

(j)
M+1(x, x)μj (dx),

(A.10)

Corollary 1 follows from Theorem A.2. �

The next lemma is yet another aspect of Nevai-class measures that is relevant to our proofs,
and may be of independent interest.

LEMMA 1. Assume μ supported on I is Nevai-class. We have the weak convergence of

(A.11) QN(dx, dy) = (x − y)2KN(x, y)2μ(dx)μ(dy)

towards

(A.12) L(dx, dy) = 1

2
(1 − xy)μeq(dx)μeq(dy).

PROOF. First, the Christoffel–Darboux formula reads

(A.13) (x − y)2KN(x, y)2 = a2
N

(
ϕN(x)ϕN−1(y) − ϕN−1(x)ϕN(y)

)2
,

which follows by computing xKN(x, y) using the recurrence relation (A.5) and witness-
ing several cancellations when subtracting yKN(x, y). Thus, by the orthonormality con-
ditions, we see

∫∫
QN(dx, dy) = 2a2

N . Since μ is Nevai-class, the former converges to
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1/2 = ∫∫
L(dx, dy). This allows us to use the usual weak topology (i.e., the topology coming

by duality with respect to the continuous functions) for bounded Borel measures.
Step 1. We first prove the lemma when μ = μeq, so that the ϕk’s are the Chebyshev

polynomials Tk ; see (A.2). By (A.13), the push-forward of (A.11) by the map (x, y) �→
(cos θ, cosη), where θ, η ∈ [0, π], reads

(A.14)
1

π2

{
cos(Nθ) cos

(
(N − 1)η

)− cos((N − 1)θ cos(Nη)
}2 dθ dη.

This measure has for Fourier transform

1

π2

∫ π

0

∫ π

0
ei(θu+ηv){cos(Nθ) cos

(
(N − 1)η

)− cos
(
(N − 1)θ

)
cos(Nη)

}2 dθ dη

= 1

π2

∫ π

0

∫ π

0
cos(θu + ηv)

{
cos(Nθ) cos

(
(N − 1)η

)
− cos

(
(N − 1)θ

)
cos(Nη)

}2 dθ dη.

By developing the square in the integrand and linearizing the products of cosines, we see that
the nonvanishing contribution as N → ∞ of the Fourier transform are the terms which are in-
dependent on N . Indeed, the N -dependent terms come up with a factor 1/N after integration.
Thus, the Fourier transform equals, up to O(1/N), to

1

2π2

∫ π

0

∫ π

0
cos(θu + ηv)(1 − cos θ cosη)dθ dη.

This yields the weak convergence of (A.14) towards (2π2)−1(1 − cos θ cosη)dθ dη, and the
lemma follows, in the case where μ = μeq, by taking the image of the measures by the
inverse map (cos θ, cosη) �→ (x, y).

Step 2. We now prove the lemma for a general Nevai-class measure μ on I . Let us denote
by Q

μ
N the measure (A.11) in order to stress the dependence on μ. Thanks to Step 1, it is

enough to prove that for every m,n ∈ N, we have

lim
N→∞

∣∣∣∣
∫∫

xmynQ
μ
N(dx, dy) −

∫∫
xmynQ

μeq
N (dx, dy)

∣∣∣∣= 0,

in order to complete the proof of the lemma. Recalling (A.11), (A.13), and that aN → 1/2, it
is enough to show that for every m ∈ N,

(A.15) lim
N→∞

∣∣∣∣
∫

xmϕ2
N(x)μ(dx) −

∫
xmT 2

N(x)μeq(dx)

∣∣∣∣= 0

and

(A.16) lim
N→∞

∣∣∣∣
∫

xmϕN(x)ϕN−1(x)μ(dx) −
∫

xmTN(x)TN−1(x)μeq(dx)

∣∣∣∣= 0.

To do so, we first complete for convenience the sequences of recurrence coefficients (an)n∈N
and (bn)n∈N introduced in (A.5) as bi-infinite sequences (an)n∈Z, (bn)n∈Z, where we set
an = bn = 0 for every n < 0. It follows inductively from the three-term recurrence relation
(A.5) that for every k, �,m ∈ N,

(A.17)
∫

xmϕk(x)ϕ�(x)μ(dx) = ∑
γ :(0,k)→(m,�)

∏
e∈γ

ω(e){(an),(bn)},

where the sum ranges over all the paths γ lying on the oriented graph with vertices Z2 and
edges (i, j) → (i + 1, j + 1), (i, j) → (i + 1, j) and (i, j) → (i + 1, j − 1) for (i, j) ∈ Z2,



390 R. BARDENET AND A. HARDY

starting from (0, k) and ending at (m, �). For every edge e of Z2, we introduced the weight
associated with the sequences (an) = (an)n∈Z, (bn) = (bn)n∈Z defined by

(A.18) ω(e){(an),(bn)} =

⎧⎪⎪⎨
⎪⎪⎩

aj if e = (i, j) → (i + 1, j + 1),

bj if e = (i, j) → (i + 1, j),

aj−1 if e = (i, j) → (i + 1, j − 1);
see also [34]. Now, observe that the set of all paths γ satisfying γ : (0, k) → (m, �) only
depends on k, � through |k − �| and is empty as soon as |k − �| > m. Thus it is a finite set,
and moreover, by translation of the indices, for every k, �,m ∈N we have

(A.19)
∫

xmϕk(x)ϕ�(x)μ(dx) = 1|k−�|≤m

∑
γ :(0,k−�)→(m,0)

∏
e∈γ

ω(e){(an+�),(bn+�)}.

In particular (see (A.3)–(A.4)),

(A.20)

∫
xmTk(x)T�(x)μeq(dx)

= 1|k−�|≤m

∑
γ :(0,k−�)→(m,0)

∏
e∈γ

ω(e){(a∗
n+�),(b

∗
n+�)}.

Finally, by combining (A.19) and (A.20), we obtain∣∣∣∣
∫

xmϕk(x)ϕ�(x)μ(dx) −
∫

xmTk(x)T�(x)μeq(dx)

∣∣∣∣
≤ ∑

γ :(0,k−�)→(m,0)

∣∣∣∣∏
e∈γ

ω(e){(an+�),(bn+�)} − ∏
e∈γ

ω(e){(a∗
n+�),(b

∗
n+�)}

∣∣∣∣.
(A.21)

Together with the Nevai-class assumption for μ, which states that an−a∗
n → 0 and bn−b∗

n →
0 as n → ∞, it follows that (A.15) and (A.16) hold true by taking k = � = N , or k = N and
� = N − 1, in (A.21). This completes the proof of Lemma 1. �

A.2. Sketch of the proof of Theorem 2.1.

A.2.1. Reduction to probability reference measures. First, in the statement of Theo-
rem 2.1, we can assume the reference measure μ is a probability measure without loss of
generality. This will simplify notation in the proof of Theorem 2.1.

Indeed, for any positive measure μ on Id with (multivariate) orthonormal polynomials ϕk

and any α > 0, the orthonormal polynomials associated with αμ are ϕk/
√

α. Thus, if we
momentarily denote by KN(μ;x, y) the N th Christoffel–Darboux kernel associated with a
measure μ, we have KN(αμ;x, y) = KN(μ;x, y)/α. As a consequence, for every n ≥ 1, the
correlation measures

det
[
KN(μ;xi, x�)

]n
i,�=1

n∏
i=1

μ(dxi),

remain unchanged if we replace μ by αμ for any α > 0. Hence, multivariate OP Ensembles
are invariant under μ �→ αμ.

A.2.2. Soshnikov’s key theorem. As stated previously, Theorem 2.1 has already been
proven when d = 1 by [13], as a consequence of a generalized strong Szegő theorem they
obtained. The difficulty in proving Theorem 2.1 when d ≥ 2 turns out to be of different na-
ture than the one-dimensional setting. Indeed, the next result due to Soshnikov essentially
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states that the cumulants of order three and more of the linear statistic
∑

f (xi ) decay to zero
as N → ∞ as soon as its variance goes to infinity, and we will show the variance indeed
diverges when d ≥ 2. Thus, a CLT follows easily as soon as one can obtain asymptotic esti-
mates on the variance. However, if obtaining such variance estimates is relatively easy when
d = 1, the task becomes more involved in higher dimension.

More precisely, the general result [74], Theorem 1, has the following consequence.

THEOREM A.3 (Soshnikov). Let x1, . . . ,xN form a multivariate OP Ensemble with re-
spect to a given reference measure μ on I d . Consider a sequence (fN) of uniformly bounded
and measurable real-valued functions on I d satisfying, as N → ∞,

(A.22) Var

[
N∑

i=1

fN(xi )

]
−→ ∞,

and, for some δ > 0,

(A.23) E

[
N∑

i=1

∣∣fN(xi )
∣∣]= O

(
Var

[
N∑

i=1

fN(xi )

]δ)
.

Then we have ∑N
i=1 fN(xi ) −E[∑N

i=1 fN(xi )]√
Var[∑N

i=1 fN(xi )]
law−−−−→

N→∞ N (0,1).

A.2.3. Variance asymptotics. In order to prove Theorem 2.1, it is enough to show the
following asymptotics.

PROPOSITION 3. Assume μ and x1, . . . ,xN satisfy the hypothesis of Theorem 2.1. Then,
for every f ∈ C 1(I d,R), we have

(A.24) lim
N→∞

1

N1−1/d
Var

[
N∑

i=1

f (xi )

]
= σ 2

f .

Indeed, for any d ≥ 2 and any f ∈ C 1(I d,R), Corollary 1 and Proposition 3 imply (A.22)
and (A.23) with fN = f and δ = d/(d − 1). Thus, we can apply Theorem A.3 to obtain
Theorem 2.1.

Proposition 3 is the main technical result of this work. Consider the d-fold product of the
equilibrium measure (A.1), namely the probability measure on Id given by

(A.25) μ⊗d
eq (dx) = ω⊗d

eq (x)dx, ω⊗d
eq (x) =

d∏
j=1

1

π
√

1 − x2
j

1Id (x).

In our proof of Proposition 3, we start by investigating the limit (A.24) when μ = μ⊗d
eq ,

since algebraic identities are available for this reference measure. Then we use comparison
estimates to prove (A.24) in the general case.

A.3. A proof for the upper bound on the limiting variance. As stated in Proposition 1,
one can bound the limiting variance σ 2

f by a Dirichlet energy. Besides providing some control

on the amplitude of σ 2
f , we will need this inequality in the proof of Proposition 3. We now

give a proof for this proposition.
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PROOF OF PROPOSITION 1. Let μsc(dx) = π−1
√

1 − x21I (x)dx be the semi-circle
measure. The associated orthonormal polynomials are the so-called Chebyshev polynomi-
als of the second kind

Uk(cos θ) = √
2

sin((k + 1)θ)

sin θ
.

For any 1 ≤ j ≤ d , define the measure

νj (dx) = μeq(dx1) · · ·μeq(dxj−1)μsc(dxj )μeq(dxj+1) · · ·μeq(dxd),

so that the RHS of (2.9) becomes

1

2

d∑
j=1

∫
Id

(
∂jf (x)

)2
νj (dx).

For any k = (k1, . . . , kd) ∈ Nd , set Tk(x) = Tk1(x1) · · ·Tkd
(xd), where Tk are the Chebyshev

polynomials (A.2), and let

V
j

k (x) = Tk1(x1) · · ·Tkj−1(xj−1)Ukj
(xj )Tkj+1(xj+1) · · ·Tkd

(xd).

Thus, (Tk)k∈Nd and (V
j

k )k∈Nd , respectively, form an orthonormal Hilbert basis of L2(μ⊗d
eq )

and L2(νj ). Let f ∈ C 1(I d,R), so that f =∑
k∈Nd f̂ (k)Tk where f̂ (k) is as in (2.8). Using

the identity T ′
k = kUk−1, it comes

∂jf (x) = ∑
k∈Nd

kj f̂ (k)V
j

k (x).

Then Parseval’s identity in L2(νj ) yields∫
Id

(
∂jf (x)

)2
νj (dx) = ∑

k∈Nd

k2
j f̂ (k)2.

Summing over 1 ≤ j ≤ d , the RHS of (2.9) equals

(A.26)
1

2

d∑
j=1

∫
Id

(
∂jf (x)

)2
νj (dx) = 1

2

∑
k∈Nd

(
k2

1 + · · · + k2
d

)
f̂ (k)2,

from which Proposition 1 easily follows. �

A.4. Assumptions of Theorem 2.2 and outline of the proof. We now discuss the as-
sumptions and proof of Theorem 2.2.

Assume the reference measure μ is a product of d measures on I , and also that μ has a
density ω. Then Corollary 1 suggests that, as N → ∞,

(A.27)
N

KN(x, x)
≈ ω(x)

ω⊗d
eq (x)

.

This heuristic would yield for the variance of the estimator (2.11),

(A.28) Var

[
N∑

i=1

f (xi )

KN(xi ,xi )

]
≈ 1

N2Var

[
N∑

i=1

f (xj )
ω(xj )

ω⊗d
eq (xj )

]
≈ �2

f,ω

N1+1/d
,

where for the last approximation we used Proposition 3 with test function f ω/ω⊗d
eq , recalling

�f,ω was defined in (2.17). This would essentially yield the CLT in Theorem 2.2 by applying
Theorem A.3 to fN(x) = Nf (x)/KN(x, x). To make the approximation (A.28) rigorous, we
will need extra regularity assumptions on μ.

First, regarding the approximation (A.27), we have the following result.
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THEOREM A.4 (Totik). Assume μ(dx) = ω(x)dx with ω(x) = ω1(x1) · · ·ωd(xd), and
that ωj is continuous and positive on I . Then, for every ε > 0, we have

(A.29)
N

KN(x, x)
−−−−→
N→∞

ω(x)

ωeq(x)

uniformly for x ∈ I d
ε .

For a proof of Theorem A.4 when d = 1, see [72], Section 3.11, and references therein.
The case d ≥ 2 follows by the same arguments as in the proof of Corollary 1.

REMARK 7. It is because of Theorem A.4 that we restrict C 1(I d,R) to the class C
defined in (2.13) in the assumptions of Theorem 2.2. Unfortunately, there are examples of
reference measures μ on I such that the convergence (A.29) is not uniform on the whole
of I . However, in order to extend C to C 1(I d,R) in the statement of Theorem 2.2, it would
be enough to have supx∈Id

εN
|N/KN(x, x)−ω(x)/ω⊗d

eq (x)| → 0 for some sequence εN going

to zero as N → ∞, but we were not able to locate such a result in the literature.

Next, the first approximation in (A.28) requires a control on the rate of change of
N/KN(x, x). To this end, we introduce an extra assumption on the reference measure μ.
More precisely, let us denote

(A.30) DN(x, y) = N/KN(x, x) − N/KN(y, y)

‖x − y‖ ,

and further consider the sequence of measures on I d × I d

(A.31) QN(dx, dy) = 1

N1−1/d
‖x − y‖2KN(x, y)2μ(dx)μ(dy).

Our extra assumption on μ is then the following.

ASSUMPTION 1. The measure μ satisfies

(A.32)
lim

C→∞ lim sup
δ→0

lim sup
N→∞

∫∫
Id
ε ×Id

ε ,‖x−y‖≤δ
1|DN(x,y)|>CDN(x, y)2

× QN(dx, dy) = 0.

In plain words, this means the squared rate of change DN(x, y)2 is uniformly integrable
with respect to the measures QN , at least on the restricted domain where ‖x − y‖ is small
enough and where x and y are not allowed to reach the boundary of I d .

REMARK 8. When d = 1, Lemma 1 states that if μ is Nevai-class then QN converges
weakly as N → ∞ towards

L(dx, dy) = 1

2π2

1 − xy√
1 − x2

√
1 − y2

1I×I (x, y)dx dy.

Because the density of L is smooth within Iε × Iε for every ε > 0, one may at least heuris-
tically understand that (A.32) reduces to the uniform integrability of DN(x, y)2 with respect
to the Lebesgue measure instead. In higher dimension, a similar guess can be made, but we
do not pursue this reasoning here.

We now discuss sufficient conditions for (A.32) to hold true.
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REMARK 9. Since, for any κ > 0, we have

1|DN(x,y)|>CDN(x, y)2 ≤ 1

Cκ

∣∣DN(x, y)
∣∣2+κ

,

we see that condition (A.32) holds true as soon as, for every ε > 0, there exists κ, δ > 0
satisfying

lim sup
N→∞

∫∫
Id
ε ×Id

ε ,‖x−y‖≤δ

∣∣DN(x, y)
∣∣2+κ

QN(dx, dy) < ∞.

Namely, condition (A.32) is satisfied if the L2+κ(QN) norm of the rate of change of
N/KN(x, x) is bounded, at least on the restricted domain where ‖x − y‖ is small enough
and x, y away from the boundary of I d .

The following assumption, which appears in Theorems 2.2 to 2.4, is much stronger than
Assumption 1, but it is easier to check in practice.

ASSUMPTION 2. The measure μ satisfies:

(a) μ(dx) = ω(x)dx with ω positive and continuous on (−1,1)d .
(b) For every ε > 0, the sequence

1

N
sup
x∈Id

ε

∥∥∇KN(x, x)
∥∥

is bounded.

Indeed, thanks to the rough upper bound∣∣DN(x, y)
∣∣≤ sup

x∈Id
ε

∥∥∇(N/KN(x, x)
)∥∥, x, y ∈ 1Id

ε
,

we see that Assumption 1 holds true as soon as for every ε > 0, supx∈Id
ε

‖∇(N/KN(x, x))‖
is bounded. Under Assumption 2(a), the latter follows from Assumption 2(b). Indeed, Theo-
rem A.4 and Assumption 2(a) together yield that for every ε > 0, there exists c > 0 indepen-
dent of N such that 1

N
KN(x, x) > c for every x ∈ Id

ε .
We conclude this section by proving that Jacobi measures (2.18) satisfy Assumption 2,

which proves our Proposition 2. We start with a general lemma.

LEMMA 2. Assume the measures μ1, . . . ,μd on I satisfy Assumption 2. Then the mea-
sure μ1 ⊗ · · · ⊗ μd on I d satisfies Assumption 2.

PROOF. We decompose the set �N = {b(0), . . . ,b(N − 1)} ⊂ Nd in a convenient way.
To do so, set σj (k) = (k1, . . . , kj−1, kj+1, . . . , kd) and say that k ∼ � if and only if σj (k) =
σj (�), that is, they have same coordinates except maybe the j th one. We denote by [k] the
equivalence class under this relation. Set Nj([k]) = max{�j : � ∈ [k] ∩ �N }. Using the nota-
tion introduced in (A.7) and (A.8), it comes

∂jKN(x, x) = 2
b(N−1)∑
k=b(0)

ϕ
(j)
kj

(xj )
d

dxj

ϕ
(j)
kj

(xj )
∏
α 
=j

ϕ
(α)
kα

(xα)2

= 2
∑

[k]∈�N/∼

∏
α 
=j

ϕ
(α)
kα

(xα)2
Nj ([k])∑
kj=0

ϕ
(j)
kj

(xj )
d

dxj

ϕ
(j)
kj

(xj )(A.33)

= ∑
[k]∈�N/∼

∏
α 
=j

ϕ
(α)
kα

(xα)2 d

dxj

[
K

(j)

Nj ([k])+1(xj , xj )
]
.
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Let now ε > 0. Since μj satisfies Assumption 2, there exists C > 0 such that for all x ∈ Iε

and n ∈N, ∣∣∣∣ d

dx

[
K(j)

n (x, x)
]∣∣∣∣≤ Cn.

Let M = �N1/d�, so that �N ⊂ CM+1, see (2.6). Thus, Nj([k]) ≤ M for all k ∈ �N . By
(A.33), ∣∣∂jKN(x, x)

∣∣ ≤ C(M + 1)
∑

[k]∈�N/∼

∏
α 
=j

ϕ
(α)
kα

(xα)2

≤ C(M + 1)
∑

[k]∈CM+1

∏
α 
=j

ϕ
(α)
kα

(xα)2

= C(M + 1)
∏
α 
=j

K
(α)
M+1(xα, xα).

Hence

1

N

∣∣∂jKN(x, x)
∣∣≤ C

M + 1

M

∏
α 
=j

1

M
K

(α)
M+1(xα, xα),

and the lemma follows with Theorem A.4. �

LEMMA 3. Let α,β > −1, then the measure

(1 − x)α(1 + x)β1I (x)dx

satisfies Assumption 2.

PROOF. Let ε > 0 be fixed. For convenience, Section A.2.1 allows us to work with the
probability measure

μ(α,β)(dx) = ω(α,β)(x)dx, ω(α,β)(x) = 1

cα,β

(1 − x)α(1 + x)β,

where the normalization constant reads

cα,β = 2α+β+1 �(α + 1)�(β + 1)

�(α + β + 1)

and � is the Euler Gamma function.
Denote by (ϕ

(α,β)
n )n∈N the associated orthonormal polynomials. They satisfy

ϕ(α,β)
n (x) = P

(α,β)
n (x)√
h

(α,β)
n

,

where the P
(α,β)
n ’s are the Jacobi polynomials (we refer to [76] for definitions and properties)

and

h(α,β)
n = ∥∥P (α,β)

n

∥∥2
L2(μ(α,β))

= 1

n!(α + β + 2n + 1)

�(α + β + 1)�(α + n + 1)�(β + n + 1)

�(α + 1)�(β + 1)�(α + β + n + 1)
,
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and moreover

(A.34)

(
ϕ(α,β)

n

)′ = uα,β

2

√
n(n + α + β + 1)ϕ

(α+1,β+1)
n−1 ,

uα,β =
√

(α + β + 1)(α + β + 2)

(α + 1)(β + 1)
.

This yields

d

dx
KN(x, x) = 2

N−1∑
k=1

ϕ
(α,β)
k (x)

(
ϕ

(α,β)
k

)′
(x)

= uα,β

N−1∑
k=1

√
k(k + α + β + 1)ϕ

(α,β)
k (x)ϕ

(α+1,β+1)
k−1 (x).

(A.35)

By [45], we have as k → ∞, uniformly in x = cos θ ∈ Iε ,

(A.36)
ϕ

(α,β)
k (cos θ) =

√
2

ω(α,β)(x)π
√

1 − x2
cos

((
k + 1

2
(α + β + 1)

)
θ

− π

2

(
α + 1

2

))
+ O(1/k).

As a consequence, we obtain in the same asymptotic regime,

(A.37)
ϕ

(α+1,β+1)
k−1 (cos θ) =

√
2

ω(α,β)(x)π
√

1 − x2
sin
((

k + 1

2
(α + β + 1)

)
θ

− π

2

(
α + 1

2

))
+ O(1/k).

Now (A.36) implies that the P
(α,β)
k (x)’s are bounded uniformly for x ∈ I and k ∈ N. Using

moreover that 2 sin(u) cos(u) = sin(2u) and combining (A.35)–(A.37), we obtain for some
C1,C2 > 0 that

sup
x∈Iε

∣∣∣∣ d

dx
KN(x, x)

∣∣∣∣≤ C1 sup
x∈Iε

∣∣∣∣∣
N−1∑
k=1

k sin
(
(2k + α + β + 1)θ − π

(
α + 1

2

))∣∣∣∣∣+ C2,

where we recall the relation x = cos θ . Next, we write∣∣∣∣∣
N−1∑
k=1

k sin
(
(2k + α + β + 1)θ − π

(
α + 1

2

))∣∣∣∣∣≤
∣∣∣∣∣
N−1∑
k=1

kei((2k+α+β+1)θ−π(α+ 1
2 ))

∣∣∣∣∣
1/2

and then
N−1∑
k=1

kei((2k+α+β+1)θ−π(α+ 1
2 ))

= ei((α+β+1)θ−π(α+ 1
2 ))

N−1∑
k=1

ke2ikθ

= 1

2i
ei((α+β+1)θ−π(α+ 1

2 )) d

dθ

N−1∑
k=0

e2ikθ

= 1

2i
ei((α+β+1)θ−π(α+ 1

2 )) d

dθ

(
ei(N−1)θ sin(Nθ)

sin(θ)

)
.

(A.38)
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Since the absolute value of the right-hand side of (A.38) is bounded by CN/ sin2(θ) for some
C > 0 independent on N and θ , the lemma follows. �

Lemmas 2 and 3 combined yield Proposition 2.

A.5. Proof of Theorem 2.4.

PROOF OF THEOREM 2.4. We proceed in two steps. The first step is to prove a bivariate
CLT for the vector (IN(f ),IN(1)), and the second step is to apply the delta method to
obtain a central limit theorem for the ratio.

Let t, v ∈R. We apply Theorem 2.3 to tf + vh, where h is any function in C that is equal
to 1 on I d

ε . This leads to

√
N1+1/d

(
tIN(f ) + vIN(1) − t

∫
f ωu dx − vZ

)
→ N

(
0,Z2�2

tf +vh,ω

)
,

where

�2
tf +vh,ω = t2�2

f,ω + v2�2
1,ω + 2tvcf,ω.

By the Crámer–Wold theorem [41], Corollary 5.5, we obtain a bivariate CLT

√
N1+1/d

⎡
⎣(IN(f )

IN(1)

)
−
⎛
⎝
∫

f ωu dx

Z

⎞
⎠
⎤
⎦→ N

(
0,Z2

(
�2

f,ω cf,ω

cf,ω �2
1,ω

))
.

Now we apply the delta method [70], Section 7.1.3, to obtain

√
N1+1/d

[
IN(f )

IN(1)
−
∫

f dμ

]

→ N

⎛
⎜⎜⎝0,Z2

(
1

Z
−
∫

f ωu dx

Z2

)(
�2

f,ω cf,ω

cf,ω �2
1,ω

)⎛⎜⎜⎝
1

Z

−
∫

f ωu dx

Z2

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ,

which is precisely (2.22). �

APPENDIX B: CLT FOR MULTIVARIATE OP ENSEMBLES:
PROOF OF THEOREM 2.1

In this section, we prove Proposition 3. As explained in Section A.2, Theorem 2.1 follows
from this proposition.

B.1. A useful representation of the covariance.

LEMMA 4. Let x1, . . . ,xN be random variables drawn from a multivariate OP Ensemble
with reference measure μ. For any multivariate polynomials P , Q, we have

Cov

[
N∑

i=1

P(xi ),

N∑
i=1

Q(xi )

]
=

N−1∑
n=0

∞∑
m=N

〈Pϕn,ϕm〉〈Qϕn,ϕm〉,

where 〈·, ·〉 refers to the scalar product of L2(μ).
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PROOF. We start from the standard formula

Cov

[
N∑

i=1

P(xi ),

N∑
j=1

Q(xi )

]

=
∫

P(x)Q(x)KN(x, x)μ(dx)

−
∫∫

P(x)Q(y)KN(x, y)2μ(dx)μ(dy),

(B.1)

which follows from (2.1)–(2.3) with n = 1,2 and that KN(x, y) is symmetric. On the one
hand, it follows from the definition of KN that

(B.2)
∫∫

P(x)Q(y)KN(x, y)2μ(dx)μ(dy) =
N−1∑
n=0

N−1∑
m=0

〈Pϕn,ϕm〉〈Qϕn,ϕm〉.

On the other hand, by using the decomposition (where the sum is finite since P is polynomial)

Pϕn =
∞∑

m=0

〈Pϕn,ϕm〉ϕm

together with the identity

∫
P(x)Q(x)KN(x, x)μ(dx) =

N−1∑
n=0

〈Pϕn,Qϕn〉,

we obtain

(B.3)
∫

P(x)Q(x)KN(x, x)μ(dx) =
N−1∑
n=0

∞∑
m=0

〈Pϕn,ϕm〉〈Qϕn,ϕm〉.

Lemma 4 then follows by combining (B.1), (B.2) and (B.3). �

B.2. Covariance asymptotics: The Chebyshev case. We first investigate the case of the
product measure μ⊗d

eq , where μeq defined in (A.1) is the equilibrium measure of I . Recalling
the definition (A.2), the multivariate Chebyshev polynomials

(B.4) Tk(x1, . . . , xd) = Tk1(x1) · · ·Tkd
(xd), k = (k1, . . . , kd) ∈ Nd,

satisfy the orthonormality conditions∫
Tk(x)T�(x)μ⊗d

eq (dx) = δk�, k,� ∈ Nd .

We shall see that the family (Tk)k∈Nd diagonalizes the covariance structure associated with
our point process.

PROPOSITION 4. Let x∗
1, . . . ,x∗

N be drawn according to the multivariate OP Ensem-
ble associated with μ⊗d

eq . Then, given any multi-indices k = (k1, . . . , kd) ∈ Nd and � =
(�1, . . . , �d) ∈ Nd , we have

lim
N→∞

1

N1−1/d
Cov

[
N∑

i=1

Tk

(
x∗
i

)
,

N∑
i=1

T�
(
x∗
i

)]=
⎧⎨
⎩

1

2
(k1 + · · · + kd) if k = �,

0 if k 
= �.
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As a warm-up, let us first prove the proposition when d = 1.

PROOF OF PROPOSITION 4 WHEN d = 1. Throughout this proof, 〈·, ·〉 denotes the inner
product in L2(μ⊗d

eq ). For every k, � ∈ N, Lemma 4 provides

(B.5) Cov

[
N∑

i=1

Tk

(
x∗
i

)
,

N∑
i=1

T�

(
x∗
i

)]=
N−1∑
n=0

∞∑
m=N

〈TkTn, Tm〉〈T�Tn, Tm〉.

First, notice that if k or � is zero, then the right-hand side of (B.5) vanishes because 〈Tn,Tm〉 =
δnm, and hence we can assume both k, � are nonzero. Next, (A.2) yields the multiplication
formula

(B.6) TkTn = 1√
2
Tn+k1kn
=0 +

(
1√
2

)1nk 
=01n
=k

T|n−k|, k, n ∈ N.

Combined with the orthonormality relations, this yields for any n,m ∈ N and k > 0

(B.7) 〈TkTn, Tm〉 = 1√
2

1n+k=m1n
=0 +
(

1√
2

)1n
=01n
=k

1|n−k|=m.

Hence, if n,m ∈ N moreover satisfy n < m and m > max(k, �), then we have

(B.8) 〈TkTn, Tm〉〈T�Tn, Tm〉 = 1

2
1n
=01n+k=m1�+n=m.

By plugging (B.8) into (B.5), we obtain for every N > max(k, �),

Cov

[
N∑

i=1

Tk

(
x∗
i

)
,

N∑
i=1

T�

(
x∗
i

)]= 1

2

N−1∑
n=1

∞∑
m=N

1k+n=m1�+n=m

= 1

2
k1k=�,

and the proposition follows when d = 1. �

We now provide a proof for the higher-dimensional case. We also use the multiplication
formula (B.6) in an essential way, although the setting is more involved. We recall that we
introduced the bijection b : N → Nd associated with the graded lexicographic order in Sec-
tion 2.1.3.

PROOF OF PROPOSITION 4 WHEN d ≥ 2. Fix multi-indices k = (k1, . . . , kd) ∈ Nd and
� = (�1, . . . , �d) ∈ Nd , and also set

S = {j : kj 
= 0}, S′ = {j : �j 
= 0}.
Thanks to Lemma 4, we can write

(B.9) Cov

[
N∑

i=1

Tk

(
x∗
i

)
,

N∑
i=1

T�
(
x∗
i

)]= ∑
(n,m)∈AN

〈TkTn, Tm〉〈T�Tn, Tm〉,

where we introduced for convenience the set

(B.10) AN = {
(n,m) ∈ Nd ×Nd : n ≤ b(N − 1),m ≥ b(N)

}
.
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Next, using (B.4), the orthonormality relations for the Chebyshev polynomials and (B.7), we
obtain

〈TkTn, Tm〉 = 〈Tk1Tn1, Tm1〉L2(μeq)
· · · 〈Tkd

Tnd
, Tmd

〉L2(μeq)
(B.11)

=
(∏

j /∈S

1nj=mj

) ∑
P⊂S

(
1√
2

)|P |+|{j∈S\P :nj 
=0,nj 
=kj }|

×
(∏

j∈P

1nj+kj=mj
1nj 
=0

)( ∏
j∈S\P

1|nj−kj |=mj

)
,(B.12)

where |A| stands for the cardinality of the set A.
First, notice that if S 
= S′ then the right-hand side of (B.9) vanishes. Indeed, if S 
= S′,

then there exists α ∈ {1, . . . , d} such that kα = 0 and �α 
= 0 (or the other way around, but the
argument is symmetric). It then follows from (B.12) that 〈TkTn, Tm〉 vanishes except if nα =
mα , and moreover that 〈T�Tn, Tm〉 vanishes except if |nα ± �α| = mα . Since �α 
= 0, it holds
〈TkTn, Tm〉〈T�Tn, Tm〉 = 0 for every (n,m) ∈ Nd × Nd , and our claim follows. Moreover,
because (n,m) ∈ AN yields the existence of α ∈ {1, . . . , d} such that nα < mα , one can see
from (B.11) that 〈TkTn, Tm〉 vanishes for every (n,m) ∈ AN if k = (0, . . . ,0). We henceforth
assume that S = S′ 
= ∅, for the covariance not to be trivial.

By combining (B.9) with (B.12), we obtain

Cov

[
N∑

i=1

Tk

(
x∗
i

)
,

N∑
i=1

T�
(
x∗
i

)]= ∑
P,Q⊂S

∑
(n,m)∈AN [P,Q]

(
1√
2

)σ [P,Q](n)

,

where we introduced the subsets

AN [P,Q] =
{
(n,m) ∈AN

∣∣∣∣ nj + kj = mj,

nj + �j = mj,

nj 
= 0,

nj 
= 0,

if j ∈ P

if j ∈ Q

|nj − kj | = mj,

|nj − �j | = mj,

if j ∈ S \ P

if j ∈ S \ Q
nj = mj, if j /∈ S

}(B.13)

and set for convenience

σ [P,Q](n) = |P | + |Q| + ∣∣{j ∈ S \ P : nj 
= 0, nj 
= kj }
∣∣

+ ∣∣{j ∈ S \ Q : nj 
= 0, nj 
= �j }
∣∣.(B.14)

Notice from (B.13) if kα = �α 
= 0 and AN [P,Q] 
= ∅ then necessarily α ∈ P ∩ Q or
α ∈ (S \ P) ∩ (S \ Q). In particular, if k = � then AN [P,Q] = ∅ unless P = Q. Thus,

Cov

[
N∑

i=1

Tk

(
x∗
i

)
,

N∑
i=1

T�
(
x∗
i

)]= 1k=�

∑
P⊂S

∑
(n,m)∈AN [P,P ]

(
1√
2

)σ [P,P ](n)

+ 1k 
=�

∑
P,Q⊂S

∑
(n,m)∈AN [P,Q]

(
1√
2

)σ [P,Q](n)

.

(B.15)

Our goal is now to show that for every P,Q ⊂ S the following holds true. As N → ∞, if we
assume k = �, then

∑
(n,m)∈AN [P,P ]

(
1√
2

)σ [P,P ](n)

=
(

1

2

)|S|(∑
j∈P

kj

)
N1−1/d + o

(
N1−1/d),(B.16)

and, if instead k 
= �, then

(B.17)
∣∣AN [P,Q]∣∣= o

(
N1−1/d).
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Since an easy rearrangement argument together with the definition of S yield∑
P⊂S

(∑
j∈P

kj

)
= 1

2

∑
P⊂S

(∑
j∈S

kj

)

=
(∑

j⊂S

kj

)
2|S|−1 =

(
d∑

j=1

kj

)
2|S|−1,

Proposition 4 would then follow from (B.15)–(B.17).
We now turn to the proof of (B.16) and (B.17).

Truncated sets and consequences. Given distinct α1, . . . , αp ∈ {1, . . . , d}, we introduce
the truncated sets

AN [P,Q;α1, . . . , αp]
=AN [P,Q] ∩ {nα1 ≤ max(kα1, �α1)

}∩ · · · ∩ {nαp ≤ max(kαp , �αp)
}
.

(B.18)

By definition of b and AN , if N = Md , then AMd = CM × (Nd \ CM) where we recall

(B.19) CM = {
n ∈ Nd : 0 ≤ n1, . . . , nd ≤ M − 1

}
.

Moreover, if for an arbitrary N we denote by M = �N1/d� the integer satisfying Md ≤ N <

(M + 1)d , then b(N) ∈ CM+1, and thus, for any (n,m) ∈ AN , we have n ∈ CM+1. As a
consequence, for every P,Q ⊂ S, we have the rough upper bound |AN [P,Q;α1, . . . , αp]| =
O(Md−p). In particular,

(B.20)
∣∣AN [P,Q;α1, . . . , αp]∣∣= o

(
N1−1/d) for every p ≥ 2.

In order to restrict ourselves to the easier setting where N is a power of d , we will use the
following lemma. Its proof uses in a crucial way the graded lexicographic order we chose to
equip Nd with, and it is deferred to the end of the present proof.

LEMMA 5. Assume k = �. For every P ⊂ S, α ∈ S \ P and for every N > max(kd
1 , . . . ,

kd
d ), we have:

(a) |AN [P,P ]| ≤ |AN+1[P,P ]|,
(b) |AN [P,P ;α]| ≤ |AN+1[P,P ;α]|.
Proof of (B.16). Assume k = �. As a consequence of Lemma 5 (a), if we set M = �N1/d�

then we have for every N large enough

∑
(n,m)∈A

Md [P,P ]

(
1√
2

)σ [P,P ](n)

≤ ∑
(n,m)∈AN [P,P ]

(
1√
2

)σ [P,P ](n)

≤ ∑
(n,m)∈A

(M+1)d
[P,P ]

(
1√
2

)σ [P,P ](n)

.

Thus, it is enough to prove that, as M → ∞,

∑
(n,m)∈A

Md [P,P ]

(
1√
2

)σ [P,P ](n)

=
(

1

2

)|S|(∑
j∈P

kj

)
Md−1 + o

(
Md−1),(B.21)

in order to establish (B.16). To do so, for any P ⊂ S and α ∈ S \ P , we set

A∗
Md [P ] = AMd [P,P ] ∩ {nj > kj for all j ∈ S \ P },(B.22)

A∗
Md [P ;α] = AMd [P,P ;α] ∩ {nj > kj for all j ∈ S \ (P ∪ {α})},(B.23)

and use the following lemma; its proof is deferred to the end of the actual proof.
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LEMMA 6. Assume k = �. For every P ⊂ S and α ∈ S \ P , we have as M → ∞,
∣∣A∗

Md [P ]∣∣= (∑
j∈P

kj

)
Md−1 + o

(
Md−1),(B.24)

∣∣A∗
Md [P ;α]∣∣= o

(
Md−1).(B.25)

Next, as a consequence of the rough upper bound (B.20) and (B.25), we can write∣∣AMd [P,P ]∣∣= ∣∣AMd [P,P ] ∩ {nα > kα for all α ∈ S \ P }∣∣
+ ∣∣AMd [P,P ] ∩ {nα ≤ kα for at least one α ∈ S \ P }∣∣

= ∣∣A∗
Md [P ]∣∣+ ∑

α∈S\P

∣∣A∗
Md [P ;α]∣∣+ o

(
Md−1)

= ∣∣A∗
Md [P ]∣∣+ o

(
Md−1).

(B.26)

Since for any (n,m) ∈ A∗
Md [P ] we have σ [P,P ](n) = 2|S|, see (B.14) and (B.22), the esti-

mate (B.21) follows from (B.26) and (B.24), and the proof of (B.16) is therefore complete.

Proof of (B.17). Assume now that k 
= �. Since k and � have the same zero components, it
follows that neither kα nor �α is zero. Thus, (B.13) yields that if kα 
= �α and AN [P,Q] 
=∅,
then either α ∈ P ∩ (S \ Q) or α ∈ Q ∩ (S \ P), and moreover, for any (n,m) ∈ AN [P,Q],
we have

2nα = |kα − �α|, 2mα = kα + �α.

In particular, AMd [P,Q] = AMd [P,Q;α]. Thus, by virtue of the rough upper bound (B.20),
we can assume in the proof of (B.17) that k and � differ by exactly one coordinate, namely
there exists α ∈ {1, . . . , d} such that kα 
= �α and kj = �j for every j 
= α. In this setting,
AN [P,Q] 
= ∅ then yields P \ {α} = Q \ {α} and, if (n,m) ∈ AN [P,Q], then (nα,mα)

satisfies the equations{
nα + kα = mα, �α − nα = mα, nα 
= 0, if α ∈ P,

nα + �α = mα, kα − nα = mα, nα 
= 0, if α ∈ Q.

By weakening these constraints to{|�α − nα| = mα, nα ≤ �α if α ∈ P,

|kα − nα| = mα, nα ≤ kα if α ∈ Q,

we obtain the upper bound

(B.27)
∣∣AN [P,Q]∣∣≤

{∣∣A(�,�)
N [Q,Q;α]∣∣ if α ∈ P,∣∣A(k,k)
N [P,P ;α]∣∣ if α ∈ Q,

where A
(k,�)
N [P,Q;α] is defined as in (B.13), (B.18) but we emphasized the multi-indices k,

� which are involved. By setting M = �N1/d� + 1, we obtain from Lemma 5(b), the rough
upper bound (B.20) and (B.23), (B.25) that, as N → ∞,∣∣A(k,k)

N [P,P ;α]∣∣
≤ ∣∣A(k,k)

Md [P,P ;α]∣∣
= ∣∣A(k,k)

Md [P,P ;α] ∩ {nj > kj for all j ∈ S \ (P ∪ {α})}∣∣+ o
(
N1−1/d)

= o
(
N1−1/d),

(B.28)
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and similarly

(B.29)
∣∣A(�,�)

N [Q,Q;α]∣∣= o
(
N1−1/d).

By combining (B.27)–(B.29), we have finally proved (B.17) and the proof of Proposition 4 is
thus complete, up to the proof of Lemmas 5 and 6. �

We now provide proofs for the remaining lemmas.

PROOF OF LEMMA 5. Let (n,m) ∈ AN [P,P ]. Then (n,m) /∈ AN+1[P,P ] if and only
if m = b(N). Since b(N) ∈ CM+1 \ CM , where M = �N1/d� and CM has been introduced in
(B.19), there exists j ∈ {1, . . . , d} such that b(N)j = M ; let j∗ be the smallest j satisfying
this property. Notice also n ∈ CM+1 and m ∈ Nd \ CM . As soon as M > max(k1, . . . , kd),
that we assume from now, the equality m = b(N) can only happen if j∗ /∈ S \ P . Indeed, if
j∗ ∈ S \ P , then mj∗ = |nj∗ − kj∗ | ≤ max(nj∗ − 1, kj∗) ≤ M − 1. As a consequence,

∣∣AN [P,P ]∣∣≤ ∣∣AN+1[P,P ]∣∣ if j∗ ∈ S \ P.

Next, assume that j∗ ∈ P or j∗ /∈ S. We claim that if we set

(B.30) m̃j =

⎧⎪⎪⎨
⎪⎪⎩

mj + kj if j ∈ P,

|mj − kj | if j ∈ S \ P,

mj if j /∈ S,

then (m, m̃) ∈ AN+1[P,P ] \AN [P,P ]. This would show in particular that

∣∣AN [P,P ]∣∣≤ ∣∣AN+1[P,P ]∣∣ if either j∗ ∈ P or j∗ /∈ S,

and thus complete the proof of (a). That (m, m̃) ∈ AN+1[P,P ] \AN [P,P ] is by construction
obvious provided one can show m̃ ≥ b(N + 1).

If j∗ ∈ P , then we have

m̃j∗ = mj∗ + kj∗ = M + kj∗ > M,

and thus m̃ ∈ Nd \ CM+1. As a consequence, there exists m ≥ (M + 1)d such that m̃ = b(m)

and, since N + 1 ≤ (M + 1)d , we have shown m̃ ≥ b(N + 1).
If j∗ /∈ S, we argue by contradiction and assume m̃ ≤ b(N) = m. We shall see this is

not compatible with the graded lexicographic order. Indeed, since by construction m̃ 
= m

and n 
= m (because k 
= (0, . . . ,0) by assumption), we actually have m̃ < m and n < m.
Because j∗ /∈ S by assumption, we moreover have nj∗ = mj∗ = m̃j∗ = M , and thus n,m, m̃ ∈
CM+1 \CM . As a consequence, n <lex m and m̃ <lex m in the lexicographic order. This means
there exists γ ∈ {1, . . . , d} such that ni = mi for every i < γ and nγ < mγ , and equivalently
i /∈ S when i < γ and γ ∈ P . Similarly, there exists η ∈ {1, . . . , d} such that m̃i = mi for
every i < η and m̃η < mη, and thus i /∈ S when i < η and η ∈ S \ P . But this is impossible,
and thus m̃ ≥ b(N + 1), which completes the proof of (a).

Part (b) is proved by following the exact same line of arguments; in this setting one should
also check that if (n,m) ∈ AN [P,P ;α] then mα ≤ kα in order to show (m, m̃) (with m̃

defined in (B.30)) actually belongs to AN+1[P,P ;α]. Recalling α ∈ S \ P by assumption
this is clear, indeed mα = |nα − kα| together with nα ≤ kα yield mα = kα − nα ≤ kα . �
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PROOF OF LEMMA 6. To prove (a), fix P ⊂ S and assume M > max(k1, . . . , kd). It
follows from the definitions (B.13), (B.22) that

(B.31)

A∗
Md [P ] =

⎧⎨
⎩(n,m) ∈ AMd

∣∣∣∣
nj + kj = mj,

nj − kj = mj,

nj = mj,

nj 
= 0,

nj > kj ,

if j ∈ P

if j ∈ S \ P

if j /∈ S

⎫⎬
⎭ .

Recall that AMd = CM × (Nd \ CM) where CM is defined in (B.19). Clearly, if we set

(B.32) CM [P ] = {
n ∈ CM : there exists m ∈ Nd \ CM, (n,m) ∈A∗

Md [P ]}
then (n,m) �→ n is a bijection from A∗

Md [P ] to CM [P ].
We claim that if for any p ∈ P we set

(B.33) C(p)
M [P ] =

⎧⎨
⎩n ∈ CM

∣∣∣∣
1 ≤ nj ≤ M − 1

kj < nj ≤ M − 1
M − kp ≤ np ≤ M − 1

if j ∈ P

if j ∈ S \ P

⎫⎬
⎭ ,

then we have

(B.34) CM [P ] = ⋃
p∈P

C(p)
M [P ].

Indeed, let n ∈ CM [P ]. By definition there exists m ∈ Nd \ CM such that (n,m) ∈ A∗
Md [P ].

This provides (see (B.31)) that 1 ≤ nj ≤ M − 1 if j ∈ P , that kj < nj ≤ M − 1 if j ∈ S \ P ,
and the existence of p ∈ {1, . . . , d} satisfying mp ≥ M . Since n ∈ CM then np ≤ M − 1, and
thus p ∈ P because otherwise mp ≤ np . Together with the equation np +kp = mp this finally

yields that M − kp ≤ np ≤ M − 1, namely n ∈ C(p)
M [P ] for some p ∈ P . As for the reverse

inclusion, if n ∈ C(α)
M [P ] for some α ∈ P then set

mj =

⎧⎪⎪⎨
⎪⎪⎩

nj + kj if j ∈ P,

nj − kj if j ∈ S \ P,

nj if j /∈ S,

and observe that m ∈ Nd \ CM since mp ≥ M and nj − kj ≥ 0 for every j ∈ S \ P . Thus,
since clearly (n,m) ∈A∗

Md [P ], we have shown n ∈ CM [P ] and (B.34) is proved.
Next, since for every distinct p1, . . . , pq ∈ P the definition (B.33) yields∣∣C(p1)

M [P ] ∩ · · · ∩ C(pq)

M [P ]∣∣= kp1 · · ·kpq M
d−q +O

(
Md−q−1),

then (a) follows from (B.34) and the inclusion-exclusion principle.
We now turn to (b) and fix α ∈ S \ P . Let C(d)

M be the d-dimensional discrete hypercube of
length M defined as in (B.19). We then set

A
(d−1)

Md−1 = C(d−1)
M × (

Nd−1 \ C(d−1)
M

)
and introduce

A∗
Md−1[P ](d−1) =

⎧⎨
⎩(n,m) ∈ A

(d−1)

Md−1

∣∣∣∣
nj + kj = mj,

nj − kj = mj,

nj = mj,

nj 
= 0,

nj > kj ,

if j ∈ P

if j ∈ S \ (P ∪ {α})
if j /∈ S \ {α}

⎫⎬
⎭ .
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The statement (a) of the lemma applied in dimension d − 1 then provides

(B.35)
∣∣A∗

Md−1[P ](d−1)
∣∣= o

(
Md−1).

Consider the map p :Nd →Nd−1 defined by

p(n1, . . . , nd) = (n1, . . . , nα−1, nα+1, . . . , nd).

Let (n,m) ∈ A∗
Md [P ;α]. Since m ∈ Nd \C(d)

M and mα ≤ kα < M , there exists j 
= α such that

mj ≥ M . It follows that (p(n),p(m)) ∈ C(d−1)
M × (Nd−1 \ C(d−1)

M ), and thus (p(n),p(m)) ∈
A∗

Md−1[P ](d−1). As a consequence, we have the upper bound

∣∣A∗
Md [P ;α]∣∣≤ kα

∣∣(p× p)
(
A∗

Md [P ;α])∣∣≤ kα

∣∣A∗
Md−1[P ](d−1)

∣∣,
and thus (b) follows from (B.35). �

B.3. Covariance asymptotics: The general case. We now extend Proposition 4 to the
general setting of measures satisfying the assumptions of Theorem 2.1. More precisely, we
prove the following.

PROPOSITION 5. Let μ = μ1 ⊗ · · · ⊗ μd , where the μj ’s are Nevai-class probability
measures on I . Let x1, . . . ,xN and x∗

1, . . . ,x∗
N be random variables drawn from the multi-

variate OP Ensembles with respective reference measures μ and μ⊗d
eq . Then, given any poly-

nomial functions P , Q on Rd ,

(B.36)

lim
N→∞

1

N1−1/d

∣∣∣∣∣Cov

[
N∑

i=1

P(xi ),

N∑
j=1

Q(xi )

]

−Cov

[
N∑

i=1

P
(
x∗
i

)
,

N∑
j=1

Q
(
x∗
i

)]∣∣∣∣∣= 0.

For the proof of the proposition, we use a few ingredients from the Step 2 of the proof of
Lemma 1 to which we refer the reader to.

PROOF OF PROPOSITION 5. By linearity, it is enough to prove the proposition with
P(x) = x

α1
1 · · ·xαd

d and Q(x) = x
β1
1 · · ·xβd

d for any fixed α1, β1, . . . , αd, βd ∈ N. Lemma 4
then provides

Cov

[
N∑

i=1

P(xi ),

N∑
j=1

Q(xi )

]

=
N−1∑
n=0

∞∑
m=N

〈
x

α1
1 · · ·xαd

d ϕn,ϕm

〉
L2(μ)

〈
x

β1
1 · · ·xβd

d ϕn,ϕm

〉
L2(μ)(B.37)

= ∑
(n,m)∈AN

d∏
j=1

〈
xαj ϕ(j)

nj
, ϕ(j)

mj

〉
L2(μj )

〈
xβj ϕ(j)

nj
, ϕ(j)

mj

〉
L2(μj ),

where we recall that

AN = {(
b(n),b(m)

) : n ≤ N − 1,m ≥ N
}⊂ Nd ×Nd .
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In particular, by choosing μ = μ⊗d
eq in (B.37), we obtain

(B.38)

Cov

[
N∑

i=1

P
(
x∗
i

)
,

N∑
j=1

Q
(
x∗
i

)]

= ∑
(n,m)∈AN

d∏
j=1

〈
xαj Tnj

, Tmj

〉
L2(μeq)

〈
xβj Tnj

, Tmj

〉
L2(μeq)

.

Thus, by combining (B.37) and (B.38), we see that, if we set for convenience

E(n,m) =
∣∣∣∣∣

d∏
j=1

〈
xαj ϕ(j)

nj
, ϕ(j)

mj

〉
L2(μj )

〈
xβj ϕ(j)

nj
, ϕ(j)

mj

〉
L2(μj )

−
d∏

j=1

〈
xαj Tnj

, Tmj

〉
L2(μeq)

〈
xβj Tnj

, Tmj

〉
L2(μeq)

∣∣∣∣∣,
(B.39)

then proving the proposition amounts to showing that

(B.40) lim
N→∞

1

N1−1/d

∑
(n,m)∈AN

E(n,m) = 0.

Next, for every j ∈ {1, . . . , d}, the three-term recurrence relation reads

(B.41) xϕ(j)
n = a(j)

n ϕ
(j)
n+1 + b(j)

n ϕ(j)
n + a

(j)
n−1ϕ

(j)
n−1, n ≥ 0,

where we set a
(j)
−1 = 0. As in Step 2 of the proof of Lemma 1, we complete the sequences of re-

currence coefficients (a
(j)
n )n∈N and (b

(j)
n )n∈N introduced into sequences (a

(j)
n )n∈Z, (b(j)

n )n∈Z,
where we set a

(j)
n = b

(j)
n = 0 for every n < 0. We thus obtain the representations

(B.42)

〈
xαϕ(j)

nj
, ϕ(j)

mj

〉
L2(μj )

= 1|nj−mj |≤α

∑
γ :(0,nj−mj )→(α,0)

∏
e∈γ

ω(e){(a(j)
n+mj

),(b
(j)
n+mj

)},

and

(B.43)

〈
xαTnj

, Tmj

〉
L2(μeq)

= 1|nj−mj |≤α

∑
γ :(0,nj−mj )→(α,0)

∏
e∈γ

ω(e){(a∗
n+mj

),(b∗
n+mj

)},

where we recall that w(e) was introduced in (A.18). Since the measures μj are Nevai-

class by assumption, we have a
(j)
n − a∗

n → 0 and b
(j)
n − b∗

n → 0 as n → ∞ for every
j ∈ {1, . . . , d}. Notice that for every nj , the right-hand side of (B.42) is a polynomial func-

tion of a
(j)
mj−α, b

(j)
mj−α, . . . , a

(j)
mj+α, b

(j)
mj+α and does not depend on any other recurrence coef-

ficients. Thus, we obtain for every fixed α ∈ N,

(B.44) sup
nj∈N

∣∣〈xαϕ(j)
nj

, ϕ(j)
mj

〉
L2(μj ) − 〈

xαTnj
, Tmj

〉
L2(μeq)

∣∣−−−−→
mj→∞ 0.

Moreover, we see from (B.39), (B.42) and (B.43) that E(n,m) = 0 except when |nj −
mj | ≤ min(αj , βj ) for every j ∈ {1, . . . , d}. We then split the set of contributing indices into
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two subsets,

A∗
N = {

(n,m) ∈ AN : |nj − mj | ≤ min(αj , βj )
}∩ {mj ≥ N1/2d for every j

}
,

A0
N = {

(n,m) ∈ AN : |nj − mj | ≤ min(αj , βj )
}

∩ {mj < N1/2d for at least one j
}
.

It then follows from (B.44) that

(B.45) lim
N→∞ sup

(n,m)∈A∗
N

∣∣E(n,m)
∣∣= 0

and that there exists C > 0 independent on N satisfying

(B.46) sup
(n,m)∈A0

N

∣∣E(n,m)
∣∣≤ sup

(n,m)∈AN

∣∣E(n,m)
∣∣≤ C.

Next, we write

1

N1−1/d

∑
(n,m)∈AN

E(n,m)

= 1

N1−1/d

∑
(n,m)∈A∗

N

E(n,m) + 1

N1−1/d

∑
(n,m)∈A0

N

E(n,m)(B.47)

≤ |A∗
N |

N1−1/d
sup

(n,m)∈A∗
N

∣∣E(n,m)
∣∣+ |A0

N |
N1−1/d

sup
(n,m)∈A0

N

∣∣E(n,m)
∣∣,

and claim that we have

(B.48) lim sup
N→∞

|A∗
N |

N1−1/d
< ∞,

and, moreover,

(B.49) lim
N→∞

|A0
N |

N1−1/d
= 0.

Together with (B.45)–(B.46), this would prove (B.40), and thus the proposition.
We finally prove (B.48) and (B.49) in order to complete the proof of the proposition. Let

us set κj = max(αj , βj ) for convenience. Clearly,

∣∣A∗
N

∣∣= ∣∣∣∣ ⋃
n∈Nd

{
m ∈ Nd : (n,m) ∈A∗

N

}∣∣∣∣
≤ max

n∈Nd

∣∣{m ∈ Nd : (n,m) ∈A∗
N

}∣∣
× ∣∣{n ∈ Nd : (n,m) ∈ A∗

N for some m ∈ Nd}∣∣.
(B.50)

First, since |nj − mj | ≤ κj for every j as soon as (n,m) ∈ A∗
N , we have the upper bound

(B.51) max
n∈Nd

∣∣{m ∈ Nd : (n,m) ∈ A∗
N

}∣∣≤ d∏
j=1

(2κj + 1).

Next, set M = �N1/d� so that Md ≤ N < (M +1)d . If (n,m) ∈A∗
N , then it satisfies n ∈ CM+1

and m ∈ Nd \CM , where CM has been introduced in (B.19). Namely, it holds that 0 ≤ nj ≤ M

for every j and there exists j0 such that mj0 ≥ M . Together with |nj0 −mj0 | ≤ κj0 , this yields
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M − κj0 ≤ nj0 ≤ M , and thus provides the upper bound

(B.52)
∣∣{n ∈ Nd : (n,m) ∈ A∗

N for some m ∈ Nd}∣∣≤ (
d

max
j0=1

κj0 + 1
)
(M + 1)d−1.

By combining (B.50)–(B.52), we have proved (B.48). The proof of (B.49) is similar. More
precisely, the only difference is that if (n,m) ∈ A

(0)
N , then there exists j1 such that mj1 <√

N
1
d <

√
M + 1. Notice that necessarily j1 
= j0. Using moreover that |nj1 −mj1 | ≤ κj1 , we

obtain the upper bound∣∣{n ∈ Nd : (n,m) ∈ A
(0)
N for some m ∈ Nd}∣∣

≤
(

d
max
j0=1
j0 
=j1

κj0 + 1
)
(κj1 + √

M + 1)(M + 1)d−2

in place of (B.52), and (B.49) follows. �

B.4. Extension to C 1 functions and conclusion. We consider a reference measure μ

satisfying the assumptions of Theorem 2.1 and let x1, . . . ,xN be the associated multivari-
ate OP Ensemble. For any d-multivariate polynomial P , we can write P =∑

k∈Nd P̂ (k)Tk ,
where the latter sum is finite. As a consequence of Propositions 4 and 5, we then obtain

lim
N→∞

1

N1−1/d
Var

[
N∑

i=1

P(xi )

]

= ∑
k,�∈Nd

P̂ (k)P̂ (�) lim
N→∞

1

N1−1/d
Cov

[
N∑

i=1

Tk(xi ),

N∑
i=1

T�(xi )

]
(B.53)

= 1

2

∑
k=(k1,...,kd )∈Nd

(k1 + · · · + kd)P̂ (k)2 = σ 2
P .

Therefore, we have proven Proposition 3 provided we restrict the test functions to polyno-
mials. We finally extend this result to C 1 test functions, and thus complete the proof of this
proposition, by means of a density argument.

First, a standard computation yields

(B.54) Var

[
N∑

i=1

f (xi )

]
= 1

2

∫∫ (
f (x) − f (y)

)2
KN(x, y)2μ(dx)μ(dy).

This indeed follows from (2.1)–(2.3) with k = 1,2, and that KN(x, y) is a symmetric repro-
ducing kernel.

Now, for any f ∈ C 1(I d,R), we set

(B.55) ‖f ‖Lip = sup
x∈Id

∥∥∇f (x)
∥∥,

so that |f (x)−f (y)| ≤ ‖f ‖Lip‖x−y‖ for every x 
= y. If we consider the monomials defined
by

(B.56) ej (x1, . . . , xd) = xj ,

then formula (B.54) yields

Var

[
N∑

i=1

f (xi )

]
= 1

2

∫∫ (
f (x) − f (y)

)2
KN(x, y)2μ(dx)μ(dy)
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≤ ‖f ‖2
Lip

d∑
j=1

1

2

∫∫ (
ej (x) − ej (y)

)2
KN(x, y)2μ(dx)μ(dy)

= ‖f ‖2
Lip

d∑
j=1

Var

[
N∑

i=1

ej (xi )

]

and, as a consequence of (B.53),

(B.57) lim sup
N→∞

1

N1−1/d
Var

[
N∑

i=1

f (xi )

]
≤ C‖f ‖2

Lip, C =
d∑

j=1

σ 2
ej

.

Proposition 1 also provides the upper bound

(B.58) σ 2
f ≤ 1

2
‖f ‖2

Lip.

Next, Theorem 5 of [62] yields the existence of a sequence of multivariate polynomials
(Pε)ε>0 such that ‖Pε − f ‖Lip ≤ ε, and hence

(B.59)

lim sup
N→∞

1

N1−1/d
Var

[
N∑

i=1

f (xi ) −
N∑

i=1

Pε(xi )

]
≤ Cε2, and

σ 2
f −Pε

≤ ε2

2
.

Since (X,Y ) �→ Cov(X,Y ) is a symmetric positive bilinear form, it satisfies the Cauchy–
Schwarz inequality, and thus the triangle inequality Var(X+Y)1/2 ≤Var(X)1/2 +Var(Y )1/2

holds true, which in turn yields the inequality

(B.60)
∣∣Var(X)1/2 −Var(Y )1/2∣∣≤Var(X − Y)1/2.

For the same reason, the limiting variance satisfies |σf − σg| ≤ σf −g . As a consequence, by
taking X =∑

f (xi ) and Y =∑
Pε(xi ) in (B.60), and using these two inequalities together

with (B.53) and (B.59), we obtain by letting N → ∞ and then ε → 0 that

lim
N→∞

1

N1−1/d
Var

[
N∑

i=1

f (xi )

]
= lim

ε→0
lim

N→∞
1

N1−1/d
Var

[
N∑

i=1

Pε(xi )

]

= lim
ε→0

σ 2
Pε

= σ 2
f

and the proof of Proposition 3 is therefore complete.

APPENDIX C: MONTE CARLO WITH DPPS: PROOF OF THEOREM 2.2

The aim of this section is to prove the following variance decay.

PROPOSITION 6. Assume μ(dx) = ω(x)dx with ω positive and C 1 on (−1,1)d . Assume
further that μ satisfies Assumption 1. For every f ∈ C , we have

lim
N→∞

1

N1−1/d
Var

[
N∑

i=1

Nf (xi )

KN(xi ,xi)
−

N∑
i=1

ω(x)f (xi )

ω⊗d
eq (xi )

]
= 0.
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Before proving Proposition 6, we argue that it implies Theorem 2.2. Indeed, (B.60) then
implies that

lim
N→∞

1

N1−1/d
Var

[
N∑

i=1

Nf (xi )

KN(xi ,xi)

]
= lim

N→∞
1

N1−1/d
Var

[
N∑

i=1

ω(x)f (xi )

ω⊗d
eq (xi )

]

= �2
f,ω,

the last equality following from Theorem 2.1. Now Theorem A.3 applies with fN(x) =
Nf (x)/KN(x, x) to yield Theorem 2.2.

From now on, we fix f ∈ C . It is thus a C 1 function and there exists ε > 0 so that
Supp(f ) ⊂ I d

ε . If we set for convenience

EN(x) = N

KN(x, x)
−

N∑
i=1

ω(x)

ω⊗d
eq (x)

, x ∈ I d,

then Theorem A.4 yields ‖f EN‖∞ = supId |f EN | → 0 as N → ∞.
In order to prove Proposition 6, we start with the formula coming from (B.54),

Var

[
N∑

i=1

f (xi )EN(xi )

]
= 1

2

∫∫ (
f EN(x) − f EN(y)

)2
KN(x, y)2μ(dx)μ(dy)

and split the integral in several terms that we shall analyse separately.

C.1. The off-diagonal contribution. Given any δ > 0, we first consider the contribution

(C.1)
1

2

∫∫
‖x−y‖>δ

(
f EN(x) − f EN(y)

)2
KN(x, y)2μ(dx)μ(dy).

By rough estimates, we obtain

(C.1) ≤ ‖f EN‖2∞
∫∫

‖x−y‖>δ
KN(x, y)2μ(dx)μ(dy)

≤ 1

δ2 ‖f EN‖2∞
d∑

j=1

∫∫
(xj − yj )

2KN(x, y)2μ(dx)μ(dy)

≤ 2

δ2 ‖f EN‖2∞
d∑

j=1

Var

[
N∑

i=1

ej (xi )

]
,

where the monomials ej were defined in (B.56). As a consequence, using Proposition 3 and
that ‖f EN‖∞ → 0 as N → ∞, we get

(C.2)
lim

N→∞
1

N1−1/d

∫∫
‖x−y‖>δ

(
f EN(x) − f EN(y)

)2
× KN(x, y)2μ(dx)μ(dy) = 0

for every δ > 0.

C.2. The diagonal contribution. By (C.2), it is sufficient to show

(C.3)
lim sup

δ→0
lim sup
N→∞

1

N1−1/d

∫∫
‖x−y‖≤δ

(
f EN(x) − f EN(y)

)2
× KN(x, y)2μ(dx)μ(dy) = 0

in order to complete the proof of Proposition 6.
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Set for convenience

(C.4) Dg(x, y) = g(x) − g(y)

‖x − y‖ , x, y ∈ I d,

so that, |Dg(x, y)| ≤ ‖g‖Lip. For every δ > 0 small enough, we have for any x, y satisfying
‖x − y‖ ≤ δ,

Df EN
(x, y)2 = (

Df (x, y)EN(x) + DEN
(x, y)f (y)

)2
≤ 2Df (x, y)2EN(x)2 + 2DEN

(x, y)2f (y)2

≤ 2‖f ‖2
Lip‖1Id

ε/2
EN‖2∞ + 2‖f ‖2∞DEN

(x, y)21Id
ε/2×Id

ε/2
(x, y).

Indeed, notice that if x ∈ I d
ε or y ∈ I d

ε , then x, y ∈ I d
ε/2 for every δ > 0 small enough. Since f

is by assumption supported on I d
ε , we know that Df EN

(x, y) vanishes outside of I d
ε/2 × I d

ε/2.
This is the reason for the presence of 1Id

ε/2
in the last inequality.

With the notation QN introduced in (A.31), we thus obtain

1

2N1−1/d

∫∫
‖x−y‖≤δ

(
f EN(x) − f EN(y)

)2
KN(x, y)2μ(dx)μ(dy)

= 1

2

∫∫
‖x−y‖≤δ

Df EN
(x, y)2QN(dx, dy)

≤ ‖f ‖2
Lip‖1Id

ε/2
EN‖2∞

∫∫
‖x−y‖≤δ

QN(dx, dy)

+ ‖f ‖2∞
∫∫

Id
ε/2×Id

ε/2,‖x−y‖≤δ
DEN

(x, y)2QN(dx, dy).

(C.5)

Moreover, because ω is C 1 on I d
ε/2 by assumption, and because ω⊗d

eq is also C 1 and positive

there, one similarly has, for every x, y ∈ I d
ε/2,

(C.6)
DEN

(x, y)2 ≤ 2DN(x, y)2 + 2D
ω/ω⊗d

eq
(x, y)2

≤ 2DN(x, y)2 + 2
∥∥ω/ω⊗d

eq
∥∥

Lip,

where DN is defined in (A.30).
Next, we have for every C > 0,∫∫

Id
ε/2×Id

ε/2,‖x−y‖≤δ
DN(x, y)2QN(dx, dy)

≤ C2
∫∫

‖x−y‖≤δ
QN(dx, dy)(C.7)

+
∫∫

Id
ε/2×Id

ε/2,‖x−y‖≤δ
1|DN(x,y)|>CDN(x, y)2QN(dx, dy).

We now make use of the following lemma, the proof of which is deferred to Section C.3.

LEMMA 7.

(C.8) lim
δ→0

lim sup
N→∞

∫∫
‖x−y‖≤δ

QN(dx, dy) = 0.
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As a consequence, (C.5), (C.6) and (C.7) together yield, for every C > 0,

lim sup
δ→0

lim sup
N→∞

1

2N1−1/d

∫∫
‖x−y‖≤δ

(
f EN(x) − f EN(y)

)2
× KN(x, y)2μ(dx)μ(dy)

≤ 2‖f ‖2∞ lim sup
δ→0

lim sup
N→∞

∫∫
Id
ε/2×Id

ε/2,‖x−y‖≤δ
DN(x, y)2

× 1|DN(x,y)|>CQN(dx, dy).

(C.9)

Assumption 1 allows us to conclude the proof of Proposition 6, up to the proof of Lemma 7.

C.3. Proof of Lemma 7.

PROOF. First,

(C.10)

∫∫
‖x−y‖≤δ

QN(dx, dy)

≤ 1

N1−1/d

d∑
j=1

∫∫
|xj−yj |≤δ

(xj − yj )
2KN(x, y)2μ(dx)μ(dy).

We fix j ∈ {1, . . . , d} and use the notation of the proof of Lemma 2. It comes

KN(x, y) = ∑
[k]∈�N/∼

K
(j)

Nj ([k])+1(xj , yj )
∏
α 
=j

ϕkα (xα)ϕkα (yα).

Squaring, integrating and using the orthonormality relations,∫∫
|xj−yj |≤δ

(xj − yj )
2KN(x, y)2μ(dx)μ(dy)

= ∑
[k],[�]∈�N/∼

1σ(k)=σ(�)

×
∫∫

|xj−yj |≤δ
(xj − yj )

2K
(j)

Nj ([k])+1(xj , yj )

× K
(j)
Nj ([�])+1(xj , yj )μj (dxj )μj (dyj )

= ∑
[k]∈�N/∼

∫∫
|xj−yj |≤δ

(xj − yj )
2K

(j)

Nj ([k])+1(xj , yj )
2μj(dxj )μj (dyj ).

(C.11)

Recall M = �N1/d� and CM ⊂ �N ⊂ CM+1. By definition of b, we have for every 1 ≤ m ≤
M − 2, ∣∣{[k] ∈ �N/ ∼: Nj

([k])= m
}∣∣≤ dMd−2.

Notice also that (A.13) yields∫∫
(xj − yj )

2K(j)
m (xj , yj )

2μj(dxj )μj (dyj ) = 2a2
m,

which is bounded for every m since am → 1/2 by assumption. Now

(C.11) =
[∑

[k]∈�N/∼
Nj ([k])<√

M

+∑
[k]∈�N/∼

Nj ([k])≥√
M

] ∫∫
|xj−yj |≤δ(xj − yj )

2
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× K
(j)

Nj ([k])+1(xj , yj )
2μj(dxj )μj (dyj )

≤ O
(
Md−2+1/2)(C.12)

+ Md−1 max√
M≤m≤M

∫∫
|xj−yj |≤δ(xj − yj )

2

× K
(j)
m+1(xj , yj )

2μj(dxj )μj (dyj ).

Moreover, Lemma 1 yields

max√
M≤m≤M

∫∫
|xj−yj |≤δ

(xj − yj )
2K

(j)
m+1(xj , yj )

2μj(dxj )μj (dyj )

→
∫∫

|x−y|≤δ
L(x, y)dx dy

as M → ∞. Combined with (C.10)–(C.12), we obtain

lim sup
N→∞

∫∫
‖x−y‖≤δ

QN(dx, dy) ≤ d

∫∫
|x−y|≤δ

L(x, y)dx dy.

Finally, since L is integrable, the lemma follows by letting δ → 0. �

The proof of Proposition 6 is therefore complete.

APPENDIX D: ADDITIONAL EXPERIMENTAL RESULTS

In Figure 5, we display the results of the linear regression in Section 3.3. In Figure 6, we
display those of the linear regression in Section 3.4.

FIG. 5. Summary of the importance sampling results.
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FIG. 6. Summary of the crude Monte Carlo results for a test function that violates the assumptions of Theo-
rem 2.2.
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