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In this paper, we established the Freidlin—Wentzell-type large deviation
principles for first-order scalar conservation laws perturbed by small multi-
plicative noise. Due to the lack of the viscous terms in the stochastic equa-
tions, the kinetic solution to the Cauchy problem for these first-order con-
servation laws is studied. Then, based on the well-posedness of the kinetic
solutions, we show that the large deviations holds by utilising the weak con-
vergence approach.

1. Introduction. This paper concerns the asymptotic behaviour of stochastic scalar con-
servation laws with small multiplicative noise. The (deterministic) conservation laws (in both
scalar and vectorial) are fundamental to our understanding of the space-time evolution laws
of interesting physical quantities, in that they describe (dynamical) processes that can or can-
not occur in nature. Mathematically or statistically, such physical laws should incorporate
with noise influences, due to the lack of knowledge of certain physical parameters as well as
bias or incomplete measurements arising in experiments or modelling. More precisely, fix any
T > 0andlet (2, F, P, {F:}ier0,77. {Bk(t)}re[0,71)keN) be a stochastic basis. Without loss of
generality, here the filtration {F;};c[0,7] is assumed to be complete and {Bi(?)};cj0.7], kK €N,
are independent (one-dimensional) {F;};c[o0,7]-Wiener processes. We use E to denote the ex-
pectation with respect to P. Fix any N € N, let TV ¢ R" denote the N-dimensional torus
(suppose the periodic length is 1). We are concerned with the following scalar conservation
law with stochastic forcing:

du + div(A(u))dt = ®w)dW () inTY x [0, T]

for a random field u : (w,x,1) € 2 x TV x [0, T]+— u(w, x, 1) :=u(x,t) € R, that is, the
equation is periodic in the space variable x € TV, where the flux function A : R — R" and
the coefficient ® : R — R are measurable and fulfill certain conditions specified later, and
W is a cylindrical Wiener process defined on a given (separable) Hilbert space U with the
form W(t) =) ;-1 Bx(t)ek, t € [0, T], where (ex)r>1 is a complete orthonormal base in the
Hilbert space U. We consider the following Cauchy problem:

du +div(A(u))dt = ®w)dW () in TV x (0, T],

.1 u(-,0) =ug(-) onTN.

For the deterministic case, that is, ® =0, (1.1) is well studied in the PDEs literature; see,
for example, the monograph [4] and the most recent reference Ammar, Willbold and Car-
rillo [1] (and references therein). As is well known, the Cauchy problem for the deterministic
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first-order PDE (1.1) does not admit any (global) smooth solutions, but there exist infinitely
many weak solutions to the deterministic Cauchy problem and an additional entropy condi-
tion has to be added to get the uniqueness and further to identify the physical weak solution.
The notion of entropy solutions for the deterministic problem in the L°° framework was ini-
tiated by Otto in [17]. Moreover, Porretta and Vovelle [18] studied the problem in the L!
setting, that is, the solutions are allowed to be unbounded. In order to deal with unbounded
solutions, they defined a notion of renormalized entropy solutions which generalizes Otto’s
original definition of entropy solutions. The kinetic formulation of weak entropy solution of
the Cauchy problem for a general multidimensional scalar conservation law, named as the
kinetic system, is derived by Lions, Perthame and Tadmor in [13]. They further discussed the
relationship between entropy solutions and the kinetic system.

Having a stochastic forcing term in (1.1) is very natural and important for various mod-
elling problems arising in a wide variety of fields, for example, physics, engineering, biology
and so on. The Cauchy problem for the stochastic equation (1.1) driven by additive noise has
been studied by Kim in [12] wherein the author proposed a method of compensated com-
pactness to prove the existence of a stochastic weak entropy solution via vanishing viscosity
approximation. Moreover, a Kruzkov-type method was used there to prove the uniqueness.
Furthermore, Vallet and Wittbold [19] extended the results of Kim to the multi-dimensional
Dirichlet problem with additive noise. By utilising the vanishing viscosity method, Young
measured techniques, and Kruzkov doubling the variables technique, they managed to show
the existence and uniqueness of the stochastic entropy solutions. Concerning the case of the
equation with multiplicative noise, for the Cauchy problem over the whole spatial space, Feng
and Nualart [9] introduced a notion of strong entropy solutions in order to prove the unique-
ness of the entropy solution. Using the vanishing viscosity and compensated compactness
arguments, they established the existence of stochastic strong entropy solutions only in the
one-dimensional space case. On the other hand, using a kinetic formulation, Debussche and
Vovelle [6] solved the Cauchy problem for (1.1) in any dimension. They made use of a notion
of kinetic solutions developed by Lions, Perthame and Tadmor for deterministic, first-order
scalar conservation laws in [13]. In view of the equivalence between kinetic formulation and
entropy solution, they obtained the existence and uniqueness of the entropy solutions. The
long-time behavior of periodic scalar first-order conservation laws with additive stochastic
forcing under an hypothesis of nondegeneracy of the flux function is studied by Debussche
and Vovelle in [7]. For sub-cubic fluxes, they show the existence of an invariant measure.
Moreover, for sub-quadratic fluxes, they prove the uniqueness and ergodicity of the invariant
measure.

From statistical mechanics point of view, asymptotic analysis for vanishing the noise force
is important and interesting for studying stochastic conservation laws, in which establishing
large deviation principles is a core step for finer analysis as well as gaining deeper insight
for the described physical evolutions. Due to lack of second-order elliptic operators for the
space variable, the asymptotic analysis for stochastic conservation laws is really challenging
and all those existing approaches for establishing large deviation principles seem unapplica-
ble. To our knowledge, Mariani [15] (see also [14] for more details) is the first work towards
large deviations for stochastic conservation laws, wherein the author considered a family of
stochastic conservation laws as parabolic SPDEs with additional small viscosity term and
small (spatially) regularized (i.e., spatially smoothing) noises. By a very interesting scaling
procedure and deep insightful observations from interacting particle systems, Mariani has
succeeded to establish large deviation principles by vanishing viscosity and noise terms si-
multaneously in a smart choice of scalings, while large deviations for the stochastic first-order
conservation laws remain open. Due to the fact that the entropy solutions are living in rather
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irregular spaces comparing to various type solutions for parabolic SPDEs, it is indeed a chal-
lenge to establish large deviation principles for the first-order conservation laws with general
noise force.

The purpose of this paper is to prove the Freidlin—Wentzell-type large deviation principle
(LDP) for the first-order stochastic scalar conservation law in L' ([0, T]; L'(T")), which
provides the exponential decay of small probabilities associated with the corresponding
stochastic dynamical systems with small noise. An important tool for studying the Freidlin—
Wentzell’s LDP is the weak convergence approach, which is developed by Dupuis and Ellis
in [8]. The key idea of this approach is to prove a certain variational representation formula
about the Laplace transform of bounded continuous functionals, which then leads to the ver-
ification of the equivalence between the LDP and the Laplace principle. In particular, for
Brownian functionals, an elegant variational representation formula has been established by
Boué and Dupuis in [2] and by Budhiraja and Dupuis in [3]. Recently, a sufficient condition
to verify the large deviation criteria of Budhiraja, Dupuis and Maroulas for functionals of
Brownian motions is proposed by Matoussi, Sabbagh and Zhang in [16], which turns out
to be more suitable for SPDEs arising from fluid mechanics. Thus, in the present paper, we
adopt this new sufficient condition.

Our proof strategy mainly consists of the following procedures. As an important part of
the proof, we need to obtain the global well-posedness of the associated skeleton equations.
For showing the uniqueness, we apply the doubling of the variables method. For showing the
existence result, we first apply the vanishing viscosity method to construct a sequence of ap-
proximating equations as in [6]. Then we prove that the family of the solutions of the approx-
imating equations is compact in an appropriate space and that any limit of the approximating
solutions gives rise to a solution of the associated skeleton equation. To complete the proof of
the large deviation principle, we also need to study the weak convergence of the small noise
perturbations of the problem (1.1) in the random directions of the Cameron—Martin space of
the driving Brownian motions. To verify the convergence of the randomly perturbed equation
to the corresponding unperturbed equation in LY([0, T]; LY(TV)), the doubling of variables
method plays a key role.

The rest of the paper is organised as follows. The mathematical formulation of stochastic
scalar conservation laws is presented in Section 2. In Section 3, we introduce the weak con-
vergence method and state our main result. Section 4 is devoted to the study of the associated
skeleton equations. The large deviation principle is proved in Section 5.

2. Preliminaries. Let L£(K, K7) (resp., £2(K1, K»)) be the space of bounded (resp.,
Hilbert—Schmidt) linear operators from a Hilbert space K| to another Hilbert space K>,
whose norm is denoted by |- [l2(k,.k,) @€sp., Il - llz,(k,.k,))- Further, Cp represents the
space of bounded, continuous functions and C ,1 stands for the space of bounded, continu-
ously differentiable functions having a bounded first-order derivative. Let || - ||;» denote the
norm of Lebesgue space L? (TV) for p € (0, oo]. In particular, set H = L2(TN)) with the cor-
responding norm | - || ;. For all @ > 0, let H*(TV) = W%2(T") be the usual Sobolev space
of order a with the norm

2 2
lul3ye = 3 /N|D°‘u(x)] dx.
ol =1 (@1 oot =1 4oy <a”

H~%(T") stands for the topological dual of H%(T"), whose norm is denoted by || - || j—a.
Moreover, we use the brackets (-, -) to denote the duality between CZ° (TN x R) and the
space of distributions over TV x R. Similarly, for 1 < p < oo and ¢ := %, the conjugate
exponent of p, we denote

(F,G):= AN/RF(x,g)G(x,s)dxds, FeLP(TV xR),G e LI(TY x R),
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and also for a measure m on the Borel measurable space T x [0, T] x R,
m(¢@) :=(m, )

= p(x.t,&)dm(x,1,8), ¢ €Cp(TY x[0,T] x R).
TN x[0,T]1xR

2.1. Hypotheses. For the flux function A and the coefficient ® of (1.1), we assume the
following.

HYPOTHESIS H.  The flux function A belongs to C>(R; RN) and its derivative a has at
most polynomial growth. That is, there exist constants C > 0, p > 1 such that

2.1) la®) —a@)] <TE OIE—¢l, TEO=C(I+EP +71P7h).

For each u € R, the map ®(u) : U — H is defined by ®(u)ex = gx (-, u), where each gy (-, u)
is a regular function on TN . More precisely, we assume that g € C(TN x R) with the fol-
lowing bounds:

22) G2, u) =Y |grCe, w)]* < Do(1 + [uf?),
k>1
(2.3) > gk w) — gk )P < Di(1x — yP + lu — v]?),
k>1

forx,yeTN,u,veR.

Since [|gklla < llgkllc(rny, we deduce that ®(u) € L2(U, H), for each u € R. Moreover,
it follows from (2.2) and (2.3) that

2.4) |©) %0 1) < Do(1 + lulh),

(2.5) [ @) = @) 2,1y < Dillu = vllF-

2.2. Kinetic solution and generalized kinetic solution. Let us recall the notion of a solu-
tion to equation (1.1) from [6, 7], keeping in mind that we are working on the stochastic basis
(€2, F, P, {Fi}ie0.11, (Bk())keN)-

DEFINITION 2.1 (Kinetic measure). A map m from 2 to the set of nonnegative, finite
measures over TV x [0, T] x R is said to be a kinetic measure, if:

1. m is measurable, that is, for each ¢ € Cb(TN x [0, T] x R), (m, ¢) : 2 = R is mea-
surable,
2. m vanishes for large £, that is,

(2.6) RJlim E[m(TY x [0, T] x B%)] =0,

where By :=1{§ € R, |§| > R}
3. forevery ¢ € Cp, (TN x R), the process

(w,t)eQ2x[0,T]+— ¢(x,E)dm(x,s, &) eR
TN x[0,¢]xR

is predictable.

Let /\/l(J)r (TN x [0, T] x R) be the space of all bounded, nonnegative random measures m
satisfying (2.6).
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DEFINITION 2.2 (Kinetic solution). Let ug € L% (T"). A measurable function u : TV x
[0, T] x 2 — Ris called a kinetic solution to (1.1) with initial datum u, if:

1. (u(t)):efo,1 is predictable,
2. forany p > 1, there exists C}, > 0 such that

p
]E(ess tes[l‘;,pT] ()| L,,(TN)> <Cp,

3. there exists a kinetic measure m such that f := I, ¢ satisfies the following:

T T
/0 (£, 8,0 dt + (for 9 (0)) + fo (£(1). a(®) - Vo)) dt

T
=—Z/O fTN gk e(x, t,u(x, 1)) dx dB(1)

(2.7) k=1
12/T/ de(x, 1, u(x,))G?(x, u(x, 1)) dxdt
— x,tu(x, x,u(x, X
2:=Jo Jrv 5
+m(d:p) as.,

forall g € C! (TN x [0, T] x R), where u(t) = u(-, t,-), G* = 332, |gx|> and a (&) := A’ (£).

In order to prove the existence of a kinetic solution, the generalized kinetic solution was
introduced in [6].

DEFINITION 2.3 (Young measure). Let (X, 1) be a finite measure space. Let Py (R) de-
note the set of all (Borel) probability measures on R. A map v : X — P;1(R) is said to be
a Young measure on X, if for each ¢ € Cp(R), the map z € X — v,(¢) € R is measurable.
Next, we say that a Young measure v vanishes at infinity if, for each p > 1, the following
holds:

(2.8) /X A‘% €7 dv,(§) dA(z) < +00.

DEFINITION 2.4 (Kinetic function). Let (X, A) be a finite measure space. A measurable
function f : X x R — [0, 1] is called a kinetic function, if there exists a Young measure v on
X that vanishes at infinity such that V&€ € R,

f(z,8) =v;(§, +00)

holds for A-a.e. z € X. We say that f is an equilibrium if there exists a measurable function
u:X — Rsuchthat f(z,§) = I,(;)>¢ a.e., or equivalently, v, = §,(;) for A-a.e. z € X.

_Let f: X x R— [0, 1] be a kinetic function, we use f to denote its conjugate function

fi=1-f.

DEFINITION 2.5 (Generalized kinetic solution). Let fp: Q2 X TV x R — [0, 1] be a
kinetic function with (X, 1) = (€ x TV, P ® dx). A measurable function f : Q x TV x
[0, T] x R — [0, 1] is said to be a generalized kinetic solution to (1.1) with initial datum fy,
if:

1. (f())ieo,1) is predictable,
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2. f is akinetic function with (X, A) = (2 X TN x [0,T],P®dx ®dt) and forany p > 1,

there exists a constant C, > 0 such that v := —9; f fulfills the following:
2.9) E(ess sup / / €17 dvy s (§) dx) <Cp.
1€[0,T]/TN JR

3. there exists a kinetic measure m such that for ¢ € CC1 (TN x [0, T] x R),

T T
/O(f(t),8t¢(t))dt+(fo,<p(0))+/o (f(®).,a)-Vo())dt

T
=-— gk()p(x,t,&)dvy (&) dx dPy(t)
(2.10) 5/0 /TNA%

1 T
- 5/0 fm /Ragmx,r,s>Gz<x,s>dvx,f<s>dxdt

+m(dgp) as.

Referring to [6], almost surely, any generalized solution admits possibly different left and
right weak limits at any point ¢ € [0, T']. This property is important for establishing a com-
parison principle which allows to prove uniqueness. The following result is proved in [6].

PROPOSITION 2.1 (Left and right weak limits). Let fo be a kinetic initial datum and f
be a generalized kinetic solution to (1.1) with initial fo. Then f admits, almost surely, left
and right limits, respectively, at every point t € [0, T]. More precisely, for any t € [0, T],
there exist kinetic functions f'* on Q@ x TV x R such that P-a.s.

(ft—e),0)=>(f"",0)

and

(ft+e).o)— (T ¢

ase — Oforall p € C Cl (TN x R). Moreover, almost surely,

(f' =" e)= dep(x, )11y (s) dm(x, s, £).

-[]TNX[O,T]X]R

In particular, almost surely, the set of t € [0, T fulfilling that f'* # '~ is countable.

For a generalized kinetic solution f, define f* by f*(r) = f'*,t € [0, T]. Since we are
dealing with the filtration associated to Brownian motion, both f* are clearly predictable
as well. Also f = fT = f~ almost everywhere in time and we can take any of them in an
integral with respect to the Lebesgue measure or in a stochastic integral. However, if the
integral is with respect to a measure—typically a kinetic measure in this article, the integral is
not well defined for f and may differ if one chooses either f* or f~.

Finally, in this subsection, as a special example, let us consider the following stochastic
heat equation on TV x [0, 00):

(2.11) du — Audt =dw)dW (@), u(x,0)=uo(x).

We aim to derive an explicit expression of its kinetic measure m. For this, we have the fol-
lowing kinetic formulation:
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PROPOSITION 2.2. Let ug € L®°(TV) and u be the solution to (2.11). Then fi=1¢
satisfies the following:

T T
/0 (F(0), 8,0 dt + (for 9(0)) — /0 (£ (1), Ap(0) dr

T
2.12) == [ [ [ st 00. 1.0 dve© dr dpi)

k>1

1 T

_5/0 /'];*N/Raf(p(x’t’g)Gz(xvé)de,z(f)dth
+m(ds@) a.s.

forall p € CC1 (TN x [0, T) x R), where fo(&) = Lyy>¢ and for all ¢ € Cp(TN x [0, T] x R),

T 2
dvy (&) = Su=¢ d§&, m(qﬁ):/o /j;Nqb(x,t,u(x,t))Wul dx dt.

PROOF. By Itd’s formula, we have for 6 € C*(R) with polynomial growth at +00,
A(l6.8) =d [ 1,66'6) d = dow)
/ 1 " 2
=0"(u)(Audt + D) dW (1)) + 59 (u)G~ dt,

where G2 = Dkl |gk|2.
The first term can be rewritten as

0" (u)Au= A8 ) — |Vul*0" () = A(Iy=¢,0') + (85 (| Vu|*8u=s), 0').

Hence, we obtain the following kinetic formulation:
1
d(Ii=g,0") = A(L~¢,0') dt + (a§<|W|25u:§ —~ EGZ(Su:g), 9’) dt

+ ) (Su=e 8k, ) dpx.
k>1

Taking 0(¢) = [ x, we have

1
d(Tume, 1) = Allume, ) di + (35 (Wuﬂau:s - 5Gzcsu:s), x) di

+ Z(Suzsgk, x) dBk.
k>1

Since the test functions ¢ (x, £) = a(x) x (§) form a dense subset of C2° (TN x R), it follows
that (2.12) holds. We complete the proof. [

From above, it is clear that the kinetic measure m has an explicit expression

m=|Vu|*8,—¢.
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3. Compactness results. Recall the following two compactness results from [6], which
are important for establishing the existence of generalized kinetic solution of (1.1).

THEOREM 3.1 (Compactness of Young measures). Let (X, 1) be a finite measure space.
Let (V) be a sequence of Young measures on X satisfying the condition (2.8) for some p > 1,
namely,

3.1 supv/X/RElpdv;’(S)dk(z) < 4-o00.

neN

Then there exists a Young measure v on X and a subsequence which is still denoted by (v'*)
such that, for h € LY(X) and for ¢ € Cp(R),

6y lim [ 1o [ 0@ d© a0 = [ 16) [ 9@ v dre.

COROLLARY 3.2 (Compactness of Kinetic functions). Let (X, A) be a finite measure
space. Let (f,) be a sequence of kinetic functions on X x R: f,(z,&) = v (§, 00), where
Vi, n > 1, are Young measures on X satisfying (3.1). Then there exists a kinetic function f
on X x R such that f, — f in L°°(X x R)-weak *, as n — oo.

3.1. Global well-posedness of (1.1). The following result was shown in [6].

THEOREM 3.3 (Existence, uniqueness). Let ug € L™ (TN). Assume Hypothesis H holds.
Then there is a unique kinetic solution u to equation (1.1) with initial datum ug. Besides, if f
is a generalized kinetic solution to (1.1) with initial datum 1~ ¢, then there exist ut and u—,
representatives of u such that for all t € [0, T1, f*(x,t,&) = L= (x 1>¢ a.s. fora.e. (x,1,§).

REMARK 1. The kinetic solution « is a strong solution in the probabilistic sense.

4. Freidlin—-Wentzell large deviations and statement of the main result. We start with
a brief account of notions of large deviations. Let {X?}..¢ be a family of random variables
defined on a given probability space (€2, F, IP) taking values in some Polish space €.

DEFINITION 4.1 (Rate function). A function I : £ — [0, o] is called a rate function if
I is lower semicontinuous. A rate function / is called a good rate function if the level set
{x € £:1(x) < M} is compact for each M < oo.

DEFINITION 4.2 (Large deviation principle). The sequence {X?} is said to satisfy the
large deviation principle with rate function / if for each Borel subset A of £

— inf I(x) <lim infoslog]P’(Xg € A) <limsup elogP(X® € A) < — inf I (x),
&=~ e—0

xeA° xXeA

where A? and A denote the interior and closure of A in &, respectively.

Suppose W (t) is a cylindrical Wiener process on a Hilbert space U defined on a filtered
probability space (£2, F, {F:}ief0,7], P) (i.e., the paths of W take values in C ([0, T]; i),
where U is another Hilbert space such that the embedding U C U is Hilbert—Schmidt). Now
we define

A= {d) : ¢ is a U- valued {F;}-predictable process

T
such that / |6(s)[7, ds < o0 P—a.s.};
0
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T
Sy = {h e L*([0,T1; U) : /0 |h(s)|7 ds < M};

Ay ={p e A: ¢(w) € Sy, P-as.}.

Here and in the sequel of this paper, we will always refer to the weak topology on the set Sy;.

Suppose for each ¢ > 0, G* : C([0, T]; U) — £ is a measurable map and let X¢ := G*(W).
Now, we list below sufficient conditions for the large deviation principle of the sequence X°
ase— 0.

CONDITION A. There exists a measurable map GY: C([0, TT;U) — & such that the
following conditions hold:

(a) For every M < oo, let {h® :e > 0} C Ay. If he converges to i as Sy-valued ran-
dom elements in distribution, then G*(W(-) + ﬁ Joht(s)ds) converges in distribution to

G(fy h(s)ds).
(b) Forevery M < oo, the set Ky = {go(fd h(s)ds) :h € Sy} is a compact subset of £.

The following result is due to Budhiraja et al. in [3].

THEOREM 4.1. If {G*} satisfies Condition A, then X¢ satisfies the large deviation prin-
ciple on &€ with the following good rate function I defined by

_ ~ Lt e
(4.1) I(f)_{ inf {5/0 |h(s)|Uds} Vfek.

heL?([0,T1;U): f=GO(Jy h(s)ds)}
By convention, 1(f) = oo, if {h € L*([0, T1; U) : f =G°(Jyh(s)ds)} = @.

Recently, a new sufficient condition (Condition B below) to verify the assumptions in
Condition A (hence the large deviation principle) is proposed by Matoussi, Sabagh and Zhang
in [16]. It turns out this new sufficient condition is suitable for establishing the large deviation
principle for the scalar conservation laws.

CONDITION B. There exists a measurable map GY: C([0, T1; U) — & such that the fol-
lowing two items hold:
(i) For every M < +00, and for any family {h®; & > 0} C Ay and any § > O,
lim P(p(Y®, Z%) > §) =0,
e—0

where Y¢ := GE(W() + ﬁfo hé(s)ds), Z¢ := go(fo' ht(s)ds), and p(-,-) stands for the
metric in the space £.

(ii) Forevery M < +oo and any family {h®; ¢ > 0} C S that converges to some element
hase— 0, go(f(; h®(s)ds) converges to go(fd h(s)ds) in the space &.

4.1. Statement of the main result. In this paper, we are concerned with the following
stochastic conservation law driven by small multiplicative noise:
du® + div(A(uE)) dt = \/EQJ(MS) dW (1),
u®(0) = uo,

4.2) [

for & > 0, where ug € L>°(T"). Under Hypothesis H, by Theorem 3.3, there exists a unique
kinetic solution u® € L'([0, T]; L'(TV)) a.s. Therefore, there exists a Borel-measurable
function

Gt C([0, T1;U) — L'([0, T1; LY(TV))
such that u?(-) = GE(W (+)).
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Let i € L2([0, T]; U), we consider the following skeleton equation:

(4.3) {duh + div(A(up)) dt = @ (up)h(1)dt,

up(0) =ug.
The solution uj,, whose existence will be proved in next section, defines a measurable

mapping G° : C([0, T1;U) — L'([0, T1; LY(TV)) so that GO(fy h(s) ds) := up(-).
We are now ready to state our main result of this paper.

THEOREM 4.2. Let ug € L®°(TV). Assume Hypothesis H holds. Then u® satisfies the
large deviation principle on L' ([0, T1; L' (TN)) with the good rate function I given by (4.1).

5. Skeleton equation.

5.1. Existence and uniqueness of solutions to the skeleton equation. Fix h € Sy, and
assume h(t) = ;> h*(t)ex, where {ek}k>1 1s an orthonormal basis of U. Now, we introduce
definitions of solution to the skeleton equation (4.3).

DEFINITION 5.1 (Kinetic solution). Let ug € L®(TV). A measurable function uj, :
TN x [0, 7] — R is said to be a kinetic solution to (4.3), if for any p > 1, there exists
Cp > 0 such that

ess sup |un(®)|?, <C,p,
te[O,pT]H h ”Ll (TN) r

and if there exists a measure my, € /\/lar (TN x [0, T] x R) such that fn = 1,,>¢ satisfies that
for all p € CL(TN x [0, T] x R),

T T
/(; <fh(t),3z</’(t))dt+<f0,<ﬂ(0)>+/0 (fn(®),a(€)-Ve@))dt
5.1) .
= —];/0 /TN gr(x, up(x,0)e(x, t, up(x, t))hk(t) dxdt +mp(3:¢),

where fo(x,&) = L5(x)>¢-

DEFINITION 5.2 (Generalized kinetic solution). Let fj : TN x R — [0, 1] be a kinetic
function. A measurable function fj, : TV x [0, T] x R — [0, 1] is said to be a generalized
kinetic solution to (4.3) with the initial datum fy, if (f;(t)) = (fi (¢, -, -)) is a kinetic function
such that for all p > 1, ph = —0¢ fi satisfies

(5.2) ess sup. L[, [erat,@dx<c,

where C), is a positive constant and there exists a measure mj, € /\/l(J)r (TN x [0, T] x R) such
that for all ¢ € C}(TVN x [0, T] x R),

T T
[ . 0w)dr + (0. 00) + [ 15i6).a) - Volo)dr
(5.3) ,
==Y [ [, [ st o0t 1. et @ vk ) dxdt -+ my e

k>1

THEOREM 5.1 (Existence). Let ug € L®(TN). Assume Hypothesis H holds, then for any
T >0, (4.3) has a generalized kinetic solution fy with initial datum fo = I, ~¢.
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The proof of Theorem 5.1 is similar to the proof of Theorem 3.3 which was done in [6].
We therefore omit it here. Moreover, as stated in Proposition 2.1, for the generalized solution
fn, we have f = fhJr =f, ae.t€[0,T].

In order to prove the uniqueness of the skeleton equation (4.3), we first reformulate (5.3).
Taking a test function of the form (x, s, &) — @(x, &)a(s) in (5.3), where ¢ € CC1 (TN x R)
and « is the function

1 s <t,
s—t
5.4 a(s)=141— t<s<t+e,
I
0 t+e¢e=<s,

and letting ¢ — 0, we obtain for all ¢ € [0, T],

t
_ <fh+(l)a (,0)+ (fo0, ®) +/0 <fh(s),a(£;‘) . V(p)ds
t
(5.5) _ . )
]g/(; A,N_Aégk(X,s)(P(x,f)h ()dvy ((§)dx ds

+ (mpy, 3:9)([0,¢]) a.s.,

Where (mhv 8S¢>([07 t]) = fTNX[O,l]XR ag‘p(xv s) dmh(xv s, S)
Second, with the help of (5.5), we prove a comparison theorem for two generalized solu-
tions f;, 1 = 1,2 of the following equations:

:du;l + div(A(ul)) dr = ®(ul ) (1) dt,

5.6 .
(56) uj, (0) = uo.

PROPOSITION 5.2. Under Hypothesis H, let f;,i = 1,2 be two generalized solutions to
(5.6). Then, for 0 <t < T, and nonnegative test functions p € C*®°(TV), ¥ € CZ°(R), we

have
/ /p(x—y)W(é—C)
('H‘N)Z RZ
X (fECo 6, 50, 1,0 + fiE(e, 1,6) f5(y,1,0)) dE dt dx dy
(5.7 . .
= I CEROVICR

x (f1,0(x,8) f.0(0, 0) + f1.0(x,€) fr0(y, £)) dE d¢ dx dy
+ K1+ K1 +2K>,

where

z —_
KL= fo /(TN)z L 1688 o005, 0(a(®) — a(@))Vxedg dg dxdyds,

_ t _
Ro= [ [ Ais A0 0@ - a@)Vaade de drdyds.

and

K=Y [ o=

k>1
X /R2 1. O (g (x. &) — gr(y. ) (s)dv)  ® dv} ((£.¢)dx dyds

with yi(8,0) = [ oo (' — ) dE' = [ 5y () dy.



LDP FOR STOCHASTIC SCALAR CONSERVATION LAWS 335

PROOF. Denote fi(x,t,&) and f2(y,t, ¢) be two generalized solutions to (5.6) with the
corresponding kinetic measures m and my. Let 91 € C°(TY x Re) and ¢ € C° (’]I‘Iy\’ xR¢).
By (5.5), we have

t
FiF @), 01) = (Fro. o1) + /0 (fi(5). a(®) - Vi ())ds

t
+Z/0 /TN/ng("’ml(xv5>h"<s>dv;,s<s>dxds

k>1
where f1,0= Iuy>¢ and v} (&) = —0¢ fi (5, x, ) = 0z f (s, x, ). Similarly,

_ _ ro_
(5@, 02) = (f2.0, 92) +/0 (f2(5),a(2) - Vygpa(s))ds
t
X [ L [ e0.000. 01 @} @ dyds
+ (m2, 3 ¢2)([0, 11),

where 0= Iyy>¢ and v2 ((0) =0 f5 (5, y.8) = —0; f5 (5. v, 0).
Denote the duality distribution over ']I‘iv x Rg x ']I‘y x R by ((-, ). Setting a(x, &, y,¢) =
o1(x, &)p2(y, ¢) and using the integration by parts formula, we have

(VAOYANORY)
= ((f1,0f20, )

! _
+_/0 /;TN)Z szle(a(g)'Vx +a(§)'vy)05d§dé‘dxdyds

t
X [} [ [ 17 0ox ity 0 ) dg v} 0 ddy s
(5.8) -

t -
A2 [ [ By a6 6 de vl @) drdy ds

k>1

t
+
+/0 /(’]I‘N)2 R2 fl (s,x,8)0cadma(y, &, s)d§ dx

t
o
_[) /(TN)2 R2 f2 (S,y’é‘)agadml(x’%"s)d;dy

= ((fiofro @)+ + L+ I3+ I+ Is.

Similarly, we have
(AT L. )
= ({(f10/20.))

4 _
+/0 /mrw fRz fifa(a®)-Ve+a(t) - Vy)adsdsdxdyds

t -
(5.9) +2 fo f(TN)Z T x ey, R (5)d§ dvy (0 dx dy ds

k>1
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t
S [ By D e R 5 vl ) i dedy ds

k>1
t
7+
- s, x,&)0radmo(y, ¢, s)dE dx
[} [ Lo 7Gx £r0cdmaty .5) s
t
+// F(s,v,0)admy(x,&,5)de d
O(TN)szfz(yé“)s 1(x,&,5)dt dy
= ((fiofr0.a))+ 1 + L+ B+ I+ Is.

By a density argument, (5.8) and (5.9) remain true for any test function o € C2° (’JI‘)ICV X
Re x szv x R¢). The assumption that « is compactly supported can be relaxed thanks to
(2.6) on m; and (2.8) on v;, i = 1, 2. Using a truncation argument of «;, it is easy to see that
(5.8) and (5.9) remain true if o € C° (']I‘fcv x Rg x ']I‘;Y x R¢) is compactly supported in a
neighbourhood of the diagonal

(6.2, 6);x e TV, £ €R).
Taking @ = p(x — y)¥ (& — ¢), then we have the following remarkable identities:

(5.10) (Vi4+V)a=0, (9 +0)a =0.

Referring to Proposition 13 in [6], we know that Iy, I5, I, Is in (5.8) and (5.9) are all non-
positive. As a result, we have

Joup oot =0t =
) (5 000+ J (. 6) £ (v 1. D)) di dg dx dy

< [ oo oo =306 =)
x (f1.00x,8) f2.000, ) + fi.0(x, ) fr0(y, ¢))dE d¢ dx dy
3
+> i + 1.
i=1

With the aid of (5.10), we deduce that
t _
n=[| fiFo(a(®) — a(0)) Ve dE dt dx dy ds,
0 (TN)Z R2
_ t _
W= Fif2(a(®) — a(£)) Ve dE dE dx dy ds.
0 (TN)Z R2
Let

&
m@,;):/_mw(é—:)dé
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for some &, { € R. Then

t
L=-— + (s, x, _
) ;/0 [ [ i x8pe=
x e y1(E. 0)gr(y, Oh*(s)d& dv} (¢)dx dyds
t
— _ k
= ];/0 f(TN)Z/Rp(x Y&y, E)h™(s)
(5.11)
x ( A; fi (s, 2, )31 (6, ;)ds) dv; (£)dxdyds
t
=—]§/0 f(w)z /Rzp(x—y)yl(é,i)gk(y,()

x h*(s)dvy (@ dv} (&, ¢)dxdyds.

The third equality is obtained by
/Rfﬁ(s,x,é)asm(é&)dé =—/Ragffr(s,x,§)yl(§,§)d§

- / W(E D) dv) | (©).
R

Similarly, for £, ¢ € R, let

o0

Y2(£.6) =/§ (e —¢')de,

then
t
— r+ _
Iy= ;/0 [ AR TIEE
X 0ry2(¢, €)gr(x, E)* (s) dvy ((§)d¢ dxdyds
t
=3 [ [ f o= mse et
(5.12) kz1

x ([ 56,000, 6) de ) dvl ) dxdy s

t
- Z/O /(TN)Z - Y28, 8)p(x — y)gk(x, &)

k>1

x h*(s)dvy ( ® dv} ((§.¢)dxdyds.

Note that y1(§,¢) = (¢, &) = ff;f ¥ (y)dy. We deduce from (5.11) and (5.12) that

t
Iz+13=Z/O /(TN)Z,O(X—)’)

k>1

% [ €D (@ ©) = g M) vl ® v (6.6 dxdyds.
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Similarly, we have

_ _ t
12+I3=Z/0 /(TN)Z,O(X—)’)

k>1
x /R VG D80, 8) — gk (v O)hE(9) dvy @ dvy (5. ¢) dx dyds.

Taking K| = I, Ki=Land Ky=hL+ I3 =1+ I, equation (5.7) is established for fi+.
To obtain the result for f;”, we take 1, 1 ¢, write (5.7) for fiJr (ty) andletn — oo. O

Now, we are in a position to establish the uniqueness.

THEOREM 5.3. Let ug € L°(T") and assume Hypothesis H holds. Then there exists at
most one kinetic solution to (4.3) with the initial datum ug. Besides, any generalized solution
fn is actually a kinetic solution, that is, if fy, is a generalized solution to (4.3) with initial
datum I, ~¢, then there exists a kinetic solution uy, to (4.3) with initial datum uq such that

fo(x,t,8) = Iuh(x,t)>§’f0r ae.(x,t,8).

PROOF. Let p,, Vs be approximations to the identity on TV and R, respectively. That
is, let p € C®(TN), ¥ € C >°(R) be symmetric nonnegative functions such as v p =1,
Jr¥ =1and suppy C (—1, 1). We define

1 X 1 /&
'OV(X)ZV_N'O(;)’ 1//8(5)251#(5)
Letting p := p, (x — y) and ¥ := ¥5(§ — ¢) in Proposition 5.2, we get from (5.7) that

_/('H‘N)Z_A.szy(x _y)WzS(%— - é-)
 (fEL .8 FEG 0.0 + FE. 1. 8) £ (y.1.0)) dE dt dx dy

(5.13) < /(TN)Z A;g py (X — V)Ps(E —¢)

x (f1.0(x, &) f.0, 0) + f1.0(x, &) f2.0(y, ¢))dE d dx dy
+ Ky +121 + 2K,

where K 1, Ié 1, 152 in (5.13) are the corresponding K1, K1, K> in the statement of Proposi-

tion 5.2 with p, ¥ replaced by p,, Vs, respectively. Let (£, ¢) = ffoo Ys(E' — &) dE’, for
simplicity, we denote y1(€,¢) = y1(§, £). In the following, we devote to making estimates of

Igl, Igl and 152.~
For K| and K}, by (2.1) and using the same method as in the proof of Theorem 15 in [6],
we have

(5.14) IRi|+ 1K1 <2TCpsy "

For K>, by utilizing (2.3), we deduce that

- t
Ky, < / f X —
2 o Joovy ,0)/( y)

x /R V1.0 D |k (x. &) — gr(y. O | ()| dvy ; ® dv} ((§.¢)dx dyds
k>1
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1

t , 1
=< /0 /(W)z,Oy(x—y)fR2 V1($,§)<Z|gk(x,§)_gk(y,;)| )

k>1

1
x <Z|hk(s)|2> “dv! @dv2 (&, ¢)dxdyds

k>1

t
5 D / hS / X — X —
VD1 [ ROly | Py =l —y]
x [ nEoa @di 6. 0)dxdyds
t
VD1 [y [ o=y
x [ €0k —cldvt @ €0 dxdyds
= 122,1 + 1%2,2-
Note that
[ neoat ea? €=,
x —y|x—yldxdy <vy,
[Py = 9l = ldxdy <
it follows that

B '
(5.15) Kz,lsmyfo Ih(s)|, ds < VDry(T + M),

Moreover, by vl (&) = —d¢ f{ (s, x, &) = 9 fi"(s.x.&) and v2 (§) = 3 f5(5.y.0) =
—d: f3(s, ., £), it follows that

~ t
2= Dl/o |h(s)|U/(1rN)z /Rz py(x =)
x |& —¢ldvl  @dv2 (£,8)dxdyds

=01 [y [ [Lor=)

x (=) dv, (®@dv] (. 0)dxdyds

t
+/Ef0 |h(s)|U/(TN)2fRzpy(x—y)
x (§ — f)_dl);,s ®d"§,s(§’ O)dxdyds

t
=i [l [ [ vt =)
X (fiE e, 8,8 55 (v, 5, 6) + f7 (e, 8,6) 55(v, 5, 6)) dE dx dy ds,

where we have used 8g—; = —0:90; (§ — {) T = —0:0, (6 — ).
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By utilizing [ ¥s(& — ¢)d¢ =1 and f§ ¥5(¢)d¢' = [5¥s(C)dg’ = 5, we get
_ + F+
’/(.TN)Z_/ py(x =) fi (x,5,8) f; (v,5,8)dEdxdy
/;TN)Z_/ fl ()C 55 S)fZ (y S, C)

X py (x = Y)Us(& —i)dxdydédg‘

= _ +

= ‘/(TN)Z py (x y)/Rf1 (x,5,8)
< [V~ O s, 0)ds de ey
/Tmpy( —y)/ fiCx. s, 8)

x /5_8 Vo6 — O(FE (v 5.8) — FE G 5.0) e dE dxdy

_ +
[ et

5+ r+ r+
(5.16) < J, vsE —O(fy (0,5.8) — fo (v,5.86))d¢ dé dx dy

/(TN)Q Py (x — y)/ Vs(¢

x /Rf1 5, ) (FEG5.6) — FE(y.5.& — ¢')) dE i dx dy

0
= [ (e

x / FEG s, ) (FE (5.6 — &) — FE (.. 6))dE dE’ dxdy

<o [ o= [ wsteras’)( [ a0 s )ae ) avay
[ o[ we)a)

X <f E)g/f_zi(y,s,é/)dé/> dxdy

8 =2,
2 +2

where we have taken into account the facts that fzi (v, s, &) isincreasing in &, fli (x,5,6) <1
and fg 9 f5°(y. 5. €) d& = [pv2 (d&) = 1. Similarly,

,/(-TN)ZA;’OVOC _y)fli(x’s’g)fzi(y,S,S)dedxdy

- /(TN)2 R? flf@ s ) 7(n5.0)
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X oy (x — Y)s (& — c)dxdydsdc\

- ‘/(-TN)Z py(x = y)/Rf]i(x’ 5

x f U5 — O (fE G 5.6) — FE(y.5.0)) de dE dx dy

/(Wpy( x=y [ JEese)

(5.17) X wa(s—¢>(f;<y,s,c>—ff(y,s,@)d;dwxdy
)

N
o et

E+6 N N
Xf Vs —O(f (05,6 — fo7 (v,5,0))d¢ dé dx dy

/(szy( —y)/ Vs (¢

></Rf1 s, ) (FE( 5.6 — &) — FE(y.5.6)) dE i’ dx dy

0
= [ us(e)

X / s 6 (38 8) — f57 (v, 5.6 = ¢'))dE d¢’ dx dy

15+15 5.
=2°7T %%

Then we deduce from (5.16) and (5.17) that
5 t
Koo <26+ D1/ ‘h(s)|UdS
0
t
+ £+ r+ o+
+VD1/O |h(s)|uf(TN)2/Rz(f1 IR

(5.18) X py(x = y)¥s(§ —¢)dxdydEdeds
<28V/D\(T + M)

! N
VD[l [ LA R
X py(x = y)Ys(§ — ¢ dxdydEdEds.
Hence, combining (5.15) and (5.18), we get
K> <V/Di(y +28)(T + M)
t - —
(5.19) VD [y [ LR R

X py(x =)Ys5(§ =) dxdyd§ di ds.
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Taking into account (5.13), we deduce that

Jopup s =06 =)
X (6 5006, 0) + f (e, 6,6 57) (0,1, 0)dE dg dx dy

< [ oo =30 =)
x (1,006, 8) f2.0(0, ©) + fr0(x, &) fr0(y, $)) dE d¢ dx dy
+2TCpdy " +2V/Di(y +28)(T + M)

! T T g
+201 [l [ R
X py(x —)¥s(E —¢)dxdyd§di ds
SfTN /R(fl,of_Z,O—i‘fl,OfZ,O)dédx+50(V75)
+2TCpy ' +2J/Di(y + 8)(T + M)
! T T g
+2D1 [y [ R R

x py (x = Y)s(§ — §) dxdyds d¢ ds,

where &y(y,8) — 0,as y,8 — 0.
Utilizing Gronwall inequality, we obtain

/ f Py (x — Ys(E — ©)
('H‘N)Z R2
X (e, 0, 6,0) + fi7 G, 1,8) 57 (0,1, 0)) dé dt dx dy
<| [, [Frofao+ frofaords dx + &y,

(5.20) +2TCp8y ' +2VDi(y —|—28)(T+M)]
t
xexp{Z\ﬂ/(; \h(s)]Uds}

< 62«/D_1(T+M) |:/ / (fl,Of_‘Z,O + JEI,OfZ,O) dédx + EO(V: 8)]
™ JR

+ 2e2VPIUTEM[TC L5y~ 4 /Dy (y +28)(T + M)

Combining all the above estimates, it follows that

[ LU o/ (o o)+ FEen6) fi . 6) dxde

= [ frapr e = vse —0

(5.21) X (fEC ) 50, 6,0) + fiE(xe, 1,6) f55(p, 1, £)) dE d¢ dx dy
+ gl(V? 8)
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< 2V/D1T+M) [/ / (f1.0/2.0 + f1.02,0) d& dx + 2 (y, 5)]
™ Jr

where &(y,8) = 0,as y,5 — 0.
Taking § = y% and letting y — 0 gives

Lo [ @ e + ffton ) £, ) dx d
(5.22) IR

< 2VDIT+M) /TN A;(fl,OJEZ,O‘*’fLOfZ,O)dXdS-

The reduction of generalized solutions to kinetic solutions is very similar to the proof of
Theorem 15 in [6], and we therefore omit it here. Suppose that u,ll and u% are two kinetic
solutions to (5.6), using the following identities:

T 1 2\+ S 1 2\—
(5.23) %l‘%lu}l>élu%>3§ d§ = (up, —up) " /IRIu,g>slu§>g d§ = (up, — up)
we deduce from (5.22) with f; = IMZ>$’ fi,0 = Iy,>¢ that

luh(@) = uf O] 1wy < e¥PH T g — gl 1 vy =0.

This gives the uniqueness. [J

In view of Theorem 5.1 and Theorem 5.3, we can define G° : C([0, T]; /) — L' ([0, T];
LY(TN)) by

” ifﬁ:/.h(s)ds, for some h € L2([0, T1; U),
0

0  otherwise,

(5.24) GO%h) == [

where uj, is the solution of equation (4.3).

5.2. The continuity of the skeleton equations. In this part, we aim to prove the continuity
of the mapping G°. Namely, let ue denote the kinetic solution of (4.3) with /& replaced by
h® and we will show that uy= converges to the kinetic solution u;, of the skeleton equation
(4.3)in L'([0, T1; L'(TN)), if h® — h weakly in L*([0, T]; U). For technical reasons, we
will introduce two auxiliary approximation processes.

For any family {h®, e > 0} C Sy and n > 0, let us consider the following parabolic ap-
proximation:

duje —nAujl. dt + div(A(uy)) dt = ®(u).)h® (1) dt,
MZ,S (0) = uy.

(5.25) {

It is shown by Theorem 2.1 in [11] that equation (5.25) has a unique L€ (TN)-valued
solution provided g is large enough and ug € L2(T"), hence in particular for ug € L= (TV).
We denote by /. the solution of (5.25).

Furthermore, for any R € N, we approximate operator A in (5.25) by the Lipschitz contin-

uous operator AR using the method of truncation. Consider the following approximation:
dull® —nAul® dr + div(AR (W) dt = @]V he (1) dt,

R
up: (0) = uo,

(5.26) [

where AR is Lipschitz continuous hence it has linear growth |[AR(£)| < C(R)(1 + |&|).
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Referring to Proposition 5.1 in [5], we have

T
(5.27) sup{ sup Hu Hi,+/0 ||WZ;R(s)||§,ds} <C(M, |luoln).

& el0,T

where the constant C is independent of ¢ and R.
Following the same arguments as the proof of Theorem 5.2 in [5], for every n > 0, it can
be shown that

. TR 2
(5.28) lim sup [ |lui"(t) —uje ()| dt =0.

R—+00,50J0
With the above two approximation processes (5.25) and (5.26), for any ¢, n, R > 0, we have
lune = unll o, 7yt (vvy)
< [lupe — une |2 qo.ryrervy) + lupe — ”ZéR | 210,71 L1 ervy)
+ ||”Z’€R - ”Z’R”LI([O,T];LI(TN))

R
+ ||”Z - ”Z“Ll([O,T];Ll(”JTN)) + ””Z - uh”Ll([O,T];Ll(’]I‘N))‘

In order to establish the continuity of the skeleton equations, we need several steps.

. R S R, R
First, we prove the compactness of {uZ; , & > 0}. For simplicity, we set ud"" = ng .

As in [10], we introduce the following space. Let K be a separable Banach space with
the norm | - ||g. Given p > 1, @ € (0, 1), let W*P([0, T]; K) be the Sobolev space of all
functions u € L? ([0, T']; K) such that

/’/“Hmw—u@MKmd < o0,

l‘—S|1+°‘p

which is then endowed with the norm

T ||u(t)—u(S)||
”M”Wozp ([0,TT; K)_f ”u(t)”p dt+/ / s|1+ozp Kd ds.

The following result can be found in [10].

LEMMA 5.1. Let By C B C By be three Banach spaces. Assume that both Bg and By are
reflexive, and By is compactly embedded in B. Let p € (1, 00) and o € (0, 1) be given. Let A
be the space

A= LP([0,T1; Bo) N WP ([0, T1; By)

endowed with the natural norm. Then the embedding of A in LP ([0, T]; B) is compact.
We then have the following result.
PROPOSITION 5.4. Forany n, R > 0, {uQ’R, e > 0} is compact in L*([0, T]; H).

PROOF. From (5.26), ul® can be written as

t t t
ul K1) = uo+nf0 AulRds —fo diV(AR(uZ’R(s)))ds—I—A & (u®)hE (s) ds

= I+ I5+ 15+ I
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Clearly, || I{ ||z < Ci. Next,
[=2ul®| i = sup |(v, —AulF)
ol 1 <1

= sup |(Vo, VulR)

vl =<1

< C|vul ]y
which then yields the following:
2 t 2
|50 = L®) |- = nH/ —AuZ’R(l)le
N

H-1

t
<Cl—) [ 1=dul® @1 di
t
<C( —s)f |vul-R @y |3, al.
N
Hence, by (5.27), we have for o € (0, %),

2
S‘gP“ I5 e o1y m-101)
2

T T T\ I5@) =155,
< £, dt / / 2 H™ dsdt
—/0 ” 2( )”H 1 + o Jo |t_S|1+2a §

=< Ca(a).
By the integration by parts formula and the linear growth of A®, we have

div(A® @ ) g-1=sup_|fv.div(A" (@l *(s))))

loll 1 <1

= sup [[Vo. AR (R )

vl g1=1

<C(R) sup |Vl (1 + |ul R (s)]) dx

vl 1<t /T
< CR(1+ |ulR)|3)
which gives that

2

1150 - 501 = | [ dv(at @ ) al

H-1
t
< ORI =) [ aiv(A® @ ® @) [} di
! 2
<@ [ (1+uF @) a

=CR—sP[1+ sup )]
t€l0,
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Hence, we deduce from (5.27) that for « € (0, %),

2
SlEIPH If || We2([0,T]; H-1(TN))

roo TS ~ KO
< [ 1o Ras [ f dsd

|t—s|1+2°’

< C3(a).
Moreover, by (2.4), it follows that
2 2 2
[ @)D < 12 ) 2y, m h* Oy
< Do(1+ [ul * |3 Ih* O,

then, by the Holder inequality, we get

2

15 — )| = H / eyl

<(t—s)/ | (R 1) |2, di
t

< Do(t —)(1+ sup ||ug’R(t)||§,)/ he (D)7, di

tel0,T] s
< DoM (i — R
< DoM(t —)(1+ sup [ulR@)[3).

te[0,T]
Thus, we deduce from (5.27) that for o € (0, %),

2
sng I e o, 7: 1y

T T pT
2 15 (1) = 157
sfo ||I;§(t)||ydt+/0 / i dsdr

< Cy(a).

Collecting the above estimates, we conclude that for o € (0, %),
JR|2
Sl:pHuZ I We2([0,T]; H-1(TV)) = C(a).

Applying (5.27) and Lemma 5.1, we obtain the desired result. [

Furthermore, we apply the doubling of variables method to obtain the uniform convergence
of the sequence {uZ, n > 0} to up, over Sy;.

PROPOSITION 5.5. We have

. n_ —
7}{)%;;1;”% n L qo. 7z vy =0-

PROOF. For any h € Sys, we consider the generalized kinetic solution fi(x,#,§) =
Ly, (x,n>¢ of the skeleton equation (4.3) with the corresponding kinetic measure m. As the
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proof of (5.5), for ¢1 € C°(TY x Rg), we have

t
FE@), o1) = (fro. o1) + f (Fi(s). a(®) - Ve (x, £))ds

(5.29) +Z/ / /gol(x £)ge(x. £)hk(s)dv! ,(8) dx ds

k>1
— (my1, 9:¢1)([0, 1]),

where fi,0 = luyy=¢ and v} (€) = 3 fi (s, x,§) = = f{"(5, x, ) = 8,2, Similarly, con-

sider the generalized kinetic solution fzn(y, t,0)=1 of equation (5.25) with A® re-

1
Mh (ys t) > é‘
placed by & and the corresponding kinetic measure is denoted by mg For ¢, € C° (T;V xR¢),
we have

- = ro
(A=@), 2} = fr0. 92) +/ (/3 (9),a(@) - Vyga(s))ds

(5.30) = / / f 2 (3, D)2 (x, YK (5) dv2 () dy ds

k>1
Ui ! n,=E
+ 2, 3 @2)([0, 11) — 1 /0 (72 (5), Ayga(s))ds

Where f2,0 = Iu()>§' and Vy s (g) = _aff d:(S? Y, ;) = 8{ f_‘zn’i(s7 Y, ;) = 8Ltzyi:{'
Setting a(x, &, y,¢) = p1(x, E)p2(y, ¢), using the integration by parts formula, we have

(FROYAORY)
_ t _
=<<f1,0f2,0’0l>>+/0 f(TN)Z - f17 (@) - Vi +a(Q) - Vy)adé dg dxdyds

>/ [ o £G5B OB (5) d vl dx dydis

k>l N)2 R2
+I;f /TN)Z ” F (s, y, Oagelx, R (s)dg dv! (8)dx dyds

+ n
+'/(‘) /;TN)2 szl (s,x,8)0cadmy(y, ¢, 5)dE dx
' n,%
_./0 /;TN)z szZ (s,y,8)0saxdmy(x,§,5)d dy

t
+ .+
— Avadédcdxdyds
77/o /(TN)2 R2f1 f yords dg Y

= ({fi.0f2.0,@)) + R + Ry + R3 + Ry + Rs + Re.

Similarly, we have

(OYAORY)
_ t =
=(hofooan+ [ [ [ A a® Vita@-Voudsdedxdyds

+3 f / o o TG g0, O (5) dE dvEE) didyds

=1 N)2 R2
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_ k
Z/ /’JT (S v, $)agr(x,§)h (S)dé'dvxs(é)dxdyds

k>1 N2 ]Rz
_/0 /@rw)z - fi (s, %, £)0pacdm](y, ¢, 5) d§ dx
t
+/0 /(TN)Z /RZ fZ",i(s,y,;)agadml(x,g,s)dg dy

t
r+ enE
Avadédtdxdyds
77/0 /(’]I‘N)Z szl fz y §d¢ y

= ({f1.0/2.0.@)) + Ry + Ry + R3 + Ry + Rs + Re.

As in the proof of Proposition 5.2 and Theorem 5.3, taking a = p, (x — y)¥s(§ — ¢), where
py and s are approximations to the identity on TV and R, respectively, we have

L fyaor e = vt =0
x (fEC L E) FE (o, 0) + FECe, 1, ) [ 5 (.1, 0)) dE dg dx dy

(531) S/(‘TN)Z RZPV(x_y)w8(€_§>
x (f1.00x,€) 2003, O) + fi,0(x, &) fr.0(y, ) dE d¢ dx dy
6 -
+ Z(R, + R)).
i=1

where R;, 131- in (5.31) are the corresponding R;, R; with o = py(x —WYs(§ —¢) fori =
1,...,6.
Referring to Proposition 13 in [6], §4, 155, R4, Rs are all nonpositive. From (5.10), Iél and

R can be written as

~ t _
=/() ,/(TN)z R2 f1£5(a€) —a(©)) - Vip, (x = Y)W — ) dé dg dx dyds,

~ 4 _
=[] FiF @) — a@) - Vipy (x — y)s(& — £) dg dg dxdyds.
0 (TN)Z R2
Similar to the proof of Theorem 15 in [6], we get
IR\ <TCpoy~',  |Ri|<TCpsy~".

Moreover, with the aid of y1 (&) = 5o, Y5 (€' — £)dE", y2(£.8) = [ Ys(& — ¢y dt’
and y1(§,¢) = y2(&, £), by the same arguments as the proof of Theorem 5.3, it follows that

Ry + Rs
=Ry + Rs

—Zf fTN)zpy(x—y)

k>1

x /R V1E O (gr(x. §) — gk (v, OV () dvy , @ dvy (5, £) dx dyds
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t
< [y [ o=

x [ &0 (Tlat o) - a0 ) anl @ atie.odedyds.

k>1
Applying the same method as the estimate of K5 in Theorem 5.3, we deduce that
132 + 133
=Ry +R;
t
< \/leo |h(s)|, ];TN)Z py(x —y)
X /Rz 1§, O)|x — yldvj’s ®dv§j§(§, O)dxdyds
t
++vD / h(s / x —
ﬁ 0’ ( )‘U (TN)ZPV( y)
X /R2 Y1 Ol —¢ldv]  ®@dv}1E, ¢)dxdyds

r 2
<@+ 25)JDT(T +/0 |h(s)\Uds)

t _ —
+ m[) ()] /(TN)Z /Rz(flifzn’i + L)

X py(x = y)Ys(§ —¢)dxdydEdgds.

For the term 156, it can be estimated as follows:

~ t _
Rﬁf’?/o /(TN)z - fli 2n,iAy,oy(x—y)1ﬁ5($—{)déd;dxdyds
= t _ + .t _ ]
=i [, A0 | [, 5 vste ~ o dg e | dxayds

t
_ B : -
_77/0 /(TN)ZAx,Oy(X y)|:/R2l(§,§)dvx’s®dvy’s($,§)]dxdyds,
where
0ok
1e0= [ [ vl ~caglar

Moreover, let £ = &' — ¢/, it follows that

weo=[T(f L v aE) e

E+6 ,
< c/{ Sllvsl oo dt

<C(l&] +1¢] +8).
Then

[ o eaie s <ca+a,
R2 : ’

349
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where we have used the property that the measures v ;? and 1)5 , vanish at the infinity. Thus,
we have

- t
Re<C(1 +8)n/0 /(TN)Z Aypy(x —y)dxdyds < C(1 +8)nTy_2.

Similarly, using the same method as above, we conclude that Rg has the same estimate of Rs.
Based on all the above estimates, it follows that

Jopep s =06 =)
X (fE L E T (6, 0) + FE@, 1, &) (v, 1, 0)) dE d dx dy

< [ o r =306 =)
x (1,006, 8) f2,0(0, ) + fr0(x, &) fr0(y, £))dE d¢ dx dy

T
+2TCpy~ +2C + 89Ty 2+ 2y +28)¢D1(T+/0 (R[5 dS>

t — -
+2\/D71/0 ()] /(TN)Z /Rz(flifzn’i + )

X py(x =)V5(§ =) dxdyd§ di ds.

By the Gronwall inequality, we get

_ _ + n,+
«/;TN)2 A‘%zp}/(x s é‘)(fl ()C,t,é)f2 (v, t,¢)

+ FEL 1 E) ) (9,1, 0)) dEdT dx dy

< 2VDIT+]g 1h(s)[F ds)
T A
x (f1,006,8) f,000, O) + fro(x, &) fr.0(y, ) dE d¢ dx dy]
(532) +282\/D_1(T+f07 |h(S)|%/dS)|:TCp8y—1 +C(1 +8)7’]T)/_2
r 2
+(y+ 25)JDT<T +/0 |h(s)|Uds>}
< 62\/D_1(T+f0T lh(s)12 ds) |:/EN A‘%(fl,O(X,-’E)JEZ,O(X:&)
+ fiolx. &) fro(x. £)) dx d& + Eo(y. 5)]

+ 22V DITH 1h) ds)[TCpay‘1 +CA+8nTy™?

T 2
+(y + 25)JDT(T +f0 |h(s)|Uds>},

where &y(y, 8) is independent of 1 and converges to 0 as y,§ — 0.
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Let

&, y,9)

= /T‘TN /R(fli(x’ g S)]Ezn’j:(xv 1,§)+ f_ft(X, t, S)fzn’i(x, 1,€))dx dé
- /(’]I‘N)Z /RZ py(x = y)Ys(E —¢)
X (FEC O T, 0 + fiEG, 1,6 £ (9,1, 0)) d dE dx dy,

we claim that & (n, v, §) is independent of 5. Indeed,

gt (TI, Y, 8)

= MN/R(ff(x,t,é)ff’i(x,r,s)+ff(x,z,g)f2”’i(x,z,g))dx d&

- /(TN)szPN )

X (FEG, 8 B (5, 1,8) + fECe, 1, 8) (7,1, 6)) dE dx dy]
+[/(TN)2/pr(x—y)

+ 7n,+ 7+ n,%
X (fFC 8 (ot 8) + fi(x, 1, 8) £ (0,1, 6)) d& dx dy

o Ly =30t =)

X (fECL O 5,0 + Fif (e, 1,6) 7750, 1,0)) dE dg dx dy}

=:H| + H,.
Applying the same method as in the proofs of (5.16) and (5.17), it follows that
(5.33) |H>| <28,

and
H §f X —
<[ o=y
x Aluf<x,t>>s(’uz'i<x,z>ss ~ L g A5 dx dy‘
5.34 +V x —
(5.34) (TN)Z:O)/( y)

X Aé Iuhi(x,t)if (IMZ’i(x,t)>$ - IuZ’i(y,t)>$) d& dx dy’

<2 X — un’ix,t —un’jE ,Dldxdy.
<2 L=l w0 — 0l dvdy
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Combining (5.33) and (5.34), it yields

Sl(na )/96)
525+2/(TN)2 Py (= Wl =0, 1) — = (v, 1) dx dy
:28+2/ /,o(x—y)
(5.35) ave Jr"

X (6, &) B, E) + (1, €) £ (9,1, 6)) dE dx dy

sw2f o=y - O O F T 000

(TN)?

AL ) ) (9,1, 0)) dE de dx dy.

Utilizing (5.30) and applying the similar method as the proof of (5.32), we obtain

Jopp oot =06 =
X (0 E) F ot O 4 T, 1, 6) £ (v, 1, 0)) dEdE dx dy

Eex/D_l(T+f0T|h(s)|%/ds)|:/TN /ﬂ@(fz,oﬁ,o#—fz,ofz,o)dxdé+50(V,3)+Ju]
T
1 2eVDITH]Y |h(s)|2Uds)[TC,,5y—1 + (v +28)v' Dy (T +f }h(s)]szsﬂ,
0
where
Jﬁ = _nft/ fzn’i(xasaé)‘f;’i(y’sa{)Ayadgdé- dXdde
0 (TN)2 RZ
t -
+77f f / fzn’i(X,S,é)fzn’i(y,S,{)Axadédg“dxdyds
0 (']I‘N)Z R2
! 7, =+ n,+
—-n fz (-xvs’%-)fz (y,S,é')Athde{dxdyds
0 (']I‘N)Z R2
z -
+ /f 1E (x5, E) I (y, s, ) Ay dE dg dx dy ds,
1y s Jyo 2 8 O 0s. O0 B d de dvdy

and &y(y, ) is different from that in (5.32) but they both converge to 0, so we do not distin-
guish them. By utilizing the property oy + dya = 0, we deduce that J 1=0.
Hence,

L Joa e =90 — 07 = 0 B 000

AL, E) P (v, 1, 0)) dEdE dx dy

5.36
(30 < VDITH[ 1RSI ds)

T
x [So(y,8)+2TCp8y_l +2(y+25)\/D_1<T+/0 |h(s)|%]ds)},
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Combining (5.35) and (5.36), we conclude that
6[(“9 V, 8)

(5.37) < 45 + 2e2DIT+]g 1h($)IF ds)

T
X [50()/,5)+2TC,,8)/_1 +2(y+26)\/D_1(T+/0 |h(s)|2Uds)},

which implies that & (), y, 6) is independent of 1, so we denote that & (y, §) := & (7, v, 8).
From (5.32) and (5.37), we deduce that

L, LU0 corne) + e .5 @ 0) drds

< [ ooy =30 =)

X (fEC L E (5, 0) + FECe, 1, €) £ (v, 1, 0)) dE d¢ dx dy
+ 5z()” 8)

< 2VDITH 1h)IF ds)

X

[qu /R(f1,0f2,0+f1,0f2,0)dxd§+50()/,5)+2Tcp53/_]} + & (v, 0)

4 2e2VDIT+[ 1)l ds)

] - ,
X C(1+8)77Ty2+(y+25)\/D_1<T+/0 |h(s)|Uds)}

< 2VDITH OIG A 360y, 8) + 6T C oy '] + 45
1 22VDIT S 1h(s)[ ds)

x [C(l + Ty 2 +3(y + 25)JE<T + /OT|h(s)|§, ds):|.

Then we obtain

T - -
S“P/O /TNfR(fli(x,t,@fz”’i(x,t,S)+fli(x,r,s)fz”’i(x,t,g))dxdgd;

hGSM
< TXVPIT+M[38,(y, 8) + 6TCpoy ']+ 45T
+2T VDI THMIC (1 4 8)nTy 2 +3(y +28)V/ D1 (T + M)].

Taking § = y% and y = n%, we get

T - -
e /o ,/TN /R(fli(x’ LERE L)+ FE, L) T (x,1,8)) dx dE di

hESM
< TeWPIUTHM(38,(y 8) +6TCpnd] + 475 T
+2TVPITHM[CT (14 73)n5 +3(n% +249)y/Di(T + M)].

We deduce further from the following identities,

leupslu;g% dg = (un —uy)" fRIuPslu;% dg = (up —up)"
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that

sup / [ 6) = wn (O] 1 g, d

hGM

< TVPIT+M[3€0 (. 8) + 2T Cpy® +6CT (1 + 3 )3 ] + 405 T

+6T eI (13 4 29) /D (T + M).
Therefore, we get
(5.38) lim sup u! —up|; 1y = 0.
'7—>0heSM” h ”L ([0,T]; L1 (TN))
We complete the proof. [

Now, we are in a position to prove the continuity of G.

THEOREM 5.6. Assume h® — h weakly in LZ([O, T1; U). Then upe converges to uy, in
L'([0, T1; L' (TN)), where up: is the kinetic solution of (5.6) with h replaced by h®.

PROOF. Fix any n, R > 0. For the solution MZ;R of (5.26), we shall first prove that when
h® — h weakly in L([0, T1; U), we have lim,_, ||uZ;R — MZ’RHLI([O’T];LI(TN)) =0, where

uZ’R is the solution of (5.26) with 4° replaced by h.
In fact, by the chain rule, we have

i @) = @+ 20 [ 190" = ) [ ds
<2 [ (AR ) = AR ) T — s
+2/ (lFVhe (s) — D (U] Vh(s), ull® —ul®)ds
<2 [ (AR ") = AR ) T~ s
+2/ @l:R) — @ FY)nt s), uliR — ulR)ds
R

+2/ hs(s) h(s)), uhg —u; " )ds

— I+ D+ 2/0 (@ ®Y (1 (5) — h(s)), ul:K — ul"R)ds.
Using the Holder inequality and Lipschitz continuous of AX, we get

R R R
zl<zR/||whs — ] ) g s = Ry ds

t
<0 [ IVl — a5 ds + Con Ry [ g — a1 as.

Using Holder inequality and (2.5), we obtain

R ,R ,R
=2 [ 0) = D)y Ol = s

< VD1 [l = ) .
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Hence, it follows that

sup [0 = O 0 19 = ) s
te

T
<COn R [ = M (14 i )] s

+2 sup
tel0,T]

t
/0<<I>(MZ’R)(h8(s> h(s)), ul —ul®)ds|.

By the Gronwall inequality, we obtain

sup i~ KO+ [ 1V ) a
tel0,T]

<2 sup
t€[0,T]

/(;I(QD( )(he(s)—h(s)) uhS —uy )ds

X exp{C(n, R) /OT(l + |h€(s)|%]) ds}

<Cn, R, T,M) sup
t€l0,T]

/OI(CI)(MZ’R)(hS(s) h(s)), ul:® —ul®yds|.

To show lim,_, ¢ SUP;e[0.7] ||uZ;R (t) — uZ’R(t) ||%{ = 0, it suffices to prove that

lim sup =0.

8_)00<t<T

[t ). — )

This will be achieved if we show that for any sequence ¢,, — 0, one can find a subsequence
&m; — 0 such that

(5.39) lim sup

k—>ooO§l§T

=0.

! em nR _ n.R
/O(QD(uh )(h k—h),uhsmk—uh )ds

Now fix a sequence &, — 0. Since {uZ;ﬁf, m > 1} is compact in L2([O, T1; H), there exists a
subsequence {my, k > 1} and a mapping & such that uZénlfk — u in Lz([O, T1; H). Now, note
that

t
sup /0 (D (u] ™) (R —h),uZ;,I,fk —ul"®)ds

0<t<T

< sup
0<t<T

t
/0 <(D(Mz,R)(h€mk — h), MZEMk )dS

+ sup
0<t<T

t
/O (© () (hom — ), i — ul®)ds|.

Since hé" — h weakly in L2([0, T]; U), for every ¢ > 0, it follows that

(5.40) foz(cb( TR (e — h), it — u®)ds =0.
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On the other hand, by (2.4) and utilizing the assumption on %, for 0 < #; <, < T, we have

[t 0 =1, ¥

t

1
5]
< [ = | gy = s

& ” R R m
(5.41) SVDO/ li —uy ™| g (U Jug = | )[R — Ry, ds
141

1
1 B 2
=DM (14 sup ) ([ =¥ ds)
1€[0,T] 1
1
15} 2
<DoC(M, T, ||u0||H)(/t i — MZ’R||§,ds> .
1
Combining (5.40) and (5.41), we deduce that

t
(] "k — ), u—u; s|=0.
ul ®Y(Reme — h), i —u)®)ds| =0
0

lim sup
k— 00 0<t<T

By the Holder inequality, we have

t
sup / (CIJ(MZ’R)(hgmk — h), uZé,I,fk —u)ds
1€[0,T11Y0

1
_ 2
<VDoC(M, T, ||uoll (/ Huhgmk u\ﬁ,ds> .

Since uZéSk — i in Lz([O, T1; H), we obtain

lim sup =0.

k—00¢e[0,7]

t
’R m
/(CD(MZ J(hm — by, R — s

Collecting the above estimates, we prove (5.39). Hence

lim sup |u, (t)—u"’R(t) 2 =0,
8—>Ote[op | h |

which further implies that for any n > 0, R > 0,
: n,R NS _
(542) ‘;}I_I;I%)“uhg _”‘h HLI([O,T];LI(TN)) =0.
Note that for any &, n, R > 0,
lune — unll Lo, 77: 1 (TVY)
n n n,R

= ”th — Upe ”Ll([O,T];Ll(’]I‘N)) + “th — Upe ”Ll([O,T];L‘(’]I‘N))
(5.43) 0 R "R
+ Jups” —uyy ||L1([0,T];L1(’IFN))

R n n
+ H”h - Mh”Ll([O,T];Ll(TN)) + ||”h - uh”Ll([O,T];Ll(’]I‘N))‘
For any ¢ > 0, by Proposition 5.5, there exists 7¢ such that for all ¢ > 0,

L L
lupe — wne ”Ll([o,T];Ll(TN)) = 1 and  [u;’ — “h”Ll([o,T];Ll(TN)) = 1
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Letting n = 19, we deduce from (5.43) that

”Mhé‘ — uh”Ll([O,T]'Ll(TN))

10, R n.R TioR

L
(5.44) = 5 + e — upe ”Ll([o,T];Ll(TN)) e HL‘([O T1.L1(TNY)

R
+ ™ = up? HLI([O,T];LI(TN))-
Using (5.28), there exists Rg large enough such that for all ¢ > 0,

L

no,Ro _ 1o H
Up lLtqo.riLi vy = 7

R 3
e — m’ OHLI([OT] LI(TNy) = 4 and |uy,

e

Replacing R by Ry in (5.44), we get

<L+”unoRo 10, Ro

||uh8 _Mh”Ll([O TI; LI(TN)) _uh ||L1([0,T];L1(TN))‘

Using (5.42), we conclude that
lim ||upe —u . <t
h O|| h nlliqo,71:L1(TVY)

Since the constant ¢ is arbitrary, we obtain the desired result. [J

6. Large deviations. For any family {h°;0 <& <1} C Ay with h® =374 heker, we
consider the following equation:
du® + div(A(a®)) dt = ®(u®)h® (1) dt + /e D (u®) dW (1),
1f(0) = ug.

Combining Theorem 3.3 and Theorem 5.3, we conclude that there exists a unique kinetic
solution #¢ with initial data ug € L>°(T¥) satisfying the following:

6.1)

E(ess sup Hﬁg(t)”LI(TN)) < 400,
t€l0,T]

and there exists a kinetic measure m® € /\/l(J)r (TN x [0, T] x R) such that f¢ := e ¢ fulfills
that for all ¢ € C} (TN x [0, T) x R),

T _ T _
fo (750, 80D dt + fo @(0)) + f (F5(1). a(&) - Vo (n))di

:—IZ/ f /gk x, 18 (e, 0)(x, 1,05 (x, 1)) dx dpi (1)

k>1

(6.2) _ f/ N dep(x, 1, i (x, ) G2(x, & (x, 1)) dx dt

_Z/ /TN/ x, 10 (x, 1) gi(x, i (e, 0))hSK (1) dx dt

k>1
+m® (0ep) as.,

where G2 := D k>1 |gk|?. According to the definition of G¢, it is clear that GE(W(-) +
ﬁ Johe(s)ds) = i®(-).

According to Theorem 4.1 (the sufficient Condition B) and Theorem 5.6, we only need to
prove the following result to establish the main result.
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THEOREM 6.1. For every M < o0, let {h® : & > 0} C Ayy. Then

‘ ge(W(-) + % /O'hsmds) - 90(/0' hS(s)ds)

— 0 in probability.
PROOE. Recall that ¢ = GE(W(-) + ﬁ Joh®(s)ds) is the kinetic solution to (6.1) with

the corresponding kinetic measure m{. Moreover, v* := Go( Joh®(s)ds) is the kinetic solution
to the skeleton equation (4.3) with & replaced by #° and the corresponding kinetic measure
is denoted by 5.

Denote f1(x,t,8) := Ie(x,n>¢ and fo(y, 1, ) := lye(y,1)>¢. Using the same procedure as
for (5.4)—(5.5), we have for all ¢1(x, &) € C° (F]I‘fcv x Re),

L1([0,T];L1(TN))

t
FED. 01) = (o, 1) + /0 (fi(s). a(®) - Vi1 (x, &) ds

t
+\/EZ/O /TNAégk(x,é)w(x,E)dvijﬁ(é)dxdﬁk(s)

k>1

t
+§/0 L, [ 209620 avli@ dxas

t
+Z‘/0 '/TN%l;gl)l(x’g)gk(x,g)hg’k(s)dv;:;:(iz)dxds

k>1
where f1.0 = Iyo>¢ and v}¢(€) = —ds f;" (s, x, &) = ¢ fi7 (s, X, §) = 8zet(x )¢ Similarly,
in view of (6.2), for all ¢2(y, ¢) € Cé’o(’]l‘lyv x R¢), we have
_ _ ro_
(FE@®). 2) = (Foo 02) + fo (a(5), a(2) - Vya(y, O))ds

t
_Z/O /H,N/ng()’vC)@Z()’a§)h8’k(s)dﬁ§:§(§)dyds

k>1
+ (5. 9:2)(10. 1),

where f2,0 = luy=¢ and 535(0) = 3¢ f (5,3, ) = =3¢ f3 (5, ¥, §) = yex(y.n)=c-
Setting a(x, &, y,¢) = ¢1(x, E)pa(y, ¢), using the integration by parts formula, we deduce
that

(A0 0,«)
- t -
=(Whofoan+ [ [ [ fifa® —a@)- Viadgds dxdyas

£ ! 7t 2 le
+ 2/0 /(']I‘N)Z /RZ e fr (s,y,80)G (x,s)dvx’s(é)dfdxdyds

! ot ek Le
FX ) [ [ B Dt 00 de v @ dxdy s

k>1

t
_Z./o /(TN)Z - fli(S,X,E)agk(y,K)hg’k(s)dédﬁff(;)dxdyds

k>1
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t
—y .
- $,y,¢)osoedmi(x,&,5)d¢ d
/()/(TN)Zszz(yg)g 1(5);)7
t
+/ / is’x’ d Oldn_’lg » 6, S d& dx
(TN szl ( §) 2(y, ¢, 5)d§
FE l,e
+\/_Z./ /TN)Z R2 f2 (S’y’é‘)gk('x’g)adé‘dvx,s(g)dXdyd:Bk(s)

= ((fr.0f0.0)) +J1 + T+ J3+ Iy + Js + Jo + J7.

Similarly, we get

(VROYAONT)
- t _
= ((f1,0/2,0, @)) +/O /(TN)Z ij Fifa®) —a(0)) - Vea de d¢ dx dyds

e " ) L
/ /(TN)Z 2 dgafy (5,5, 6)G"(x,§)dv,c(§)dtdxdyds

- Z/ /T [5Gy, Dag(x, )b (s) dg dv )5 (§) dx dy ds

k>l N)2 RZ
Ft &,k =2,
+1<Z>;/ /TN)Z - Ji (s, x, 8)agr(y, Hh™"(s)ds dvy(¢)dxdyds

+A _/(\’]I‘N)Z Rzfzi(s,y,f)agddm?(X,g,s)dé-dy
t
4+ .
_/ /(\TN)Z R2 f] (S,)C,S)agadmz(y’ {,S)d%-dx

a \/—Z,/ /TI‘N)Z/Z £ (. 08k, Hardt dvg(§) dx dy dpi(s)

k>1

= ((fiofr0. @)+ 1+ o+ 5+ Ja+ Js+ Jo + J7.

Taking a(x, y,§,¢) = py (x — y)¥s(§ — ¢), where p,, and /5 are approximations to the
identity on TV and R, respectively. Then we have

[ ZCERVACES
X (fE 6,660,604 fo(x,1,6) (.1, 0))de d¢ dx dy

(6.3) / o / py (X =)Ps5(§ = ¢)
X (f1.00x,8) f2.000, &) + fro(x, &) fr0(y, ¢))d& d¢ dx dy
7 ~
+Y Ui+ ),
i=1

where fi, J:, in (6.3) are the corresponding J;, J; with a(x, ¥.6.8)=py(x —¥s§ — ),
fori=1,...,7.
By the same method as the proof of Theorem 15 in [6], we have

|j1|§TCP8V_1’ Js + Jo <0, |J:1|§TCP8)/_1, -]:5+J:6§0-
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With the aid of y1(§, ¢), y2(&, ¢) and by using (2.2), we have
1:2 =D

_i/l/ aG*(x,§)dvyy ®dvy (€, ¢) dxdyds
“2Jo (TN2 Jr2 ’ X, v,5\S>» y

L)

t
_ 2 1,e =2,
< 2DO/O /(TN)z /Rza(l+ &%) dv, s ®diyi(E,¢)dxdyds

™

t
l,e =2.&
< EDO/() /(TN)z R2advx,s ®dvy(§,¢)dxdyds

€ ! 2 501, -2,
+§D0/0 fm)z /].Rza|§| v ® dv2E (€, £) dx dy ds.
Clearly, it holds that

1,8 —2’5
/(TN)z A@z advys ®@dvy(§,¢)dxdy

< % — V) dvyE @dvyi(E, ¢)dxd
o <l [ [ vt = vl @ dwie. o dxdy

< o x—y)dxd
< sz /(TN)zpy( y)dxdy

<5 L

1,e

Moreover, by utilizing the property that measures v,’¢ and D§:§ vanish at infinity, it follows

that
2 1,¢ =2.&
[, [Pk o ditie.cdxay
= f(TN)Z py(x =) fRz Vs (€ — OIEPPdvyE @ diyE(E, ¢)dxdy
©5) < 1¥sllLe /(TN)Q py(x =) /Rz E1Pdv)E @diyE(E, ) dxdy

<cs! /(TN)Z py(x — y)dxdy

<cs .
Hence, combining (6.4) and (6.5), we deduce that
h=h< %DOTé_l n %CDOT(S_I <£CDT5 ",

Recall
o / /
(6.6) neo)= [ vl —)ar
Using the similar arguments as in the proof of Proposition 5.2, we have
./_3 + ./:4
= j3 + j4

t
- Z/O /(TN)z 2 Y2 (&, 8)py(x — ¥)(gr(x, ) — gk (¥, 1))

k>1
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k -
x h**(s)dvyt @ dvy (&, ¢) dx dyds

t
B A I B G R

k>1

x [h**(s)| dvy e @ dV2e (€, ¢) dx dyds

X

t ) %
<[ [ Lo on 6 -0 (a0 -a0.0P)

k>1
1

X <Z|hg’k(s)|2) ’ dvyt ®dvyt (€, ¢)dxdyds
k>1

t
& J—
fwlfo | (s)\Uf(TN)Z /R Y2(£.E)py (x — )
x |x —yldv}t @dvyi(E, ¢)dxdyds

t
VD [ @y [ e

< [, 7o)l —clavli @ diiE. O drdyds
=:J31+ Ja1.
By

Jpuyp P =Dl = yldrdy <,

Jp 2@ Ol @aviE 0 <1,
it follows that
J31 =v/Diy(T +M).
Using the same method as the estimate of K 2,2 in Theorem 5.3, we have
Ja1 <2/ D18(T + M)
D1 [0y [, [or =0 =0
x (fEfE+ fEf5F)de d dx dy ds.
Hence,
B+da=TD+14
<VDi(y +25)(T + M)
D1 [l [ e = s -0

x (fiEfi + fEf55) dg g dx dy ds.
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Combining all the previous estimates, it follows that
Joup oo = vt
X ([t O 0.0+ fT (e, 1,8 57 (.1, 0)) dE g dx dy
< fT , fR (f1.0(x. &) f.0(x. &) + fro(x. &) fro(x, §)) dx d&
+&0(y,8) +2TCp8y ' +26C DTS ™!
+2¢D1 (28 + ¥)(T + M) + | F51(6) + |71 (1)
t
F2D1 [y [ [ o=y =)

x (i f5 + Fi f5) de d dxdy ds.
Applying the Gronwall inequality, we get

Jop s =06 =)
X () 06,0+ f(x, t,6) 5 (0,1, 0))dE d¢ dx dy
SEZJD_I(HM)[/ /(fl,ofz,o-i-ﬂ,ofz,o)dxdé +50()/»5)]
TN JR
+ VDTN C 5y~ 4 2:CDE TS

+2D1(28 + y)(T + M) + | J1(t) + [ 11(0)]-

Thus, collecting all the above estimates, we deduce that

L, [UEe o+ o) f G 0) dr ds

N /(’]I‘N)Z Agz(f‘i(x’ LE ST (0t O+ [ L) [ (3, 1,0))

X py(x = y)¥s(§ — ) dxdydgd¢
+&(y.9)

< AVDITHM) [/TN /R(fLofz,o + f1.0f2.0) dx d& + Eo(y, 3)}
2/D1(T+M) -1 —1
(6.7) +e [2TC,8y ™" +2eCDyT$

+2VD1(28 + y)(T + M)+ F51(t) + | J71(0)]
+€t(%5)

—. 2VDIT+M)

% _[IFN A;(fl’oflo + fl.of2.0) dx d&

+ VDI (| (1) + | 7] (1))
+r(e, y,68,1),
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where the remainder is given by
r(e,y.8,1) =P ITTMNOTC 5y~ 4 2:C DTS
+ 2 D128 + y)(T + M) + Eo(y, 8)]
+ & (v, d).
Applying the Burkholder—Davis—Gundy inequality, and utilizing (6.6), (2.2) that

E sup |J7|(t)
t€l0,T]
t _
< VEE sup ff FEG . Ogr(x. )
re[0.T] 2 0 Jervy Jr2 72

k>1

x adg dv)E(€)dx dy dBy(s)

=¢eE sup
tel0,T]

t F
Z/O /(’H‘N)2 o f2 (5.3, Dcya (&, O)py (x = y)

k>1

x gi(x, &) d¢ dvyt (&) dx dy dpy(s)

t
S [ o fara® 00y

k>1

=¢eE sup
t€[0,T]

X gr(x, E)dvys @ dvy s (5, ¢)dxdy dpy(s)

SJEE[/()T /(W [ 7€ 0nw-y

1
x <Z g (x, s)) dvyé @diye(E, ) dxdy ds} ’

k>1

T
=vevpes| [ [ [ e one-y

x (14 Iélz)dv;f ® dl_);’fi(f, {)dx dydsi|2.
Taking into account the following facts:
L e o +ieR)avs 0ditic.o

< [0+ P avlieanic.o=c
and

/(Tw)z 'OJ%(X —ydxdy=y~*Y,

we further deduce that

E sup |J7|(t) < C/eyDoTy V.
]

tel0,T

363
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By the same method as above, we deduce that

E sup |J71(t) < C/ey/DoTy V.

t€[0,T]
For the remainder, we have

sup r(e,y,8,1)
1€[0,T]

< AVPIUTEMDTC 5y~ 426CDETS ™!
+ 2V D128 + y)(T + M) + Eo(y,d)]

+ sup &(y,9).
t€l0,T]

(6.8)

In the following, we aim to prove the error term sup,cpo 77&(y,8) — 0 as y,8 — 0. To
achieve that, we adopt a similar method as the proof of Proposition 6.1 and Theorem 6.2 in

[5].

For any 7 € [0, T, we have
&y, 9)
N /TN ./]R(fli(x’ LEVf (L) + fiT (1, 6) 57 (x, 1, 6)) dE dx
—/(TN)z fw(fli(x,tf)ﬁi(y,t,;wrﬂi(x,t,g)f;(y,t,;))
X py(x =)V5(§ — &) dxdyd§ dg

= [[LFN /R(f1i(x7 Z, 5)J;2i(X, t,&)+ fli(x, t, g)ff(x, 1,£))dE dx
o L 0 B 00
+ fiE . 8) 5 (. 1. 6)) dE dx dyi|

* [/;TN)Q,/];pr(X - y)(fli(x’ Z é:)f_.zi(ya Z, S)
+ FECL 1 6) fE(r,1,8)) dE dx dy

- /(TN)z _/Rz(fli(x’t’g)ﬂi(y’t’ O+ fi e ) 55, 1.0)

X py = )Us(€ — ) dx dyde dt |
=:H{+ H;.
Applying the same method as (5.16) and (5.17), it follows that
(6.9) |H| <26.

Moreover, it is easy to deduce that

1= |[ o= [ i onroeosuirss = otz dé i dy
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+ f X — / I‘&i I e,+ —1 e+ d dXd
' (TNy2 :0}/( )7) R i (x,t)gé( v&=E(x,1)>€ v (y,t)>$) ‘é;: y

52/ ,oy(x—y)\vg’i(x,t)—vg’i(y,t)]dxdy.
(TN)?

By (6.9) and (5.20), we have

e,+ A=
/(TN)ZP}/(X—)’HU (x,t)—v (y,t)|dxdy

=f(TN)2pry(x—y)

X (5506, 8) 50,1, 6) + (e, 1,8) 55 (. 1, &) dE dx dy
< [ e G = 30sE =)

x (0,6, 50, 6,0 + £, 1,8) 5 (v, 1, 0)) dE dt dx dy + 28
=V [ [ (frofoo+ oofuo)dedx+&(r.5)]

+2e2VPITEMITC 5y~ /D) (y +28)(T + M)] + 28
= AVPITHD g,y 6)

+ 22D T C L5y~ 4 /Dy (y +28)(T + M)] + 25,
where &y(y, 8) — 0, when y, § — 0. Then

|Hi| <48+ 22V Ty, 5)
+4e2VPITEMITC 5y =1 4 /Dy (y +28)(T + M)].
Combining all the above estimates, we conclude that

sup & (y,8) <68 +2e2P1T+M g,y 5)
t€l0,T]

+4VPIIEM [T C L5y~ 1 /Dy (y +28)(T + M)].
Hence, we deduce from (6.8) that

sup r(e,y,8,1)
1€[0,T]

<654 2VPTEM[6TC 5y~ +26C DTS
+6VD1(28 + y)(T + M) +3E(y, 8)]-

Letting
4 1
§=y3, y = g20+N) |
then
~ 1
E sup |J7|(t) <CyDoTe2+N) — 0, &—0,
€0, T]
and

=~ 1
E sup |J7|(t) <Cy/DoTe2N) — 0, &—0,
1€[0,T]
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which implies that sup, (g 7 |J7](t) = 0 in probability and SUP;¢(0.7] |J:7|(t) — 0 in proba-
bility, as ¢ — 0 by Chebyshev inequality. Moreover, it follows that
sup r(e,y.6,1)
1€[0,T]

< 68—3(1-2{—N) + 82«/D_1(T+M) [6TCp€ 6(1—10—N) + 2CD0T8—31(T‘2%)

(6.10)
+6 /Dl(zg—saizv) + 8_2(1Jer))(T + M) +3E(y,9)]
—0 ase—0.

Notice that f; = Ize~¢ and f = Ie-¢ with initial data f1 o = ly>¢ and f20 = Iy >¢, Te-
spectively. With the help of identity (5.23), we deduce from (6.7) that

@ (1) = v )| 1wy < Y PID (1T 1(0) + 1 71(0)) + 72, v, 8, 1).
Hence, it follows from (6.10) that

[ =" 1o,y oy

<T-ess sup [a*(t) —v* @)1 0w
t€[0,T]

< Tez*/D—l(TJFM)( sup |f7|(t) + sup |J:7|(t)) + 7. sup r(s,y,6,t) >0
tel0,T] tel0,T] tel0,T]

in probability as ¢ — 0. We complete the proof. [
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