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PageRank is a well-known algorithm for measuring centrality in net-
works. It was originally proposed by Google for ranking pages in the World
Wide Web. One of the intriguing empirical properties of PageRank is the so-
called ‘power-law hypothesis’: in a scale-free network, the PageRank scores
follow a power law with the same exponent as the (in-)degrees. To date, this
hypothesis has been confirmed empirically and in several specific random
graphs models. In contrast, this paper does not focus on one random graph
model but investigates the existence of an asymptotic PageRank distribution,
when the graph size goes to infinity, using local weak convergence. This may
help to identify general network structures in which the power-law hypothesis
holds. We start from the definition of local weak convergence for sequences of
(random) undirected graphs, and extend this notion to directed graphs. To this
end, we define an exploration process in the directed setting that keeps track
of in- and out-degrees of vertices. Then we use this to prove the existence of
an asymptotic PageRank distribution. As a result, the limiting distribution of
PageRank can be computed directly as a function of the limiting object. We
apply our results to the directed configuration model and continuous-time
branching processes trees, as well as to preferential attachment models.

1. Introduction and main results.

1.1. Definition of PageRank. PageRank, first introduced in [49], is an algorithm that gen-
erates a centrality measure on finite graphs. Originally introduced to rank World Wide Web
pages, PageRank has a wide range of applications including citation analysis [23, 47, 53],
community detection [5] or social networks analysis [12, 54].

Consider a finite directed (multi-)graph G of size n. We write [n] ={1,...,n}. Let ¢;;

be the number of directed edges from j to i. Denote the in-degree of vertex i € [n] by di(in)

and the out-degree by dfout), Fix a parameter c € (0, 1), which is called the damping factor,
or teleportation parameter. PageRank is the unique vector m(n) = (w1(n), ..., m,(n)) that
satisfies, for every i € [n],

1—c
(1) mi(n)=c Y (Out)n,()+ —.
_]Gn] ]

PageRank has the natural interpretation of being the invariant measure of a random walk with
restarts on G. With probability c, the random walk takes a simple random walk step on G,
while with probability (1 — ¢) it moves to a uniformly chosen vertex. Here, by simple random
walk we mean the random walk that chooses, at every step, an outgoing edge from the current
position uniformly at random. When dj(-out) > 0 for all j € [n], then the invariant measure of
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this random walk is given exactly by (1). The interpretation is easily extended to the case
when some vertices j have dj(.om) = 0 by introducing a random jump from such vertices; in
this case, the stationary distribution will be the solution of (1) renormalized to sum up to one
[44].

In this paper, we consider the graph-normalized version of PageRank, which is the vector
defined as R(n) = nm(n). We call both the algorithm and the vector R(n) PageRank, the
meaning will always be clear from the context. The graph-normalized version of (1) is the
unique solution R(n) to

) Rimy=c ) (Out)R()—i-(l—c)

Je[n]

PageRank has numerous generalizations. For example, after a random jump, the random walk
might not restart from a uniformly chosen vertex, but rather choose vertex i with probability
b;, where >_" | b; = 1. Equation (1) then becomes

3) Rim)y=c ) (Out)R (n) + (1 — c)nb;.
J€lnl j

This generalized version of PageRank is sometimes called topic-sensitive [36] or personal-
ized. We note that the term personalized PageRank often refers to the case when the vector
b = (b1, ..., b,) has one of its coordinates equal to 1, and the rest equal to zero, so that the
random walk always restarts from the same vertex. One can generalize further, for example,
allow the probability c to be random as well. The literature [20, 43, 45, 52] usually studies
the following graph-normalized equation:

4) Rin)= > AjRj(n)+B;, i€ln],

j:ej,,-zl

where (A;);e[n) and (B;)ie[n) are values assigned to the vertices in the graph. In this paper,

for simplicity of the argument, we will focus on the basic model (2), and then in Section 5,

extend the results to the more general model (4) with A; =C;/ d (out)

variables bounded by ¢ < 1, and (B;);¢[n] are 1.i.d. across vertlces

, where C;’s are random

1.2. Power-law hypothesis for PageRank. It has been observed [46, 50] that in real-world
networks with power-law (in-)degree distributions, PageRank follows a power-law with the
same exponent. Figure 1 illustrates this phenomenon in citation networks. Empirical studies
suggest that the power-law hypothesis holds rather generally. However, proving this appears
to be challenging. Some progress has been made in [10] for the average PageRank in a pref-
erential attachment model. In a series of papers [46, 52], the result was proved provided that
PageRank satisfies a branching-type of recursion. Then, in fact, a network is modeled as a
branching process, with independent labels representing out-degrees. The full proof for Page-
Rank defined on finite random graphs has been obtained in [20] for the directed configuration
model, and recently in [45] for directed generalized random graphs.

The motivation of this paper is in finding general conditions for the existence of an asymp-
totic PageRank distribution. We prove the convergence (in some sense) of PageRank for a
large class of models. Our results also shed light on the power-law hypothesis. Indeed, when
the limit is a branching tree, this directly implies the power-law hypothesis, based on the
above mentioned results in the literature. When the limit is different, for example, the tree
generated by a continuous-time branching process, proving the power-law hypothesis re-
mains an open problem. Our results imply however that it is sufficient to study PageRank
on the limiting object, which hopefully is simpler since the graph-size asymptotics no longer
interfere.
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F1G. 1. Citation networks from Web of Science. Citation networks can be seen as directed graphs where ref-
erences are directed edges. We considered papers from Astrophysics (left) and Organic Chemistry (right). The
two loglog scale plots show two different distributions each. The blue data represent the tail distribution of the
in-degree (so number of citations) of a uniformly chosen vertex. The red data represents the tail distribution of
the graph-normalized PageRank of a uniform vertex. Notice that, in both cases, the two distributions show a
remarkably similar power-law exponent.

1.3. Overview of the paper. In Section 2, we explain our general methodology and the
main ideas behind the proofs and the results. In Section 2.1, we introduce the notion of local
weak convergence, which is crucial in our approach, and explain how we extend it to directed
graphs. Section 2.2 describes the major steps in proving weak convergence for PageRank.
In Section 2.3, we present three examples that illustrate our results: directed configuration
models (DCMs) (and the extension to directed inhomogeneous random graphs), continuous-
time branching processes (CTBPs) and (directed) preferential attachment models (DPAs). In
Section 2.4, we list some open problems.

Sections 3—6 contain formal proofs. In Section 3, we explain local weak convergence for
undirected graph sequences (Section 3.1) and introduce our construction for directed graph
sequences (Section 3.2), which is tailored to our PageRank application. In Section 4, we
formally prove the main result for the standard definition of PageRank (2). In Section 5,
we extend our main result to the generalized PageRank (4). The examples, that is, DCM (and
inhomogeneous random graphs), CTBPs and DPA, are analyzed, respectively, in Sections 6.1
(and 6.2), 6.3 and 6.4.

2. Main result and methodology. Note that for any deterministic graph, PageRank is
a deterministic vector. We are interested in the PageRank associated to random graphs. In
particular, we want to investigate the asymptotic behavior of the PageRank value of a uni-
formly chosen vertex V,,, as the size of the graph grows. In this case, we have two sources
of randomness: the choice of the vertex and the randomness of the graph itself. Our main
result shows that, for a nice enough sequence of directed graphs (G, ),eN, Ry, (n) converges
in distribution to a limiting random variable:

THEOREM 2.1 (Existence of asymptotic PageRank distribution). Consider a sequence
of directed random graphs (Gp,),en. Then the following hold:

(1) If G, converges in distribution in the local weak sense, then there exists a limiting
distribution Ry, with E[Rg] < 1, such that

Ry, (n) -5 Ry
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(2) If G, converges in probability in the local weak sense, then there exists a limiting
distribution Rg, with E[Rg] < 1, such that, for every r > 0,

1 Z 1{Ri(n) > r} LN P(Ry > 7).

i€[n]

Theorem 2.1 establishes that, whenever a sequence of directed random graphs converges
in the local weak sense, then the distribution Ry, (n) admits a limit in distribution, Rg. This
limit has the interpretation of PageRank on the (possibly infinite) limiting graph. Theorem 2.1
can be extended to personalized PageRank defined in (4) under additional conditions on the
random variables (A;);en and (B;);en. The precise formulation that requires more notation
is given in Theorem 5.4.

REMARK 2.2 (Stochastic lower bound for PageRank). Theorem 2.1 gives a rough lower
bond on the tail of the asymptotic PageRank distribution for a graph sequence. In simple
words, we can write

pim
1
(5) R@Z(l_c)<1+CZW>,

i=1 "

where & is a vertex called root in the local weak limit of the graph sequence (G,)eN, Dgn)

is the graph limiting in-degree distribution, and mgom) represent the out-degree in the LW

limit. All the notation in (5) is introduced in Sections 3.2 and 4. In particular, (5) implies that
Rz > 1 —c as.. Since m©" represents the limiting out-degree distribution, it follows that,
if (G,)nen has out-degrees uniformly bounded by a constant A < oo,

Ro>(1— c)(l + %Dg‘l)).

As a consequence, if the limiting in-degree distribution obeys a power law, then the tail of
the distribution Ry is bounded from below by a multiple of the tail of the in-degree. This
establishes a power-law lower bound for Rg. This is a partial solution of the power-law
hypothesis mentioned in Section 1.2.

We next explain the ingredient of our main result, which is local weak convergence.

2.1. Local weak convergence for directed graphs. Local weak (LW) convergence is a
concept that was first introduced in [3, 4, 14] for undirected graphs. In this framework, a se-
quence of undirected random graphs, under relatively weak conditions, converges to a (pos-
sibly random) rooted graph, that is, a graph where one of the vertices is labeled as root. In
simple words, the limiting graph resembles the neighborhood of a typical vertex in the graph
sequence. This methodology has been shown to be useful to investigate local properties of a
graph sequence—the properties that depend on the local neighborhood of vertices.

In the literature, limits of different types of random graphs have been investigated (Aldous
and Steele give a survey in [3]). Grimmett [35] obtained the LW limit for the uniform ran-
dom tree. Generalized random graphs [17, 24, 25, 31] also converge in the LW sense under
some regularity conditions on the weight distribution. Convergence of undirected configu-
ration model is proved in [38], Chapter 2. In many random graph contexts, the LW limit is
a branching process, and LW convergence provides a method to compare neighborhoods in
random graphs to branching processes.

A recent work by Berger et al. [15] investigates the LW limit for preferential attachment
models, in the case of a fixed number of edges and no self-loops allowed. In particular, their
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proof covers the case of a power-law distribution with exponent t > 3. Dereich and Morters
[27-29] establish the LW limit in the case of preferential attachment models with condition-
ally independent edges.

In the local weak convergence setting, a sequence of graphs (G,),eN converges to a (pos-
sibly) random rooted graph (G, @) that is a rooted graph (G, @). Here, @ € V(G) denotes
the root.

Heuristically, G,, — (G, @) in the LW sense when the law of the neighborhood of a typical
vertex in G, converges to the law of the neighborhood of the root in G. We give now an
intuitive formulation of this concept (for a precise definition, see Section 3.1). For a vertex i
in a graph G,,, denote the neighborhood of i up to distance k by U<, (i). Then, for a random
rooted graph (G, &), we say that G,, — (G, @) if, for any finite rooted graph (H, y), and any
keN,

(©) LS U = (. )} — PU4@) = (H, y).
i€[n]

where 1{-} is an indicator of event {-}, and U<x (D) is the k-neighborhood of & in G. The
event {U< (i) = (H, y)} means that the k-neighborhood of i is structured as (H, y), ignoring
the precise labeling of the vertices. Notice that the left-hand term in (6) is just the probability
that the k-neighborhood of a uniformly chosen vertex in G,, is structured as (H, y).

Equation (6) is formulated for a deterministic graph sequence (G, ),en. When (Gj)penN
is a sequence of random graphs, the left-hand term in (6) is a random variable. In this case,
there are different modes of convergence, as stated in Definition 3.6. For example, we say
that G, — (G, ©) in probability if, for any finite rooted graph (H, y), and any k € N,

1
(7) = 3 1U<() Z (H, y)} — P(U<(2) = (H, y)).

i€ln]

In Section 3.2, we will extend the definition of LW convergence to directed graphs. Here,
we introduce the main ideas behind the construction.

The major problem in the construction is that the exploration of neighborhoods is not
uniquely defined in directed graphs. Indeed, in the exploration process (rigorous definition is
given in Definition 3.10), motivated by the PageRank problem, we naturally explore directed
edges only in their opposite direction. In other words, a directed edge (j, i) is only explored
from i to j. Clearly, since edges are not explored in both directions, starting from the root
we might not be able to explore all the graph. Heuristically, from the point of view of the
root @, only part of the graph has influence on the incoming neighborhood of &. This is very
different from the undirected case, where the exploration process continues until the entire
graph is explored (when the graph is connected). We resolve this by introducing so-called
marks to track the explored and not-explored out-edges in the graph. The precise definition
of LW convergence in directed graphs is given in Section 3.2.

‘We point out that our construction is one of many possible ways to define LW convergence
for directed graphs. For instance, Aldous and Steele [4] allow edge weights. This might be
sufficient to define an inclusion of directed graphs in the space of undirected graphs with
edge weights, and use the notion for undirected graphs to define an exploration process for
directed graphs. The advantage of our construction is that it requires the minimum amount of
information, sufficient to prove the convergence of PageRank, which is the main problem we
aim to resolve.

Definition 3.11 below, together with Remark 3.12, gives a criterion for the convergence
of a sequence of directed random graphs that can be presented as marked graphs by just
assigning marks equal to out-degrees. The precise formulation requires heavy notation that
we have not introduced yet; therefore, we do not state it here.
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The advantage of having a LW limit (G, @) is that a whole family of local properties of
the graph sequence can pass to the limit, and the limit is given by a local property of (G, &)
itself. More precisely, in the construction of LW convergence, one defines a distance between
(marked directed) rooted graphs (see Definition 3.3). Then, any function f from the space of
rooted graphs to R that is bounded and continuous with respect to the distance function can
pass to the limit, that is, for V;, a uniformly chosen vertex in G,

1im E[f(Gy, V)] =E[£(G, )],

This can be rather useful in understanding the asymptotic behavior of local properties of a
graph sequence. As a toy example, in the undirected setting, take the function f(G, @) =
1{dg = k}. It is easy to show, using Definition 3.3, that f is a continuous function. Assume
that a sequence of graphs G, — (G, @) locally weakly, where (G, @) is random rooted
graph. Then, for every n e N,

1
E[f(Gn, V)] =~ Y P(d; =k) =P(dy, =k),

i€ln]

that is, f evaluated on a random root is just the probability that a uniformly chosen vertex has
degree k. As a consequence, the sequence (G,),cn has a limiting degree distribution given
by

Tim P(dy, = k) = Pdg = k).

where @ is the root of G. Other examples of continuous functions in the undirected setting
are the nearest-neighbor average degree of a uniform vertex, the finite-distance neighborhood
of a uniform vertex and the average pressure per particle in the Ising model. In our directed
setting, it follows that, if G, — (G, &, M(G)),

(i) = (™, 4,

where M (G) is the set of marks of the limiting graph, (m if;”t), d S:)) are the mark and the in-

degree of a uniformly chosen vertex V;,, and (m (Q?m), dgn)) are the mark and the in-degree of

the root @ in the limiting directed graph G. The notation 7 ©" hints on the relation between
marks and out-degrees. When marks are assigned that are equal to the out-degree, this implies
the convergence of the in- and out-degree of a uniformly chosen vertex. One of the surprises
in our version of LW convergence is that in the limiting graph, the mark of the root m%mt) is
not necessarily equal to the out-degree of the root.

2.2. Application of LW convergence to PageRank. The proof of Theorem 2.1 is given in
Section 4. Here, we describe the structure of the proof, explaining why the LW convergence
for directed graphs is useful. Schematically, the structure of our proof of Theorem 2.1 is
presented in Figure 2. The implication (A), denoted by the dashed red arrow, is the one we
aim to prove. We split it in three steps (a), (b), (c), denoted by the solid black arrows. We will
now explain each step.

Step (a): Finite approximations. It is well known [5, 10, 16, 20] that PageRank can be
written as

o0 k
Ri(n)=(1 _C)<1+ch Z 1—[ ez,,,th)’

d(out)
k=1 fepath; (k) h=1 “g,
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FI1G. 2. Structure of the proof of Theorem 2.1. The (A) convergence is what we are after, the convergence in
distribution of Ry, (n) to a limiting random variable. To prove that, we need the three different steps (a), (b), (c)
given by the other arrows.

where path; (k) is the set of directed paths of k steps that end at i. In other words, R;(n)
is a weighted sum of all the directed paths that end at i. In particular, we can write finite
approximations for PageRank as

N
(N) _ k €y Lht1
R (n)-(l—c><1+§jc SO pi )

k=1 tepath; (k) h=1

where now the sum is taken over all paths of length at most N € N. We use the sequence
of finite approximations (Rg:)(n))neN to estimate the PagreRank of a random vertex with
exponentially small precision by its finite approximations. We prove that, for any ¢ > 0,

) N+1
P(|Rv, () — Ry ()] > €) <

Notice that the bound is independent of the graph size that we consider. This bound is true for
any directed graph of any size, so it does not require any assumption on the graph sequence.

Step (b): LW convergence. The finite approximations of PageRank are continuous with
respect to the local weak topology. Furthermore, by definition, the Nth approximation of
PageRank depends only on the incoming neighborhood of a vertex up fo distance N. Note
that R; (n) and R(N) (n) are not bounded. However, for any r > 0, the function ]l{R(N) >r}is
a continuous and bounded function on marked directed rooted graphs, therefore, we can pass
to the limit for any N € N. It follows that, if G, converges LW (in some sense),

lim E[1{R}) > r}]= lim P(R}"’ (1) > r) =P(RG" > r),

n—oo
where in the last term & is the root of the limiting random marked directed rooted graph

(G, 2, M(G)). As a consequence, every term of the sequence (Rg,i:’)(n))neN converges in
distribution. Notice that similar arguments apply for Theorem 2.1(b).

Step (c): Finite approximations on the limiting graph. On the limiting random marked

directed rooted graph (G, &, M(G)), the sequence (Ré,N)) NeN 1s a monotonically increasing
sequence of random variables. Therefore, there exists an almost sure limiting random vari-
able Rg. Using the fact that (G, &, M(G)) is a local weak limit of a sequence of random
directed graphs, and E[Ry, ] = 1 for every n > 1, it is possible to prove that E[Rz] <1, so
that P(Rg < o0) = 1.

REMARK 2.3. We emphasize that the above strategy is meant just to give the intuition
behind the proof. In particular, in the proof it is necessary to be careful and specify with
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respect to which randomness we take expectations. In fact, when we consider local weak
convergence of random graphs, we have two sources of randomness: the choice of the root
and the randomness of the graphs. All these are made rigorous in Section 4.

2.3. Examples. We consider examples of directed random graphs, for which we prove
LWC and find the limiting random graph. Thus, PageRank in these models converges to Page-
Rank on the limiting graph. The following theorem makes this precise for several random
graph models that have been studied in the literature. For precise definitions of the models,
as well as the proof, we refer to Section 6.

THEOREM 2.4 (Examples of convergence). The following models converge in the di-
rected local weak sense:

(1) the directed configuration model and the directed inhomogeneous random graph con-
verge in probability;

(2) continuous-time branching processes converge almost surely;

(3) the directed preferential attachment model converges in probability.

As a consequence, for these models there exists a limiting PageRank distribution, and the
convergence holds as specified.

REMARK 2.5 (Power-law lower bound). The directed preferential attachment model and
continuous-time branching processes both have constant out-degree. Therefore, they satisfy
the condition in Remark 2.2. Thus, their limiting PageRank distributions are stochastically
bounded from below by a multiple of the limiting in-degree distributions. The directed con-
figuration model satisfies Remark 2.2 whenever the out-degree distribution has bounded sup-
port.

We point out that the directed configuration model and the directed inhomogeneous ran-
dom graph are listed together since the two graphs are closely related, as explained in Sec-
tion 6.2.

The proof of Theorem 2.4 is divided into three propositions, respectively Proposition 6.2
for directed configuration model, Proposition 6.6 for continuous-time branching processes
and Proposition 6.10 for directed preferential attachment model.

2.4. Open problems.

Extension to exploration of outgoing edges. In this paper, we extend the definition of
local weak convergence to directed graphs. Moved by the interest in PageRank algorithms on
random graphs, we build our definition on the exploration of incoming edges in their opposite
direction, that is, an edge (i, j) is explored from i to j. The outgoing edges are considered as
marks and we do not explore them. In the same way, it is possible to define the exploration
process according to the natural direction of the edges. In this case, we consider outgoing
neighborhoods instead. The definition of LW convergence would just be a consequence of
symmetry. This second interpretation might be useful, for instance, in the study of diffusion
processes on graphs, such as epidemic spread. An interesting and more complex extension
would be to explore the incoming and outgoing neighborhoods at the same time.
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PageRank on limiting graphs. We are able to prove that, under relatively general assump-
tions, a sequence of random directed graphs admits a limiting distribution for the PageRank
of a uniformly chosen vertex. In this way, we have moved the analysis of a graph’s PageRank
distribution from a whole sequence of graphs to a single (possibly infinite) rooted directed
marked graph. Note that we prove the existence of such distribution, but we do not always
have a convenient description of it. It will be interesting to investigate the behavior of this lim-
iting distribution. In particular, it is interesting to investigate the conditions under which the
rank of the root in the limiting graph shows a power-law tail, and thus confirm the power-law
hypothesis.

The remainder of the paper provides formal proofs of what has been discussed above.

3. Local weak convergence.

3.1. Preliminaries: LWC of undirected graphs. We present the definition of LWC for
undirected graphs first, since the construction for directed graphs is similar. We start by defin-
ing what a rooted graph is.

DEFINITION 3.1 (Rooted graph). Let G be a locally finite graph with vertex set V(G)
(finite or countable), and edge set E(G). Fix a vertex @ € G and call it the root. The pair
(G, @) is called a rooted graph.

We are not interested in the labeling of the vertices, but only in the graph structure. For
this, we define isomorphisms between rooted graphs as follows.

DEFINITION 3.2 (Isomorphism). An isomorphism between two rooted graphs (G, @)
and (G’, @') is a bijection y : V(G) — V(G’) such that:

(1) (j.i) € E(G) if and only if (¥ (j), y () € E(G);
2 y@) =0

We write (G, @) = (G’, @) to denote that (G, @) and (G, @) are isomorphic rooted graphs.

Denote the space of all rooted graphs (up to isomorphisms) by G,. Formally, G, is the
quotient space of the set of all locally finite rooted graphs with respect to the equivalence
relation given by isomorphisms.

For a rooted graph (G, @) € G,, we let U<x(2) denote the subgraph of G of all ver-
tices at graph distance at most k away from ©. Formally, this means that U< (9) =
(V(U<(9)), E(U<(2))), where

V(U<(2)) ={i: dg(i, @) <k}, E(U<(@))={{j,i}: j,i e V(U (2))}.

We call U< () the k-neighborhood around @. We use this notion to define the distance
between two rooted graphs.

DEFINITION 3.3 (Local distance). The function dioc((G, @), (G’, @) = 1/(1 + k),
where

k= int{U<x(2) # U<k(2)},

is called the local distance on the space of rooted graphs G,.
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It is possible to prove that djoc is an actual distance on the space of rooted graphs. In
particular, the space (Gy, dioc) is a Polish space (see [32], Appendix A, for the proof for an
equivalent definition of a distance). The function dj,. measures how distant two rooted graphs
are from the point of view of the root. In many graphs though, there is no vertex that can
be naturally chosen as a root, for instance in configuration models or Erd6s—Rényi random
graph. For this reason, it is useful to choose the root at random. Define, for any graph G,

1
(8) P(G) = o > 860

i€[n]

Given a graph G of size n, P(G) is a probability measure that chooses the root uniformly at
random among the n vertices. When we consider a sequence of graphs (G,),eN, We denote
P(G,,) simply by P,,. With this notion, we are ready to define LWC for undirected determin-
istic graphs.

DEFINITION 3.4 (Local weak convergence). Consider a deterministic sequence of lo-
cally finite graphs (G,),en. We say that (Gj,),enN converges in the local weak sense to a
(possibly) random element (G, @) of G, with law P, if, for any bounded continuous function
f:G.— R,

Ep, [f1— Ep[f],

where Ep, and Ep denote the expectation with respect to P, and P, respectively.

In particular, this means that the probability converges over open sets of the topology. Fix
(H, y) finite, then
Br(H,y) = {(G,2) € Gy :dioc((H, y), (G, D)) < R}
={(G,2) €G.: U<1/r (@) = (H, y)}.

Elements in this open ball are determined by the neighborhood of the root up to distance
L1/R]. As a consequence, the probability P, of the ball Bg(H, y) is given by

©)

1
Pa(Br(H,y)) = - > 1{U< k() = (H, ).

i€n]

This implies that it suffices to look at the local structure of the neighborhood of a typical
vertex to obtain the probability P, of any open ball. We now state a criterion for a sequence
of deterministic graphs to converge in the LW sense as in Definition 3.4:

THEOREM 3.5 (Criterion for local weak convergence). Let (Gp),eN be a sequence of
graphs. Then G, converges in the local weak sense to (G, @) with law P when, for every
finite rooted graph (H, y),

1
(10) Pu(H) ==Y 1{U<() = (H, y)} — P(Ux(@) = (H,y)).

i€ln]

The proof Theorem 3.5 can be found in [38], Section 1.4. Notice that for (H, y) € G,, the
functions 1{U<x (&) = (H, y)} are continuous with respect to the local weak topology and
uniquely identify the limit.

So far we have considered sequences of deterministic graphs. Whenever we consider a
random graph G, we have two sources of randomness. First, we have the randomness of the
choice of the root, and then the randomness of the graph itself. For this reason, it is necessary
to specify the randomness we take expectation with respect to, giving rise to different ways
of convergence. We specify this in the following definition.



50 A. GARAVAGLIA, R. VAN DER HOFSTAD AND N. LITVAK

DEFINITION 3.6 (Local weak convergence). Consider a sequence of random graphs
(Gn)nen, and a probability P on G,. Denote by P, the probability associated to G, as in

(8).

(1) We say that G, converges in distribution in the local weak sense to P if, for any
bounded continuous function f : G, — R,

(11) E[Ep,[f1] — Ep[f];

(2) We say that G,, converges in probability in the local weak sense to P if, for any
bounded continuous function f : G, — R,

(12) Ep,[f] — Ep[f1:

(3) We say that G, converges almost surely in the local weak sense to P if, for any
bounded continuous function f : G, — R,

P-a.s.

(13) Ep, [f1— Ep[f].

Notice that the left-hand term in (12) is a random variable, while the right-hand side is
deterministic. In fact, (12) implies (11), but the opposite is not true. Similarly, (13) implies
(12).

Similar to Theorem 3.5, we can give a criterion for the convergence of a sequence of
random graphs.

THEOREM 3.7 (Criterion for local weak convergence of random graphs). Let (G,)neN
be a sequence random graphs. Let (G, &) be a random variable on G, having law P. Then
G, converges to (G, @) in distribution (in probability, almost surely) if (11) ((12), (13), resp.)
holds for every function of the type 1{U<x (D) = (H, y)}, where k € N and (H, y) is a finite
element of G,.

The proof of Theorem 3.7 follows immediately from Theorem 3.5.

3.2. Directed graphs. The construction of local weak convergence for directed graphs
is similar to the undirected case. It is necessary though to define an exploration process to
construct the neighborhood of the root and keep track of in- and out-degrees of vertices. To
keep notation as simple as possible, we use the same notation as in Section 3.1, while here
we refer to directed graphs. We start giving the definition of rooted marked directed graphs.

DEFINITION 3.8 (Rooted marked directed graph). Let G be a directed graph with vertex
set V(G) and edge set E(G). Let @ € V(G) be a vertex called the root. Assume that for every

i € V(G), the in-degree di(in) and the out-degree di(out) of the vertex i are finite. Assign to

every i € V(G) an integer value m'™™” called a mark, such that ™ < m®"Y < 0. Denote

the set of marks by M (G) = (mlgout))iev(g). We call the triplet (G, @, M(G)) a rooted marked
directed graph.

To simplify the notation in Definition 3.8, we will specify the marks only when necessary.
In simple words, a rooted marked directed graph is a locally finite directed graph where one
of the vertices is marked as root, and to every vertex we assign a mark, which is larger than

the out-degree of the vertex. If mgom) = dl-(om), we keep i intact, and if mgom) — di(om) > 0 then
we attach to i exactly mgom) — di(out) outgoing arrows pointing nowhere. This is illustrated in

Figure 3. We call a directed graph with marks, without specifying the root, a marked graph.
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FI1G. 3. Two examples of rooted marked directed graphs. The graph on the left is considered with marks equal
to the out-degree, while in the example on the right we have assigned marks larger than the out-degree. The
difference between the mark and the out-degree of a vertex can be visualized as the number of arrows starting at
the vertex and pointing nowhere.

Every directed graph can be seen as a rooted marked directed graph, with marks equal
to the out-degrees and a root picked from the set of vertices. In what follows, sometimes
we specify the marks, and sometimes we specify the out-degree and the number of edges
pointing nowhere.

As in the undirected case, we are not interested in the precise labeling of the vertices. This
leads us to define the notion of isomorphism, including the presence of marks.

DEFINITION 3.9 (Isomorphism of rooted marked directed graphs). Two rooted marked
directed graphs (G, g, M(G)) and (G’, @', M(G")) are isomorphic if and only if there exists
a bijection y : V(G) — V(G’) such that:

(1) @, ) € E(G) if and only if (y (i), y (j)) € E(G');
2) y(@)=2"

(3) forevery i € V(G), m™" =m 0%

y(@ -
We write (G, @, M(G)) = (G, @', M(G")) to denote that (G, <, M(G)) and (G, &,
M(G")) are isomorphic rooted marked directed graphs.

Denote the space of rooted marked directed graphs by G,, which is again a quotient space
with respect to the equivalence given by isomorphisms. We now define the exploration pro-
cess that identifies the neighborhood of the root; see Figure 4 for an example.

FI1G. 4. Example of two root neighborhoods in the same graph above, where we have assigned marks equal
to the out-degrees, with a different choice of the root. The root on the left is vertex 4, and vertex 3 on the right.
We explore the root neighborhood up to the maximum possible distance. Notice that the graph is only partially
explored in this example.
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DEFINITION 3.10 (Root neighborhood). Consider a rooted marked directed graph
(G, 9, M(G)). Fix k € N. The k-neighborhood of root & is a rooted marked directed graph
(U<k(2), D, M(U<,(2))) constructed as follows:

(out),
%)

B

> for k =0, U< (D) is a graph with a single vertex &, no edges, and mark m
> for k > 0, consider & as active, and proceed recursively as follows, forh =1, ..., k:

(1) for every vertex active at step & — 1, explore the incoming edges to the vertices in
the opposite direction, finding the source of the edges;

(2) label the vertices that were active to be explored, and label the vertices just found
as active, but only if they were not already found in the exploration process;

(3) for every vertex i (explored or active), assign the mark mgout) to it, that is equal to
the mark in the original graph (G, &, M (G)). In addition, draw every edge between two
vertices that are already found in the exploration process;

(4) if there are no more active vertices, then stop the process.

In this way, we explore the incoming neighborhood of the root. As stated in Defini-
tion 3.10, we explore edges in the opposite direction: if (j,7) € E(G) is a directed edge,
then the exploration process goes from vertex i to vertex j. Notice that it is possible that we
do not explore the entire graph in this process, because we do not explore edges in all direc-
tions. This is different to the undirected case, where for k large enough, we always explore
the entire graph (if connected).

We can define a local distance djoc on G, as in Definition 3.3, but this time for rooted
marked directed graphs, using Definitions 3.9 and 3.10. As in the undirected setting, the
function djo tells us up to what distance the neighborhoods of two roots in two different
rooted marked directed graphs are isomorphic. However, in the directed setting the function
dioc 18 not a metric on G,, but it is a pseudonorm.

Note that dj is positive by definition, and obviously symmetric. It is not hard to prove that
it satisfies the triangle inequality. The reason that dj, is not a metric is that two rooted marked
directed graphs can be at distance 0 without being isomorphic. This is due to the fact that the
edges can be explored only in one direction, possibly leaving parts of the graph unexplored,
as mentioned above. If the explorable parts or incoming neighborhoods of two graphs from
the roots are isomorphic, then the two rooted marked directed graphs are at distance zero,
while these graphs still might not be isomorphic. An example is given in Figure 5. Denote
the explorable neighborhood of the root by Uy, (2), that is, the (possibly infinite) subgraph
of a rooted marked directed graph that can be explored from the root. Then

dioc((G1, 21, M(GY)), (G2, @2, M(G2))) =0 >

(14)
Uoo(D1) = Uoo(22).

F1G. 5. Example of two rooted marked directed graphs that are at distance zero, but are not isomorphic. The dis-
tance between the two graphs is zero since the explorable parts of the graphs from vertex 4 (including vertices 1-6)
are isomorphic, but there exists no isomorphisms between the two graphs.
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Formally, (Gs, dioc) is a complete and separable space, so every Cauchy sequence has a lim-
iting point. Although the limiting point might not be unique, the explorable neighborhood of
the root is unique. The proof that the space (G, djoc) is a complete pseudometric space is a
minor adaptation of the proofs in [32], Appendix A.

We can define the space G, as the quotient space of G, using the equivalence relation ~,,
where

(G1, 21, M(G1)) ~ (G2, D2, M(G2)) &
dioc((G1, @1, M(GY)), (G2, @2, M(G2))) =0.

On G,, dioc 1s a metric. Any equivalence class in G, is composed by directed marked rooted
graphs whose neighborhoods of the root are isomorphic. Heuristically, everything that is in
the part of the graph that is not explorable from the root does not have any influence on the
incoming neighborhood of the root. This means that any function on G, is well defined if and
only if it is a function of the incoming neighborhood of the root.

As in the undirected sense, we denote

15) P(G)

Y 8G.i.M©G))-

VO 4G

When we consider a sequence of marked graphs ((G,, M(Gy)))nen, we denote P(G,) by
P,.. From the definition, we have that (G) is a probability on G,, that assigns a uniformly
chosen root to the marked directed finite graph. Notice that the mark set is fixed. In fact,
the triplet (G, i, M(G)) is mapped to the equivalence class of the explorable neighborhood
Uso(i) of i in G with the same set of marks.

Since we are interested in sequences of random graphs, we give the definition of LW
convergence only for random graphs.

DEFINITION 3.11 (Local weak convergence—directed). Consider a sequence of random
marked directed graphs (G, M(G,)),en. Let (G, &, M(G)) be arandom element of G, with
law P. We say that G, converges in distribution (in probability, almost surely) to P if (11)
((12), (13), resp.) holds for any bounded continuous function f : G, — R.

REMARK 3.12 (Criterion for directed LW convergence). The reader can observe that,
once the notion of exploration process and isomorphisms in the directed case are introduced,
the construction of the definition of local weak convergence for directed graphs is the same as
in the undirected case. With the presence of marks we are able to keep track of the out-degrees
of vertices, while we explore the incoming edges.

It is easy to prove that Theorem 3.7 can be extended to random marked directed graphs. In
other words, it is sufficient to prove the convergence for functions of the type 1{U<x (<) =
(H,y, M(H))}, where k € N and (H, y, M(H)) is a finite marked directed rooted graph.

4. Convergence of PageRank. The main result on PageRank is Theorem 2.1. It states
that, for a locally weakly convergent sequence of directed random graphs (G,),eN, there
exists a random variable Rz such that the PageRank value of a uniformly chosen vertex
Ry, (n) satisfies

Ry, (n) -5 Ry

The random variable R is defined in Proposition 4.3 below. Notice that, even though local
weak convergence is defined in terms of local properties of the graph, it is sufficient for the
existence of the limiting distribution for a global property such as PageRank. This depends on
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the fact that vertices that are far away from a vertex i € [n] have, on average, small influence
on the PageRank score R;(n). This is formulated in Lemma 4.1, that states that the contri-
bution to the PageRank score of a uniformly chosen vertex V, of other vertices decreases
exponentially with the distance from V,, itself.

The existence of Ry for a sequence (G,),eN is assured by the convergence in distribution
in the local weak sense. If (G,,),en converges in probability (or almost surely), then the frac-
tion of vertices whose PageRank value exceeds a fixed value r > 0 converges in probability
(or almost surely) to a deterministic value.

4.1. Finite approximation of PageRank. Consider a directed graph G,, and define the
matrix Q(n), where Q(n); j =e; ; /di(om), for ¢; ; the number of directed edges from i to j,

and Q(n); j =0if di(om) = 0. For ¢ € (0, 1], the PageRank vector & (n) = (my, ..., m,) is the
unique solution of

l—c "
(16) n(n):n(n)[cQ(n)]—i—Tln and Z:rr,-zl,

where ¢ € (0,1) and 1, is the vector of all ones of size n. We are interested in the graph-
normalized version of PageRank, so R(n) = nm(n), which is just the PageRank vector
rescaled with the size of the graph. The vector R(n) satisfies

(17) R(n)=Rn)[cQ(n)] + (1 —)1,.

Denote Id,, the identity matrix of size n. We can solve (17) to obtain the well-known expres-
sion [5, 10, 16, 20]

(18) R() = (1 - 0L,[1d, — Q)]

In practice, the inversion operation on the matrix Id, — ¢ Q (n) is inefficient, therefore, power
expansion is used to approximate the matrix in (18) (see, e.g., [5]), as

(19) [1d, —c Q)] Zc Q).

k=0

Notice that Q(n)f’ ;>0 if and only if there exists a path of length exactly k from i to j,
possibly with repetition of vertices and edges. Define, for k € N,

path; (k) = {directed path £ = (€g, €1, €2, ..., Lk =1)}.

With this notation, we can write, for i € [n],

(20) Ri(”)=(1—c)<l+zck ) Héﬁ;ﬁw)’
Lh

k=1 fepath;(n) h=1

while the Nth finite approximation of PageRank is

N
(21) R;N)(H)Z(l—C)(l+ch Z H ez}ldeh-'—l)'
L

k=0  fepath;(n) h=1
Heuristically, the PageRank formulation in (20) includes paths of every length, while the Nth
approximation in (21) discards the paths of length N + 1 or higher. In particular, for every
i €[n], Rl-(N)(n) 1 R;(n). One can write the difference between the PageRank and its finite
approximation as
o0

(22) IR — RM )| =1 -1, Y (cQm)L.

k=N+1
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We can prove that we can approximate the PageRank value of a randomly chosen vertex by a
finite approximation with an exponentially small error, that is independent of the size of the
graph.

LEMMA 4.1 (Finite iterations). Consider a directed graph G, and denote a uniformly
chosen vertex by V,,. Then

E[Ry,(n) — Ry (m)] < N,

where the bound is independent of n.

PROOF. Consider (22) for a uniformly chosen vertex. We have

(23) E[Ry, () — R} (m)] =

w(cQm)"];.

i=lk= N+1

We write Q(n)’j‘-’ ; to denote the element (j, i) of the matrix Q(n)k. We write

(24) [1,(c Q)] —C"ZQ(n)

j=1
Substituting (24) in (23), we obtain

E[Ry,(n) — R} (m)] = (1 —0¢) Z ZQ(n)

k=N+1 i,j

Since Q(n)k is a (sub)stochastic matrix,

Z Q(”)I;',i <1
i=1

for every j € [n]. It follows that

E[Ry,(n) — R (m)] < (1 - ¢) Z ¢ —Zl

k=N+1 i=1
=(-c) Z ck
k=N+1
:CN+1. 0

Lemma 4.1 means that we can approximate the PageRank value of a uniformly chosen
vertex with an arbitrary precision in a finite number of iterations that is independent of the
graph size. This is the starting point of our analysis. We point out that the proof of Lemma 4.1
is contained in [20], Section 4.2. We write it here for completeness of the argument and
because we refer to it in Section 5.

4.2. PageRank on marked directed graphs. In this section, we show how the graph-
normalized version of PageRank of a uniformly chosen vertex in a sequence of directed
graphs (Gp),en admits a limiting distribution whenever G, converges in the local weak
sense to a distribution P. The advantage is that such a limiting distribution is expressed in
terms of functions of P.
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The first step is to write PageRank as functions of marked directed rooted graphs that are
bounded and continuous with respect to the topology given by djoc. In this way, by the defi-
nition of local weak convergence, we can pass to the limit and find the limiting distribution.

Fix n € N. Consider a marked rooted directed graph (G, &, M (G)) € G, of size n. Denote
as before, for k € N,

pathg, (k) = {directed paths £ = (¢, €1, €2, ..., £ = D)},

that is, the set of directed paths in (G, &, M (G)) of length exactly k 4+ 1 whose endpoint is
the root &. It is clear that this set is completely determined by U<x(9) in (G, @, M (G)).

Consider a directed marked graph (G,, M (G,)), where we consider marks equal to the
out-degrees. We have that

N k
RM €.
Ry () =Y Ly,=i(l —C)<1+Z > Il a:(ouht;rl>
TTh

(25) ieln] k=1 mepath; (k) h=1

= RM[(Gy. Va. M(G))].

where the last term in (25) is a function of a marked rooted graph, evaluated on (G,, V;,
M(G)), with V,, a uniformly chosen root. In particular, we can see the Nth approximation
of PageRank as a function of the marked rooted graph. We call the function RV : G.— R
the root N-PageRank.

Clearly, the root N-PageRank R™) is a function of Uy (@) only. It depends in fact on the
vertices, edges and marks that are considered when exploring the graph from the root up to
distance N. Notice that, since the dependence on the marked directed rooted graph is given
only by U<, (@), the function R™) is well defined on any equivalence class in Gu.

In addition, the function R™") is continuous with respect to the topology generated by
dioc. In fact, since R™N) depends only on the root neighborhood up to distance N, when-
ever two elements (G, 2, M(G)) and (G', @', M(G')) are at distance less than 1/(1 +
N), their roots neighborhoods are isomorphic up to distance N + 1, which implies that
RM[(G, 2, M(G)]=RNM(G, &', M(G)].

The problem is that RN is not bounded, so LWC does not assure that we can pass to the
limit. To resolve this, we introduce a different type of function.

DEFINITION 4.2 (Root N-PageRank tail). Fix N € N. For r > 0, define ¥, y : G, —>
{0, 1} by
W, v[(G, 2, M(G))] :==1{RM[(G, 2, M(G))] > r).
We call the function W, y the root N-PageRank tail at r.

The function W, y is clearly bounded, and it depends only on the neighborhood of the
root @ up to distance N through the function R™). This means that, for any r > 0, W, y is
continuous.

Since the root N-PageRank on G, represents the Nth approximation of PageRank on di-
rected graphs, it follows that

(26) Ep, [, n] = Z 1{R™M () > r},

te[n]

that is, Ep, [, n] is the empirical fraction of vertices in G such that the Nth approximation
of PageRank exceeds r. In particular, for every r > 0, if G,, — P in distribution,

(27) P(RY (n) > r) :E[% Y 1 (RN () > r}] — P(RY =),

i€[n]
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while for convergence in probability (or almost surely), the limit in (27) exists in probability
(or almost surely). Consider the sequence of random variables (R((ZN)) NeN, Where

RY .= RM[(G, @, M(G))].

where (G, I, M(G)) is a random directed rooted graph with law P. From (27), it follows
that R%,]Z ) (n) — R(QN ) in distribution.

We have just proved that, for a sequence of directed graphs (G,),cN that converges locally
weakly to P, any finite approximation of the PageRank value of a uniformly chosen vertex
converges in distribution to a limiting random variable, which is given by a function of P.

4.3. The limit of finite root ranks. Assume that the sequence (G, ),cn of directed graphs
converges to a directed rooted marked graph (G, &, M(G)) with law P. In principle, such
limiting (G, @, M(G)) can be an infinite directed rooted marked graph. Because of this, we

cannot simply take the limit as N — oo of the sequence (R(@N) )NeN, Where & is the root of
(G, 2, M(G)), because the PageRank vector, as the invariant measure of a random walk as
in (1), is not defined on an infinite graph. Nevertheless, if P is a LW limit of some sequence
of directed graphs, it admits a such limit.

PROPOSITION 4.3 (Existence of limiting root rank). Let P be a probability on Gu. If
P is the LW limit in distribution of a sequence of marked directed graphs (G,)neN, then

there exists a random variable Ry with Ep[Rg] < 1, such that P-a.s. R{(ZN) — Ry. As a
consequence, P(Rg < 00) = 1.

PROOF. Clearly, the sequence (R{(aN)) NeN is P-a.s. increasing. Therefore, the almost sure

limit Ry =limy_ oo Rf(aN) exists. This is independent of the fact that P is a LW limit.

By LW convergence, we know that Rg,]:])(n) — RéN) in distribution. For every N € N, by
Fatou’s lemma we can bound

Ep[RY] < liminfE[R}) (n)] < liminfE[Ry, (n)] =1,
neN n neN

where the second bound comes from the fact that any N-finite approximation of PageRank
is less than the actual PageRank value, and the fact that the graph-normalized PageRank has

expected value 1. Since (R(@N)) NeN is increasing, we conclude that there exists z < 1 such
that

: (N)
Ep[Rz]= lim Ep[R =7z.
PlRo] Nm})o 73[ @ ] z 0
4.4. Proof of Theorem 2.1. We start with implication (1) of Theorem 2.1. We want to

prove that Ry, (n) converges to Ry in distribution. So, for every r > 0 and ¢ > 0 there exists
M (¢) € N such that, for every n > M (e),

(28) |P(Ry, (n) >r) —P(Rg >r)| <e.
We can write, using the triangle inequality,
[P(Rv, (n) > r) = P(Rg > )| < [B(Ry,(n) > r) —E[P, (RG> r)]|
(29) + [E[Pu(RG" > )] = P(RG > )|
+|P(RY > r) = P(Ry > r)|.

We show that (28) holds by proving that every term in the left-hand side of (29) can be
bounded by ¢/3.
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By Lemma 4.1, we can bound the first term with ¢V *! (independently of n). Therefore,
defining N1 =log.(¢/3) and taking N > N1, the first term is bounded by /3.

For the last term, we apply Proposition 4.3, so we can find N, = Na(¢) € N such that, for
every N > N,

]P(R(@N) >r)—P(Rz >r)| <e&/3.

Set No(e) = max(Ny, N»). For any N > Ny, both the first and third terms are bounded by
¢/3. Using LW convergence in distribution, we can find M (Ny, €) € N such that, for every
n > M, the second term is bounded by ¢/3. This completes the proof of statement (1).

For statement (2), we need to show that, for every r > 0, as n — oo,

1< P
— Zl{Ri(n) >r}—> P(Rg >r).
n
i=1
For every N € NU {oo} and r > 0, we denote the empirical fraction of vertices whose Nth
approximation of PageRank in G, exceeds r by

(30) R(n;r,N) :=%Z]1{REN)(n)>r}.
i=1

If N = o0, then R(n;r, N) = R(n; r) is the empirical tail distribution of PageRank. By LW
convergence in probability of (G,),en, we know that, for every N € Nand r > 0,

31) Ry r, N) — P(RY > r).

Fixr >0, ¢ > 0_. We need to show that for every § > O there exists n¢(§) € N such that, for
any n > ng, P(JR(n; r) — P(Rg > r)| > ¢) < 5. We can write, for N to be fixed,

P(|R(n;r) —P(Ry >r)| > ¢) < é[E[R(n; r)— R(n;r, N)]
(32) +E[|R(; . N) = PR > r)|]

+ |73(R(@N) >r)—P(Rz >r)|].

Similar to (29), we can find n and N large enough such that every term in the right-hand side
of (32) is less than §e/3.

For the first term, we apply Lemma 4.1, so we can find N; large enough such that ¢
de/3. For the last term, we apply Proposition 4.3, so we can find N; such that the last term is
less than §e/3.

Take Nog = max{Nj, Na}. Then, by (31) and the fact that {(R(n;r, N)}pen is uniformly
integrable (since R(n;r, N) < 1), we can find ng big enough such that

Ni+1

E[|R(n;r, N) = P(RY > r)|] < 8¢/3
for all n > ng, N > Np. As a consequence, we conclude that, for any n > ny,
P(|R(n;r) — P(Ry >r)| >¢) <36,

which proves the convergence in probability.
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4.5. Undirected graphs. Undirected graphs are in fact a special case of directed graphs,
where each link is reciprocated. Theorem 2.1 does not make any assumption concerning link
reciprocation, and thus it simply holds for undirected graphs as well. In that case, we may
use the standard notion of the LWC for undirected graphs, as described in Section 3.1, and it
is not hard to see that our notion of directed LW convergence reduces to this.

Let us explain why the special case of undirected graphs deserves our attention. Indeed,
usually, undirected graphs are easier to analyze than directed ones. For example, the ad-
jacency matrix of an undirected graph is symmetric, which implies many nice properties.
However, PageRank is based on directed paths, and its analysis is greatly simplified when
these paths do not contain cycles, with high probability.

For example, PageRank can be written as a product of three terms, one of which is the
expected number of visits to i, starting from i, by a simple random walk, which terminates
at each step with probability ¢ [11]. Now notice that in undirected graphs, each edge can
be traversed in both directions; hence, a path starting at i may return to i in only two steps,
so the average number of visits to i will be a random variable that depends on the entire
neighborhood. In contrast, for example, in the directed configuration model, returning to i
is highly unlikely. This makes PageRank in undirected graphs hard to analyze, and only few
results have been obtained so far (see, e.g., [9]).

Our result simultaneously covers the directed and the undirected cases because we only
state the equivalence between the behavior of PageRank on a graph and on its limiting object.
In this setting, the difficulties that arise in the analysis of PageRank on undirected graphs are,
in fact, ‘postponed’ to the (undirected) limiting random graph.

5. Generalized PageRank. In this section, we will show that Theorem 2.1 extends to
generalized PageRank as given in (4). More precisely, we consider a sequence of directed
random graphs (G,),eN, and a sequence of generalized coefficients ((Ci("), Bi("))ie[n])neN
for the PageRank definition. In particular, for j € [n], the coefficient A; in (4) is given by

Aﬁ.n) =C ;")/ Dﬁout), where Dj.om) is the out-degree of vertex j. The generalized coefficients
are always assumed to be nonnegative.

The main result of this section is stated in Theorem 5.4. We divide its proof into two parts.
The first part establishes the exponential bound on the error made by finite approximations,
as given in Lemma 4.1 for the standard PageRank, holds in the generalized setting as well.
This result is formulated in Lemma 5.1, and is proved in Section 5.1. The second part deals
with assigning generalized coefficients C and B to vertices in the directed LW limit. Since
the generalized coefficient can depend on the graph itself, some regularity conditions are
necessary in order to be able to define the distribution of the coefficient on the limiting rooted
graph. We explain this in Section 5.2. In Section 5.3, we compare out results to the literature,
and in Section 5.4 we complete the proof of Theorem 5.4.

5.1. Universality of finite approximations. We first focus on extending Lemma 4.1 to the
generalized setting, that is, proving that the PageRank score of a uniformly chosen vertex in
the graph can be approximated by a finite number of iterations of the stochastic matrix of the
random walk associated to PageRank, with arbitrary precision. We formulate the result in the
following lemma.

LEMMA 5.1 (Universality of finite approximation). Let G, be a (random) graph of size

n €N, and let (C i(n), Bi("))ieN be coefficients for the generalized PageRank as in (4). Assume
that:

(a) there exists a constant ¢ € (0, 1) such that, for every n e N and i € [n], 0 < Ci(”) <
¢ < 1 almost surely;
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(b) there exists a constant O < b < 0o such that, for everyn € N, SUP; e[n] E[IBI-(") [1<b

Then, for every ¢ > 0 and for every N € N, independently of n,

b
(33) P(Ry,(n) — R} (n) > ¢) < P N

PROOF. Similar to the expression in (20) for the standard PageRank, we have that, given
a sequence of generalized coefficients (Cl-("), Bi(")),-eN, for every i € [n],

k C(n)
(n)
(34) Ri(n) = B, +Z > By ]‘[—(Out)
k=1¢epath; (k) j=1Dg;

In other words, (34) shows that the generalized PageRank score of a vertex i € [n] is, as the
standard one, the weighted sum of all paths ending at i. Let then A be a matrix such that

Ay j=C™Me; j/D™. As in Section 4.1, define Q(n); j = e; j/D°™, and Q(n); j =0
if Dl.(out) = 0. Using condition (a) of the lemma, we obtain that

1
E[Rvn(m—R(V]Z)(n)]:; Z Z a(A)) }

Li=1k=N+1

S%EZ T . BQ(n)]]

Li=1k=N+1
(35)

1 [ n o] n .
=JEX 2 c"ZB§>Q<n>§-,i]

Li=1k=N+1  j=I

_lg 3 ckZB](-")ZQ(n)I}J]

Lk=N+1  j=1 i=1

By definition, Q(n) is a substochastic matrix, therefore, we have

; Q(”)]jc, <1

Using this and condition (b) of the lemma, we obtain that the last expression in (35) is
bounded by

k=N+1  j=1 k=N-+1 -

Now, using the Markov inequality on the probablhty in (33) and the bound given in (36), the
proof is complete. [J

We point out that Lemma 5.1 holds without any assumption on the dependence or inde-
pendence of the generalized coefficients and the graph. The bound in (33) relies on the fact
that Q(n) is a (sub)stochastic matrix, and the fact that V,, is a uniformly chosen vertex.

5.2. Bringing coefficients to the limit. In a graph G, with coefficients (Ci("), Bi(")),-e[n],
the generalized PageRank score R;(n) of a vertex i € [n] is again given by a weighted sum
of all paths ending at 7, as in (34). Notice that the standard PageRank score is retrieved when

we set C;") = c and BJ(.”) =1—cforalln e Nand j € [n]. In the generalized case, however,
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the coefficients (Cl-("), Bi("))ie[n] are not necessarily independent of each other and/or of the
graph G,. Hence, assuming G, — (G, &, M(G)) in the directed LW sense, it is not obvious
how to bring the generalized coefficients to the limit, that is, how to assign a pair of coef-
ficients (C,, By) to every vertex v in (G, &, M(G)). In the case of the standard PageRank,
this problem is trivial, since the coefficients are deterministic. Furthermore, if the coefficients
are i.i.d., the solution is to assign i.i.d. coefficients in the limit as well. Beyond these two
simplified scenarios, we need to impose some regularity conditions on (Ci("), Bi(")), under
which Theorem 2.1 holds for the generalized PageRank. In the remainder of this section, we
first formally state our quite general regularity conditions; see Condition 5.2(a)—(c). Then
we discuss motivation behind these conditions and their possible generalizations. Finally, we
conclude the section by stating our main result.

For two random variables X, Y, we denote the random variable X conditioned on Y by
X|y. We formulate the regularity conditions as follows.

CONDITION 5.2 (Regularity of generalized coefficients). Let (G,),eN be a sequence of
directed random graphs, and let ((C l-(") , Bl.(”))ie[n]) neN be a sequence of sequences of coeffi-
cients for the generalized PageRank as in (4). Then the regularity conditions for the general-
ized coefficients are:

(a) Foreveryn eN, (Cl(”), Bl("))|(;n, . (C,(,"), B,(,"))lcn are independent of each other;
(b) Forevery n € N and every i € [n],
d
(37) (" B")g, = (€ B™)| prim pow:
(c) There exists a distribution (C, B)(4,p], With two integer parameters a, b € N, such that,
for every dy,d> € N,

(n) pn) d
(38) (Cvn , B )|(D3)’:)=d1;D§/(;uo:d2) — (C, B)(4y,d2)-

n n

Condition 5.2(a) says that, conditionally on the graph, the coefficients are independent

across vertices. Condition 5.2(b) also specifies that C i(") and Bi(n) depend of the graph only
through the in- and out-degree of the vertex i itself. Finally, Condition 5.2(c) states that joint
distributions of (Cl-(”), Bi(")), conditioned on (Dl-(m), Dl-(om)) converges to a limit in distribu-
tion. Note that we do not assume anything on the joint distribution of C l.(n) and Bi(") .

The motivation for Condition 5.2 is to take advantage of representation (4) as follows.
Note that for every n € N, and independently of the graph G,, the weight of a path in (4)
can be always factorized as a product of two terms: one term depending of the path itself
and the out-degree of vertices along it, and the other term depending on a certain number
of random variables (the generalized coefficients). Since in the limit the term depending
of the path is a function of (G, @, M(G)), we can now assign coefficients to vertices in
(G, 2, M(G)), by sampling (C,, By) independently for each vertex v from the limiting dis-
tribution (C, B) RO This will complete the construction of the limiting PageRank
score.

[DG™,

REMARK 5.3 (Further extensions of Condition 5.2). We point out that Condition 5.2
can be generalized to allow some dependence between vertices of the graph. We restrict
ourselves to Condition 5.2 because it is already quite general and easy to explain, moreover,
it resembles the conditions used in earlier work [20, 21, 45] (see more detailed discussion in
the next section). As a possible extension, for example, we could relax Condition 5.2(b), by
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replacing the dependence on the degree with the dependence on finite neighborhoods. More
specifically, we believe that Theorem 5.4 stated below still holds, if we replace (37) with

(Cl.(”), Bl.("))|Gn 4 (Cl.("), Bl.(")) for some fixed K € N,

|U§K(i)

even though some extra work is required to formally prove it. We do not investigate this
further in the present paper.

With Lemma 5.1 and Condition 5.2, we are ready to state the convergence result for gen-
eralized PageRank.

THEOREM 5.4 (Asymptotic generalized PageRank distribution). Lef (G, )qeN be a se-

quence of directed random graphs, and let ((Cl.(n), Bi(") )ien))neN be a sequence of general-
ized PageRank coefficients such that:

(1) there exists a constant ¢ € (0, 1) such that, for everyn € N and i € [n], Ci(”) <c<l;

(i) there exists a constant 0 < b < 0o such that, for every n € N, SUP; e[n] E[lBl-(n) |1 < b;
(iii) Condition 5.2 is satisfied.

Then Theorem 2.1 holds for the generalized PageRank defined in (4).

5.3. Comparison to related results in the literature. Chen, Litvak and Olvera-Cravioto
[21] investigate generalized PageRank on directed configuration models, while Lee and
Olvera-Cravioto [45] analyze it on directed inhomogeneous random graphs. In these two
works, the limiting distribution of PageRank is obtained as a solution of a stochastic fixed-
point equation. In particular, it is proved that this solution obeys a power-law distribution
with the same power-law exponent as the in-degree distribution. We will demonstrate in more
detail how our method applies to these models in Section 6.1 (configuration model) and Sec-
tion 6.2 (generalized random graph). This section compares the assumptions in [21, 45] to
ones in our this paper.

Analogously to our assumptions in Lemma 5.1, in [21, 45] it is assumed that there exist
c € (0, 1) such that }P’(Ci(") <c) =1 for every i € [n], n € N, and the expectation of B is
finite. In [21, 45], independence of (C,, B,) across vertices v in the limiting graph follows
from the coupling of a random graph with a weighted branching tree. Similarly, we need
such independence in order to assign coefficients in the limiting rooted graph. Note that
we in fact assume independence of (C;, B;), i € G, for simplicity of the argument; we
could incorporate asymptotic independence or even dependence on finite neighborhoods, as
discussed above.

Let us now compare the regularity conditions in [21, 45] and in our work. In [21],
the directed configuration model is constructed from a so-called bi-degree distributions
(Dl.(m), Dl.(ouo, Cl.(”), Bl.(")),-e[n]. Then [21], Assumption 5.1, contains some conditions on the
moments, such as the first moment of in- and out-degrees, and it is assumed that there exist
two distributions F, F* such that

(39) (Dy). DY ) By & F o= (D™, DO, C. B).
(DY, DY, cy. BY) 5 F*,
where in (39) V,, and V' are respectively a uniformly chosen vertex and a uniformly chosen

incoming neighbor of V,,. Likewise, [45] makes assumptions on the moments and the limit
of the bi-weight sequences

(i) y(ou) () p(n)
(Wi ’ Wi ’Ci ’Bi )

i€[n]
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in generalized random graphs, in particular,

(W(ln) (Out) C(n) B(n)) (W(m) wew ¢ B)

Notably, additional assumptions are made on the limiting distributions: in [21], Assump-
tion 6.2, in the limit, C/ DO g independent of (D(in), B), and in [45], Assumption 3.1, in
the limit, (W B) is independent of (W©W ). These additional independence assump-
tions are necessary in order to prove the convergence of PageRank to the endogenous solution
of a stochastic fixed-point equation. In Condition 5.2, we do not need to assume this, because
we are interested only in convergence of PageRank and not in a specific form of its limiting
distribution.

In summary, in [21, 45], for specific random graph models, and under some additional
conditions, the limiting PageRank distribution was completely characterized, and the power-
law hypothesis was proved for these two types of random graphs. The argument in this paper,
on the other hand, is designed to work on every sequence of LW convergent graphs, and
shows, under more general conditions, that the asymptotic PageRank distribution is a function
of the LW limit. While the strength of [21, 45] is in complete analysis of specific models, the
advantage of our setting is its universality.

5.4. Proof of Theorem 5.4. Consider a sequence of directed random graphs (G,),eN
that converges locally weakly in distribution to (G, &, M(G)) with law P. Consider also a
sequence of generalized coefficients ((Ci(") , Bi(")) ic[n])neN, and assume that Condition 5.2 is
satisfied.

First, we use Condition 5.2 to construct the limiting distribution Ry and its finite approxi-
mations (R,(zN)) ~NeN as follows. Conditionally on the graph (G, &, M (G)), assign condition-
ally independent coefficients

((C, B)[dfyin),ml(}()ut)])vec
to the vertices. Recall that m(out) stands for the mark of a node, which can be different from
its out-degree in the limiting rooted graph. Then, for N € N, define

Cy,

RS := By +Z > B‘ikl_[ (out)’ and

k=1tepathy (k)  h=1My,
(40) L
Cy,

o0
Ry = hm R(N) Bg—i-z Z Beknm

k=1 tepath 4 (k) h=1My,

The limit Ry in (40) exists and is finite since (R(QN)) NeN 1S a sequence of a.s. monotonically
increasing random variables, and

E[Rg] < liminfE[RY] < oo

NeN

by the assumptions of Lemma 5.2.

Convergence in distribution. To prove Theorem 5.4, we start showing that Theo-
rem 2.1(1) holds for generalized PageRank. In other words, we have to show that, for every
r>0,asn— oo,

|P(Rv, (n) > r) —P(Rz >r)| = 0,
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thatis, Ry, (n) = Ry in distribution. We can write, similar to (29) for the standard PageRank,
IP(Ry, (n) > r) — P(Rg > r)| <|P(Ry,(n) > r) —E[P,(RY > r)]|

(41) + |E[PH(R;(5N) >r)] - P(Ré,N) >r)]

+|P(RY > r) = P(Ry > r)|.

The first term in (41) is small because of Lemma 5.1, which tells us that we can approximate

the generalized PageRank score of a uniformly chosen vertex with arbitrary precision as soon
as conditions (i) and (ii) of Theorem 5.4 are satisfied. The last term in (41) is small since by

definition Rgv) converges in distribution to Ry.

It remains to prove that the second term on the right-hand side of (41) is small. We will
prove that this term is o(1). Fix then a finite marked rooted graph (H,y, M(H)). Using
Condition 5.2(a), we write

E[P(RY) > r, U<y (V) = (H, y, M(H)))]

1
== P(Ri(N)(”) >r|U<n(i) = (H,y, M(H)))

i€[n]

(42) xP(U<y(i) = (H,y, M(H)))

1 Y
=E[AN " B i)l 30 BUn () = (H,y. M(H)))

i€[n]

=E[AY I, B ) JE[P(U=n (Vo) = (H, y, M(H))],

where Ag\,[f;y MDY 45 one when the Nth approximation of the PageRank score of the root

yin (H,y, M(H)) is larger than r, and zero otherwise. The random variable AEVH;y M)
is a function of the finite structure (H, y, M(H)), where the randomness is given only by a
finite number of (C i("), Bi(”)) ic[n]- Notice that the second equality in (42) is based on Condi-
tion 5.2(a), and, more generally, exploits the fact that given the structure (H, y, M (H)) of the
finite neighborhood, the (joint) distribution of the coefficients depends only on this structure;
in fact, in our case, the coefficients depend only on the degrees, as stated in Condition 5.2(b).
With a similar argument, we can write an analogous expression for R, thus obtaining

PRI > r,Ucy(@) = (H, y, M(H)))

(43)
H,y,M(H ~
=E[AY "M (Co)ve. (Bo)vea)IP(U<n () = (H, y, M(H))).
Now, for every (H, y, M(G)), N and r, since Agv}{;y’M(H)) (+) is a bounded function, hence,
by Condition 5.2(c) we have that, as n — oo,
H,y,M(H H.y.M(H

@) E[A T B )] — ELAY M (Co Buvea) ]
Furthermore, by the LWC assumption, we have that, for every (H,y, M(H)),and N € N,
(45) E[Py(U<n (Vo) = (H, y, M(H)))] — P(U<n(2) = (H, y, M(H))).

We now write
E[P:(Ry, >1)]= Y. E[Pu(RS >r (H,y, M(H)))]

(H,y,M(H))
(H,y,M(H)) (n) pn)
(46) = " XM:(H))E[ANJy (", B" )icin)]
3 Y

X E[Py(U<n(Va) = (H, y, M(H))].



LOCAL WEAK CONVERGENCE FOR PAGERANK 65

Using (44), (45) and dominated convergence in (46), we complete the proof that the second
term in (41) is o(1) as n — oo. It follows that if G, — (G, I, M(G)) in distribution in the
LW sense, then the generalized PageRank converges in distribution.

Convergence in probability. We now prove Theorem 2.1(2) for generalized PageRank.
Assume that G,, — (G, &, M (G)) in probability. We use the same notation as in Section 4.4,
recall R(n; r, N) as defined in (30). Following the same steps as in Section 4.4, we can write
a similar expression to (32) for the generalized PageRank. Then we just need to prove that,
forevery N e Nand r > 0, as n — oo,

(47) E[|R(n;r, N) —P(RY > r)|] — O.

Since LWC in probability implies convergence in distribution, by Theorem 5.4(a) we know
that, for every N € N and r > 0,

(48) E[R(n;r, N)] — PR > r).

We want to apply the second moment method to R(n; r, N). If we prove that

(49) E[R(n; r, N)*] <E[R(n; r, N)[*(1 4 o(1)),

then (48) and (49) together, by the second moment method, prove (47). We write, for V,,, W,

two independent uniformly chosen vertices in [n],
E[R(n;r, N)?]

= P(RS}:’) >, RgVNn) >r)

(50) =P(RY > r, Ry > r, Uy (V) N U<y (Wy) = 2)

+P(RY > 1, Ry > 1. U<y (V) N U<y (W) # 2)

=P(R} > Ry > r, U<y (V) NU=n(Wy) = @) (1 +0(1),

where the last equality comes from the fact that indicator functions are bounded by one and,
when we look at finite neighborhoods U<y (V,,) and U<y (W,) of two uniformly chosen
vertices V,, W, € [n], the probability that the two vertices are overlapping is vanishing as
n— oo.

For two vertices V,,, W, € [n], on the event U<y (V) N U<y (W,) = &, we have that the

generalized coefficients in the expressions of RE,{:/) (n) and Rg,\:) (n) are all distinct. As a con-
sequence, by Condition 5.2(b), we have that

P(RY > 1, R > r, U<y (V) N U<y (Wy) = 2)
(H,y,M(H)) (n) p(n)
= Z E[AN,ry ((Cin ’Bin )ie[n])]
(H,y,M(H))
(H'.y'\M(H"))
(H',y',M(H")) (n) pn)

(51 x E[Ay,” (™ B")icm)]

X P(USN(V}'[) N USN(Wn) =4, USN(VH) = (H’ Y, M(H))’

Un(Wy) = (H',y', M(H'))),

where AE\',’";M(')) () are the functions introduced in (42). The expectation of the product of two

functions Ag\',”';M(‘))(-) is factorized in (51) since the neighborhoods of V,, and W,, use two
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disjoint subsets of [n] as indices, and the coefficients involved are conditionally independent
given the graph (Condition 5.2(a)).

Now consider the probability in the right-hand side of (51). Since V,, and W,, are indepen-
dent of G,,, we can write

P(U<n (V) NU<y(W,) =@, U<y (Vy) = (H, y, M(H)),
Uy(Wy) = (H',y', M(H')))

= E|: Z]l{U<N(l) (H,y,M(H)), U<n(H=(H",y' ,\M(H")),U<y ())NU<n ()= 9}:|
iJ

| /\

[ Z {U<n (D)= (HyM(H))}jl{U<N(J) (H', /M(H/))}]
i,j

=E[Pu((H.y. M(H)))Pa((H'. Y. M(H'))].

Since the LWC holds in probability, for every pair of marked rooted graphs (H, y, M(H))
and (H',y’, M(H')), we have that, by dominated convergence,

E[Pa((H. y, M(H)))P.((H', y', M(H'))]
— P((H,y, M(H)))P((H',y', M(H")).
In fact, we have that P,((H,y, M(H))) EN P((H,y, M(H))) and, similarly, P,((H’,y’,
M(H"))) £ P((H',y', M(H"))). It follows that
P(U<n (Vi) NU<n(Wy) =@, U<n(V,) = (H, y, M(H)),
U<sy(Wo) = (H', y', M(H')))
<PUxn(V,)Z(H,y, M(H)))
x P(U<n(Wp) = (H', y', M(H")))(1 + o(D)).
Using (52), we can bound the term on the right-hand side of (51) by

H,y, M(H
Z IE|:A§\7,ry ( ))((Ct‘(n)’Bi(n))ie[n])]

(H.y,M(H))
(H',y',\M(H"))

(52)

» E[A(H/’y/,M(H/))((C,(n)’ B'(n))ie[n])]P(UfN(V”) = (H,y, M(H)))
X P(U<n(Wy) = (H',y', M(H")))(1+o(1))
_ Z E[Ag\f;y’M(H))((Ci(”), Bi(n))ie[n])]P(UfN(V”) = (H,y, M(H)))

(H,y,M(H))
(H',y',M(H'))
X Z E[AN,ry ((Ci(n)’ Bi(n))ie[n])]
(H',y',M(H"))

X P(U<y (W) = (H',y', M(H")))(1 + 0(1))
=E[R(n; r, N)] (1+o(1)),

so that by the second moment method the proof is complete.

REMARK 5.5 (Weighted rooted graphs). Benjamini, Lyons and Schramm [13] consider
undirected LWC for graphs with weighted edges. In particular, they define a different metric
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on the space of weighted rooted graphs, that includes the distance between edge weights. This
construction can be extended to vertex weights, and it would lead to a different approach to
investigate this different type of metric. This requires additional work, for example due to
the fact that the metric in [13] is not a simple extension of the metrics that we consider in
Sections 3.1 and 3.2. We will not further investigate these different type of metrics in this

paper.
6. Examples of directed local weak convergence.

6.1. Directed configuration model. The directed configuration model, denoted by DCM,
is a version of the configuration model where half-edges are labeled as in- and out-half-
edges. In this setting, DCM,, is a directed graph of size n € N with prescribed in- and out-
degree sequences. We denote the in-degree sequence by DM = (D(m) D{™) and the
out-degree sequence by DWW = (Diout) ..., DY We call (D D;m)) the bi-degree
sequence of the graph.

For a precise description of the DCM, we refer to [21, 22]. The graph is defined as follows:
let n € N be the size of the graph, and fix a bi-degree sequence (DY, D) The graph is
generated by fixing a free outgoing half-edge and we pair it uniformly at random with a free
incoming half edge. In this process, self-loops and multiple edges may arise. Since the pairing
is made uniformly, it is not relevant in which order we choose the free outgoing half-edge. In
this setting, the total in-degree and out-degree of the graph have to be equal. In the case of
random in- and out-degrees, this is a rare event. The algorithm presented in [22] generates an
admissible bi-degree sequence in a finite number of steps, and approximates the initial degree
distributions. Our conditions on the bi-degree sequence are as follows.

CONDITION 6.1 (Bi-degree regularity conditions). Let (Dﬁl"“t), DS“)) be a bi-degree se-
quence. Then, the bi-degree regularity conditions are as follows:

(a) There exists a distribution (p(h, 1)), jen such that, for every i,l € N, as n — oo,

53) ;. Z 1 (DO —p, pi ) —> p(h,D);
i€[n]

(b) Denote by (D©, DMy a random vector with distribution (p(h, D)n.ien as in (53).
Then, as n — oo,

; > Zml{D(om) _py — E[D"],
i€[n]heN

— Z > e, —> E[DW],

n i€e[n]leN

(54)

and E[D] = E[D(O‘”)]
(c) For L, = D(Om) +. 4+ D as 5 — o0,

h *
(55) — Z D(out):h,Di(i“):l} e Wp(h, l) = P (h, l)
le[n]
Denote by (D*©10, D*(0)y the random vector with distribution given by (p*(h,[))n jeN.

Condition 6.1(a) implies that the empirical bi-degree distribution converges to a limit-
ing distribution given by (p(h,[))n 1en as in (53). Condition 6.1(b) implies that both the
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in- and out-degree distributions have finite first moment, equal to the one of (p(h,!))s jeN-
Condition 6.1(c) implies that the out-degree size-biased distribution converges to a limiting
distribution (p* (&, 1))p jeN as in (55).

With Condition 6.1 in hand, we are ready to state the convergence result on DCM.

PROPOSITION 6.2.  Consider a directed configuration model DCM,, such that the bi-
degree sequence (D", D) satisfies Condition 6.1. Then DCM,, converges in probability
in the directed LW sense to the law P of a marked Galton—Watson tree, where:

(1) edges are directed from children to parents;

(2) the mark and the in-degree of the root are distributed as (DWW DMy g5 in (53);

(3) the mark and the in-degree of any other vertex are independent across the tree vertices,
and are distributed according to (D*©"0, D*M) g5 in (55).

The proof of Proposition 6.2 is an adaptation of the proof for the undirected case as pre-
sented in [39], Section 2.2.2. The proof is divided into two parts. First, we use a coupling
argument to prove that DCM,, converges in distribution to the prescribed limit. The second
part consists in the application of the second moment method on the number of vertices in
DCM,, with a fixed finite neighborhood structure, to prove that the number of such vertices
is concentrated around its mean.

We start with the coupling argument.

LEMMA 6.3 (LW convergence of DCM in distribution). Under the assumptions of
Proposition 6.2, there exists a marked Galton—Watson tree GW™ such that, for every finite
marked rooted tree (H,y, M (H)),

(56) P(U<k(Va) = (H, y, M(H))) = P(GWY) = (H, y, M(H))) + o(1),

where GW(:,z denote the first k generations of GW™ . Further, GW™ — P locally weakly in
distribution, where ‘P is the limit in Proposition 6.2. As a consequence, DCM,, — P locally
weakly in distribution.

PROOF. We prove that, for every finite k € N and » large enough, the k-neighborhood
of a uniformly chosen vertex in DCM,, has approximately the same distribution as the first
k generations of a marked Galton—Watson tree GW, where the marks and offspring distribu-
tions are as in Proposition 6.2. We prove this in several steps, that also prove (56):

e We construct a coupling between DCM,, and a marked Galton—Watson tree GW, where
marks and offpsring distributions depend on 7. In particular, the coupling holds with high
probability up to the exploration of a s = s(n) — oo number of incoming half edges, for
an appropriate s(n);

e The marked Galton—Watson tree GW converges locally weakly to the marked Galton—
Watson tree GW that is the LW limit of the directed configuration model.

We start by constructing the coupling between DCM,, and a marked Galton—Watson tree
GW™. Define (pu(h. D))n.1en and (pjy(h, D)in.jen by

1
pah, 1) =~ > L _j, pi_yy»

ie[n]

1 h
p;lk(l’l,l) = ; Z L—]]'{Dl-(ouO:h,Di(in):l}’

ie[n] 7"

(57)
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where L, = D™ + ...+ D{™™. Notice that Condition 6.1 implies that p,(h, 1) = p(h, 1)
and p3(h,l) — p*(h,l) for every k,l > 0.

The coupling is constructed as follows: the mark and the in-degree of V), and the root &,
in GW®™ are chosen according to the distribution p, as in (57). Therefore, U<¢(V,) and
the 0-generation of GW™ (which both consist only of the root and its mark) are the same.
Enumerate then the incoming-half edges of V; according to any order.

Fix now a number s € N of incoming half-edges to explore. We have to construct the
subgraph created by the exploration of s incoming half-edges starting at V,, in DCM,, and
from @, in GW™ at the same time.

The construction is recursive in the number of incoming half-edges explored. Order the
half-edges in an arbitrary way. After # incoming half-edges are explored, the new exploration
steps is made as follows: take the unpaired incoming half-edge x;4; with the smallest la-
bel among the ones incident to vertices already found in the exploration. We pair x;4| to
a uniformly chosen outgoing half-edge. We choose this outgoing half-edge y;yi uniformly
at random among all outgoing half-edges, independently from the previously matched half-
edges.

Let W;41 be the vertex in DCM,, to which y, is incident. Then, in GW®™ we assign to

a new vertex mark and in-degree equal to (D%,g:i)l, Dgfl:i] ). Notice that in this case the pair

(ngtm)l, D&,r:il) is distributed as p} given in (57).

In iDCM,1 we have to be careful since the half-edge y;; might have already been paired.
If y;11 has not yet been paired, then we pair x;41 to y;4+1 to create an edge. If y;;| has
already been paired, then we draw a new outgoing half-edge y, 1 chosen uniformly from the
unpaired ones and we pair x;41 to y; ;.

We repeat this procedure until we explore s half-edges (or there are no incoming half-
edges to explore) We can have differences between the exploration process in DCM,, and
GW™ . Differences can happen in two ways:

(1) the outgoing half-edge that we select to create a new edge has already been paired;
(2) the outgoing half-edge that we select to create a new edge has not been paired yet, but
it is incident to a vertex already found in the exploration process.

We will show that these two contributions have small probability when we pair few edges.
In fact, after creating ¢ edges, the probability that we select an outgoing half-edge that is
already used equals #/L,,, where L, is the total number of outgoing edges. This means that
the probability that in the first s steps we use the same out-going half-edge twice is bounded
by

ot s(s+1)
(58) — = :
B T

Thanks to Condition 6.1(b), L, is of order n, so the expression in (58) is o(1) whenever
s = o(4/n). The probability of selecting a vertex i when choosing an outgoing half-edge is

DY/L,. Then the probability that a vertex i is selected at least twice when s edges are
created is bounded by

s(s + 1) (D)2

2 Lz -
Using (59) and the union bound, the probability that a vertex is selected twice when s edges
are created is bounded by

s+ 1) (D2 s(s+1)
(60 2 2 [EREET) Diiy
n

i=1 n

(39)
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where DI(T?QI,? =maxi € [n]Dl-(om) is the maximum out-degree in the bi-degree sequence. In

this case, the expression in (60) is o(1) when s = o(y/n/ DI(I?AJ)?). Further, DI(I?;;) under Con-

dition 6.1 is o(n).

The two bounds in (58) and (60) together holds for s = s(n), with s(n) — oo sufficiently
slowly.

Consider then a finite marked rooted tree (H, y, M (H)) of depth k € N. Since any finite
tree H is made by a finite number of edges S = S(H), we can take n large enough such that
s(n) > S, that implies that U (V,) and GW") are isomorphic with high probability, which
implies (56). B

We can then prove that DCM,, converges to GW. We fix (H, y, M(H)) of depth k and
again we take n large enough such that s(n) > S(H). By the triangle inequality,

IP(U<x (V) = (H, y, M(H))) — P(GW< = (H, y, M(H)))|
61) < [P(U<k(Va) = (H, y, M(H))) = P(GWY) = (H, y, M(H)))]
+|P(GWY) = (H, y, M(H))) — P(GW < = (H, y, M(H)))|.

The first term in the right-hand side of (61) is o(1) by (56). The second term is o(1), since
the two rooted trees GW(<”,2 and GW < are both the first k generations of unimodular marked
Galton-Watson trees, where the difference is given by the marks and the offspring distri-
butions. More precisely, given a finite structure (H, y, M (H)) for a marked rooted tree, the
probability that the subtree consisting of the first k& generations of a marked Galton—Watson
tree is isomorphic to (H, y, M (H)) involves a finite number of independent random variables
(i.e., marks and offsprings of a finite number of vertices). By Condition 6.1, we know that the
marks and offspring distributions in GW(<",Z converge to the ones in GW <, thus

B(GWY) = (H, y. M(H))) — P(GWi = (H. y. M(H)).
which implies the LW convergence in distribution. This completes the proof. [
Next, we prove the convergence in probability, using the second moment method on the

number of vertices in DCM,, with a prescribed neighborhood (H, y, M(H)). We start by
giving a preliminary result on the second moment of such vertices.

LEMMA 6.4 (Second moment method). Fix finite structure (H,y, M(H)) for the root
neighborhood of depth k € N. Let N, (k; H,y, M(H)) be the number of vertices i € [n] in
DCM,, such that U< (i) = (H,y, M(H)). Then, as n — 00,

1
—E[N,(k; H, y, M(H))*] — P(U<(2) = (H, y, M(H))).

(62) p

PROOF. We can rewrite E[N, (k; H, y, M(H))Z]/n2 as
P(Ufk(vn) = (Hv Y, M(H))a USk(Wn) = (Hv Y, M(H))),

where V,, and W,, are two vertices chosen uniformly at random in [n]. Since we fix k € N,
we can take n large enough such that, with high probability, W,, is not a vertex found in the
exploration up to distance 2k from V,,. Then we can rewrite the probability in the right-hand
side of (62) as

P(Ufk(vn) = (Hv Y, M(H)),
Usk(Wy) = (H, y, M(H)), Wy ¢ U<k (V) +o(1),
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where the factor 2k comes from the fact that we look at the structure (H, y, M (H)) for the
two neighborhoods when they are disjoint. With a similar argument to the one just used, since
k is fixed,

PU<k(Va) = (H, y, M(H)), Wy & U< (Vi)

(63)
— P(U<k(2) = (H. y, M(H))).

We now use the fact that, conditioning on the existence of a tree in DCM,,, the probabil-
ity to have a second tree disjoint from the first one is equal to having a tree in a different
configuration model with different size and bi-degree distribution.

More precisely, conditioning on {U<x (V) = (H,y, M(H)), W, ¢ U<2x(V,)}, we want to
evaluate the probability of having a second tree U<x(W,) = (H,y, M(H)), disjoint from
U<x(Vy,)=(H,y, M(H)). We have that

P(U<k(Wy) = (H,y, M(H)) | U< (V) = (H, y, M(H)), Wy & U<or (Vi)

(64) o RN
=P(Uxx(Wn) = (H, y, M(H)), j ¢ U<k(Wp)),

where U <k (Wn) is the k-neighborhood of a vertex Wn chosen uniformly at random in a differ-

ent configuration model DCM,,, and 7is a particular vertex in DCM,, whose characteristics
are specified below.

The vertices set and bi-degree sequence of ﬁ/[n are defined as follows:

(1) if i ¢ U<x(Vy), then i is a vertex in ﬁdﬂ with the same in- and out-degree
( D(out) D(in))

(2) if i € U<x(Vy), then i is not present in DCM,,,

(3) define an additional vertex ] in DCMn, where we denote its in- and out-degree by
(D§Om), D;ln)). D;Oln) equals the sum of the unpaired outgoing half-edges in U<x(V},), and

5§in) equals the number of unpaired ingoing half-edges in U<;(V,). We point out that
U Sk(Wn) needs to avoid 7

Notice that the unpaired incoming half-edges in U<x(V,) are incident only to vertices at
distance k from the root, while the unpaired outgoing half-edges are incident to all vertices

in U<¢(V}). We have that DTZW[,, is a graph with n — |U<¢(V,,)| + 1 vertices, and a different
bi-degree sequence.

The graph ﬁd is then created by pairing an incoming half-edge to a uniformly chosen
outgomg half-edge, as usual as in the regular DCM,;,,. The probability to observe a structure

in DCM that is disjoint from the vertex ] is exactly the same as in the regular DCM,,,
conditioning on the structure of U<, (V,,). This explains the equality in (64).

It is immediate to verify that the bi-degree sequence of DCM,, satisfies Condition 6.1,
since we modify a negligible fraction of vertices (recall that k is fixed). As a consequence,

(65) P(U<k(Wy) = (H, y, M(H))) — P(U<k(2) = (H, y, M(H))).
Using together (63) and (65), we complete the proof of (62). [

Completion of the proof of Proposition 6.2. Fix a finite marked rooted tree (H, y, M (H))
of depth k € N. As we did in Lemma 6.4, denote by N, (k; H,y, M(H)) the number of

vertices i in DCM,, such that U< (i) = (H, y, M(H)). We need to show that, for every ¢ > 0,
as n — oo,

(66) P(|Nu(k; H,y, M(H))/n — P(U<(@) = (H, y, M(H)))| > ¢) — 0.
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We use Markov inequality to bound the probability in (66) with
1
SE[|Na (ks H, y, M(H))/n —P(U<k(2) = (H. y, M(H)))|]-

By Lemma 6.3, E[N, (k; H,y, M(H))]/n - P(U<x(®) = (H,y, M(H))). By Lemma 6.4,
we can apply the second moment method to N,,(H, y, M (H))/n, thus obtaining that

E[|Nu(k; H, y, M(H))/n — P(U<(2) = (H, y, M(H)))|] — 0.

Since this holds for any finite marked rooted tree (H, y, M (H)), the proof of Proposition 6.2
is compete.

DCM with independent in- and out-degrees. In [21], the limiting distribution of Page-
Rank in DCM has been obtained when the size-biased in- and out-degrees are independent:

p*(h, l) P(p*(out) — I’Z)P(D(m) — l)

= E{pon]
Notice that D©" and DU can, in general, be dependent, that is, plin) may have a different
distribution conditioned on the event {D©10 # 0}, because the vertices with zero out-degrees
do not contribute in PageRank of other vertices.

The local weak convergence for this case follows from [21], Lemma 5.4, hence, our The-
orem 2.1 provides an alternative argument for the existence of the limiting PageRank distri-
bution. It has been proved in [20, 21], under some technical assumptions, that in the limit the
PageRank is distributed as

d Nooe
(67) RED i +1-e),
i=1*j

where R* are independent realizations of the endogenous solution of the stochastic fixed-
point equation
d Mo
* *
(68) R =ZWR,. +(1—o).
i=1+%j
The recursion (68) has been studied in a number of papers (see [43, 52]) and further references
in [21]. The argument in [21] is more general, in fact the authors consider generalized Page-
Rank as the solution of a more general equation than (68), where the (1 — ¢) is replaced by
a random variable B. In particular, if D is regularly varying with a tail heavier than the
tail of B, then the limiting PageRank R follows a power law with the same exponent as the
in-degree DM,

60.2. Inhomogeneous random graphs. In the directed inhomogeneous random graphs,
each vertex i receives an in-weight Wi(m) and an out-weight Wl.(om). There is a directed edge
from vertex i to vertex j with probability wl.(;’), which depends on Wi(out) and W;m) . Lee
and Olvera-Cravioto [45] study PageRank in the class of inhomogeneous random graphs that
satisfy the assumption

(out) vy, (in)
(n) : i J
w; = mm{l, T(l + ¢>,'j(n))},

where ¢;(n) satisfies some technical conditions, and is in fact vanishing as n — oo for most
natural models. This formulation includes Erdés—Rényi model, the Chung—Lu model, the
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Poissonian random graph and the generalized random graph. For a detailed analysis of the
properties of such directed graphs, we refer to [18].

LWC for this class of graphs follows directly from [45], Theorem 3.6, under general con-
ditions, including that the in- and out-weights are allowed to be dependent. Hence, our results
imply that PageRank converges in this model as well, to the PageRank of the limiting random
graph.

In the case when the in- and out-weights are asymptotically independent, it is proved in
[45] that the PageRank converges to the attracting endogenous solution of stochastic recur-
sion (68). In particular, a power-law distribution of in-weights implies the power-law distri-
bution of PageRank.

6.3. Directed CTBP trees. CTBPs are models that describe the evolution of a popula-
tion composed by individuals that produce children according to i.i.d. birth processes. These
models have been intensively studied in the literature [8, 42, 48]. The convergence result is
stated in Proposition 6.6 below, which requires some notation from CTBPs theory that we
present now.

DEFINITION 6.5 (Branching process). We define the Ulam—Harris set as

(69) U=|JN" where N’ :={2}.
neN

Consider a birth process £. Then the continuous-time branching process is described by

(70) (Q, A P) =[] (@ Ar, P,
xeld

where (2, Ay, P,) are probability spaces and (§*),¢y are i.i.d. copies of &. For x € N” and
k € N we denote the kth child of x by xk € N"*!. More generally, for x € N” and y € N,
we denote the y descendant of x by xy. We call the branching process the triplet ($2, A, P)
and the sequence of point processes (§*),<s. We denote the branching process by &.

The behavior of CTBPs is determined by properties of the birth process. Consider a jump
process & on R, that is, an integer-valued random measure on R*. Then we say that £ is
supercritical and Malthusian when there exists ™ > 0 such that

d
__E[sTa] < +OO,

da a=a*

(71) Elér,.1=1, W=

where T, is an exponential random variable with mean 1/«. The unique value o* that satisfies
(71) is called the Malthusian parameter.

An important class of functions of branching processes are random characteristics. A ran-
dom characteristic is a real-valued process ®:  x R — R such that, for x e U4, ®(x,s) =0
for any s < 0, and ®(x,s) = ®(s) is a deterministic bounded function for every s > 0 that
only depends on x through the birth time of the individual, its birth process as well as the
birth processes of its children.

Random characteristics are used to evaluate the number of individuals that at time t > 0
satisfies a property. For instance, consider ®(¢) = 1r+(¢) for x € U and ¢ > 0, that is, the
characteristic that is equal to one whenever the individual is alive at time ¢. Then the branch-
ing process evaluated at time ¢ with the random characteristic 1g+(-) is equal to the number
of individuals alive at time ¢. We denote the CTBP evaluated with a random characteristic ®

by &
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It is known that, for a random characteristic ®, as t — oo,

[
5 25 EB[0(T,0)],

7 o
where the left-hand term in (72) is the fraction of alive individuals that satisfies the prop-
erty given by ®. The right-hand side is the expectation of ®, evaluated at an exponentially
distributed time 7+, on an independent copy of the CTBP.
The convergence in (72) is a general result that is used often in the literature [7, 34, 42, 48,
51]. We refer to [51], Theorem A, for a simplified formulation of the result contained in [48].
With the notation just introduced we can formulate the convergence result.

PROPOSITION 6.6 (LWC for CTBPs trees). Consider a supercritical and Malthusian
birth process (&;):>0. Denote the corresponding CTBP by &. Let T (t) be the directed random
tree defined by & at time t, where edges are directed from children to parents. Then, on the
event {|T (t)| = oo}, T (t) converges P-a.s. in the LW sense to the law of T (Ty*), where:

(1) all marks are 1;

(2) edges are directed from children to parents;

(3) Ty~ is an exponentially distributed random variable with parameter a™* (the Mathusian
parameter of the CTBP).

PROOF. First of all, at every t € RT, T (¢) is a directed finite tree. We can equivalently
prove the result on the discrete sequence (7,),enN, Where T, = T (1), for (t,)nen the se-
quence of birth times of the CTBP.

Denote the vertices in 7, by their birth order, which means that the root of 7, in the sense
of CTBP is vertex 1. First of all, notice that, forevery i € [n] and N € N, the N neighborhood
U<y (i) in the directed marked rooted graphs (7, i, 1) is just the subtree rooted at i composed
by the descendants of i only up to generation N (from 7). Notice that every vertex has out-
degree 1 except for vertex 1 since it has out-degree 0.

What we need to prove is that, for any finite directed rooted tree (H, y) of depth N and
with mark 1 for every vertex, we have, as n — oo,

@3 LY U ) = (H, ) P PU=n(@) = (H, ),

i€ln]

where U<y (9) is the N-neighborhood of the root & in the random tree 7 (7). For every
i € [n], the indicator function inside the expectation satisfies the definition of random charac-
teristic, since it is a bounded function that, for every individual i in the branching population,
depends only on the birth time 7; and on the randomness associated to i and its descendants.
As a consequence, the result follows by (72). U

The result in Proposition 6.6 resembles the subtree counting result in [51], Theorem 2. In
the case of CTBPs, since marks do not play a relevant role (they are all equal to one as the
out-degree), the incoming neighborhood of a vertex corresponds to the definition of fringe
tree as given in [40], Section 4. In particular, the fact that the limiting distribution of the tree
T (t) defined by a CTBP is T (Ty+) is stated in this form by Holmgren and Janson in [40],
Theorem 5.12, who refer to previous results by Jagers and Nerman [41, 42] and Aldous [2].

Notice that the limiting rooted graph in Proposition 6.6 is finite with probability 1. In
particular, this means that the incoming neighborhood of a uniformly chosen vertex in a
CTBP tree is young with high probability, since the limiting distribution of its neighborhood
is a finite tree. This is rather different than the undirected settings, where typically the limiting
rooted graph is infinite when considering a sequence of graphs with growing size.
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REMARK 6.7 (Nonrecursive property of PageRank). The behavior of PageRank is often
investigated starting from the recursive distributional equation in (4). In particular, the solu-
tion of (4) is constructed using a weighted Galton—Watson tree. This construction is based on
the fact that the subtree rooted at every vertex is again a Galton—Watson tree with the same
distribution.

In some cases, the construction is adapted to allow the root to have different degree and
mark, but all other vertices have i.i.d. characteristics. As an example, we refer to [21], where
PageRank on directed configuration model is investigated (in the independent case, see Sec-
tion 6.1).

When we consider CTBPs, we have proved that the graph-normalized PageRank converges
to the PageRank value of the root in a tree with distribution 7 (T+). In particular, the pro-
cesses {(&/)7-o}xeu that define T (Ty+) are i.i.d., but they are evaluated at random dependent
times (T,+ — Ty)xew. Thus, the solution based on a weighted Galton—Watson tree does not
apply to the PageRank in CTBPs, as the CTBP is inhomogeneous.

6.4. Preferential attachment model. Preferential attachment models (PAMs) are discrete-
time dynamical models of random graphs. The main idea behind these models is the follow-
ing: conditioning on the actual state of the graph, a new vertex is added with one (or more)
edges, that are attached to existing vertices with probabilities proportional to their degree plus
a constant.

There are different possible definitions of the model. See [15, 26] as well as [37], Chap-
ter 8, for different definitions of the model. We consider a modification of the sequential PAM
as presented in [15]. Fix m > 1 to be the initial degree of the vertices, and a constant § > —m.
Then we define a sequence of graphs (PA; (m, §)),cn as follows:

(1) forn =1, PAj(m, ) is composed by a single vertex with no edges;

(2) for n =2, PAy(m, §) is composed by two vertices with m edges between them;

(3) for n > 3, PA,,(m, §) is defined recursively: we add a vertex to PA,_;(m, §) with m
edges. These m edges are attached to existing vertices with the following probability: for
Il=1,...,m,

Di(n—1,1—1)+35
(74) P(n 5 i | PAy_1,1-1(m, 8)) = 2mn _;’)14_ (n— 1);-1- (-1

In (74), Di(n — 1,1 — 1) denotes the degree of vertex i in the graph of size n — 1 and after
the first / — 1 edges of the new vertex have been attached.

Notice that we allow for multiple edges but not for self-loops. In this case, we talk about
PAM with affine attachment rule, since the attachment probabilities are proportional to an
affine function of the degree. This model was first introduced in [1] for § = 0. PAMs have
gained a lot of attention in the last years since they show properties found in many real-world
networks. In fact, PAMs shows a power-law degree distribution with exponent t =3 +§/m
[37], Section 8.4, and they show the small-world phenomenon, that is, the typical distance
and the diameter of the graph are small compared to the size of the graph itself [19, 26, 30].

It is known that CTBPs can embedd PAMs in continuous time [6, 7, 51]. We give a defini-
tion of the birth process that describes PAMs.

DEFINITION 6.8 (Embedding birth process). Fix m > 2 and § > —m. Consider the se-
quence (k + 1 + §/m)ren. Let (Ex)ken be a sequence of independent and exponentially
distributed random variables, with Ex ~ E(k + 1+ 6/m), and E_; = 0. We call (&;);>¢ the
embedding birth process, where & =k ifte[E_+-- -+ Er_1, E_1 +---+ Ep).
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This construction is already used in [6, 7, 33, 51]. The embedding holds for any m > 2,
but the topological description of the graph as a CTBP is used only in [33].

Originally defined as undirected graphs, PAMs have a natural direction from edges given
by the recursive definition of such models. We can see every edge as directed from young
to old, therefore every vertex in PA;(m, §) has out-degree m. If we see the CTBP defined by
the process in (6.8) as the continuous-time version of the PAM with out-degree 1, then the
directed local weak limit is given by Proposition 6.6.

For m > 2, PAM is no longer a tree, making the analysis harder than the tree case. In [15],
Berger, Borgs, Chayes and Saberi give the local weak limit in probability for the undirected
version of PAM with affine attachment rule when § > 0. When § € (—m, 0), we believe that
the result holds by adapting the proof in [15]. This argument is left for future work. We give
a definition of the limiting graph for DPAMs.

DEFINITION 6.9 (Directed Pdlya point graph). The directed Polya point graph is an infi-
nite marked rooted random tree constructed as follows: let m > 2 and § > —m be parameters
for a preferential attachment model (PA;(m, 8));cN. Let

(@ x=m+8)/Cm+38),y==10-x)/x;
(b) T, denote a Gamma distribution with parameters m + § and 1.

Vertices in the graph have three characteristics:

(a) alabel i in the Ulam—Harris set;
(b) aposition x € [0, 1];
(c) apositive number y called strength.

In addition, every vertex has mark m (in the sense of Definition 3.10). Assign to & a position
xg = UX, where U is a uniform random variable on [0, 1], and a strength yz ~ I'jy. Set & as
unexplored. Then, recursively over the elements in the set of unexplored vertices, according
to the shortlex order:

(1) leti denote the current unexplored vertex;
(2) assign to i a strength value y; ~ ['ip;

(3) letu;y, ..., u,; in be the random Di(m) points given by an independent Poisson process
on [u;, 1] with densityl
YV
pi(x) =i 9
1
(4) draw an edge from each one of the vertices i1, ..., i D[(in) toi;
(5) setx;q,..., X, i unexplored and i as explored.

Definition 6.9 is obtained by the definition of the undirected LW limit of PAM given in
[15], Section 2.3.2, where the exploration of the neighborhood of a vertex is limited to the
exploration of younger vertices. In other words, the exploration from a vertex i is made only
over vertices with index j > i. The positions in Definition 6.9 encode the age of a vertex in
PAM. In fact, it is possible to identify a vertex i € [¢] in PAM with the point (i/7)X [15],
Lemma 3.1, so old vertices have position closer to 0 than young vertices.

With the definition of the Directed Pdlya point graph, we can state the directed LWC result
for PAMs.

PROPOSITION 6.10 (LW limit of directed PAM). Fix m > 2 and 8§ > —m. Let
(PA;(m, §))sen be a PAM defined by the attachment rule in (74). Denote by (DPA;(m, §));eN
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the directed version of (PA;(m, 8));eN, Where edges are directed from young to old vertices.
Then:

(1) fors = 0, DPA;(m, &) converges in probability in the directed LW sense fo the directed
Polya point graph as in Definition 6.9;

(2) for § € (—m,0), if [15], Theorem 2.2, can be extended, then the convergence holds
also in this case.

The proof of Proposition 6.10 follows immediately from [15], Theorem 2.2, and the fact
that the exploration process in DPA, corresponds to exploring only younger vertices.

REMARK 6.11 (Nonrecursive property of PageRank). Similar to Remark 6.7 about
CTBPs, we point out that the PageRank value of the root of a directed P6lya point graph
does not satisfy the recursive property that is necessary to consider it as a solution of (4).
Notice that the Poisson point process assigned to vertex i in Definition 6.9 is defined on the
interval [x;, 1], where the position x; depends on the ancestors (in the Ulam—Harris sense)
of i.

Another way to interpret this is that the family of Poisson point process in Definition 6.9
is composed by i.i.d. processes parametrized by the positions of vertices, that are dependent
random variables. This suggests that the positions in the Pélya point graph play the same role
as the birth times in CTBPs.
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