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Bootstrap percolation on a graph is a deterministic process that iteratively
enlarges a set of occupied sites by adjoining points with at least θ occupied
neighbors. The initially occupied set is random, given by a uniform product
measure with a low density p. Our main focus is on this process on the prod-
uct graph Z2 × K2

n , where Kn is a complete graph. We investigate how p

scales with n so that a typical site is eventually occupied. Under critical scal-
ing, the dynamics with even θ exhibits a sharp phase transition, while odd
θ yields a gradual percolation transition. We also establish a gradual transi-
tion for bootstrap percolation on Z2 × Kn. The community structure of the
product graphs connects our process to a heterogeneous bootstrap percola-
tion on Z2. This natural relation with a generalization of polluted bootstrap
percolation is the leading theme in our analysis.

1. Introduction.

1.1. Background. Spread of signals—information, say, or infection—on graphs with
community structure has attracted interest in the mathematical literature recently [7, 27, 28,
31, 34]. The idea is that any single community is densely connected, while the connections
between communities are much more sparse. This naturally leads to multiscale phenomena,
as the spread of the signal within a community is much faster then between different com-
munities. Often, communities are modeled as cliques, that is, the intracommunity graph is
complete, but in other cases some close-knit structure is assumed. By contrast, the intercom-
munity graph may, for example, impose spatial proximity as a precondition for connectivity.
See [33] for an applications-oriented recent survey.

The principal graph under study in this paper is G = Z2 × K2
n , the Cartesian product be-

tween the lattice Z2 and two copies of the complete graph Kn on n points. Thus “community”
consists of “individuals” determined by two characteristics, and two individuals within the
community only communicate if they have one of the characteristics in common. Between
the communities, communication is between like individuals that are also neighbors in the
lattice. For comparison, we also address the case where each community is a clique, that is,
the graph Z2 × Kn.

The particular dynamics we use for spread of signals is bootstrap percolation with inte-
ger threshold parameter θ ≥ 1. In this very simple deterministic process, one starts with an
initial configuration ω0 of 0s (or empty sites) and 1s (or occupied sites) on vertices of G,
and iteratively enlarges the set of occupied sites in discrete time as follows. Assume ωt is
given for some t ≥ 0, and fix a vertex v of G. If ωt(v) = 1, then ωt+1(v) = 1. If ωt(v) = 0,
and v has θ or more neighboring vertices v′ with ωt(v

′) = 1, then ωt+1(v) = 1; otherwise
ωt+1(v) = 0. We will typically identify the configuration ωt with the set of its occupied sites
{v : ωt(v) = 1}. Thus ωt increases to the set ω∞ = ⋃

t≥0 ωt of eventually occupied vertices.
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As is typical, we assume that the initial state ω0 is a uniform product measure with some
small density p ∈ (0,1). This makes the set ω∞ random as well, and it is natural to ask
how to choose p to make ω∞ large, that is, to make the initially sparse signal widespread.
Observe that, if θ ≥ 3, ω∞ cannot comprise all vertices of G with nonzero probability for any
p < 1, as a block of neighboring empty copies of K2

n (e.g., {(0,0), (0,1), (1,0), (1,1)}×K2
n)

cannot be invaded by occupied sites, and the infinite lattice will contain such a block with
probability 1. We therefore ask a weaker question: how large should p be, in terms of n, so
that ω∞ comprises a substantial proportion of points? That is, we are interested in the size of
the final density, Pp(v0 ∈ ω∞), which is independent of v0 ∈ G by vertex-transitivity of G.

Bootstrap percolation was introduced on trees in [10], but it has received by far the most
attention on lattices Zd . In this case, Pp(ω∞ = Zd) = 1, as proved in [36] for d = 2 and in
[32] for d ≥ 3. Many deep and surprising results originated from the study of metastability
properties of the model on finite regions (see, e.g., [2, 4, 9, 15, 24]). We refer to the recent
survey [30] for a comprehensive review.

Study of bootstrap percolation and related dynamics on graphs with long-range connectiv-
ity is a more recent undertaking [3, 13, 18, 20, 35] and has a fundamentally different flavor:
while on sparse graphs, the dominant mechanism is formation of small nuclei that are likely
to grow indefinitely, the relevant events in densely connected graphs tend to depend on the
configuration on the whole space. It is therefore tempting to consider graphs that combine
aspects of both, and we continue here our work started in [19].

As already remarked, ω∞ cannot cover all vertices of our graph G due to the presence
of local configurations of sparsely occupied copies of Hamming squares, K2

n . Other copies,
of course, have higher initial occupation, get fully occupied and spread their occupation to
the neighboring squares. Thus we have a competition between densely occupied copies of
K2

n that act as nuclei, and sparsely occupied ones that function as obstacles to growth. This
invites comparison with polluted bootstrap percolation [14, 16, 17] on Z2, which is indeed
the main source of our tools. However, by contrast with the model in the cited papers, which
has only three states (empty and occupied sites, and permanent obstacles), the dynamics that
arise from our process has more types corresponding to all possible thresholds (0, 1, 2, 3, 4,
5) that different sites in Z2 require to become occupied. Moreover, we need different variants
for the case θ = 3 and the graph Z2 ×Kn. We call these comparison dynamics heterogeneous
bootstrap percolation. We also encounter a technical difficulty in the form of correlations in
the initial state, which are handled by coupling and other related perturbation methods.

After its introduction in [17], the basic polluted version of heterogeneous bootstrap per-
colation was further analyzed in [14, 16]; it is the recent techniques developed in these two
papers that will be useful to us. Related models include processes on a complete graph with
excluded edges [25], Glauber dynamics with “frozen” vertices [11], dynamics on complex
networks with “damaged” vertices [5, 6] and on inhomogeneous geometric random graphs
[26].

1.2. Statements of main theorems. Our main results determine a critical scaling for
prevalent occupation on Z2 × K2

n : we exhibit functions fθ (n) so that, when p = afθ (n),
the limit as n → ∞ of the final density Pp(v0 ∈ ω∞) is low for small a and high for large a.
In fact, for all θ , this limit vanishes for a < ac, where ac = ac(θ) is a critical value that we
are able to identify (and in fact compute explicitly for even θ ). The behavior for a > ac is
however not the same for all θ : if θ is even, the limit is 1, while if θ is odd the final density is
bounded away from 1 for any finite a and only approaches 1 as a → ∞. We already encoun-
tered the nonintuitive qualitative difference between odd and even θ in our earlier work [19],
in which the lattice factor was one-dimensional. This, and the connection with heterogeneous
bootstrap percolation, are the most inviting features of our present model.
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We now proceed to formal statements of our results. We first remark that for θ ≤ 2 we have
no obstacles and Pp(ω∞ ≡ 1) = 1 for any p > 0 by standard bootstrap percolation arguments
[32, 36]; therefore, we assume that θ ≥ 3 throughout the paper. As we have so far, we denote
by v0 an arbitrary fixed vertex of the graph in question, and we use the notation 0 = (0,0) for
the origin in Z2. We begin with our main result for even thresholds.

THEOREM 1.1. Consider bootstrap percolation on Z2 × K2
n with threshold θ = 2� + 2,

for some � ≥ 1. Assume that

(1.1) p = a · (logn)1/�

n1+1/�
,

for some a > 0.
If a� < 2(� − 1)!, then

(1.2) Pp(v0 ∈ ω∞) = n−2/�+o(1) as n → ∞.

Conversely, if a� ≥ 2(� − 1)!, then

(1.3) Pp

({0} × K2
n ⊂ ω∞

) → 1 as n → ∞.

Moreover, if a� > 2(� − 1)!, then

(1.4) Pp

({0} × K2
n 
⊂ ω∞

) =
{
n4/�−4a�/�!+o(1), � ≥ 2,

n−2a+o(1), � = 1
as n → ∞,

and Pp(ω0 = ω∞ on {0} × K2
n) satisfies the same asymptotics.

Our results for odd thresholds are somewhat less precise, but suffice to provide the an-
nounced distinction from even θ .

THEOREM 1.2. Consider bootstrap percolation on Z2 × K2
n with threshold θ = 2� + 1,

for some � ≥ 1. Assume that

(1.5) p = a

n1+1/�
,

for some a > 0.
There exists a critical value ac = ac(�) ∈ (0,∞) so that the following holds. If a < ac, then

(1.6) Pp(v0 ∈ ω∞) → 0 as n → ∞.

Conversely, if a > ac, then

(1.7) 0 < lim inf
n→∞ Pp

({0} × K2
n ⊂ ω∞

) ≤ lim sup
n→∞

Pp(v0 ∈ ω∞) < 1.

Furthermore,

(1.8) lim inf
n→∞ Pp

({0} × K2
n ⊂ ω∞

) → 1 as a → ∞.

Finally, we state our result for the case of clique community, in which there is no difference
between odd and even θ and no phase transition as in Theorems 1.1 and 1.2.

THEOREM 1.3. Consider bootstrap percolation on Z2 × Kn with threshold θ ≥ 3. As-
sume that p = a/n for some a ∈ (0,∞). Then both

lim inf
n

Pp

(
ω∞(v0) = 1

)
and lim sup

n
Pp

(
ω∞(v0) = 1

)
are in (0,1) and converge to 0 (resp., 1) as a → 0 (resp., a → ∞). If θ ≥ 14, then
limn Pp(ω∞(v0) = 1) exists and is continuous in a.

A similar result to Theorem 1.3 holds for Zd × Kn for all d ≥ 3, but extension of our
results to Zd × K2

n is much more challenging (see Section 7 on open problems).
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1.3. Sketch of the main ideas and organization. The main purpose of this subsection is
to outline our strategy for proving Theorems 1.1 and 1.2. For any x ∈ Z2, find the smallest
integer k ∈ [0, θ ], so that the bootstrap dynamics restricted to {x} × K2

n , and using threshold
θ − k, eventually fully occupies this copy of the Hamming square. (Below, we introduce a
technical term, internal spanning, for the ability to fill a part of the space without outside
help.) Then let ξ0(x) = k. Thus, ξ0(x) = 0 means that {x} × K2

n will get occupied regardless
of the configuration on the surrounding copies of K2

n , ξ0(x) = 1 implies that {x} × K2
n will

get occupied provided at least one neighboring copy of K2
n gets fully occupied, and so on.

By definition, ξ0(x) = 0 implies that {x} × K2
n ⊂ ω∞. Iteratively, for t = 1,2, . . . , we

define ξt as follows: if ξ0(x) = k and x has at least k lattice neighbors y with ξt−1(y) = 0, then
let ξt (x) = 0. By induction, if ξt (x) = 0 for some t , then {x}×K2

n ⊂ ω∞. This heterogeneous
bootstrap percolation process is discussed in Section 2.2, while two other variants are used
in Section 5.4 and Section 6. The decreasing sequence ξt of configurations provides a lower
bound on ω∞ (see Lemma 2.6 for a formal statement), which also turns out to be sufficiently
close to an upper bound (provided by Lemma 2.7).

The dynamics ξt is rather similar to the polluted bootstrap percolation [17]. To explain the
connection, let us call active sites those x with ξ0(x) ∈ {0,1}. Although 1s must be activated
by neighboring 0s, it turns out that we can treat the two states as equivalent, provided 0s
are not too rare. The active sites spread, using the bootstrap percolation rule with threshold
2, over the background sites, the 2s in ξ0. The remaining sites, those x with ξ0(x) ≥ 3, are
obstacles that are able to stop the growth of active sites.

To estimate the densities of active sites and obstacles, we need a fairly detailed understand-
ing of the bootstrap dynamics on a single copy of a Hamming square, provided in Section 2.1,
which is mostly a review the results from [13, 19]. In this outline, we will use informal ver-
sions of these results.

For even θ = 2� + 2, � ≥ 2, a necessary, and asymptotically sufficient, condition for x to
be active is that {x} × K2

n contains either a horizontal or a vertical line with at least � + 1
occupied points. This happens with probability about n(np)�+1. (Multiplicative constants are
not important in this case.) On the other hand, the asymptotically necessary and sufficient
condition for x not to be an obstacle is that {x}×K2

n contains both a horizontal and a vertical
line with at least � occupied points, which results in the density of obstacles about (1 −
n�p�/�!)n ≈ exp(−n�+1p�/�!). According to [17], the critical transition is when

density of obstacles ≈ (density of active sites)2,

which forces the choice of (1.1) as the critical scaling, the critical a to satisfy a�/�! = 2/�,
and the sharp transition in Theorem 1.1.

In Section 3, we prove the subcritical rate (1.2). Our argument closely follows that of
[16], but we give a substantial amount of details due to the differences in the assumptions
and conclusions. In Section 4, we focus on the supercritical part of Theorem 1.1, which is
handled by the method from [17], and then involves finding the most likely configuration that
prevents occupation from spreading inwards from a circuit of fully occupied copies of the
Hamming square.

When θ = 2� + 1, � ≥ 2, is odd, the active density is approximated by the probability that
both a horizontal and a vertical line with at least � occupied points exist in {x} × K2

n , which
is about (1 − (1 − n�p�/�!)n)2 ≈ (1 − exp(−n�+1p�/�!))2. Moreover, now the density of
obstacles, approximated by a probability that there is no line in {x} × K2

n with � occupied
points, is about (1 − n�p�/�!)2n ≈ exp(−2n�+1p�/�!). Observe the crucial difference from
the case of even θ : the number of required sites on a line in {x} × K2

n is the same, namely
�, for both active sites and nonobstacles. The two probability estimates now force the critical
scaling (1.5), under which in this case both probabilities converge to a constant depending on
a. As a changes, the dynamics experiences a percolation transition at some critical value ac.



BOOTSTRAP PERCOLATION ON Z2 × K2
n 149

Section 5 contains the proof Theorem 1.2, in which we characterize ac through the limiting
dynamics (as n → ∞), which can be appropriately coupled to the dynamics for finite n. A
different (but related) limiting dynamics is similarly used in Section 6, which is devoted to
the proof of Theorem 1.3. We conclude with a list of open problems in Section 7.

2. Preliminaries.

2.1. Copies of Hamming squares. Fix an initial state ω0 for our bootstrap dynamics on
Z2 × K2

n . For a set A ⊂ Z2 × K2
n , the dynamics restricted to A uses the bootstrap rule on the

subgraph induced by A, with the initial state ω0 on A. As in [19], we call a copy {x} × K2
n ,

x ∈ Z2:

• internally spanned at threshold r (r-IS) if the bootstrap dynamics with threshold r , re-
stricted to {x} × K2

n , eventually results in full occupation of {x} × K2
n ;

• internally inert at threshold r (r-II) if the bootstrap dynamics with threshold r , restricted
to {x} × K2

n , never changes the state of any vertex in {x} × K2
n ; and

• inert at threshold r (r-inert) if the (unrestricted) bootstrap dynamics with threshold r does
not occupy any point in {x} × K2

n in the first time step.

In the rest of this subsection, we mostly summarize the results from [19] and [13]. We
begin with the results for even θ , which were essentially proved in [19].

LEMMA 2.1. Assume that p is given by (1.1).

1. If � ≥ 1, then

Pp

(
K2

n is not (2� − 2)-IS
) =O

(
n−L)

,

for any constant L > 0.
2. If � ≥ 2, then

Pp

(
K2

n is not (2� − 1)-IS
) ∼ Pp

(
K2

n is (2� − 1)-II
) ∼ n−2a�/�!,

and for � = 1 we have

Pp

(
K2

n is not 1-IS
) = Pp

(
K2

n is 1-II
) ∼ 1

na
.

3. If � ≥ 2, then

Pp

(
K2

n is not (2�)-IS
) ∼ Pp

(
K2

n is (2�)-II
) ∼ 2n−a�/�!,

and for � = 1 we have

Pp

(
K2

n is not 2-IS
) ∼ Pp

(
K2

n is 2-II
) ∼ a logn

na
.

4. If � ≥ 1, then

Pp

(
K2

n is (2� + 1)-IS
) ∼ Pp

(
K2

n is not (2� + 1)-II
)

∼ 2a�+1

(� + 1)! · (logn)1+1/�

n1/�
.

5. If � ≥ 1, then

Pp

(
K2

n is (2� + 2)-IS
) ∼ Pp

(
K2

n is not (2� + 2)-II
)

∼
(

a�+1

(� + 1)!
)2

· (logn)2+2/�

n2/�
.
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PROOF. Statements 1 through 4 are Lemmas 3.6, 3.3, 3.4 and 3.5 in [19], and the proof
of the last statement is similar to the proof of the 4th, so we omit it. �

The next lemma compares probabilities for inertness and internal inertness for � ≥ 2.

LEMMA 2.2. Assume θ = 2� + 2, � ≥ 2, and p is given by (1.1). If a�

�! < 1, then for any
x ∈ Z2

Pp

({x} × K2
n is (θ − 2)-inert

) ∼ Pp

(
K2

n is (θ − 2)-II
) ∼ 2n−a�/�!,

Pp

({x} × K2
n is not (θ − 1)-inert

) ∼ Pp

(
K2

n is not (θ − 1)-II
)

∼ 2a�+1

(� + 1)! · (logn)1+1/�

n1/�
and

Pp

({x} × K2
n is not θ -inert

) ∼ Pp

(
K2

n is not θ -II
)

∼
(

a�+1

(� + 1)!
)2

· (logn)2+2/�

n2/�
.

PROOF. Fix an r = 0,1,2. Then the probability that any fixed copy of K2
n has a site with

exactly k ≥ 1 occupied Z2-neighbors and at least θ − r − k occupied K2
n -neighbors is

O
(
n2pk(np)θ−r−k) = O

(
n−k−(2−r)/�(logn)(2�+2−r)/�).

Therefore,

Pp

({x} × K2
n is (θ − r)-II but not (θ − r)-inert

) = n−1−(2−r)/�+o(1).

The rest follows from Lemma 2.1 parts 3, 4 and 5 and the assumptions put on a and �. �

We need a slightly more involved argument for � = 1.

LEMMA 2.3. Assume θ = 4 and p = a
logn

n2 . We have

Pp

({x} × K2
n is 2-inert

) ≥ a
logn

na

(
1 − o(1)

)
PROOF. Let G1 be the event that {x} × K2

n contains at least two occupied vertices, and
G2 the event that a point in {x} × K2

n has both an occupied Z2-neighbor and an occupied
Kn-neighbor. Note that these are increasing events and that{{x} × K2

n is not 2-inert
} ⊂ G1 ∪ G2.

Therefore, by FKG inequality,

Pp

({x} × K2
n is not 2-inert

) ≤ Pp(G1) + Pp(G2) − Pp(G1)Pp(G2),

and so

Pp

({x} × K2
n is 2-inert

) ≥ Pp

(
Gc

1
) − Pp

(
Gc

1
)
Pp(G2).

Finally, we use that Pp(Gc
1) ∼ a

logn
na and Pp(G2) ≤ 8n3p2 = O(logn/n). �

We proceed with the analogous results for odd θ , which mostly follow from [13], and we
again omit the detailed proofs.
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LEMMA 2.4. Assume that p is given by (1.5).

1. If � ≥ 1, then

Pp

(
K2

n is not (2� − 2)-IS
) =O

(
n−L)

,

for any constant L > 0.
2. If � ≥ 2, then

Pp

(
K2

n is not (2� − 1)-IS
) ∼ Pp

(
K2

n is (2� − 1)-II
) ∼ exp

[
−2a�

�!
]
.

3. If � ≥ 2, then

Pp

(
K2

n is (2�)-IS
) ∼ Pp

(
K2

n is not (2�)-II
) ∼ (

1 − e−a�/�!)2
.

4. If � ≥ 1, then

Pp

(
K2

n is not (2� + 1)-II
) ∼ 2 · a�+1

(� + 1)! · (
1 − e−a�/�!) · 1

n1/�
,

and

Pp

(
K2

n is (2� + 1)-IS
) ∼ 2 · a�+1

(� + 1)! · (
1 − e−a�/�!)2 · 1

n1/�
.

PROOF. Parts 2 and 3 follow from Theorem 2.1 in [13]. Part 1 is proved in the same
fashion as Lemma 3.6 in [19]. The proof of part 4 is similar to the proof of parts 2 and 3 and
is omitted; in fact, we only need in our arguments in Section 5 that the two probabilities are
positive for all n and go to 0 as n → ∞, which is very easy to show. �

We conclude with an analogue of Lemma 2.2.

LEMMA 2.5. Assume that θ = 2� + 1, � ≥ 1, and that p is given by (1.5). Fix an x ∈ Z2.
Then, for � ≥ 2,

Pp

({x} × K2
n is (θ − 2)-II but not (θ − 2)-inert

) =O
(
n−1)

and, for � ≥ 1,

Pp

({x} × K2
n is (θ − 1)-II but not (θ − 1)-inert

) =O
(
n−1)

,

Pp

({x} × K2
n is θ -II but not θ -inert

) = O
(
n−1−1/�).

PROOF. Observe that, for r ∈ {0,1,2}, the probability that any fixed copy of K2
n has a

site with exactly k ≥ 1 occupied Z2-neighbors and at least θ − r − k occupied K2
n -neighbors

is

O
(
n2pk(np)θ−r−k) = O

(
n−k+(r−1)/�),

and the desired estimates follow. �
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2.2. Heterogeneous bootstrap percolation. We now introduce a comparison bootstrap
dynamics ξt on Z2, which is a generalization of polluted bootstrap percolation introduced in
[17]. We assume that ξt ∈ {0,1,2,3,4,5}Z2

, t ∈ Z+, and that ξ0 is given. The rules mandate
that a state can only change to 0 by contact with sufficient number of 0s. More precisely, if
Zt(x) is the cardinality of {y : y ∼ x and ξt (y) = 0}, where x ∼ y means that x and y are
nearest neighbors in Z2, then

ξt+1(x) =
{

0, Zt (x) ≥ ξt (x),

ξt (x), otherwise.

If ξ0 ∈ {0,2}Z2
, this is the usual threshold-2 bootstrap percolation. Adding 1s adds sites which

need to be “switched on” by neighboring 0s. Finally, 3s, 4s and 5s act like “obstacles,” which
prevent the spread of 0s at sufficient density.

The next two lemmas establish upper and lower-bounding couplings between ξt and ωt .
Their proofs are similar, so we only provide details for the second one.

LEMMA 2.6. Assume ξ0(x) = 0 whenever the Hamming plane {x}×K2
n is θ -IS; ξ0(x) =

k ∈ {1,2,3,4} whenever {x} × K2
n is (θ − k)-IS, but is not (θ − k + 1)-IS; and that ξ0(x) = 5

if {x} × K2
n is not (θ − 4)-IS. Then⋃{{x} × K2

n : ξ∞(x) = 0
} ⊂ ω∞.

LEMMA 2.7. Assume ξ0(x) = 0 whenever the Hamming plane {x} × K2
n is not θ -inert;

that ξ0(x) = k ∈ {1,2,3,4} whenever {x} × K2
n is not (θ − k)-inert, but is (θ − k + 1)-inert;

and that ξ0(x) = 5 if {x} × K2
n is (θ − 4)-inert. Then

ω∞ ⊂ ⋃{{x} × K2
n : ξ∞(x) = 0

} ∪ ω0.

PROOF. We will prove the following stronger statement by induction. We claim that for
every t ≥ 0,

(2.1) ωt ⊂ ⋃{{x} × K2
n : ξt (x) = 0

} ∪ ω0.

Suppose that (2.1) holds through time t −1 ≥ 0, and let x ∈ Z2 be a point such that ξt (x) 
= 0.
Suppose x has exactly k neighbors y ∈ Z2 with ξt−1(y) = 0. Therefore, ξ0(x) ≥ k + 1, so
{x} × K2

n is (θ − k)-inert. Every vertex in ({x} × K2
n) \ ω0 has at most θ − k − 1 neighbors

in ω0, so every vertex in ({x} × K2
n) \ ω0 has at most θ − 1 neighbors in⋃{{x} × K2

n : ξt−1(x) = 0
} ∪ ω0.

Therefore, by the induction hypothesis, every vertex in ({x} × K2
n) \ ω0 has at most θ − 1

neighbors in ωt−1, so no vertex in {x} × K2
n becomes occupied at time t . �

3. The subcritical regime for even threshold. This section contains the proof of (1.2).
Our argument is a suitable modification of the methods from [16], which are in turn based
on duality-based construction of random surfaces [12, 22, 23]. We cannot immediately apply
the result from [17], as we need to handle short-range dependence in the initial state.
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3.1. Bootstrap percolation with obstacles. Our focus will be the heterogeneous bootstrap
percolation ξt , with a random initial set ξ0. We will call such initial set a positively correlated
random field if increasing events are positively correlated (i.e., the FKG inequality holds),
and 1-dependent if ξ0(x) and ξ0(y) are independent for ‖x − y‖1 ≥ 2.

THEOREM 3.1. Let p,q > 0 be such that p + q < 1. Suppose ξ0 has the following prop-
erties: for every x ∈ Z2,

(3.1)

P
(
ξ0(x) = 0

) = p,

P
(
ξ0(x) = 2

) = 1 − p − q,

P
(
ξ0(x) = 3

) = q,

and ξ0 is a 1-dependent, positively correlated random field. Let C > 0, and suppose that
q > Cp2. Then for C sufficiently large, we have that with probability at least 1 − Cp3 either
ξ∞(0) ≥ 2, or else 0 is contained in a cluster (maximal connected set) of sites x ∈ Z2 with
ξ∞(x) = 0 that has �∞-diameter at most 1000.

We first explain how Theorem 3.1 accomplishes the goal of this section.

PROOF OF THEOREM 1.1 EQUATION (1.2). Initialize ξ0 using inertness as in Lemma 2.7,
then convert all 1s to 0s, and all 4s and 5s to 3s. Suppose v0 ∈ 0 × K2

n . If v0 ∈ ω∞, then ei-
ther v0 ∈ ω0, or some Hamming square in {{x} × K2

n : x ∈ [−1000,1000]2} is not θ -inert, or
else 0 is in a cluster of state-0 sites in ξ∞ that has diameter larger than 1000. Therefore, by
Theorem 3.1 and Lemma 2.2

Pp(v0 ∈ ω∞)

≤ Pp(v0 ∈ ω0) + 107Pp

(
0 × K2

n is not θ -inert
)

+ CPp

(
0 × K2

n is not (θ − 1)-inert
)3

= n−2/�+o(1).

The lower bound is easy: by Lemma 2.1 part 5,

Pp(v0 ∈ ω∞) ≥ Pp

(
0 × K2

n is θ -IS
) = n−2/�+o(1),

and (1.2) is thus proved. �

We will complete the proof of Theorem 3.1 in Section 3.4. Throughout this section, we
will assume that p is sufficiently small to make certain estimates work.

For a set A ⊂ Z2, a configuration ξ0 ∈ {0, . . . ,5}Z2
, and k ∈ {0, . . . ,5}, define ξ

(A,k)
0 by

ξ
(A,k)
0 (x) =

{
ξ0(x) for x ∈ A,

k for x ∈ Ac.

The resulting bootstrap dynamics, with initial configuration ξ
(A,k)
0 , is denoted by (ξ

(A,k)
t )t≥0.

Observe that (ξ
(A,5)
t )t≥0 is the heterogeneous bootstrap dynamics restricted to A, that is, run

on the subgraph of Z2 induced by A. Also, for an x ∈ Z2, let Nbrs(x,A) denote the number
of neighbors of x that lie in A. The next proposition gives a sufficient condition under which
the configuration outside a set Z does not to influence the final set of 0s inside Z.
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PROPOSITION 3.2. Assume that ξ0 ∈ {0,2,3}Z2
. Fix an integer m ≥ 1. Fix a finite set

Z ⊂ Z2 with Nbrs(x,Zc) ≤ 2 for every x ∈ Z, and run two heterogeneous bootstrap perco-
lation dynamics: the first with initial configuration ξ

(Z,0)
0 ; the second with initial configura-

tion ξ
(Z,5)
0 . Assume that the configuration ξ0 on Z satisfies the following conditions:

(i) Any x ∈ Z with Nbrs(x,Zc) = 2 has ξ0(x) = 3.
(ii) For any x ∈ Z with Nbrs(x,Zc) ≥ 1, there is no vertex y with ξ0(y) = 0 within

�∞-distance m of x.
(iii) The final configuration in the dynamics started from the initial configuration ξ

(Z,5)
0

has no connected set of vertices in state 0 with �∞-diameter larger than m/2.

Then, for all t ≥ 0, we have{
x ∈ Z : ξ (Z,0)

t (x) = 0
} = {

x ∈ Z : ξ (Z,5)
t (x) = 0

}
.

PROOF. Assume the conclusion does not hold, and consider the first time t at which there
exists a vertex x ∈ Z such that ξ

(Z,0)
t (x) = 0 but ξ

(Z,5)
t (x) > 0. As the two dynamics have the

same initial configuration on Z, we have t > 0. By minimality of t , and properties (ii) and
(iii), at time t − 1 every y ∈ Z such that Nbrs(y,Zc) ≥ 1 has no neighbors in Z with state 0
in either dynamics. So, we cannot have Nbrs(x,Zc) = 2, since by (i), ξ

(Z,0)
0 (x) = 3, and x

has at most two neighbors in state 0 through time t − 1, so the state of x could not change at
time t . We cannot have Nbrs(x,Zc) = 1 either, since ξ

(Z,0)
t−1 (x) ≥ 2. Thus Nbrs(x,Zc) = 0,

but then x sees the same states among its neighbors in both dynamics at time t − 1 and,
therefore, x has the same state in both dynamics at time t , a contradiction. �

We now present a number of lemmas that all assume the conditions in the statement of
Theorem 3.1, and are followed by the proof of this theorem in Section 3.4.

We will search for a set Z satisfying Proposition 3.2 within a square of size polynomial
in p−1. The following lemma will guarantee that Z satisfies condition (iii) of Proposition 3.2
with high probability.

LEMMA 3.3. Fix an integer s > 0, and let N = �p−s�. Let A = [−N,N]2. With prob-
ability at least 1 − Cps , where C = C(s) is a constant, all connected clusters (maximal
connected sets) of state 0 vertices in ξ

(A,5)∞ have �∞-diameter at most 24s.

PROOF. First, replace all 3s by 2s in the initial configuration ξ
(A,5)
0 ; then all connected

clusters of 0s in ξ
(A,5)∞ are rectangles. Fix an integer k > 0, and let Ek be the event that

the final configuration contains a rectangle of 0s whose longest side has length at least k.
If Ek occurs, A contains an internally spanned rectangle R whose longest side length is
in the interval [k/2, k] [2]. Then any pair of neighboring lines, each perpendicular to the
longest side of R, and such that both intersect R, must contain a state 0 vertex within R

initially. Moreover, two pairs of neighboring lines that are at distance at least 2 from one
another satisfy this requirement independently (since ξ0 is 1-dependent). There are at most
(2N + 1)2k2 possible selections of the rectangle R. Therefore,

(3.2) P(Ek) ≤ 5N2k2(2kp)k/6−1 ≤ p(k−12s)/6−1(2k)k/6+2,

and the claim follows by choosing k = 24s. �

Let

L = ⌊
δ/(mp)

⌋
,
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where δ > 0 is a small constant to be fixed later. Also let M = 12L. Define the set

(3.3) J = ([−m,m] × [−M,M]) ∪ ([−M,M] × [−m,m]).
Call a vertex x ∈ Z2 nice if ξ0(x) = 3 and every vertex y ∈ x + J has ξ0(y) ≥ 2. For each
u ∈ Z2, define the rescaled box at u to be

Qu := (2L + 1)u + [−L,L]2.

We call a box Qu good if it contains a nice vertex. We will give a lower bound on the
probability that a box is good. Call a vertex x ∈ Z2 viable if every vertex y ∈ x + J has
ξ0(y) ≥ 2, and note that a viable vertex x with ξ0(x) = 3 is nice.

LEMMA 3.4. Fix a vertex x ∈ Z2 and an ε > 0. Assume δ ≤ ε/103. Then

(3.4) P(x is viable) ≥ 1 − ε.

PROOF. The argument is a simple estimate, where the first inequality below follows from
the positive correlation assumption on ξ0,

(3.5)

P
(
ξ0(y) ≥ 2 for all y ∈ x + J

)
≥ [1 − p]2(2M+1)(2m+1)

≥ exp [−36mMp]
≥ exp (−500δ),

provided p is small enough. Thus we can choose any δ < ε/500 to make the probability in
(3.5) larger than 1 − ε. �

LEMMA 3.5. Fix any ε > 0, and assume δ ≤ 1/(4 · 103). Then there exists a constant
C = C(m, ε, δ), such that q ≥ Cp2 implies that the probability that the box Q0 is good is at
least 1 − ε.

PROOF. For k = 1, . . . , �2L+1
3m

� − 1, let

Rowk = (
(−M + 3km) + [−m,m]) × [−M,M]

and

Colk = [−M,M] × (
(−M + 3km) + [−m,m]).

Define events

Gr = {
For at least L/2m values of k, every y ∈ Rowk has ξ0(y) ≥ 2

}
and

Gc = {
For at least L/2m values of k, every y ∈ Colk has ξ0(y) ≥ 2

}
The probability that Rowk has no 0s is at least 3/4, which can be proved by applying
Lemma 3.4 with ε ≤ 1/4. By large deviations for binomial random variables (noting that
Rowk and Rowk+1 are at least distance 2 apart), we have

P(Gr) = P(Gc) ≥ 1 − ε/4,

for small enough p. By the assumed positive correlations in ξ0, we have

P(Gr ∩ Gc) ≥ P(Gr)P(Gc) ≥ 1 − ε/2,
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and

P(Q0 is good | Gr ∩ Gc) ≥ P
(

Binomial
[(

L

2m

)2
,q

]
≥ 1

)
≥ 1 − exp

(−q(L/2m)2)
≥ 1 − exp

(−Cp2(
δ/

(
4m2p

))2)
≥ 1 − ε/2

provided C is large enough. The claim follows from the last two estimates. �

3.2. Construction of a shell of good boxes. Let B ⊂ Z2. A site u ∈ Z2 off the coordinate
axes is called protected by B provided that:

• if u ∈ [1,∞)2 ∪ (−∞,−1]2 then both u + [−2,−1] × [1,2] and u + [1,2] × [−2,−1]
intersect B; and

• if u ∈ (−∞,−1] × [1,∞) ∪ [1,∞) × (−∞,−1], then both u + [−2,−1] × [−2,−1] and
u + [1,2] × [1,2] intersect B .

If u lies on one of the coordinate axes, we will not need to refer to u as being protected.
A shell S of radius r ∈ N is defined to be a subset of Z2 that satisfies the following prop-

erties:

(S1) The shell S contains all sites u such that ‖u‖1 = r and ‖u‖∞ ≥ r − 3. (This implies
that S contains portions of the ‖ · ‖1-sphere of radius r in neighborhoods of each of the four
sites (±r,0) and (0,±r).)

(S2) For each u ∈ S, we have r ≤ ‖u‖1 ≤ r + √
r and ‖u‖∞ ≤ r .

(S3) For each of the four directions ϕ ∈ {(±1,±1)}, there exists an integer k = k(ϕ) ≥ r/2
such that kϕ ∈ S.

(S4) If u = (u1, u2) ∈ S, and |u1| ≥ 3 and |u2| ≥ 3, then u is protected by S.

Let sites in the lattice Z2 be independently marked black with probability b and white
otherwise. We wish to consider paths of a certain type, and we start by defining two types of
steps. An ordered pair u � v of distinct sites u, v ∈ Z2 is called:

1. a taxed step if each nonzero coordinate of u increases in absolute value by 1 to obtain
the corresponding coordinate of v, while each zero coordinate of u changes to −1, 0 or 1 to
obtain the corresponding coordinate of v;

2. a free step if ‖v‖1 < ‖u‖1 and v − u ∈ F , where F is the set of all vectors obtained by
permuting coordinates and flipping signs from any of

(1,0) and (2,1).

(For example, (−1,2) ∈ F .)

Observe that, in a taxed step u � v, we have ‖v‖1 > ‖u‖1. We call v − u the direction of
either type of step.

A permissible path from u0 to uk is a finite sequence of distinct sites u0, u1, . . . , uk such
that for every i = 1, . . . , k, ui−1 � ui is either a free step or a taxed step, and in the latter
case, ui is white.

To obtain a (random) shell S of radius r , we let

(3.6) A = {
v ∈ Z2 : ∃u ∈ Z2 with ‖u‖1 < r and a permissible path from u to v

}
,

and we define

(3.7) S = {
v ∈ Z2 \ A : ∃u ∈ A such that u � v is a taxed step

}
.
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FIG. 1. A shell of radius 21. Sites in the shell S are highlighted in green, while sites in A are shades of blue.
The random field of black and white sites are shown in grey and white for those sites outside of A∪S. The darkest
blue sites are in the ‖ · ‖1-ball of radius 20; the lightest blue sites are the initially white sites outside of this ball,
to which there exist permissible paths originating from dark blue sites; the remaining blue sites are initially black
sites outside of this ball, to which there exist permissible paths originating from dark blue sites. Note that the sites
highlighted in green are black in the random field, and they form a circuit that takes at most two consecutive steps
in the same direction.

Note that if S is nonempty, then all sites in S must be black, since there are no permissible
paths from A to Ac. For a picture of a realization of A and S, see Figure 1. This oriented
surface construction, which was originally devised in [22], is the key to proving the next
result.

PROPOSITION 3.6. Let Er be the event that there exists a shell of radius r consisting of
black sites. There exists b1 ∈ (0,1) such that for any b > b1 and r ≥ 1, we have P(Er) ≥ 1/2.

Note that the event Er depends only on the colors of sites in {u ∈ Z2 : r ≤ ‖u‖1 ≤ r +√
r}.

However, in proving Proposition 3.6, we show that the set S defined in (3.7) is, in fact,
the desired shell with large probability. The proof of the first lemma below, based on path
counting, is nearly identical to the proofs of Lemmas 8, 9 and 10 in [16], so we omit the
details.

LEMMA 3.7. There exists b2 < 1 such that if b > b2, then for each r ≥ 1, the set S

defined by (3.6) and (3.7) satisfies properties (S1), (S2) and (S3) with probability at least
1/2.

LEMMA 3.8. The set S defined by (3.6) and (3.7) satisfies property (S4).

PROOF. Without loss of generality, suppose u = (u1, u2) ∈ S is such that ui ≥ 3 for
i = 1,2, and by symmetry it suffices to show that u + [1,2] × [−2,−1] intersects S. By the
definition of S in (3.7), u must be reachable from A by a taxed step. Since u is not on a
coordinate axis, the only site from which we can reach u via a taxed step is u + (−1,−1), so
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u+ (−1,−1) ∈ A. Taking a free step in the direction (1,−2) implies u+ (0,−3) ∈ A (this is
where we require |u1| ≥ 3 and |u2| ≥ 3, to guarantee that direction (1,−2) is, in fact, a free
step). Observe that u + (2,−1) ∈ Ac, otherwise we would have u ∈ A, since it is reachable
from this point by the free step in the direction (−2,1).

Now there are two cases. If u + (1,−2) ∈ A, then u + (2,−1) ∈ S, since it is reachable
from u + (1,−2) along the taxed step in the direction (1,1). Otherwise, if u + (1,−2) ∈ Ac,
then u + (1,−2) ∈ S, since it is reachable from u + (0,−3) ∈ A along the taxed step in the
direction (1,1). In either case, we have found a site in (u + [1,2] × [−2,−1]) ∩ S. �

PROOF OF PROPOSITION 3.6. The claim follows from Lemmas 3.7 and 3.8. �

3.3. Construction of a protected set Z. In this section, we construct a set Z ⊂ Z2, which
is our candidate for the set satisfying the assumptions of Proposition 3.2.

Suppose that there exists a shell S of radius r so that Qu is a good box for every u ∈ S.
For every u ∈ S with both coordinates at least 3 in absolute value, select a nice vertex from
Qu and gather the selected vertices into the set U . (No nice vertices are chosen from Qu if at
least one coordinate of u ∈ S is less than 3 in absolute value.)

A fortress is a square of side length 12L + 1 (this is the reason for our choice of M = 12L

in the definition of J at (3.3)), all four of whose corners are nice. Suppose that there is a
fortress centered at each of the four vertices (±r(2L + 1),0), (0,±r(2L + 1)). Let K be the
set of all corner vertices of all fortresses (16 in all). For x ∈ Z2, define Rect(x) to be the
rectangle with opposite corners at x and 0 (e.g., if x = (x1, x2) with x1 ≥ 0 and x2 ≤ 0, then
Rect(x) = [0, x1] × [x2,0]). Now define Z by

(3.8) Z = ⋃
x∈U∪K

Rect(x).

Note that by construction, all convex corners of Z are nice vertices, and near each of the
coordinate axes, there are two nice vertices on the line orthogonal to the nearby axis that are
at distance 12L + 1. In addition, the fact that the slope of S is locally bounded above and
below (by property (S4)) makes the following proposition geometrically transparent. The
formal proof is very similar to the proofs of Lemmas 20 through 26 in [16], though it is much
simpler, and is omitted. See Figure 2 for a realization of Z.

LEMMA 3.9. Suppose Z is defined as in (3.8). If p is sufficiently small (depending on
δ and m) to make L sufficiently large, then Z satisfies assumptions (i) and (ii) of Proposi-
tion 3.2.

3.4. Existence of a protected set Z. Assume N0 = 3�p−36�, n0 = �p−19�, T = �p−17�,
and 	 = �p−19�. Define the sequence of separated annuli

Ai = {
x ∈ Z2 : n0 + (2i − 1)	 ≤ ‖x‖1 ≤ n0 + 2i	

}
,

for i = 1, . . . , T .

LEMMA 3.10. Fix an m. For a small enough ε > 0 and δ > 0, and q ≥ Cp2, where C is
given in Lemma 3.5, the following holds. With probability at least 1 − exp(−1/(4p)), there
exists a protected set Z satisfying assumptions (i) and (ii) of Proposition 3.2, and such that
Z contains the origin and is contained in {x ∈ Z2 : ‖x‖1 ≤ N0}.

PROOF. Note that n0 + 2T 	 ≤ N0.
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FIG. 2. The top portion of the protected set Z consists of the dark magenta region, with the part belonging
only to the fortress made transparent. Green boxes are good boxes, which correspond to sites in the shell S from
Figure 1. Black dots are the nice vertices, which are selected from each good box corresponding to a site in the
shell S with both coordinates at least 3 in absolute value. The top two black dots correspond to the nice vertices
in the fortress. Some of the selected nice vertices are hidden within the magenta region, as they are not extremal.
Note that due to the slope condition on the shell S (essentially, no two consecutive steps are in the same direction),
a similar slope condition holds for the nice vertices, which easily implies the set Z satisfies assumptions (i) and
(ii) in Proposition 3.2.

Paint each site x ∈ Z2 black if the box Qx is good. Let

ri = ⌊(
n0 + (2i − 1)	

)
/(2L + 1)

⌋ + 11,

so (2L + 1)ri − 20L ≥ n0 + (2i − 1)	, and observe that
√

ri ≤ √
N0/L � 	/(2L + 1) for

p small. Therefore, existence of a shell of good boxes of radius ri depends only on the states
of vertices within the annulus Ai . Moreover, we have that sites x1 and x2 with ‖x1 − x2‖∞ ≥
30 are painted independently, and so by [29] the configuration of black sites dominates a
product measure of density b1 (chosen from Proposition 3.6) provided ε > 0 in Lemma 3.5
is small enough, and δ is chosen appropriately. It follows that, when p is small enough, by
Proposition 3.6, a shell of good boxes of radius ri exists with probability at least 1/2. The
existence of a shell of good boxes of radius ri is an increasing event (in ξ0), and so it is
positively correlated with existence of nice vertices at the 16 locations comprising the set K

(⊂ Ai ) in (3.8). Therefore, the set Z given by (3.8) exists with convex corners U ∪ K ⊂ Ai

with probability at least p16/2. Due to the separation of shells, the probability that such a Z

does not exist in Ai for all i = 1, . . . , T is then at most (1 − p16/2)p−17/2 ≤ exp(−1/(4p)).
By Lemma 3.9, if Z constructed in this manner exists, then it satisfies assumptions (i) and
(ii) of Proposition 3.2. �

PROOF OF THEOREM 3.1. Choose s = 37 in Lemma 3.3. That determines m = 48s <

2000. The proof is concluded by Lemma 3.10, Lemma 3.3 and Proposition 3.2. �

4. The supercritical regime for even threshold. In this section, we prove the claims of
Theorem 1.1 when a� ≥ 2(� − 1)!. In the following subsections, we prove, in order: (1.3),
upper bound on the rate (1.4) for � ≥ 2, lower bound on the same rate for � ≥ 2, and the
asymptotics for the exceptional case � = 1.

4.1. Comparison process and rescaling. Initialize the comparison process, ξt , as follows.
For x ∈ Z2, let

(4.1) ξ0(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if {x} × K2

n is θ -IS,

k if k ∈ {1,2} and {x} × K2
n is (θ − k)-IS but not (θ − k + 1)-IS,

5 if {x} × K2
n is not (θ − 2)-IS.
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In other words, initialize ξt as in Lemma 2.6, but replace all 3s and 4s with 5s.
To apply Lemma 2.6, we need a method to show that Pp(ξ∞(0) = 0) is close to 1, and for

that, we adapt the rescaling from [17] to our purposes; in particular, we need to account for
the existence of 1s, which require activation from 0s, and to prove high final density at the
critical value (when a� = 2(� − 1)!). We let

(4.2) N =
{⌊

n1/�(logn)−1/2�⌋, � ≥ 2,⌊
n(logn)−3/4⌋

, � = 1

and, for x ∈ Z2, let 
x = N · x + [0,N − 1]2 be the N × N box in Z2 with lower-left corner
at Nx. Call the box 
x good if ξ0(y) ≤ 2 for every y ∈ 
x and, in addition, every row and
column of 
x contains at least one y such that ξ0(y) ≤ 1. Call a box very good if ξ0(y) ≤ 1
for every y ∈ 
x and ξ0(y) = 0 for some y ∈ 
x .

LEMMA 4.1. For � ≥ 1 and large enough n,

Pp(
x is not good) ≤ 6n(2/�)−(a�/�!) · (logn)−(1/�∧1/2).

PROOF. By Lemma 2.1, for � ≥ 2,

Pp(
x is not good) ≤ N2Pp

(
ξ0(0) = 5

) + 2N · (
1 − Pp

(
ξ0(0) ≤ 1

))N
≤ 3N2n−a�/�!

+ 2N exp
[
−N · 2a�+1

(� + 1)! · (logn)1+1/�

n1/�

(
1 + o(1)

)]
≤ 3n(2/�)−(a�/�!) · (logn)−1/�

+ n1/� exp
[−C(logn)1+1/2�].

When � = 1, repeat the above computation using the bound Pp(ξ0(0) = 5) ≤ 3an−a logn.
�

PROOF OF (1.3). It follows from Lemma 2.6 that⋃{{x} × K2
n : ξ∞(x) = 0

} ⊂ ω∞,

so we need only to show that Pp(ξ∞(0) = 0) → 1 when a� ≥ 2(� − 1)!. Let C0 denote the
cluster of good boxes containing the box 
0. Observe that

Pp

(|C0| = ∞) = Pp

({|C0| = ∞} ∩ {C0 contains a very good box})
≤ Pp

(
ξ∞(0) = 0

)
.

The last inequality follows from the fact that a very good box in C0 sets off a cascade resulting
in all vertices in C0 eventually flipping to 0. Now, Lemma 4.1 implies Pp(|C0| = ∞) → 1.

�

4.2. Upper bound in (1.4) for � ≥ 2. Throughout this subsection, assume that � ≥ 2,
a�/�! > 2/� and that ξ0 is built by internal spanning properties, as in Lemma 2.6.

We will prove first the upper bound on the rate.

LEMMA 4.2. The probability that the Hamming square based at the origin is not com-
pletely filled satisfies the following bound:

(4.3) Pp

({0} × K2
n 
⊂ ω∞

) ≤ n4/�−4a�/�!+o(1).
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For a deterministic or random set A ⊂ Z2, we say that the event Blocking_In A occurs
if there exists a rectangle R = [a1, a2] × [b1, b2] so that: 0 ∈ R; R is nondegenerate, that
is, a1 < a2 and b1 < b2; and each of the four sides of R, {a1} × [b1, b2], {a2} × [b1, b2],
[a1, a2] × {b1} and [a1, a2] × {b2}, either contains two distinct sites in A with ξ0-state 3 or a
site in A with ξ0-state 4.

LEMMA 4.3. Suppose that ξ∞(0) 
= 0. Assume that there is circuit of 0s around 0 in ξt ,
for some t . Denote by A the set of sites in the strict interior of this circuit. Assume that there
are no sites in A with ξ0-state 5, and there is at most one site in A with ξ0-state 4. Then the
event Blocking_In A happens.

PROOF. We may assume that all sites in Ac are 0s in ξ0. Let A′ be the set of sites which
are nonzero in ξ∞. Then the leftmost and the rightmost site on the top line of A′ must either
be the same site with ξ0-state 4, or be two distinct sites which both have ξ0-state at least 3. To
check nondegeneracy, assume that, say, b1 = b2. As there are no sites in ξ0-state 5 in A, there
then must be two sites at ξ0-state 4 on either side of 0 on the x-axis, but by the assumption
there can be at most one such site. �

Now we pick N as in (4.2) and also keep the definition of good boxes from the previous
subsection. For a constant D, let G1(D) be the event that there is a circuit of good boxes that
encircles 0, is contained in [−DN,DN ]2, and is connected to the infinite cluster of good
boxes.

LEMMA 4.4. For any L there is a constant D = D(a,L) so that

(4.4) Pp

(
G1(D)c

) ≤ n−L.

PROOF. This follows from Lemma 4.1, together with a standard percolation argument
(see, e.g., Chapter 11 of [21]). �

LEMMA 4.5. The probability that [−DN,DN ]2 contains at least one site with ξ0-state
5 or at least two sites in A with ξ0-state 4 is n4/�−4a�/�!+o(1).

PROOF. This follows from Lemma 2.1. �

LEMMA 4.6. Assume D is a fixed constant. Then

Pp

(
Blocking_In [−DN,DN ]2) ≤ n4/�−4a�/�!+o(1).

PROOF. Define λ so that DN = nλ, so that λ = 1/� + o(1), and let α = a�/�!. Note that
2λ < α. We will restrict all our sites to the region [−DN,DN ]2.

A frame is a nondegenerate rectangle whose four corners are all in ξ0-state 3. Let Frame
be the event that a frame exists (which thus by definition means existence in [−DN,DN ]2).
Then Pp(Frame) = 
(n4λ−4α). We will show below that all other possibilities for the event
Blocking_In [−DN,DN ]2 to happen have much smaller probabilities. We group these
possibilities according to whether the rectangle required by this event does not have, or does
have, a boundary site with ξ0-state 4.

The event that there exists a nondegenerate rectangle R that has at least two sites with ξ0-
state 3 on all sides can be split into the following events, according to additional properties
of the configuration on R:

• R is a frame;
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• R has no 3s at the corners (i.e., there is no sharing), which happens with probability at
most a constant times

n4λ(
n2λn−2α)4 = n12λ−8α = o

(
Pp(Frame)

)
(we give these probabilities as products, reflecting successive choices: four lines determin-
ing R, pairs of points on the same line away from corners; single points on lines away from
corners, states at corners);

• R has exactly one 3 at a corner, with probability at most a constant times

n4λ(
n2λn−2α)2(

nλn−α)2
n−α = n10λn−7α = o

(
Pp(Frame)

);
• R has exactly two corner 3s on the same line, with probability at most a constant times

n4λ(
n2λn−2α)(

nλn−α)2
n−2α = n8λn−6α = o

(
Pp(Frame)

);
• R has exactly two corner 3s not on the same line, with probability at most a constant times

n4λ(
nλn−α)4

n−2α = n8λn−6α = o
(
Pp(Frame)

);
• R has exactly three corner 3s, with probability at most a constant times

n4λ(
nλn−α)2

n−3α = n6λn−5α = o
(
Pp(Frame)

)
.

Next, we consider the event that a rectangle R has exactly one 4 on its boundary, and either
two 3s or a 4 on each of its sides. Again, we split this event according to additional properties:

• 4 is not at a corner of R and neither are 3s, with probability at most a constant times

n4λ(
n2λn−2α)3

nλn−2α = n11λn−8α = o
(
Pp(Frame)

);
• the 4 is at a corner of R, but no 3s are at corners, with probability at most a constant times

n4λ(
n2λn−2α)2

n−2α = n8λn−6α = o
(
P(Frame)

);
• the 4 is at a corner of R, and a 3 is at the opposite corner, with probability at most a constant

times

n4λ(
nλn−α)2

n−2αn−α = n6λn−5α = o
(
Pp(Frame)

)
.

Together with Lemma 4.5, these calculations complete the proof. �

PROOF OF LEMMA 4.2. Choose the constant D in Lemma 4.4 so that L in (4.4) satisfies
L > 4a�/�! − 4/�. Then (4.3) follows from Lemmas 4.3–4.6. �

4.3. Lower bound in (1.4) for � ≥ 2. In this subsection also, we assume that a�/�! > 2/�

but now ξ0 is built by inertness properties, as in Lemma 2.7. In this section, we prove the
lower bound on the rate.

LEMMA 4.7. The probability that the configuration on the Hamming square based at the
origin never changes satisfies the following bound:

(4.5) Pp

(
ω∞ = ω0 on {0} × K2

n

) ≥ n4/�−4a�/�!+o(1).

Fix a nondegenerate rectangle R. Let ξ0
0 be obtained from ξ0 by converting all 4s and 5s

to 3s on R, and changing all sites to 0 off R. Let ξ0
t be the bootstrap dynamics started from

this initial state. We say that R is protected if R has its four corners in ξ0
0 -state 3, no site in

R has ξ0
0 -state 0 and no site on the boundary of R has ξ0

0 -state 1.
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LEMMA 4.8. Assume a nondegenerate rectangle R is protected. Then no site ever
changes state in ξ0

t , and therefore ξt never changes any state in R.

PROOF. The first site to change state would have to be on the boundary of R, which is
clearly impossible. �

Assume now N = �n1/�/ log5 n�. Define the following two events:

G1 = {
there exists a rectangle R with 0 ∈ R ⊂ [−N,N]2, four corners in

ξ0
0 -state 3, and no site on the boundary of R is in ξ0

0 -state 0 or 1
}
,

G2 = {
there is no x ∈ [−N,N]2 with ξ0(x) = 0

}
.

LEMMA 4.9. With our choice of N ,

Pp(G1) ≥ n4/�−4a�/�!+o(1).

PROOF. This follows from an argument that is very similar to the one for Lemma 3.5.
�

LEMMA 4.10. With our choice of N ,

Pp

(
Gc

2
) → 0,

as n → ∞.

PROOF. This follows from Lemma 2.1 and Lemma 2.2. �

PROOF OF LEMMA 4.7. Observe that G1 and G2 are increasing events, therefore by
FKG and Lemmas 4.9 and 4.10,

Pp(G1 ∩ G2) ≥ n4/�−4a�/�!+o(1),

and the result follows from Lemma 4.8. �

4.4. The exceptional case: θ = 4. We assume that θ = 4 throughout this section, and
that, in accordance with (1.1),

p = a
logn

n2 ,

with a > 2. We first prove an analogue of Lemma 4.2. We will again assume that ξ0 is built by
internal spanning properties, as in Lemma 2.6, and observe that the sites with ξ0-state 4 and
ξ0-state 3, both of which we call 4-obstacles, are comparably improbable at our precision
level. (Also note that there are no sites with ξ0-state 5.) As a result, the convergence rate
changes.

LEMMA 4.11. The probability that the Hamming square based at the origin is not com-
pletely filled satisfies the following bound:

(4.6) Pp

({0} × K2
n 
⊂ ω∞

) ≤ n−2a+o(1).

If R = [a1, a2] × [b1, b2] is a nondegenerate rectangle (i.e., a1 < a2 and b1 < b2), then
its two-layer boundary rectangles are denoted by R� = [a1, a1 + 1] × [b1, b2], Rr = [a2 −
1, a2] × [b1, b2], Rb = [a1, a2] × [b1, b1 + 1] and Rt = [a1, a2] × [b2 − 1, b2].

For a set A ⊂ Z2, we say that the event 4_Blocking_In A happens if there exists a
rectangle R = [a1, a2] × [b1, b2] so that 0 ∈ R and either:
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• a2 − a1 ≥ 3 and b2 − b1 ≥ 3, and each of the four rectangles R�, Rr , Rb, Rt contains at
least two 4-obstacles in A;

• 0 ≤ a2 − a1 ≤ 2, b2 − b1 ≥ 3, and R contains 4 or more 4-obstacles in A;
• a2 − a1 ≥ 3, 0 ≤ b2 − b1 ≤ 2, and R contains 4 or more 4-obstacles in A; or
• 0 ≤ a2 − a1 ≤ 2, 0 ≤ b2 − b1 ≤ 2, and R contains 2 or more 4-obstacles in A.

LEMMA 4.12. Suppose that ξ∞(0) 
= 0. Assume that there is circuit of 0s around 0 in
ξt , for some t . Denote by A the set of sites in the strict interior of this circuit. Then the event
4_Blocking_In A happens.

PROOF. As before, we may assume that all sites in Ac are 0s in ξ0 and let A′ be the
set of sites which are nonzero in ξ∞. If the top line of A′ consists of a single 4-obstacle,
then the next line from the top must also contain a 4-obstacle. (Otherwise, the next line from
the top would eventually turn into all 0s, causing the solitary 4-obstacle on the top line to
be surrounded by 0s.) Finally, if there is a single 4-obstacle within R, then all sites in R

eventually turn into 0s. �

We next note that Lemma 4.4 still holds, with N given by (4.2) with � = 1, and proceed
with our final lemma.

LEMMA 4.13. Assume D is a fixed constant. Then

Pp

(
4_Blocking_In [−DN,DN ]2) ≤ n−2a+o(1).

PROOF. For the event {4_Blocking_In [−DN,DN ]2} to happen, one of the four
events, corresponding to the four items in its definition, must happen. The event in the first
item happens with probability at most n4−4a+o(1), as in the proof of Lemma 4.6. The events
in the second and third item also happen with probability at most n4−4a+o(1). The event in the
last item happens with probability n−2a+o(1), and this last probability is the largest, as a > 2.

�

PROOF OF LEMMA 4.11. Analogously to the case of even θ ≥ 6, choose the constant D

in Lemma 4.4 so that L in (4.4) satisfies L > 2a, and use Lemmas 4.12 and 4.13 to conclude
(4.6). �

We conclude this section by the simple observation that gives the matching lower bound.

LEMMA 4.14. The Hamming square based at the origin remains unoccupied forever
with probability bounded below as follows:

(4.7) Pp

(
ω∞ ≡ 0 on {0} × K2

n

) ≥ n−2a(
1 + o(1)

)
.

PROOF. The inclusion{
ω0 ≡ 0 on

{
0, (0,1)

} × K2
n

} ⊂ {
ω∞ ≡ 0 on {0} × K2

n

}
,

gives the desired bound. �

5. The odd threshold. In this section, we prove Theorem 1.2. In the first three subsec-
tions, we handle the case � ≥ 2: first we define, and give bounds for, the critical value ac, then
we prove (1.7), and then (1.6). In the last, fourth subsection, we sketch the argument for the
case � = 1 in lesser detail.
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5.1. The critical value of a for � ≥ 2. Pick an a > 0 and an ε ∈ (0,2 exp[−a�

�! ] −
2 exp[−2a�

�! ]). Consider the initial state ξ
(a,ε)
0 given by the product measure with

P
(
ξ

(a,ε)
0 (x) = 0

) = ε,

P
(
ξ

(a,ε)
0 (x) = 1

) = (
1 − e−a�/�!)2

,

P
(
ξ

(a,ε)
0 (x) = 3

) = exp
[
−2a�

�!
]
,

P
(
ξ

(a,ε)
0 (x) = 2

) = 1 − P
(
ξ

(a,ε)
0 (x) = 0

) − P
(
ξ

(a,ε)
0 (x) = 1

) − P
(
ξ

(a,ε)
0 (x) = 3

)
for every x ∈ Z2. We will call this an (a, ε)-initialization and denote the resulting bootstrap
dynamics by ξ

(a,ε)
t .

Define ac ∈ [0,∞] as follows:

ac = inf
{
a > 0 : lim

ε→0
P

(
ξ (a,ε)∞ (0) = 0

)
> 0

}
.

Observe that P(ξ
(a,ε)∞ (0) = 0) is a nonincreasing function of ε and, therefore, its limit as ε →

0 exists. Furthermore, this limit is a nondecreasing function of a, and therefore it vanishes on
[0, ac) and is strictly positive on (ac,∞).

The next two lemmas establish that ac is nontrivial, that is, ac ∈ (0,∞), by comparison to
the critical value psite

c of site percolation on Z2, and to the critical value of the site percolation
on the triangular lattice. Nonstrict inequalities in both lemmas have much simpler proofs, but
we prefer the strict versions as they indicate that this percolation problem is not a standard
one.

LEMMA 5.1. The following strict inequality holds:

(5.1)
(
1 − e−a�

c/�!)2
< psite

c .

In particular, ac < ∞. Furthermore, limε→0 P(ξ
(a,ε)∞ (0) = 0) → 1 as a → ∞.

PROOF. Given a configuration ξ0 = ξ
(a,ε)
0 , form the following set of green sites. Any site

x with ξ0(x) ≤ 1 is green. Also make green any site x such that ξ0(x) = 2 and ξ0(y) ≤ 1 for
all sites y among the 8 nearest neighbors of x, except possibly for two diagonally opposite
neighbors. That is, if the local configuration in ξ0 around a site x is

(5.2)
1 1 ∗
1 2 1
∗ 1 1

or
∗ 1 1
1 2 1
1 1 ∗

,

where ∗ denotes an arbitrary state, then x is green, and it is also green if its local configuration
has 0s in place of any of the 1s in (5.2). Let Green_Percolation be the event that 0 is in
an infinite connected set of green sites, and Green_Connection the event that 0 is green
and connected to a vertex with state 0 in ξ0 through green sites. Then

(5.3) P(Green_Percolation \ Green_Connection) = 0.

Moreover, we claim that

(5.4) Green_Connection⊂ {
ξ∞(0) = 0

}
.

To see this, consider the set of all sites in a connected cluster C of 0 of green sites that includes
a 0 in ξ0. Let C0 be the set of all sites in C that eventually assume state 0. If C0 � C, then there
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exist neighbors x and y with x ∈ C0 and y ∈ C \ C0. But then ξ0(y) = 2, and by inspection of
the configurations in (5.2), we see that y must have at least 2 neighbors in C0, a contradiction.
Therefore, C0 = C and (5.4) holds.

Finally, it follows from [1] (see also [8]) that there exists an a with (1 −
e−a�/�!)2 < psite

c , so that P(Green_Percolation) > 0. This, together with (5.2)–
(5.4), establishes (5.1). Moreover, it follows from standard percolation arguments that
P(Green_Percolation) → 1 as a → ∞, and then (5.3) implies the last claim. �

LEMMA 5.2. The critical value ac satisfies the following strict inequality:

exp
[−2a�

c/�!
]
< 1/2.

In particular, ac > 0.

PROOF. Pick an α > 0. Given a configuration ξ0 = ξ
(a,ε)
0 , declare a site x red if ξ0(x) =

3, or ξ0(x) = 2 and the local configuration in ξ0 around x is

(5.5)
3 3 ∗
3 2 3
∗ 3 3

,

where ∗ denotes an arbitrary state.
The triangular lattice T is obtained by adding SW-NE edges to the nearest neighbor edges

in Z2. (When we say that x, y ∈ Z2 are neighbors without specifying the lattice, we still mean
nearest neighbors.) Recall that T is (site-)self-dual and so the site percolation on T has critical
density 1/2. We call a T-circuit ζ a sequence of distinct points y0, y1, . . . , yn = y0 such that
yi and yi−1 are T-neighbors for i = 1, . . . , n. We will also assume that ζ is a boundary
of its connected interior, that is, its sites are all points, which are outside some nonempty
T-connected set S, but have a T-neighbor in S (this is possible, again, because T is site-self-
dual); we call S the interior of ζ . Observe that every site on ζ has at least two neighbors in
the set obtained as the union of sites on ζ and its interior.

Let Red_CircuitN be the event that there exists a T-circuit of red sites, with the origin
in its interior, and inside [−N,N]2. Moreover, let No_ZeroN be the event that no site x ∈
[−N,N]2 has ξ0(x) = 0. It follows from [1, 8], and standard arguments from percolation
theory (see Chapter 11 of [21]), that there exists an a with exp[−2a�/�!] < 1/2, with the
following property. For every α > 0, there exists an N = N(α) so that

(5.6) P(Red_CircuitN) > 1 − α.

Pick any T-circuit ζ of red states. Form the set of sites R that consists of: all sites of ζ ;
all sites in the interior of ζ ; and all sites required to be in ξ0-state 3 in (5.5) around any site
with state 2 on ζ . Assume that there is no site in ξ0-state 0 in R. Then we claim that no site
in R ever changes its state to 0. Indeed, to get a contradiction, let x ∈ R be the first such site
to change its state to 0 (chosen arbitrarily in case of a tie). Clearly, x cannot be in the interior
of ζ , as then x has no neighbor outside R. The site x cannot have ξ0-state 3 and be on ζ ,
as x then has at least two neighbors in R, and hence at most two outside R. Furthermore, x

cannot be a site with ξ0-state 2 on ζ , as x must then have all neighbors in R in accordance
with (5.5). The final possibility is that x is one of the sites with ξ0-state 3 in (5.5). But each
of those sites clearly also has two neighbors in R.

So we have, for every N ,

(5.7) Red_CircuitN ∩ No_ZeroN ⊂ {
ξ∞(0) = 0

}c
.
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It follows from (5.6) and (5.7) that there exists an N = N(α) so that

(5.8) P
(
ξ∞(0) = 0

) ≤ α + (2N + 1)2ε.

Now in (5.8), we send ε → 0 first, and then send α → 0 to conclude that P(ξ∞(0) = 0) → 0
as ε → 0 and, therefore, a ≤ ac. �

5.2. The supercritical regime for � ≥ 2.

LEMMA 5.3. Assume �X = (X1,X2,X3,X4) and �Y = (Y1, Y2, Y3, Y4) are 4-tuples of
i.i.d. Bernoulli random variables with P(Xi = 1) = α1 and P(Yi = 1) = α2 for all i. If 1 −
(1 − α1)

4 ≤ α4
2, then �X and �Y can be coupled so that {∃i : Xi = 1} ⊂ {∀i : Yi = 1}.

PROOF. This follows from an elementary argument and we omit the details. �

LEMMA 5.4. If a > ac, then (1.7) holds. Moreover, (1.8) holds.

PROOF. Fix an a′ ∈ (ac, a). Fix also a small δ > 0, to be chosen later dependent on a′.
For i = 0, . . . ,5, we define probabilities p

(n)
i as follows. For i = 1,2,3,4, let

p
(n)
i = Pp

(
K2

n is (θ − i)-IS but not (θ − i + 1)-IS
)
,

and

p
(n)
0 = Pp

(
K2

n is θ -IS
)
, p

(n)
5 = Pp

(
K2

n is not (θ − 4)-IS
)
.

Denote by π(α) the Bernoulli product measure of active and inactive sites with density α of
active sites. Build the initial state ξ0 in four steps as follows. In the first step, choose active
sites according to π(p

(n)
4 +p

(n)
5 ) and fill them with 5s. In the second step, choose active sites

according to π(p
(n)
0 /(1 − p

(n)
4 − p

(n)
5 )) and fill them with 0s, provided they are not already

filled. Continue in the third step with π(p
(n)
3 /(1 − p

(n)
0 − p

(n)
4 − p

(n)
5 )) to fill some unfilled

sites with 3s, and then in the fourth step analogously with 2s, and then finally 1s fill all the
remaining unfilled sites.

Divide Z2 into 2 × 2 boxes and couple product measures π(p
(n)
4 + p

(n)
5 ) and π(δ) on the

space of pairs (η1, η2) ∈ 2Z
2 × 2Z

2
so that any box with at least one active site in η1 is fully

activated in η2. This coupling is possible, for large enough n, by Lemmas 2.4 and 5.3.
Use this to couple ξ0 with another initial state ξ̂0. To build this configuration, keep all

selected product measures used to define ξ0, but change the first step above as follows: replace
π(p

(n)
4 +p

(n)
5 ) by π(δ) (coupled as above), and fill the active sites by 3s (instead of 5s). Note

that we now fill by 3s twice, and that some 0s, 1s and 2s in ξ0 are converted to 3s in ξ̂0.
Denote the resulting bootstrap dynamics by ξ t and ξ̂t . The important observation is that no

site that is 5 in ξ0 can ever turn to 0 in ξ̂t , as it is covered by a 2 × 2 block of 3s that cannot
change. Therefore, by Lemma 2.6 and the coupling between ξ t and ξ̂t ,

(5.9) Pp

({0} × K2
n ⊂ ω∞

) ≥ P
(
ξ∞(0) = 0

) ≥ P
(̂
ξ∞(0) = 0

)
.

Now if δ = δ(a′) is small enough, then for large enough n,

(5.10)

εn = P
(̂
ξ0(0) = 0

)
> 0,

P
(̂
ξ0(0) = 1

) ≥ P
(
ξ (a′,εn)(0) = 1

)
,

P
(̂
ξ0(0) = 3

) ≤ P
(
ξ (a′,εn)(0) = 3

)
.
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As a′ > ac, the inequalities (5.10) guarantee that lim infn P(̂ξ∞(0) = 0) > 0. Therefore, by
(5.9), the leftmost inequality in (1.7) holds. When a → ∞, we can send a′ → ∞ as well, and
then Lemma 5.1 gives (1.8).

Finally, we prove the rightmost inequality in (1.7), which states that Pp(v0 ∈ ω∞) is
bounded away from 1 for any finite a. Let Obstacle_Box be the event that {x} × K2

n

is (θ − 2)-inert for all x ∈ {0, (0,1), (1,0), (1,1)}. Then

Obstacle_Box⊂ {
ω∞ = ω0 on {0} × K2

n

}
and, therefore, for any a > 0, by Lemmas 2.4 and 2.5,

lim sup
n→∞

Pp(v0 ∈ ω∞) ≤ lim
n→∞Pp

(
Obstacle_Boxc) = 1 − exp

(−8a�/�!) < 1,

which completes the proof of (1.7). �

5.3. The subcritical regime for � ≥ 2.

LEMMA 5.5. Assume that a < ac and � ≥ 2. Then (1.6) holds.

PROOF. Pick now an a′ ∈ (a, ac) and α > 0, and again also fix δ > 0, to be chosen later
to be appropriately dependent on a′ and α. We will redefine p

(n)
i , ξ0 and ξ̂0 from the previous

proof. Let

p
(n)
0 = Pp

(
K2

n is not θ -II
)
,

p
(n)
1 = Pp

(
K2

n is not (θ − 1)-II but is θ -II
)
,

p
(n)
2 = Pp

(
K2

n is not (θ − 2)-II but is (θ − 1)-II
)
,

p
(n)
3 = Pp

(
K2

n is (θ − 2)-II
)
.

Next, we will build the initial state ξ0. We emphasize that ξ0 is not a product measure, as we
need to take account of the possibility that some copies of the Hamming plane are internally
inert but not inert. However, such copies are rare, and the bounded range of dependence
allows for the coupling with a low-density product measure.

The construction of ξ0 proceeds in three steps. In the first step, choose active sites ac-
cording to π(p

(n)
3 ) and fill them by 3s. In the second step, choose active sites according to

π(p
(n)
2 /(1 − p

(n)
3 )) and fill them by 2s, provided they are not already filled. In the third step,

choose the configuration of bad sites: those are sites that:

• are not θ -II; or
• are internally inert but not inert for some threshold in [θ − 2, θ ].
Observe that the conditional distribution of bad sites given the configuration of 3s and 2s
has finite range of dependence: if ‖x − y‖1 ≥ 3, then x and y are bad independently. Fur-
thermore, by Lemma 2.5, the conditional probability that any site is bad is, uniformly over
the configurations of 2s and 3s, n−1+1/�+o(1), and thus goes to 0 if � ≥ 2. Finally, finish the
construction of ξ0 by filling all bad sites with 0’s and the remaining unfilled sites with 1s.

By [29], the configuration of bad sites can be coupled with a product measure π(δ) that
dominates it, and is independent of the configuration of 2s and 3s. As in the previous proof,
we now couple ξ0 with another initial state ξ̂0. To build ξ̂0, keep the selected product measures
used in the first two steps. The third step is changed by using the π(δ), obtained from the
domination coupling, as active sites, all of which are filled by 0s, possibly replacing some 2s
and 3s. This way, some of the 1s, 2s and 3s in ξ0 are changed to 0s in ξ̂0.
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Denote again the resulting bootstrap dynamics by ξ t and ξ̂t . The construction of ξ0 results
in a 0 at the location of every noninert internally inert copy of the Hamming plane, for all
relevant thresholds. Therefore, ξ∞ provides an upper bound for the comparison configuration
ξ∞ in Lemma 2.7, and this lemma then implies that

(5.11) Pp

(
ω∞ 
= ω0 on {0} × K2

n

) ≤ P
(
ξ∞(0) = 0

)
.

Next, by the properties of the coupling we constructed,

(5.12) P
(
ξ∞(0) = 0

) ≤ P
(̂
ξ∞(0) = 0

)
.

Now if δ = δ(a′) is small enough, then for large enough n,

(5.13)

P
(̂
ξ0(0) = 0

) ≤ δ,

P
(̂
ξ0(0) = 1

) ≤ P
(
ξ (a′,ε)(0) = 1

)
,

P
(̂
ξ0(0) = 3

) ≥ P
(
ξ (a′,ε)(0) = 3

)
.

As a′ < ac, the inequalities (5.13) guarantee that P(̂ξ∞(0) = 0) < α if δ = δ(a′, α) is small
enough. Therefore, by (5.11) and (5.12), (1.6) holds. �

5.4. The exceptional case: θ = 3. We assume here that p = a/n2, in accordance with
(1.5). In this case, we need another version of the heterogeneous bootstrap dynamics, some-
where between ξt used when � ≥ 2 and ζt used later for the graph Z2 × Kn. Indeed, observe
that the obstacles are now empty Hamming planes, but they become completely occupied
by contact with two fully occupied neighboring planes and another neighboring plane that
is merely nonempty. Clearly, the probability of having a nonempty neighboring plane does
not go to 0, and so this possibility now cannot be handled by a coupling with a low-density
measure.

We denote the new rule by χt ∈ {0,1,2,3}Z2
, t ∈ Z+. Assume that χ0 is given. For a given

t ≥ 0, let as before Zt(x) be the cardinality of {y : y ∼ x and χt(y) = 0} and let Wt(x) =
1({y : y ∼ x and 0 < χt(y) < 3} 
=∅) then

χt+1(x) =
{

0, Zt (x) ≥ χt(x) or
(
χt(x) = 3,Zt (x) = 2, and Wt(x) = 1

)
,

χt (x), otherwise.

For a small ε > 0, we consider the initial state χ
(a,ε)
0 given by the product measure with

P
(
χ

(a,ε)
0 (x) = 0

) = ε,

P
(
χ

(a,ε)
0 (x) = 1

) = 1 − (a + 1)e−a,

P
(
χ

(a,ε)
0 (x) = 3

) = e−a,

P
(
χ

(a,ε)
0 (x) = 2

) = 1 − P
(
χ

(a,ε)
0 (x) = 0

) − P
(
χ

(a,ε)
0 (x) = 1

) − P
(
χ

(a,ε)
0 (x) = 3

)
for every x ∈ Z2, denote the resulting bootstrap dynamics by χ

(a,ε)
t , and for θ = 3 define

ac ∈ [0,∞] by

ac = inf
{
a > 0 : lim

ε→0
P

(
χ(a,ε)∞ (0) = 0

)
> 0

}
.

We will not provide complete proofs of the next three lemmas, but only point to previous
arguments that apply with simplifications and minor modifications.
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LEMMA 5.6. The following strict inequalities hold:

1 − (ac + 1)e−ac < psite
c , e−ac < psite

c .

In particular, ac ∈ (0,∞). Also, limε→0 P(χ
(a,ε)∞ (0) = 0) → 1 as a → ∞.

PROOF. The argument is very similar to that for Lemmas 5.1 and 5.2. �

LEMMA 5.7. If a > ac, then (1.7) holds. Also, (1.8) holds.

PROOF. This follows from the proof of Lemma 5.4, simplified by the absence of states 4
and 5, which eliminates the need for a coupling domination. �

LEMMA 5.8. Assume that a < ac. Then (1.6) holds.

PROOF. The difference from the proof of Lemma 5.5 is the definition of bad sites, which
in this case are those that are not 3-inert, and those that are 2-II but not 2-inert. As the density
of bad sites goes to 0 by Lemma 2.5, the proof of Lemma 5.5 can be easily adapted. �

6. Bootstrap percolation on Z2 × Kn. In this section, we prove Theorem 1.3, which
follows from Lemmas 6.3 and 6.4 below.

As already announced, we need yet another heterogeneous bootstrap rule in which sites
in Z2 receive more help from their neighbors than in ξt . In this case, we have a new state,
labeled by θ and representing an empty site that has no contribution to make. We denote
this rule by ζt ∈ {0,1,2,3,4,5, θ}Z2

, t ∈ Z+. Assume that ζ0 is given. For a given t ≥ 0,
let as before Zt(x) be the cardinality of {y : y ∼ x and ζt (y) = 0} and Wt(x) = 1({y : y ∼
x and 0 < ζt(y) < θ} 
=∅) then

ζt+1(x) =
{

0, Zt (x) + Wt(x) ≥ ζt (x),

ζt (x), otherwise.

For an initially occupied set ω0, we create two initial states ζ0 as follows. For x ∈ Z2, let

Nx = ∣∣{y ∈ {x} × Kn : ω0(y) = 1
}∣∣.

Call x a clash site if Nx < θ and ω0(y1, u) = ω0(y2, u) = 1 for some y1 
= y2 in {x}∪{y : y ∼
x} and some u ∈ Kn, such that Ny1 < θ and Ny2 < θ . We define the favoring initialization
ζfv0 (x) and the restricting initialization ζrs0 (x) as follows. If x is a clash site, then ζfv0 (x) =
0, while ζrs0 (x) = θ . If x is not a clash site, the two initializations are equal: ζfv0 (x) =
ζrs0 (x) = nz(Nx), where nz : Z+ → {0, . . . ,5, θ} is given by

(6.1) nz(m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, m ≥ θ,

k, m = θ − k for some k ∈ {1,2,3,4},
5, 0 < m < θ − 4,

θ, m = 0.

These initializations determine their respective dynamics ζrst and ζfvt , 0 ≤ t ≤ ∞. We next
state the comparison lemma whose simple proof is omitted.

LEMMA 6.1. We have⋃{{x} × Kn : ζrs∞ (x) = 0
} ⊂ ω∞ ⊂ ⋃{{x} × Kn : ζfv∞ (x) = 0

} ∪ ω0.
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Consider Z2 × [0,∞) and equip each {x} × [0,∞), x ∈ Z2 with an independent Poisson
point location of unit intensity. Then we define the a-initialization ζ

(a)
0 obtained by ζ

(a)
0 (x) =

nz(Na
x ), where now Na

x is the number of location points in {x} × [0, a] and the function nz
is defined in (6.1).

For the rest of this section, we assume that ω0 is a product measure with density p = a/n.

LEMMA 6.2. Assume a′ > a. Then, for large enough n, ω0 and the a′-initialization ζ
(a′)
0

can be coupled so that ζfv0 ≥ ζ
(a′)
0

Conversely, assume a′ < a. Then, for large enough n, ω0 and ζ
(a′)
0 can be coupled so that

ζrs0 ≤ ζ
(a′)
0 .

PROOF. We will prove only the first statement; the second is proved similarly. Observe
that the random variables Nx are i.i.d. Binomial(n,p). Fix an ε > 0 such that a + ε < a′.

Assume that first the i.i.d. random field of truncated random variables Nx ∧ θ , x ∈ Z2,
is selected. Conditional on this selection, any site x ∈ Z2 is a clash site with probability at
most C/n, where C = C(θ) is a constant. Furthermore, if ‖x − x′‖1 ≥ 3, then x and x′ are
clash sites independently. Therefore, by [29], there exists an i.i.d. random field ηx , x ∈ Z2

of Bernoulli random variables, independent also of the field Nx ∧ θ , x ∈ Z2, so that ηx = 1
whenever x is a clash site and P(ηx = 1) = ε.

If n is large enough, we can, for a fixed x, find a coupling between (Nx, ηx) and a
Poisson(a) random variable Mx so that (Nx ∧θ)1(ηx = 0) ≥ (Mx ∧θ). Thus we can construct
an independent field Mx,x ∈ Z2 with this property, which concludes the proof. �

Define now

(6.2) φ(a) = P
(
ζ (a)∞ (0) = 0

)
.

Observe that φ : (0,∞) → [0,1] is a nondecreasing limit of nondecreasing continuous func-
tions φt given by φt(a) = P(ζ

(a)
t (0) = 0). Therefore, φ is left continuous and nondecreasing.

LEMMA 6.3. Assume θ ≥ 3. Fix any a ∈ (0,∞) and v ∈ Z2 × Kn. As n → ∞,

P
(
Poisson(a) ≥ θ

) ≤ φ(a) ≤ lim inf
n

Pp

(
ω∞(v) = 1

)
≤ lim sup

n
Pp

(
ω∞(v) = 1

) ≤ φ(a+) ≤ 1 − e−4a.

PROOF. We have {
Na

0 ≥ θ
} = {

ζ
(a)
0 (0) = 0

} ⊂ {
ζ (a)∞ (0) = 0

}
,

and, for any 2 × 2 block B ⊂ Z2 including 0,⋂
x∈B

{
Na

x = 0
} = ⋂

x∈B

{
ζ

(a)
0 (x) = θ

} ⊂ {
ζ (a)∞ (0) = θ

}
,

which gives the two extreme bounds. The remainder follows from Lemmas 6.1 and 6.2. �

LEMMA 6.4. For θ ≥ 14, φ is continuous on (0,∞).

PROOF. Recall that by the construction, ζ
(a)
t are coupled for all a. Let

Ea = ⋂
a′>a

{
ζ (a′)∞ (0) = 0

}
,
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so that φ(a+) = P(Ea). Let also Fa be the event that there is an �∞-circuit C around the
origin, consisting of sites x with Na

x /∈ [θ − 5, θ − 1]. As no site in C ever changes its state in
the ζ

(a)
t dynamics,

Ea ∩ Fa ⊂ {
ζ (a)∞ (0) = 0

}
.

It remains to show that, for θ ≥ 14, P(Fa) = 1 for all a ∈ (0,∞), that is,

P
(
Poisson(a) ∈ [θ − 5, θ − 1]) ≤ psite

c .

Using the rigorous lower bound psite
c > 0.556 [37], a numerical computation shows that the

above bound indeed holds for θ ≥ 14. �

7. Open problems. We conclude with a selection of a few natural questions.

QUESTION 7.1. Is the function φ defined in (6.2) continuous on (0,∞) for all θ? Is it
analytic for all, or at least large enough, θ?

QUESTION 7.2. Is the function a �→ limε→0 P(ξ
(a,ε)∞ (0) = 0), where ξ

(a,ε)∞ is defined in
Section 5.1, continuous for all a? A related question is whether limn→∞ Pp(v0 ∈ ω∞) exists
for odd θ and all a when p is given by (1.5)?

In both question above, arguments similar to that for Lemma 6.4 imply continuity for large
enough a and for small enough a.

QUESTION 7.3. When a < ac in Theorem 1.2, what is the rate of convergence in (1.6)?

Our last three questions are more open-ended, and their answers likely require develop-
ment of new techniques. We first propose a closer look into the critical scaling in Theo-
rem 1.1.

QUESTION 7.4. Assume θ is even, as in Theorem 1.1. Assume that

p = (
2(� − 1)!)1/� (logn)1/�

n1+1/�
+ bf (n).

Can the function f (n) be chosen so that the limit of the final density as n → ∞ exists and is
neither a constant nor a step function of b ∈ R?

We conclude with two questions on larger dimensions of the lattice factor or the Hamming
torus factor (see also [13, 19]).

QUESTION 7.5. What are the analogues of our main theorems for bootstrap percolation
on Zd × K2

n , for d ≥ 3?

To approach this question using the methods of our present paper would require a much
deeper understanding of heterogeneous bootstrap percolation on Zd (see [16]).

QUESTION 7.6. What are the analogues of our main theorems for bootstrap percolation
on Z2 × Kd

n , d ≥ 3?

This question poses a significant challenge at present, as the bootstrap percolation on Kd
n ,

d ≥ 3, alone is poorly understood [13], except for θ = 2 [35].
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