
The Annals of Applied Probability
2019, Vol. 29, No. 6, 3311–3347
https://doi.org/10.1214/19-AAP1481
© Institute of Mathematical Statistics, 2019

COMPUTATIONAL METHODS FOR MARTINGALE OPTIMAL
TRANSPORT PROBLEMS1

BY GAOYUE GUO AND JAN OBŁÓJ

University of Oxford

We develop computational methods for solving the martingale optimal
transport (MOT) problem—a version of the classical optimal transport with
an additional martingale constraint on the transport’s dynamics. We prove that
a general, multi-step multi-dimensional, MOT problem can be approximated
through a sequence of linear programming (LP) problems which result from
a discretization of the marginal distributions combined with an appropriate
relaxation of the martingale condition. Further, we establish two generic ap-
proaches for discretising probability distributions, suitable respectively for
the cases when we can compute integrals against these distributions or when
we can sample from them. These render our main result applicable and lead
to an implementable numerical scheme for solving MOT problems. Finally,
specialising to the one-step model on real line, we provide an estimate of the
convergence rate which, to the best of our knowledge, is the first of its kind
in the literature.

1. Introduction. The optimal transport (OT) problem is concerned with
transferring mass from one location to another in such a way as to optimise a
given criterion. Rephrased mathematically, and for simplicity considering the one-
dimensional case, we are given two probability distributions μ and ν on R and
seek to minimise

(1)
∫
R2

c(x, y)P(dx, dy),

among all probability measures P, also known as transport plans, such that

(2) P[E ×R] = μ[E] and P[R× E] = ν[E] for all E ∈ B(R),

where c : R2 → R is a measurable cost function. Theoretical advances in the last
fifty years characterise existence, uniqueness, representation and smoothness prop-
erties of optimisers in a variety of different settings (see, e.g., [35, 38]), and appli-
cations are abundant throughout most of the applied sciences including biomedical
sciences, geography and data science. Accordingly, numerical techniques for the
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OT are of great importance and have rapidly developed into an important and sep-
arate field of applied mathematics:

1. In the absolutely continuous case, that is, μ(dx) = ρ(x) dx and ν(dy) =
σ(y) dy, Benamou and Brenier proposed in [6] a numerical scheme for the
quadratic distance function c(x, y) = (x − y)2 using an equivalent formulation
arising from fluid mechanics.

2. In the purely discrete case, that is, μ(dx) =∑m
i=1 αiδxi

(dx) and ν(dy) =∑n
j=1 βjδyj

(dy), the OT problem reduces to a linear programming (LP) prob-
lem and can be computed using the iterative Bregman projection; see Benamou
et al. [7].

3. In the semidiscrete case, that is, μ(dx) = ρ(x) dx and ν(dy) =∑n
j=1 βjδyj

(dy), Lévy [32] adopted a computational geometry approach to the

cost c(x, y) = (x − y)2 and solved the OT problem by means of Laguerre’s tessel-
lations.

Recently, an additional constraint has been taken into account, which leads
to the so-called martingale optimal transport (MOT) problem. This optimization
problem was motivated by, and contributed to, the so-called model-independent,
or robust, pricing of exotic options in mathematical finance, perspective which has
gained significant momentum in the wake of financial crisis. More precisely, the
two given measures μ and ν describe the initial and final distributions of stock
prices and can be recovered from market prices of traded call/put options. Cal-
ibrated market models are thus identified by martingales with these prescribed
marginals, that is, transport plans P which further satisfy

(3)
∫
R

yPx(dy) = x for μ-a.e. x ∈ R,

where (Px)x∈R denotes the disintegration of P with respect to μ. The MOT problem
aims at maximising2 the integral (1) overall P, still named transport plans, satisfy-
ing the constraints (2) and (3), and it corresponds to the model-independent price
for option c. This methodology was presented by Beiglböck et al. [3], to which we
refer for a more detailed discussion, see also [18, 20, 30] for the continuous time
setting. It is also worth mentioning that some concrete MOT problems for partic-
ular payoffs have been investigated, by means of stochastic control or Skorokhod
embedding techniques, in a stream of papers going back to Hobson [27]; see, for
example, [8, 10, 12–14, 25, 28, 29].

Given the active theoretical interest in MOT problems, as well as their impor-
tance for applications in mathematical finance, it becomes increasingly important
to develop numerical techniques and computational methods for these problems.
A natural starting point is given by a simple, but important, observation that, for the

2The maximization formulation is more adapted to financial applications. We refer to c as a reward
function or payoff, which is commonly accepted in the finance jargon.



COMPUTATIONAL METHODS FOR MOT PROBLEMS 3313

purely discrete case stated above, the MOT problem is equivalent to the following
LP problem:

max
(pi,j )1≤i≤m,1≤j≤n∈Rmn+

m∑
i=1

n∑
j=1

pi,j c(xi, yj ) s.t.

n∑
j=1

pi,j = αi for i = 1, . . . ,m,

m∑
i=1

pi,j = βj for j = 1, . . . , n,

n∑
j=1

pi,j yj = αixi for i = 1, . . . ,m.

Such LP formulation, for a convex c, was pioneered in Davis et al. [15], where in-
stead of the marginal constraint ν, only a finite number of expectation constraints
are given. The setting reflects the actual market data, and hence is directly moti-
vated by the applications. It was considered by Henry–Labordère [26] who pro-
posed the first numerical approach, based on the dual problem (see (17) below),
and illustrated its performance on a number of practically relevant problems. To
adopt this approach in general, we could hope to approximate the MOT problem
for (μ, ν) with the above LP problem for finitely supported (μn, νn) which are
‘close’ to (μ, ν). Unfortunately, this naive idea hits two important obstacles on
the way to its implementation and a proof of convergence. First, there are no gen-
eral continuity results of the MOT problem as a function of its input (μ, ν). To
the best of our knowledge, the only exception is Juillet [31] who proved that, if
c(x, y) = ϕ(x)ψ(y) or c(x, y) = h(x − y), where ϕ, ψ , h : R → R are assumed
to satisfy the conditions of Remark 2.10 in [31], then there exists an optimiser
P

∗(μ, ν) which is Lipschitz with respect to (μ, ν) under a topology of Wasserstein
type. We extend his result to more general payoffs c in Proposition 4.7 under ad-
ditional convergence of second moments. Further extensions to continuity under
Wasserstein metric of order one and beyond one dimension remain as challenging
open problems3. Second, even if (μ, ν) admits a martingale transport plan, in di-
mension d > 1 it may be difficult to construct a discrete approximation (μn, νn)

which also does so; see Remark 3.3 below. In fact, the martingale condition, which
seems harmless, renders any of the usual OT techniques unusable, for example,
stability results, tools from PDE and computational geometry. To the best of our
knowledge, and in contrast to the OT, numerical methods for MOT problems are
close to nonexistent so far, relative to the theory and applications.

3Added at the proofs stage: Remarkably, the former appears to have been achieved in two indepen-
dent recent works [2, 39].
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This paper fills in this important gap. We provide an approximation approach for
solving systematically N -period MOT problems on R

d , with N ≥ 2 and d ≥ 1. Our
approximation of the original problem relies on a discretization of the marginal
distributions coupled with a suitable relaxation of the martingale constraint leading
to a sequence of LP problems. This sequence converges and, specialising to N = 2
and d = 1, we obtain the convergence speed. Our investigation involves a number
of novel results and techniques which we believe are of independent interest. In
particular, we compute explicitly the constants in [19] for the convergence rate of
empirical measures to the limit in Glivenko–Cantelli’s theorem.

The paper is organised as follows. In the rest of this Introduction, we clarify
the framework and notation under which we work. Section 2 contains all the main
theoretical results: we introduce the relaxed martingale optimal transport (relaxed
MOT), show the convergence of approximating LP problems to the MOT prob-
lem and provide a bound on the convergence rate in dimension one. In Section 3,
we consider possible implementations of our method. This requires approximat-
ing a probability measure μ by discrete measures μn and being able to compute,
or bound, the Wasserstein distance between μn and μ. We develop two generic
approaches to achieve this, and then present several numerical examples which il-
lustrate our methods and provide heuristic insights into the structure of optimisers,
including a conjecture in [22]. Section 4 contains all the related proofs. Section 5
concludes the paper and points to potential future work.

1.1. Preliminaries. For a given set E, we denote by Ek its k-fold product. If
E is Polish, then B(E) denotes its Borel σ -field and P(E) is the set of probability
measures on (E,B(E)) which admit a finite first moment. As is common when
studying the OT, we formulate our problem on the canonical space, which plays
an important role in the analysis. Let 
 := R

d with its elements denoted by x =
(x1, . . . , xd) and P := P(
). Throughout, we endow R

d with the �1 norm | · |,
that is, |x| :=∑d

i=1 |xi |. Define � to be the space of Lipschitz functions on R
d

and, given f ∈ �, denote by Lip(f ) its Lipschitz constant on R
d . For each L > 0,

let �L ⊂ � be the subspace of functions f with Lip(f ) ≤ L. We consider the
coordinate process (Sk)1≤k≤N , that is, Sk(x1, . . . , xN) := xk for all (x1, . . . , xN) ∈

N , and its natural filtration (Fk)1≤k≤N , that is, Fk := σ(S1, . . . ,Sk). From the
financial point of view, 
N models the collection of all possible trajectories for the
price evolution of d stocks, where N is the number of trading dates.

Given a vector of probability measures μ = (μk)1≤k≤N ∈ PN , define the set of
transport plans with the marginal distributions μ1, . . . ,μN by

P(μ) := {P ∈ P
(

N ) : P ◦ S−1

k = μk, for k = 1, . . . ,N
}
,
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where P ◦ S−1
k denotes the push forward of P via the map Sk : 
N → 
. In partic-

ular, the Wasserstein distance (of order 1) between μ and ν ∈ P is given by

W(μ, ν) := inf
P∈P(μ,ν)

EP

[|S1 − S2|]

= sup
f ∈�1

{∫
Rd

f (x)μ(dx) −
∫
Rd

f (x)ν(dx)
}
,

(4)

where the second equality follows by Kantorovich’s duality. We recall that P ,
equipped with the metric W , is a Polish space. Further, for any (μn)n≥1 ⊂ P and
μ ∈ P , W(μn,μ) → 0 holds if and only if

μn L−→ μ and
∫
Rd

|x|μn(dx) −→
∫
Rd

|x|μ(dx),

where L represents the weak convergence of probability measures; see the mono-
graph of Rachev and Rüschendorf [35] for more details. To facilitate our analysis
in the sequel, we endow PN with the product metric W⊕ defined by W⊕(μ, ν) :=∑N

k=1 W(μk, νk), for all μ, ν ∈ PN . It follows that PN is Polish with respect to
W⊕. We close this introduction by listing some notation used in the following.

Notation.

• 0 := (0, . . . ,0), 1 := (1, . . . ,1) ∈ R
d , and to stress the unidimensional case, we

write x ≡ x and Sk ≡ Sk for d = 1; see, for example, Section 3.3.
• L

0(
k;Rd) is the set of measurable functions from 
k to R
d . Denote by

L
∞(
k;Rd) ⊂ L

0(
k;Rd) the subset of (uniformly) bounded functions, and
by Cb(


k;Rd) ⊂ L
∞(
k;Rd) the subset of continuous bounded functions.

• For simplicity purposes, we adopt the abbreviations below whenever the context
is clear: ∫

f dμ ≡
∫
Rd

f (x)μ(dx),

(pi1,...,iN ) ≡ (pi1,...,iN )i1∈I1,...,iN∈IN
,∑

i1,...,iN

≡ ∑
i1∈I1,...,iN∈IN

.

2. Main results. Our computational method relies on the convergence re-
sult stated in Theorem 2.2. To introduce the result, we need the notion of ε-
approximating martingale measure.

DEFINITION 2.1. For any ε ≥ 0, a probability measure P ∈ P(
N) is said to
be an ε-approximating martingale measure if for each k = 1, . . . ,N − 1,

(5) EP

[∣∣EP[Sk+1|Fk] − Sk

∣∣]≤ ε,

or equivalently, in view of the monotone class theorem,

(6) EP

[
h(S1, . . . ,Sk) · (Sk+1 − Sk)

]≤ ε‖h‖∞ for all h ∈ Cb

(

k;Rd),
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where ‖h‖∞ := max(‖h(1)‖∞, . . . ,‖h(d)‖∞) and ‖h(i)‖∞ := sup(x1,...,xk)∈
k ×
|h(i)(x1, . . . , xk)| for i = 1, . . . , d .

Given ε ≥ 0, let Mε(μ) ⊂ P(μ) be the subset containing all ε-approximating
martingale measures. Then Mε(μ) is convex and closed with respect to the weak
topology by (6), and thus compact. For a measurable function c : 
N → R, the
relaxed MOT problem is defined by

(7) Pε(μ) := sup
P∈Mε(μ)

EP

[
c(S1, . . . ,SN)

]
,

where we set by convention Pε(μ) := −∞ whenever Mε(μ) = ∅. Denote further
by P


ε ⊂ PN the collection of measures μ such that Mε(μ) �= ∅. We note that
every P ∈M0(μ) is a martingale measure, that is, (Sk)1≤k≤N is a martingale under
P, and P0(μ) is the MOT problem. In the rest of the paper, for simplicity, we drop
the subscript ε when ε = 0, for example, P
 ≡ P


0 , M(μ) ≡ M0(μ), P(μ) ≡
P0(μ), etc.

As previously mentioned, P(μ) reduces to an LP problem once the marginals
μk have finite support for k = 1, . . . ,N . We now couple this observation with a
suitable relaxation of the martingale constraint to obtain a unified framework for
computing P(μ) numerically.

THEOREM 2.2. Fix μ ∈ P
. Let (μn)n≥1 ⊂ PN be a sequence converging to
μ under W⊕. Then, for all n ≥ 1, μn ∈ P


rn
with rn := W⊕(μn,μ). Assume further

c is Lipschitz.

(i) For any sequence (εn)n≥1 converging to zero such that εn ≥ rn for all n ≥ 1,
one has

lim
n→∞ Pεn

(
μn)= P(μ).

(ii) For each n ≥ 1, Pεn(μ
n) admits an optimiser Pn ∈ Mεn(μ

n), that is,
Pεn(μ

n) = EPn
[c]. The sequence (Pn)n≥1 is tight and every limit point must be

an optimiser for P(μ). In particular, (Pn)n≥1 converges weakly whenever P(μ)

has a unique optimiser.

REMARK 2.3. (i) By Strassen’s theorem [37], μ ∈ P
 if and only if μk 

μk+1 for k = 1, . . . ,N − 1, or namely,

∫
f dμk ≤ ∫ f dμk+1 holds for all convex

functions f ∈ � and k = 1, . . . ,N − 1. In addition, it follows by definition that
P


ε ⊂ PN is convex and closed under W⊕, and M(μ) ⊂ Mε(μ) for all ε ≥ 0.
(ii) As noted before, a natural idea is to try to approximate P(μ) by P(μn) with

finitely supported measures μn
1, . . . ,μ

n
N since the latter amounts to an LP problem.

For the classical OT, the continuous dependency of the optimization problem on
μ can be derived either from the primal problem, or from its dual formulation.
However, the additional martingale constraint means the usual OT arguments no
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longer work. The continuity of μ �→ P(μ) remains an open question in general. For
d = 1, a partial result is shown in [31] and we extend it in Proposition 4.7 below.
Additionally, one has to consider suitable approximations (see Section 4.2) to even
ensure that M(μn) is nonempty. This becomes involved for d > 1. Theorem 2.2
shows that, a further relaxation of the martingale constraint allows to avoid both
issues and to establish the desired convergence result. We also remark that the
distance rn does not admit a closed-form expression and its numerical estimation
could be costly. Thanks to Theorem 2.2, we may use in practice any upper bound
εn ≥ rn converging to zero.

(iii) Finally, we point out the Lipschitz assumption can be slightly weakened.
Let E ⊆ R

d be a closed subset such that supp(μn
k) ⊆ E for all n ≥ 1 and k =

1, . . . ,N . Then it suffices to assume in Theorem 2.2 that c, restricted to EN , is
Lipschitz.

We now show that Pεn(μ
n) is equivalent to an LP problem. Hence, with a slight

abuse of language, we always refer to Pεn(μ
n) as the approximating LP problem

of P(μ).

COROLLARY 2.4. Let μn = (μn
k)1≤k≤N be chosen such that each μn

k has finite
support, that is,

μn
k(dx) = ∑

ik∈Ik

αk
ik
δxk

ik

(dx),

where Ik = {1, . . . , n(k)} labels the support supp(μn
k). Denote by p =

(pi1,...,iN )i1∈I1,...,iN∈IN
the elements of R

D+ with D := �N
k=1n(k), then Pεn(μ

n)

can be rewritten as an LP problem.

PROOF. By assumption, every element P ∈ Mεn(μ
n) can be identified by

some p ∈ R
D+ . Therefore, Pεn(μ

n) turns to be the optimization problem below

max
p∈RD+

∑
i1,...,iN

pi1,...,iN c
(
x1
i1
, . . . , xN

iN

)

s.t.
∑

i1,...,ik−1,ik+1,...,iN

pi1,...,iN = αk
ik

for ik ∈ Ik and k = 1, . . . ,N,(8)

∑
i1,...,ik

∣∣∣∣ ∑
ik+1,...,iN

pi1,...,iN

(
xk+1
ik+1

− xk
ik

)∣∣∣∣≤ εn for k = 1, . . . ,N − 1.

(8) is not a LP formulation, however, by adding slack variables

(
δk
i1,...,ik,j

)
i1∈I1,...,ik∈Ik,j∈J ∈ R

Dk+
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with J := {1, . . . , d} and Dk := d�k
r=1n(r), (8) is equivalent to the following LP

problem:

max
p∈RD+ ,δ1∈RD1+ ,...,δN−1∈RDN−1+

∑
i1,...,iN

pi1,...,iN c
(
x1
i1
, . . . , xN

iN

)

s.t.
∑

i1,...,ik−1,ik+1,...,iN

pi1,...,iN = αk
ik

for ik ∈ Ik and k = 1, . . . ,N,

− δk
i1,...,ik,j

≤ ∑
ik+1,...,iN

pi1,...,iN

(
xk+1
ik+1,j

− xk
ik,j

)≤ δk
i1,...,ik,j

for ik ∈ Ik,

j ∈ J and k = 1, . . . ,N,

P
∑

i1,...,ik,j

δk
i1,...,ik,j

≤ εn for k = 1, . . . ,N − 1,

where we recall xk
ik

= (xk
ik,1

, . . . , xk
ik,d

). �

Having obtained a general convergence result, we next turn to the ensuing prob-
lem on the convergence rate of Pεn(μ

n). We provide an estimation of the conver-
gence rate for the one-step model on real line. To the best of our knowledge, the
error bound below is the first of its kind in the literature.

THEOREM 2.5. Let N = 2 and d = 1, or equivalently, μ = (μ, ν) and
c : R2 → R. In addition to the conditions of Theorem 2.2, we assume that
sup(x,y)∈R2 |∂2

yyc(x, y)| < ∞ and ν has a finite second moment. Then there exists
C > 0 such that∣∣Pεn

(
μn, νn)− P(μ, ν)

∣∣≤ C inf
R>0

λn(R) for all n ≥ 1,

where λn : (0,∞) →R is given by

λn(R) := (R + 1)εn +
∫
(−∞,−R)∪(R,∞)

(|y| − R
)2

ν(dy).

In particular, the convergence rate is proportional to εn if supp(ν) is bounded.

We postpone the proofs of Theorems 2.2 and 2.5 to Section 4, and end this sec-
tion with a discussion about how Theorem 2.2 is applied to solve other constrained
OT problems arising in finance.

REMARK 2.6. In general, the distributions μ1, . . . ,μN will not be fully speci-
fied by the market when d ≥ 2. For k = 1, . . . ,N , let Sk := (S

(1)
k , . . . , S

(d)
k ), where

S
(i)
k stands for the price of the ith stock at time k. Then, in practice, only prices

of call options (S
(i)
k − K)+, or put options (K − S

(i)
k )+, for a finite set of strikes
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K are liquidly available in the market. Even assuming call options are quoted
for all possible strikes K only yields the distributions μk,i of S

(i)
k . Therefore,

this leads to a modified optimization problem. Denote �μk := (μk,1, . . . ,μk,d) and
�μ := ( �μk)1≤k≤N , and let Mε(�μ) be the set of ε-approximating martingale mea-
sures P satisfying P ◦ (S

(i)
k )−1 = μk,i , for k = 1, . . . ,N and i = 1, . . . , d . Then we

define the optimization problem by

(9) Pε(�μ) := sup
P∈Mε(�μ)

EP

[
c(S1, . . . ,SN)

]
.

The problem (9), with ε = 0, was first introduced by Lim and called multi-
martingale optimal transport in [33]. Although this paper focuses on the numerical
computation of P(μ), we emphasise that Theorem 2.2 admits an immediate exten-
sion to approximate P0(�μ).

3. A numerical scheme for P(μ): Probability discretization. Motivated by
Theorem 2.2 and Corollary 2.4, we next develop a numerical scheme to compute
P(μ) based on a suitable discretization of the marginal distributions. The key is to
select a suitable sequence (μn)n≥1 such that, for k = 1, . . . ,N ,

(a) μn
k is supported on a finite set {xk

ik
: ik ∈ Ik},

(b) the weights μn
k [{xk

ik
}] can be either computed explicitly or approximated

with a precision that is known a priori,
(c) an upper bound for W(μn

k,μk) is easy to obtain.

Posed as above, the problem is intimately linked to the optimal quantization for
probability measures whose goal is to best approximate a given probability mea-
sure μ ∈ P by a discrete measure with a given number of supporting points. For the
given μ, its nd -quantization μn related to (xi )1≤i≤nd ⊂ R

d and (Ei)1≤i≤nd is de-

fined by μn(dx) :=∑nd

i=1 μ[Ei]δxi
(dx), where (Ei)1≤i≤nd is a μ-partition, that is,

μ[Ei ∩Ej ] = 0 for all i �= j and μ[⋃1≤i≤nd Ei] = 1. Accordingly, the nd -optimal
quantization of μ is the solution to

(10) inf

{
nd∑
i=1

∫
Ei

|x − xi |μ(dx)

}
,

where the inf is taken over all (xi )1≤i≤nd and μ-partitions (Ei)1≤i≤nd . We state the
convergence result from Graf and Luschgy [23]; see also [17, 24].

THEOREM 3.1 (Graf and Luschgy). For each n ≥ 1, the inf in (10) can be
achieved by an nd -optimal quantiser (x∗

i )1≤i≤nd and (E∗
i )1≤i≤nd . Let μn∗ be the

corresponding optimiser, then limn→∞ nW(μn∗,μ) exists and is finite.

It follows with Aμ := limn→∞ nW(μn∗,μ) that there exists nμ ≥ 1 such that

W
(
μn∗,μ

)≤ (Aμ + 1)/n for all n ≥ nμ.
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Despite their theoretical appeal, in practice, the use of optimal quantisers is prob-
lematic as the key quantities above, such as Aμ and nμ are in general unknown.
Similarly, in general, the quantities μn∗[{x∗

i }] are hard to compute exactly or ap-
proximate with a prescribed accuracy. To overcome these difficulties, we adopt
two different discretization methods, both of which can be implemented in prac-
tice. Our first method, which we call deterministic discretization, applies when we
are given the marginals μ1, . . . ,μN in the sense of being able to compute integrals
against them. This is the case, for example, when μ1, . . . ,μN have known density
functions. The second method, called random discretization, applies when we are
able to sample from the marginals. Throughout Section 3, we need the following
integrability condition, which corresponds to the market price of a power option
being finite.

ASSUMPTION 3.2 (θ th-moment). There exist θ > 1 and Mθ < ∞ such that∫
Rd

|x|θμN(dx) ≤ Mθ.

Note that, by Jensen’s inequality, the above conditions implies
∫
Rd |x|θμk(dx) ≤

Mθ for k = 1, . . . ,N . Further, whenever we consider a generic measure μ below,
we will also assume it satisfies Assumption 3.2.

3.1. Deterministic discretization. We devise a simple discretization proce-
dure which has the same asymptotic efficiency as the optimal quantization when
supp(μ) is bounded. We assume here that μ is known in the sense that the proba-
bilities μ[E] are known for all E ∈ B(Rd). We start with this idealised setting and
then consider the case of known densities, which allows to compute μ[E] with a
certain accuracy.

Step 1: Truncation. For R > 0, let BR ⊂ R
d denote the box defined by

BR := {x = (x1, . . . , xd) : |xi | ≤ R, for i = 1, . . . , d
}
.

Then one has {x ∈ R
d : |x| ≤ R} ⊂ BR ⊂ {x ∈ R

d : |x| ≤ dR}. Take R such that
μ[BR] > 0, and truncate μ into a probability measure μR(dx) := 1BR

(x)μ(dx) +
μ[Bc

R]δ0(dx), where Bc
R := R

d \ BR . Clearly, μR is supported on BR . Consider a
random variable X drawn from μ and observe that 1BR

(X)X is distributed accord-
ing to μR . We have, by the definition of Wasserstein distance,

(11) W(μR,μ) ≤ E
[∣∣1BR

(X)X − X
∣∣]= ∫

Bc
R

|x|μ(dx) ≤ Mθ/R
θ−1,

which yields in particular limR→∞W(μR,μ) = 0.
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Step 2: Discretization. In what follows, n ≥ 2 is an integer. Denote by 
n ⊂ R
d

the countable subspace consisting of elements q/n for all q = (q1, . . . , qd) ∈ Z
d .

For each q ∈ Z
d , we denote by V (q/n) ⊂ R

d the subset of x = (x1, . . . , xd) such
that �nx� = q, that is, �nxi� = qi for i = 1, . . . , d , where for a ∈ R, �a� ∈ Z is the
largest integer less or equal to a. We construct a probability measure μ(n) whose
support is included in 
n by μ(n)[{q/n}] := μ[V (q/n)]. Then μ(n) ∈ P satisfies
for all f ∈ �,

(12)
∫

f dμ(n) = ∑
q∈Zd

f (q/n)μ(n)[{q/n}]= ∫ f (n) dμ,

where f (n) : Rd →R is defined by f (n)(x) := f (�nx�/n). This implies in view of
(4) that

W
(
μ(n),μ

)= sup
f ∈�1

∣∣∣∣
∫

f dμ(n) −
∫

f dμ

∣∣∣∣≤ sup
f ∈�1

∫ ∣∣f (n) − f
∣∣dμ ≤ d/n,

where the second inequality is by (12). Notice that, if supp(μ) is bounded, then so
is supp(μ(n)), and the distance W(μ(n),μ) is of order 1/n, which is the same as
for W(μn∗,μ).

Step 3: Choice of the parameters. Replacing μ by μR in Step 2, one has

W
(
μ

(n)
R ,μ

)≤ W
(
μ

(n)
R ,μR

)+W(μR,μ) ≤ d/n + Mθ/R
θ−1.

It follows from Young’s inequality that |a|γ + |b|θ ≥ γ 1/γ θ1/θ |ab| for all a,
b ∈ R, where γ > 1 is the conjugate number of θ , that is, 1/θ + 1/γ = 1.
Setting respectively a = (d/n)1/γ and b = (Mθ/R

θ−1)1/θ , it holds that d/n +
Mθ/R

θ−1 ≥ (γ d)1/γ (θMθ)
1/θ /(Rn)1/γ , and the equality can be achieved for

Rθ−1 = θMθn/γ d . Since the cardinal of supp(μ
(n)
R ) is proportional to (Rn)d

which determines the number of variables in the corresponding LP problem, set-
ting R = Rn := (θMθn/γ d)1/(θ−1) leads to an optimal upper bound for a fixed
computational complexity, that is, W(μ

(n)
Rn

,μ) ≤ γ d/n. Replacing μ respectively
by μk for k = 1, . . . ,N , we obtain μn = (μn

k)1≤k≤N following the above steps

with μn
k := μ

(n)
k,Rn

. Then Theorem 2.2 yields limn→∞ PNγd/n(μ
n) = P(μ).

REMARK 3.3. In general μn may no longer belong to P
, even if μ ∈ P
.
When d = 1, an explicit discretization preserving the increasing convex order is
given in Section 4.2. In a recent parallel work Alfonsi et al. [1] have investigated
methods of constructing μn such that μn ∈ P
.

The above analysis allows us to construct approximating measures μn assum-
ing the values μ[V (q/n)] are known for all q/n ∈ 
n. This may be possible, for
example, when μ is atomic, but in general we need to argue how to approximate
well such values. We do this for measures which admit a density function, that
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is, μ(dx) = ρ(x) dx. In this case, a simple point estimate ρ(xq)/nd , for some
xq ∈ V (q/n), provides a natural candidate to approximate μ(n)[{q/n}]. However,
to use Theorem 2.2, we need to bound the Wasserstein distance between the re-
sulting measure and μ(n) in an explicit and nonasymptotic manner.

As before, we truncate μ to BR and set R to be an integer m for simplicity. Let
μ

(n)
m and μ̃

(n)
m be supported on 
n ∩ Bm and defined as follows: If 0 �= q/n ∈ Bm,

then

μ(n)
m

[{q/n}] := ∫
V (q/n)

ρ(x) dx and μ̃(n)
m

[{q/n}] := ρ(xq)/nd,

where x(n)
q ≡ xq ∈ V (q/n) are chosen arbitrarily, and

μ(n)
m

[{0}] := 1 − ∑
q/n�=0

μ(n)
m

[{q/n}] and μ̃(n)
m

[{0}] := 1 − ∑
q/n�=0

μ̃(n)
m

[{q/n}],
where the sums above are finite as μ

(n)
m [{q/n}] = μ̃

(n)
m [{q/n}] = 0 for q/n /∈ Bm.

We point out that in general μ̃
(n)
m [{0}] may be negative and then μ̃

(n)
m is a signed

measure. However, if xq satisfies ρ(xq) = minx∈V (q/n) ρ(x), or more generally is

such that ρ(xq)/nd ≤ ∫V (q/n) ρ(x) dx holds for every q/n ∈ 
n, then μ̃
(n)
m [{0}] ≥ 0

and μ̃
(n)
m is a probability measure. In this case, the following proposition provides

an upper bound for W(μ̃
(n)
m ,μ

(n)
m ).

PROPOSITION 3.4. Let Assumption 3.2 hold. Suppose that ρ is continuous, or
namely, for each R > 0, there exists κR : [0,∞) → R that is nondecreasing such
that κR(0) = 0 and∣∣ρ(x) − ρ(y)

∣∣≤ κR

(|x − y|) for all x, y ∈ BR.

Assume further that μ̃
(n)
m [{0}] ≥ 0.

(i) If μ has bounded support, that is, supp(μ) ⊆ BR for some R > 0, then
(13)
W
(
μ̃(n)

m ,μ
)≤ εn := d/n + 2dd(R + 1)d+1κR+1(d/n) for all m ≥ �R� + 1.

(ii) If ρ is uniformly continuous, that is, there exists a uniform κ = κR for all
R > 0, then

(14) W
(
μ̃(n)

m ,μ
)≤ εm,n := d/n + Mθ/mθ−1 + 2ddmd+1κ(d/n).

(iii) If {xq}0 �=q/n∈Bm satisfies ρ(xq) ≤ ρ(x) for all x ∈ V (q/n), then

W
(
μ̃(n)

m ,μ
)≤ τm,n := d/n + Mθ/mθ−1

(15)
+ inf

1≤j≤m

{
2ddjd+1κj (d/n) + 4Mθ/j

θ−1}.
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PROOF. Note that μ̃
(n)
m is a probability measure and W(μ

(n)
m ,μ) ≤ d/n +

Mθ/mθ−1. The following analysis gives an upper bound for W(μ̃
(n)
m ,μ

(n)
m ). Under

the condition (i), one has μ = μm as m ≥ �R� + 1. Since ρ is uniformly con-
tinuous on BR , μ̃

(n)
m becomes a probability measure as μ̃

(n)
m [{0}] ≥ 0 n is suffi-

ciently large. Further, W(μ
(n)
m ,μ) = W(μ

(n)
m ,μm) ≤ d/n. Note also supp(μ

(n)
m ),

supp(μ̃
(n)
m ) ⊆ B�R�+1 by definition. For any f ∈ �1, it holds for m ≥ �R� + 1,∣∣∣∣

∫
f dμ̃(n)

m −
∫

f dμ(n)
m

∣∣∣∣=
∣∣∣∣ ∑
0 �=q/n∈B�R�+1

f (q/n)

∫
V (q/n)

(
ρ(x) − ρ(xq)

)
dx

∣∣∣∣
≤
∣∣∣∣ ∑
0 �=q/n∈B�R�+1

|q/n|
∫
V (q/n)

κR+1(d/n)dx

∣∣∣∣
≤ 2dd(R + 1)d+1κR+1(d/n),

which yields W(μ̃
(n)
m ,μ

(n)
m ) ≤ 2dd(R + 1)d+1κR+1(d/n) and further (13). As for

(ii), we deduce W(μ̃
(n)
m ,μ

(n)
m ) ≤ 2d dmd+1κ(d/n) using the same arguments for

Bm, and obtain thus (14). Alternatively, assume that the third condition holds. For
each integer 1 ≤ j ≤ m, one has∣∣∣∣

∫
f dμ̃(n)

m −
∫

f dμ(n)
m

∣∣∣∣
≤
∣∣∣∣ ∑
0 �=q/n∈Bj

|q/n|
∫
V (q/n)

(
ρ(x) − ρ(xq)

)
dx

∣∣∣∣
+
∣∣∣∣ ∑
q/n∈Bm\Bj

∣∣∣∣q/n

∣∣∣∣
∫
V (q/n)

(
ρ(x) − ρ(xq)

)
dx

∣∣∣∣
≤ 2ddjd+1κj (d/n) + 2

∫
Bc

j

(
d + |x|)ρ(x) dx

≤ 2ddjd+1κj (d/n) + 4Mθ/j
θ−1.

Thus W(μ̃
(n)
m ,μ

(n)
m ) ≤ inf1≤j≤m{2ddjd+1κj (d/n) + 4Mθ/j

θ−1} follows and (15)
is derived. �

By a straightforward computation, one has limm→∞ limn→∞ εm,n =
limm→∞ limn→∞ τm,n = 0. In consequence, there exist suitable sequences
(mn)n≥1 and (nm)m≥1, such that

lim
n→∞ εmn,n = lim

n→∞ τmn,n = 0 and lim
m→∞ εm,nm = lim

m→∞ τm,nm = 0.

Note that the previous choice mn := �Rn� may not yield limn→∞ ε�Rn�,n =
limn→∞ τ�Rn�,n = 0 and these sequences have to be computed from ρ. However, if
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ρ is L-Lipschitz, then one has εm,n = d/n + Mθ/mθ−1 + 2dd2md+1L/n and we
deduce that it suffices to take (mn)n≥1 or (nm)m≥1 such that limn→∞ md+1

n /n = 0
or limm→∞ md+1/nm = 0.

Putting everything together, taking respectively μk in the place of μ for k =
1, . . . ,N , the above procedures yield a vector of measures μ̃(n)

m = (μ̃
(n)
k,m)1≤k≤N .

Under the conditions in Proposition 3.4, we have limn→∞ PNεmn,n(μ̃
(n)
mn

) =
limn→∞ PNτmn,n(μ̃

(n)
mn

) = P(μ) or limm→∞ PNεm,nm
(μ̃(nm)

m ) =
limm→∞ PNτm,nm

(μ̃(nm)
m ) = P(μ).

REMARK 3.5. We note that an alternative construction for μ
(n)
m and μ̃

(n)
m ,

based on a renormalisation, is also possible. This might be desirable, in partic-
ular, if it is hard to choose xq is such a way that μ̃

(n)
m [{0}] ≥ 0. Namely, we could

set, for q/n ∈ Bm,

μ(n)
m

[{q/n}] :=
∫
V (q/n) ρ(x) dx∑

q′/n∈Bm

∫
V (q′/n) ρ(x) dx

and

μ̃(n)
m

[{q/n}] := ρ(xq)∑
q′/n∈Bm

ρ(xq′)
,

and μ
(n)
m [{q/n}] = μ̃

(n)
m [{q/n}] = 0 otherwise. Then μ

(n)
m and μ̃

(n)
m are probability

measures supported on 
n ∩ Bm and using entirely analogous reasoning as above,
one can obtain the bounds for W(μ

(n)
m ,μ) and W(μ̃

(n)
m ,μ

(n)
m ).

3.2. Random discretization. We consider now a different discretization proce-
dure, which applies to the case where one has a black box to generate independent
random variables according to μ. Provided a sequence of i.i.d. μ-distributed ran-
dom variables (Xn)n≥1, define the empirical measure μ̂n by

μ̂n(dx) :=
n∑

i=1

1

n
δXi

(dx).

By definition μ̂n is a random measure, and following Glivenko–Cantelli’s theorem
(see, e.g., Fournier and Guillin [19]), limn→∞W(μ̂n,μ) = 0 almost surely and
limn→∞E[W(μ̂n,μ)] = 0. Construct random measures μ̂n

k by replacing μ by μk

for k = 1, . . . ,N and set μ̂n := (μ̂n
k)1≤k≤N . Compared to Theorem 2.2, we now

obtain a stochastic convergence result.

PROPOSITION 3.6. Let the conditions of Theorem 2.2 hold. Given a sequence
(εm)m≥1 ⊂ (0,∞) converging to zero, one has limm→∞ limn→∞ Pεm(μ̂n

) = P(μ)

almost surely. Further, for any subsequence (n̂m)m≥1 such that
∑

m≥1 E[W⊕(μ̂n̂m,

μ)]/εm < ∞, it holds almost surely limm→∞ Pεm(μ̂n̂m) = P(μ).
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PROOF. For each fixed εm > 0, one has the inequality below by Corollary 4.3,∣∣Pεm

(
μ̂n)− P(μ)

∣∣≤ Lip(c)εm + P2εm(μ) − P(μ)

whenever W⊕(μ̂n
,μ
)≤ εm,

(16)

where we recall that Lip(c) is the Lipschitz constant of c. Applying Glivenko–
Cantelli’s theorem, one obtains limn→∞ |Pεm(μ̂n

) − P(μ)| ≤ Lip(c)εm +
P2εm(μ) − P(μ) =: δm almost surely. Using Proposition 4.4, we have
limm→∞ P2εm(μ) = P(μ) and the first asserted convergence result follows. For
any δ > 0, there exists mδ such that εm ≤ δ for all m ≥ mδ . Taking n̂m as in the
statement, we have∑

m≥mδ

P
[∣∣Pεm

(
μ̂n̂m

)− P(μ)
∣∣> δ

]≤ ∑
m≥mδ

P
[
W⊕(μ̂n̂m,μ

)
> εm

]

≤ ∑
m≥mδ

E
[
W⊕(μ̂n̂m,μ

)]
/εm,

which by Borel–Cantelli’s lemma, implies that limm→∞ Pεm(μ̂n̂m) = P(μ) almost
surely. �

Roughly speaking, given εm > 0, it suffices to focus on the LP problems
Pεm(μ̂n

) such that W⊕(μ̂n
,μ) ≤ εm occurs with high probability. To this end, and

in order to choose suitable sequences (εm)m≥1 and (n̂m)m≥1, we need to quantify
E[W⊕(μ̂n

,μ)]. Fortunately, Theorem 1 in [19] provides such an estimation under
Assumption 3.2, albeit with some cases omitted, for example, d = 1,2 and θ = 2.
For the sake of completeness, we state this result as Lemma 3.7 by taking all the
cases into account.

LEMMA 3.7 ([19]). Let Assumption 3.2 hold. There exists C(θ, d) > 0 such
that E[W⊕(μ̂n

,μ)] ≤ χ(n) for all n ≥ 1, where

χ(n) := NC(θ, d)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1/θ−1 if d = 1 and 1 < θ < 2,

(1 + logn)n−1/2 if d = 1 and θ = 2,

n−1/2 if d = 1 and θ > 2,

n1/θ−1 if d = 2 and 1 < θ < 2,(
1 + (logn)2)n−1/2 if d = 2 and θ = 2,

(1 + logn)n−1/2 if d = 2 and θ > 2,

n1/θ−1 if d ≥ 3 and 1 < θ < d/(d − 1),

(1 + logn)n−1/d if d ≥ 3 and θ = d/(d − 1),

n−1/d if d ≥ 3 and θ > d/(d − 1).

In consequence, one has P[W⊕(μ̂n
,μ) > εm] ≤ χ(n)/εm.
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We remark that the constants C(θ, d) are not explicitly specified in [19]. To
implement our scheme, we need to determine n̂m and for this we have to compute
explicitly C(θ, d). This is possible, following largely the arguments in [19], but
tedious and is postponed to the Appendix.

3.3. Numerical examples. We discuss now some concrete MOT problems to
illustrate how Theorem 2.2, together with our discretization schemes, can be ap-
plied. Most of our examples admit either a closed-form optimiser or an analytical
characterization thereof, which allow us to verify the numerical results. We recall
that for d = 1, we write simply x = x and Sk = Sk .

EXAMPLE 3.8. Beiglböck and Juillet studied in [4] a specific MOT problem
in the case of N = 2, d = 1 and c(x, y) = h(x −y), where h : R→R has a strictly
convex derivative. Let (μ, ν) ∈ P
. Theorem 1.7 of [4] shows that, if μ has a
density ρ, then there exist two measurable functions ξ± : R → R such that the
unique optimiser P∗ ∈M(μ, ν) for P(μ, ν) is supported on ξ±, that is,

P
∗(dx, dy) = μ(dx) ⊗

{
x − ξ−(x)

ξ+(x) − ξ−(x)
δξ+(x)(dy) + ξ+(x) − x

ξ+(x) − ξ−(x)
δξ−(x)(dy)

}
,

where ξ−(x) ≤ x ≤ ξ+(x), ξ+(x) < ξ+(x′) and ξ−(x′) /∈ (ξ−(x), ξ+(x)) for all x,
x′ ∈ R with x < x′. We want to illustrate numerically the above result. Let ρ be a
truncated Gamma function defined by

ρ(x) := 1[0,1](x)x3/2e−x/C, where C :=
∫ 1

0
x3/2e−x dx > 1/5.

Next, construct ν(dx) = σ(y) dy by

σ(y) := ρ(y/2)/6 + 4ρ(2y)/3

= 1[0,2](y)(y/2)3/2e−y/2/C + 1[0,1/2](y)(2y)3/2e−2y/C.

By the construction, one has (μ, ν) ∈ P
, supp(μ) = [0,1] and supp(ν) = [0,2].
Further, one can verify that ρ and σ are L-Lipschitz on supp(μ) and supp(ν) with
L = 7. Applying the discretization of Section 3.1 to μ and ν, we obtain μ̃(n) and
ν̃(n), supported on {i/n : 0 ≤ i < n} and {j/n : 0 ≤ j < 2n}, and defined by

μ̃(n)[{i/n}] :=
⎧⎪⎪⎨
⎪⎪⎩

1 −
n−1∑
k=1

ρ(xk)/n if i = 0,

ρ(xi)/n if 1 ≤ i < n,

ν̃(n)[{j/n}] :=
⎧⎪⎪⎨
⎪⎪⎩

1 −
2n−1∑
k=1

σ(yk)/n if j = 0,

σ (yj )/n if 1 ≤ j < 2n,
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FIG. 1. Computations for Example 3.8. The first pane shows the values Pεn (μ̃(n), ν̃(n)) for
10 ≤ n ≤ 200. The second pane draws the heat map of the optimiser for n = 100.

where xi ∈ [i/n, (i + 1)/n) and yj ∈ [j/n, (j + 1)/n) for i = 1, . . . , n − 1 and
j = 1, . . . ,2n − 1. It follows from Proposition 3.4 that W⊕((μ̃(n), ν̃(n)), (μ, ν)) ≤
(3L + 2)/n =: εn. Then the corresponding LP problem is as follows:

max
(pi,j )∈R2n2

+

n−1∑
i=0

2n−1∑
j=0

pi,jh
(
(i − j)/n

)
s.t.

2n−1∑
j=0

pi,j = αn
i for i = 0, . . . , n − 1,

n−1∑
i=0

pi,j = βn
j for j = 0, . . . ,2n − 1,

n−1∑
i=0

∣∣∣∣∣
2n−1∑
j=0

pi,j j/n − αn
i i/n

∣∣∣∣∣≤ εn,

where αn
i := μ̃(n)[{i/n}] and βn

j := ν̃(n)[{j/n}]. Taking h(x) := ex , we solve the
LP problem using Gurobi solver and present the results in Figure 1. The left pane
exhibits the values Pεn(μ̃

(n), ν̃(n)) for 10 ≤ n ≤ 200, which shows numerically
the convergence of Pεn(μ̃

(n), ν̃(n)). The right pane displays the heat map of the
optimiser (p∗

i,j ) for n = 100. We see that the strictly positive weights p∗
i,j are

concentrating around two curves that satisfy the conditions of ξ± stated above.
For comparison, we adopt now the random discretization developed in Sec-

tion 3.2. We sample, using an accept–reject algorithm, two sequences of i.i.d. ran-
dom variables (Xi)1≤i≤n and (Yj )1≤j≤n from μ and ν, respectively. Let X and
Y be two sets containing respectively all values taken by Xi and Yj , and we rela-
bel X and Y by X := {X1,X2, . . . ,X#X } and Y := {Y 1, Y 2, . . . , Y #Y}, where #X ,
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FIG. 2. Computations for Example 3.8. The first pane shows the values Pεm(μ̂n̂m , ν̂n̂m) (dashed
line) for 10 ≤ m ≤ 200. The second pane draws the heat map of the optimiser for m = 100.

#Y ≤ n denote the cardinal of X and Y . Define further μ̂n(dx) :=∑#X
i=1 α̂n

i δXi (dx)

and ν̂n(dy) :=∑#Y
j=1 β̂n

i δY j (dy), where

α̂n
i := #Xi

n
for i = 1, . . . ,#X and β̂n

j := #Yj

n
for j = 1, . . . ,#Y,

with Xi := {Xk ∈ X : Xk = Xi} and Yj := {Xk ∈ Y : Xk = Y j }. The LP problem
Pεm(μ̂n, ν̂n) is given by

max
(pi,j )∈R#X #Y+

#X∑
i=1

#Y∑
j=1

pi,jh
(
Xi − Y j ) s.t.

#Y∑
j=1

pi,j = α̂n
i for i = 1, . . . ,#X ,

#X∑
i=1

pi,j = β̂n
j for j = 1, . . . ,#Y,

#X∑
i=1

∣∣∣∣∣
#Y∑
j=1

pi,jY
j − α̂n

i Xi

∣∣∣∣∣≤ εm.

Notice that ν admits a finite θ th-moment for all θ > 1. With θ = 3, one has χ(n) =
2C(3,1)n−1/2, where C(3,1) is defined in Proposition 3.7. We set n̂m := �mr� so
that

∑
m≥1 χ(n̂m)/εm < ∞ whenever r > 4, and hence limm→∞ Pεm(μ̂n̂m, ν̂n̂m) =

P(μ, ν) holds almost surely. Taking r = 4.1, we compute Pεm(μ̂n̂m, ν̂n̂m) and
present the results in Figure 2. The blue line in the left pane shows the conver-
gence of Pεm(μ̂n̂m, ν̂n̂m) in m while the red line reproduces the convergence of
Pεm(μ̃(m), ν̃(m)) from the first pane of Figure 1. While the random discretization
displays some instability for small m, for m ≥ 50 we we find that two lines are very
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close. We note that for the same εm, the number of variables for Pεm(μ̃(m), ν̃(m))

is proportional to m2 while it is of order m2r � m2 for Pεm(μ̂n̂m, ν̂n̂m). In the right
pane, the heat map of the optimiser for m = 100 is drawn and matches closely that
of Figure 1.

EXAMPLE 3.9. Motivated by the model-independent pricing, we consider a
stock with three trading dates, that is, N = 3 and d = 1. We take the Black–Scholes
model, that is, μk(dx) = ρk(x) dx with

ρk(x) := 1(0,∞)(x)
exp(−(log(x) + 2k−4)2/2k−2)

x
√

2k−2π
for k = 1,2,3,

and consider Lookback and Asian options, that is, c(x, y, z) := max(x, y, z) − z

and c(x, y, z) := ((x + y + z)/3 − λz)+ with λ ≥ 0. Notice that all ρk are L-
Lipschitz on R with L = 12, and have finite θ -moments for all θ > 1 with∫

R

|x|θρk(x) dx ≤
∫
R

|x|θρ3(x) dx = eθ(θ−1) =: Mθ.

As all μk have unbounded support, we employ the full procedure of approximation
in Section 3.1. Let μ̃

(n)
k,m be supported on {i/n : 0 ≤ i < mn}, and defined by

μ̃
(n)
k,m

[{i/n}] :=
⎧⎪⎪⎨
⎪⎪⎩

1 −
mn−1∑
j=1

ρk(xk,j )/n if i = 0,

ρk(xk,i)/n if 1 ≤ i < mn,

where xk,i := argminx∈[i/n,(i+1)/n]ρk(x) for i = 1, . . . ,mn − 1. Proposition 3.4
implies that

W⊕((μ̃(n)
1,m, μ̃

(n)
2,m, μ̃

(n)
3,m

)
, (μ1,μ2,μ3)

)
≤ 3
(
1/n + Mθ/mθ−1 + inf

1≤j≤m

{
2j2L/n + 4Mθ/j

θ−1}).
Taking j = m = mn := �(n(θ − 1)Mθ/L)1/(θ+1)� and setting μn

k := μ̃
(n)
k,mn

, one
has

W⊕((μn
1,μ

n
2,μ

n
3
)
, (μ1,μ2,μ3)

)
≤ 3
(
1/n + Mθ/mθ−1

n + 2m2
nL/n + 4Mθ/mθ−1

n

) := εn,

where limn→∞ εn = 0. Numerical solutions to the LP problems for Lookback and
Asian options with λ = 2, corresponding to the above discretization, are presented
in Figure 3. In Figure 4, we exhibit the heat maps of the optimisers projected re-
spectively on (S1, S2) and (S2, S3) for n = 100. The two panes above are for the
Lookback option, where conditioning on S1, S2 takes two values, while condition-
ing on S2, S3 may take up to four values. The two panes below are for the Asian
option. It appears that (S1, S2) is concentrated on the boundary of a quadrilateral
polygon, and (S2, S3) is on the boundaries of two disjoint quadrilateral polygons.
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FIG. 3. Computations for Example 3.9. The two panes show the values Pεn (μn
1,μn

2,μn
3) for

10 ≤ n ≤ 200. The left pane stands for the Lookback option and the right one for the Asian option.

EXAMPLE 3.10. Recently, the geometry of MOT problems in general di-
mensions has been studied; see, for example, [16, 22, 34]. We provide here nu-
merical evidence in two dimensions which casts doubt on Conjecture 2 of [22].

FIG. 4. Computations for Example 3.9. The four panes exhibit the heat maps of the optimiser
projected on (S1, S2) and (S2, S3) for n = 100. The top two correspond to the Lookback option and
the bottom two correspond to the Asian option.
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Take N = d = 2 and c(x, y) := −
√

(x1 − y1)2 + (x2 − y2)2 for all x = (x1, x2),

y = (y1, y2) ∈ R
2. Given (μ, ν) ∈ P
, the conjecture is stated as follows: If μ

admits a density on R
2, then the support of P∗

x contains at most three points for
μ-a.e. x ∈ R

2, where P
∗ ∈ M(μ, ν) is the optimiser for P(μ, ν) and (P∗

x)x∈R2 is
the regular conditional disintegration of P∗ with respect to μ. Let μ(dx) = ρ(x) dx
and ν(dy) = σ(y) dy be identified by ρ(x) := 1[−1,1]2(x)/4 and

σ(y) := 2 − y1

4
1[1,2]×[−1,1](y) + 2 + y1

4
1[−2,−1]×[−1,1](y)

+ 2 − y2

4
1[−1,1]×[1,2](y)

+ 2 + y2

4
1[−1,1]×[−2,−1](y).

Note that μ, ν have bounded support and the deterministic discretization μ(n) and
ν(n) of Section 3.1 may be computed explicitly. We obtain μ(n)[{(i/n, j/n)}] =
1/4n2 for i, j = −n, . . . , n − 1 and, for i ′, j ′ = −2n, . . . ,2n − 1,

ν(n)[{(i ′/n, j ′/n
)}]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
4n + 2i ′ + 1

)
/8n3 if − 2n ≤ i ′ ≤ −n − 1,−n ≤ j ′ ≤ n − 1,(

4n + 2j ′ + 1
)
/8n3 if − n ≤ i ′ ≤ n − 1,−2n ≤ j ′ ≤ −n − 1,(

4n − 2j ′ − 1
)
/8n3 if − n ≤ i ′ ≤ n − 1, n ≤ j ′ ≤ 2n − 1,(

4n − 2i ′ − 1
)
/8n3 if n ≤ i ′ ≤ 2n − 1,−n ≤ j ′ ≤ n − 1,

0 otherwise.

With εn := 4/n ≥ W⊕((μ(n), ν(n)), (μ, ν)), we obtain the LP problem Pεn(μ
(n),

ν(n)). For comparison, we also consider an approximation based on the random
discretization. As in Example 3.8, we denote μ̂n, ν̂n the corresponding empiri-
cal measures and Pεm(μ̂n, ν̂n) the LP problem. As ν has a bounded support, with
C(3,2) defined in Proposition 3.7, one has

E
[
W⊕((μ̂n, ν̂n), (μ, ν)

)]≤ 2C(3,2)(1 + logn)n−1/2 =: χ(n).

Setting n̂m := �mr� with r = 4.1, one has
∑

m≥1 χ(n̂m)/εm < ∞ and
limm→∞ Pεm(μ̂n̂m, ν̂n̂m) = P(μ, ν) almost surely. Solving Pεn(μ

(n), ν(n)) and
Pεm(μ̂n̂m, ν̂n̂m), the values are plotted in Figure 5, where the convergence is il-
lustrated. Note that the complexity of Pεm(μ̂n̂m, ν̂n̂m) is of order m2r , which is
the same as in Example 3.8, however, the complexity of Pεn(μ

(n), ν(n)) is of or-
der n4 which is the square of that in the one-dimensional case. In Figure 6, we
draw the heat map of the optimisers projected on (S

(1)
1 , S

(2)
1 , S

(1)
2 ), where we re-

call that S1 = (S
(1)
1 , S

(2)
1 ) and S2 = (S

(1)
2 , S

(2)
2 ). As μ and ν are invariant by the
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FIG. 5. Computations for Example 3.10. The left pane shows the values of Pεn (μ(n), ν(n)) for

10 ≤ n ≤ 200 and the right pane shows the values Pεm(μ̂n̂m, ν̂n̂m) (dashed line) for 10 ≤ m ≤ 200.

map R
2 � (x, y) �→ (y, x) ∈ R

2, (S
(1)
1 , S

(2)
1 , S

(1)
2 ) and (S

(2)
1 , S

(1)
1 , S

(2)
2 ) are indis-

tinguishable in law under the optimiser. The areas highlighted in red correspond to
the values of S1 which are transferred into more than three points. These clearly
appear to have positive mass in disagreement with Conjecture 2 in [22].

EXAMPLE 3.11. To show the universality of our method, we consider in the
last example an MOT problem in R

3, that is, N = 2 and d = 3. Let c(x, y) :=
(
∑3

i=1 λi |xi − yi |−K)+ for all x = (x1, x2, x3), y = (y1, y2, y3) ∈R
3, where K >

0, λi ≥ 0 and
∑3

i=1 λi = 1. Here, c represents the payoff of a basket option written
on three forward start options with strike K . We construct (μ, ν) ∈ P
 in the
following way. Let ρ : R3 → [0,∞) be an L-Lipschitz density function with a
finite θ -moment for some θ > 1 and denote μ(dx) = ρ(x) dx. We define next ν as

FIG. 6. Computations for Example 3.10. The left pane shows the heat map of the optimiser pro-

jected on (S
(1)
1 , S

(2)
1 , S

(1)
2 ) for n = 100 and the right pane shows the heat map of the optimisers

projected on (S
(1)
1 , S

(2)
1 , S

(1)
2 ) for m = 100.
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FIG. 7. Computations for Example 3.11. The left pane shows the values Pεn (μn, νn) for

10 ≤ n ≤ 220 and the right pane shows the values Pεm(μ̂n̂m, ν̂n̂m) (dashed line) for 10 ≤ m ≤ 220.

the convolution of μ with a standard normal distribution, that is, ν(dy) = σ(y) dy,
where

σ(y) :=
∫
R3

ρ(y − x)
1

(2π)3/2 exp
(
−x2

1 + x2
2 + x2

3

2

)
dx.

Then it turns that σ is L-Lipschitz and ν admits finite θ -moment. We are now
under the same conditions as Example 3.9. Taking λ1 = 1/2, λ1 = 1/3, λ3 = 1/6,
K = 1 and

ρ(x) := 1[−1,1]3(x)
|x1| + |x2x3|

C(1 + x2
1 + 2x2

2 + 3x2
3)

where C :=
∫
[−1,1]3

|x1| + |x2x3|
1 + x2

1 + 2x2
2 + 3x2

3

dx,

one has L = 7/C and further∫
R3

|y|2σ(y) dy ≤ 3

C

(
9

2
+ 8√

2π

)
:= M2 and χ(n) := 2C(2,3)n−1/3,

where C(2,3) is given in Proposition 3.7. We carry out the same discretization
procedure, deterministic as in Example 3.9 and random as in Examples 3.8 and
3.10, and solve the corresponding LP problems. The resulting value functions are
displayed in Figure 7.

4. Proofs. Section 4 is devoted to the proofs of Theorems 2.2 and 2.5. Similar
to the usual MOT, the relaxed problem Pε(μ) admits a dual formulation given by

(17) Dε(μ) := inf
(H,ψ)∈Dε

[
N∑

k=1

∫
ψk dμk

]
,
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where H is the set of F-adapted processes H = (Hk)1≤k≤N−1 taking values in
R

d , that is, Hk ∈ L
∞(
k;Rd) for k = 1, . . . ,N − 1 and Dε ⊂ H × �N de-

notes the collection of pairs (H = (Hk)1≤k≤N−1,ψ = (ψk)1≤k≤N) such that for
(x1, . . . , xN) ∈ 
N

N−1∑
k=1

Hk(x1, . . . , xk) · (xk+1 − xk) − ε

N−1∑
k=1

‖Hk‖∞ +
N∑

k=1

ψk(xk)

≥ c(x1, . . . , xN).

(18)

Recall that Mε(μ) ⊂ P(μ) is convex and compact. An application of the min-
max theorem allows to establish the Kantorovich duality between (7) and (17) in
Theorem 4.1 below. The proof largely repeats the reasoning in [3] where the result
was shown for ε = 0, but it is nonetheless included in the Appendix.

THEOREM 4.1. Let μ ∈ P

ε . If c is upper semicontinuous with linear growth,

then there exists an optimiser P
∗ for Pε(μ), that is, P∗ ∈ Mε(μ) and Pε(μ) =

EP∗[c]. Moreover, there is no duality gap, that is, Pε(μ) = Dε(μ).

For ε = 0, the left-hand side of (18) stands for a super-replication of the payoff c

by trading dynamically in the underlying assets and statically in a range of Vanilla
options. More precisely, Hk(S1, . . . ,Sk) denotes the number of shares held by the
trader at time k. Vanilla options allow the holder to receive the cash flow equal to
ψk(Sk) at time k for k = 1, . . . ,N , and their market price is given as the integral
of ψk with respect to μk , where μ1, . . . ,μN represent the market-implied distri-
butions of S1, . . . ,SN . When d = 1, as observed by Breeden and Litzenberger [9],
μk are uniquely determined from the observed prices of call/put options for all
possible strikes. In consequence, the expression in brackets on the right-hand side
of (17) represents the cost of pursuing a super-hedging strategy (H,ψ) and D(μ)

is equal to the minimal super-hedging price of c.

4.1. Convergence of relaxed MOT problems. Theorem 2.2 shows that P(μ)

can be approximated by considering a sequence of relaxed MOT problems, which
provides the main insight into our proposed scheme for solving MOT problems.
The proof of Theorem 2.2 is divided into the proofs of Corollary 4.3, Proposi-
tion 4.4 and Lemma 4.5.

PROPOSITION 4.2. Let μ ∈ P

ε . Then for any ν ∈ PN , one has ν ∈ P


ε+r with
r := W⊕(μ, ν). If we assume in addition that c is Lipschitz with Lipschitz constant
Lip(c), then Pε(μ) ≤ Pε+r (ν) + Lip(c)r .

PROOF. Set rk := W(μk, νk) for k = 1, . . . ,N and one has by definition
r =∑N

k=1 rk . Take an arbitrary P ∈ Mε(μ). It follows from Theorem 1 of Sko-
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rokhod [36] that there exists an enlarged probability space (E,E,Q) which sup-
ports random variables Xk and Zk taking values in R

d for k = 1, . . . ,N such that

Q ◦ (X1, . . . ,XN)−1 = P,

Z1, . . . ,ZN and (X1, . . . ,XN) are mutually independent,

Q ◦ Z−1
k is a standard normal distribution on R

d, for k = 1, . . . ,N.

For k = 1, . . . ,N , let Pk be the optimal transport plan realising the Wasserstein
distance between μk and νk , that is, Pk ∈ P(μk, νk) and rk = EPk

[|S1 − S2|].
From Lemma A.1, there exist measurable functions fk : 
2 → R

d such that
Q ◦ (Xk,Yk)

−1 = Pk with Yk := fk(Xk,Zk), for k = 1, . . . ,N , which yields in
particular Q ◦ Y−1

k = νk . Furthermore, one has, for all h ∈ Cb(

k;Rd),

EQ
[
h(Y1, . . . , Yk) · (Yk+1 − Yk)

]
= EQ

[
h(Y1, . . . , Yk) · (Yk+1 − Xk+1)

]+EQ
[
h(Y1, . . . , Yk) · (Xk+1 − Xk)

]
+EQ

[
h(Y1, . . . , Yk) · (Xk − Yk)

]
≤ (rk + rk+1)‖h‖∞ +EQ

[
h
(
f1(X1,Z1), . . . , fk(Xk,Zk)

) · (Xk+1 − Xk)
]

= (rk + rk+1)‖h‖∞ +
∫

k

EP

[
h
(
f1(S1, x1), . . . , fk(Sk, xk)

) · (Sk+1 − Sk)
]

×Nk(dx1, . . . , dxk)

≤ (ε + r)‖h‖∞,

where Nk denotes the joint distribution of Z1, . . . ,Zk . Therefore, EP′ [h(S1, . . . ,

Sk) · (Sk+1 − Sk)] ≤ (ε + r)‖h‖∞ holds for all h ∈ Cb(

k;Rd), where P

′ := Q ◦
(Y1, . . . , YN)−1. In view of the monotone class theorem, this is equivalent to

EP′
[∣∣EP′ [Sk+1|Fk] − Sk

∣∣]≤ ε + r.

Hence, P′ ∈ Mε+r (ν) and ν ∈ P

ε+r . To conclude the proof, notice that

EP

[
c(S1, . . . ,SN)

]− Pε+r (ν)

≤ EP

[
c(S1, . . . ,SN)

]−EP′
[
c(S1, . . . ,SN)

]

= EQ
[
c(X1, . . . ,XN) − c(Y1, . . . , YN)

]≤ Lip(c)

N∑
k=1

EQ
[|Xk − Yk|]

= Lip(c)r,

which yields Pε(μ) ≤ Pε+r (ν) + Lip(c)r since P ∈ Mε(μ) is arbitrary. �

In consequence, the corollary below follows immediately.
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COROLLARY 4.3. Let (μn)n≥1 and (εn)n≥1 be the sequences in Theorem 2.2.
Then

P(μ) ≤ Pεn

(
μn)+ Lip(c)εn ≤ P2εn(μ) + 2Lip(c)εn for all n ≥ 1.

PROOF. Taking ε = 0, ν = μn and r = rn, one has P(μ) ≤ Prn(μ
n) +

Lip(c)rn ≤ Pεn(μ
n) + Lip(c)εn, where Prn(μ

n) ≤ Pεn(μ
n) follows by definition.

The second inequality follows with the same arguments but interchanging μ and
μn. �

To complete the proof of Theorem 2.2, it remains to show P2εn(μ) → P(μ) as
n → ∞.

PROPOSITION 4.4. Let c be Lipschitz.

(i) For every fixed ε ≥ 0, the map P

ε � μ �→ Pε(μ) ∈ R is upper semicontin-

uous under W⊕.
(ii) For every fixed μ ∈ P
, the map [0,∞) � ε �→ Pε(μ) ∈ R is nondecreas-

ing, continuous and concave.

Before proving Proposition 4.4, let us remark that, together with Corollary 4.3
and Lemma 4.5, it yields an instant proof of our main result.

PROOF OF THEOREM 2.2. (i) We have Mεn(μ
n) �= ∅ from Proposition 4.2.

Corollary 4.3 yields −Lip(c)εn ≤ Pεn(μ
n)−P(μ) ≤ (P2εn(μ)−P(μ))+Lip(c)εn

for all n ≥ 1, and Proposition 4.4 gives limn→∞ Pεn(μ
n) = P(μ).

(ii) By Theorem 4.1, we know the existence of optimiser Pn for all n ≥ 1. As
Pn ∈ Mεn(μ

n) ⊂ P(μn), it follows from Lemma 4.5 that, (Pn)n≥1 is tight and
every limit point must belong to P(μ). Take an arbitrary convergent subsequence
(Pnk

)k≥1 with limit P, then P ∈ P(μ). Repeating the proof of Proposition 4.4(i),
one deduces that P ∈ M(μ) and P is thus an optimiser for P(μ). If P(μ) has
a unique optimiser, then every convergent subsequence of (Pn)n≥1 has the same
limit, which shows that (Pn)n≥1 converges weakly as P(
N) is Polish. �

PROOF OF PROPOSITION 4.4. (i) We establish a slightly stronger property.
Take two sequences (εn)n≥1 ⊂ [0,∞) and (μn)n≥1 ⊂P


εn
with limits ε and μ. Let

Pn ∈ Mεn(μ
n) satisfy lim supn→∞ Pεn(μ

n) = lim supn→∞EPn
[c(S1, . . . ,SN)].

Up to passing to a subsequence, we may assume that lim supn→∞EPn
[c] =

limn→∞EPn
[c], and further by Lemma 4.5 that (Pn)n≥1 converges in Wasserstein

sense to some limit P ∈ P(μ). For every k = 1, . . . ,N − 1 and h ∈ Cb(

k;Rd),

one has EPn
[h(S1, . . . ,Sk) · (Sk+1 − Sk)] ≤ εn‖h‖∞ for all n ≥ 1, and hence for

the limiting measures, which implies P ∈ Mε(μ). Similarly, Lipschitz continuity
of c gives

lim sup
n→∞

Pεn

(
μn)= lim

n→∞EPn

[
c(S1, . . . ,SN)

]= EP

[
c(S1, . . . ,SN)

]≤ Pε(μ).
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(ii) We first prove the concavity. Given ε, ε′ ≥ 0 and α ∈ [0,1], it remains to
show (1 − α)Pε(μ) + αPε′(μ) ≤ Pεα (μ), where εα := (1 − α)ε + αε′. This in-
deed follows from the fact that (1 − α)P+ αP′ ∈ Mεα (μ) for all P ∈ Mε(μ) and
P

′ ∈Mε′(μ). In particular, the map restricted to (0,∞) is continuous. Finally, the
reasoning in (i) above, with μn = μ and εn → 0, gives limn→∞ Pεn(μ) = P(μ)

which combined with the obvious reverse inequality yields the right continuity at
ε = 0. �

LEMMA 4.5. Let (μn)n≥1 ⊂ PN be a sequence converging to μ ∈ PN under
W⊕, and Pn ∈ P(μn) for all n ≥ 1. Then there exists a subsequence (Pnk

)k≥1
converging in Wasserstein metric on P(
N) and its limit P belongs to P(μ).

PROOF. Taking the compact ER := {(x1, . . . , xN) ∈ 
N : |xk| ≤ R, for k =
1, . . . ,N}. One has

Pn

[
Ec

R

]≤ N∑
k=1

∫
Rd

1[R,∞)

(|x|)μn
k(dx) ≤ 1

R
sup
n≥1

{
N∑

k=1

∫
Rd

|x|μn
k(dx)

}
.

Further, the convergence under W⊕ implies that

lim
n→∞

∫
Rd

|x|μn
k(dx) =

∫
Rd

|x|μk(dx) for k = 1, . . . ,N,

which yields the tightness of (Pn)n≥1 since limR→∞{supn≥1 Pn[Ec
R]} = 0. This

implies there exists a weakly convergent subsequence, which we still denote
(Pn)n≥1 and let P be its limit. Notice that the projection map Sk is continuous,
then μn

k = Pn ◦ S−1
k also converges weakly to P ◦ S−1

k for k = 1, . . . ,N , which
shows P ∈ P(μ). Finally, the convergence of Pn to P in the Wasserstein sense
follows from the convergence of first moment. �

4.2. Convergence rate analysis: N = 2 and d = 1. This section concerns the
estimation of the convergence rate for the one-step model in dimension one. The
duality in Theorem 4.1 plays an important role and is used repeatedly. To the best
of our knowledge, the error bound in Theorem 2.5 is the first of its kind in the lit-
erature. Fix a pair (μ, ν) ∈ P
. Throughout Section 4.2, we stress the dependence
on c and write Pc

ε(μ, ν) ≡ Pε(μ, ν), Dc
ε ≡ Dε and Dc

ε(μ, ν) ≡ Dε(μ, ν). Clearly,
for any c1 and c2 : R2 → R, it holds that Pc1+c2

ε (μ, ν) ≤ Pc1
ε (μ, ν) + Pc2

ε (μ, ν). In
view of Corollary 4.3, one has∣∣Pc

εn

(
μn, νn)− Pc(μ, ν)

∣∣≤ (Pc
2εn

(μ, ν) − Pc(μ, ν)
)+ Lip(c)εn,

where εn ≥ W⊕((μn, νn), (μ, ν)) for all n ≥ 1. For the purpose of estimating the
difference |Pc

εn
(μn, νn) − Pc(μ, ν)|, we need to understand the asymptotic behav-

ior of Pc
ε(μ, ν) − Pc(μ, ν) as ε goes to 0, which is shown in the proof of Theo-

rem 2.5.
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PROOF OF THEOREM 2.5. Set L := max(Lip(c), sup(x,y)∈R2 |∂2
yyc(x, y)|) <

∞ and introduce cL(x, y) := c(x, y) − Ly2/2. Then, for each x ∈ R, the map
y �→ cL(x, y) is concave. Further, let us truncate cL by an affine function with
respect to y. Namely, define, for every R ≥ 0,

cR
L(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

cL(x,−R) + (y + R)∂ycL(x,−R) if y ≤ −R,

cL(x, y) if −R < y ≤ R,

cL(x,R) + (y − R)∂ycL(x,R) otherwise.

It follows by a straightforward computation that, y �→ cR
L(x, y) is concave and

Lip(cR
L) ≤ LR := L(R + 1). In view of Remark 2.6 in Beiglböck et al. [5], there

exists an optimiser (H ∗, ϕ∗,ψ∗) ∈ DcR
L for the dual problem DcR

L (μ, ν) such that
‖H ∗‖∞ ≤ 18LR and ϕ∗, ψ∗ ∈ �19LR

, that is, H ∗(x)(y − x) + ϕ∗(x) + ψ∗(y) ≥
cR
L(x, y) for all (x, y) ∈ R

2 and

DcR
L (μ, ν) =

∫
ϕ∗ dμ +

∫
ψ∗ dν.

For each ε ≥ 0, it follows from the duality P
cR
L

ε (μ, ν) = D
cR
L

ε (μ, ν) that

∣∣PcR
L

ε (μ, ν) − PcR
L (μ, ν)

∣∣= ∣∣DcR
L

ε (μ, ν) − DcR
L (μ, ν)

∣∣
=
∣∣∣∣DcR

L
ε (μ, ν) −

[∫
ϕ∗ dμ +

∫
ψ∗ dν

]∣∣∣∣
≤
∣∣∣∣
[∫ (

ϕ∗ + ε
∥∥H ∗∥∥∞)dμ +

∫
ψ∗ dν

]

−
[∫

ϕ∗ dμ +
∫

ψ∗ dν

]∣∣∣∣
= ε

∫ ∥∥H ∗∥∥∞ dμ ≤ 18εLR,

where the third inequality holds as (H ∗, ϕ∗ + ε‖H ∗‖∞,ψ∗) ∈ DcR
L

ε . In addition,
one has by construction |cL(x, y) − cR

L(x, y)| ≤ 1(−∞,−R)∪(R,∞)(y)L(|y| − R)2,
which implies that

∣∣PcR
L

ε (μ, ν) − PcL
ε (μ, ν)

∣∣≤ L

∫
(−∞,−R)∪(R,∞)

(|y| − R
)2

ν(dy).

Therefore, ∣∣Pc
ε(μ, ν) − Pc(μ, ν)

∣∣
= ∣∣PcL

ε (μ, ν) − PcL(μ, ν)
∣∣

≤ ∣∣PcL
ε (μ, ν) − P

cR
L

ε (μ, ν)
∣∣+ ∣∣PcR

L
ε (μ, ν) − PcR

L (μ, ν)
∣∣
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+ ∣∣PcR
L (μ, ν) − PcL(μ, ν)

∣∣
≤ 18εL(R + 1) + 2L

∫
(−∞,−R)∪(R,∞)

(|y| − R
)2

ν(dy),

which fulfills the proof by setting ε = 2εn. �

REMARK 4.6. If ν is supported on some closed subset E ⊆ R, then Theorem
2.5 still holds by assuming that c is Lipschitz on E2 and sup(x,y)∈E2 |∂2

yyc(x, y)| <
∞. In addition, it is worth mentioning that the above analysis can be extended
to more general functions c. Let c be continuous and with linear growth, that is,
|c(x, y)| ≤ L(1 + |x| + |y|) for some L > 0. Then for every R ≥ 1, there exists a
function cR ∈ C2(R2) such that sup(x,y)∈BR

|c(x, y)−cR(x, y)| ≤ 1/R, cR(x, y) =
0 for (x, y) /∈ BR+1 and ‖cR‖∞ ≤ sup(x,y)∈BR

|c(x, y)| ≤ L(1 + 2R). Further, one
has |c(x, y) − cR(x, y)| ≤ 1/R + 8L(|x|2 + |y|2)/R, which implies that

∣∣Pc
ε(μ, ν) − PcR

ε (μ, ν)
∣∣≤ 1/R + 8L

(∫
R

|x|2μ(dx) +
∫
R

|y|2ν(dy)

)/
R

=: L′/R.

Hence, we obtain using the same reasoning |Pc
ε(μ, ν) − Pc(μ, ν)| ≤ |PcR

ε (μ, ν) −
PcR (μ, ν)| + 2L′/R. Then cR satisfies the conditions of Theorem 2.5. For every
R ≥ 1, using Theorem 2.5 we deduce a bound on the difference |PcR

ε (μ, ν) −
PcR (μ, ν)|. The result can then be optimised over all R ≥ 1.

Following the proof of Theorem 2.5, we provide below a stability result for the
map P
 � (μ, ν) �→ P(μ, ν) ∈ R.

PROPOSITION 4.7. Let P

2 ⊂ P
 be the subset of (μ, ν) with ν having a finite

second moment. If c satisfies the conditions of Theorem 2.5, then there exists C > 0
such that

∣∣Pc(μ′, ν′)− Pc(μ, ν)
∣∣≤ C inf

R>0
λ̃(R) + L

2

∣∣∣∣
∫
R

y2(ν′(dy) − ν(dy)
)∣∣∣∣

for all (μ, ν),
(
μ′, ν′) ∈P


2 ,

where λ̃ : (0,∞) →R is defined by

λ̃(R) := (R + 1)W⊕((μ′, ν′), (μ, ν)
)

+
∫
(−∞,−R)∪(R,∞)

(|y| − R
)2(

ν′(dy) + ν(dy)
)
.

For any sequence ((μn, νn))n≥1 ⊂ P

2 satisfying limn→∞W⊕((μn, νn), (μ, ν)) =

0, one has limn→∞ Pc(μn, νn) = Pc(μ, ν) if limn→∞
∫

y2νn(dy) = ∫ y2ν(dy).
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PROOF. Similar to Theorem 2.5, the key is also the duality. First, one has

∣∣Pc(μ′, ν′)− Pc(μ, ν)
∣∣≤ ∣∣PcL

(
μ′, ν′)− PcL(μ, ν)

∣∣+ L

2

∣∣∣∣
∫
R

y2(ν′(dy) − ν(dy)
)∣∣∣∣

and |PcL(μ′, ν′) − PcL(μ, ν)| ≤ |PcL(μ′, ν′) − PcR
L (μ′, ν′)| + |PcR

L (μ′, ν′) −
PcR

L (μ, ν)| + |PcR
L (μ, ν) − PcL(μ, ν)|, where cL, cR

L :R2 →R are defined as same
as in the proof of Theorem 2.5. Repeating the arguments in the proof of Theo-
rem 2.5, it holds that

∣∣PcL
(
μ′, ν′)− PcR

L
(
μ′, ν′)∣∣≤ L

∫
(−∞,−R)∪(R,∞)

(|y| − R
)2

ν′(dy),

∣∣PcL(μ, ν) − PcR
L (μ, ν)

∣∣≤ L

∫
(−∞,−R)∪(R,∞)

(|y| − R
)2

ν(dy).

It remains to estimate |PcR
L (μ′, ν′)−PcR

L (μ, ν)|. Recall that, in view of Remark 2.6
of [5], DcR

L (μ′, ν′) is attained by (H ′, ϕ′,ψ ′) ∈ DcR
L , where ϕ′, ψ ′ ∈ �19LR

with
LR = L(R + 1). Therefore,

PcR
L (μ, ν) − PcR

L
(
μ′, ν′)

= DcR
L (μ, ν) − DcR

L
(
μ′, ν′)

≤
[∫

ϕ′ dμ +
∫

ψ ′ dν

]
−
[∫

ϕ′ dμ′ +
∫

ψ ′ dν′
]

=
[∫

ϕ′ dμ −
∫

ϕ′ dμ′
]

+
[∫

ψ ′ dν −
∫

ψ ′ dν′
]

≤ 19LRW⊕((μ′, ν′), (μ, ν)
)
.

Interchanging (μ, ν) and (μ′, ν′) and using again the above reasoning, one
has |PcR

L (μ′, ν′) − PcR
L (μ, ν)| ≤ 19LRW⊕((μ′, ν′), (μ, ν)), which concludes the

proof. �

We now consider a specific discretization introduced by Dolinsky and Soner
[18]. We define two sequences of measures supported on (k/n)k∈Z as fol-
lows:

μn[{k/n}]= ∫
[(k−1)/n,(k+1)/n)

(
1 − |nx − k|)μ(dx),

νn[{k/n}]= ∫
[(k−1)/n,(k+1)/n)

(
1 − |ny − k|)ν(dy).

(19)

In the potential theoretic terms of Chacon [11], μn may be defined as the unique
measure supported on (k/n)k∈Z with its potential function agreeing with that of μ
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in those points, that is,∫
R

|k/n − x|μ(dx) =
∫
R

|k/n − x|μn(dx) for all k ∈ Z.

Then we have the following result.

PROPOSITION 4.8.

(i) With the notation of (19), one has (μn, νn), (μ,μn), (ν, νn) ∈ P
 and
W⊕((μn, νn), (μ, ν)) ≤ 2/n for all n ≥ 1.

(ii) Let the conditions of Theorem 2.5 hold. Then there exists C > 0 such that
|Pc(μn, νn) − Pc(μ, ν)| ≤ C infR>0 λ̃n(R), where λ̃n : (0,∞) →R is given by

λ̃n(R) := R + 1

n
+
∫
(−∞,−R)∪(R,∞)

(|y| − R
)2

ν(dy).

PROOF. (i) For any continuous f :R →R, define f (n) :R→R by

f (n)(x) := (1 + �nx� − nx
)
f
(�nx�/n

)+ (nx − �nx�)f ((1 + �nx�)/n
)
.

Then it follows from a straightforward computation that
∫

f dμn = ∫ f (n) dμ and∫
f dνn = ∫ f (n) dν. Take f ≡ 1, then f (n) ≡ 1, and further μn and νn are well-

defined probability measures. Moreover, taking f (x) = |x|, it is clear that f (n) =
f , and thus

∫
f dμn = ∫ f (n) dμ < ∞ and

∫
f dνn = ∫ f (n) dν < ∞. To prove

(μn, νn), (μ,μn), (ν, νn) ∈ P
, it suffices to test for f (x) = (x − K)+. It follows
easily that f (n) is convex and f (n) ≥ f by computation. This implies that (μn, νn),
(μ,μn), (ν, νn) ∈ P
. To end the proof, we notice that | ∫ f dμn − ∫ f dμ| ≤∫ |f (n) − f |dμ ≤ 1/n, which yields W(μn,μ) ≤ 1/n by (4).

(ii) It suffices to apply Proposition 4.7 with μ′ := μn and ν′ := νn. Using the
construction of νn, one has∫

(−∞,−R)∪(R,∞)

(|y| − R
)2

νn(dy) ≤
∫
(−∞,−R)∪(R,∞)

(|y| − R
)2

ν(dy) + 1

n2 ,

∣∣∣∣
∫
R

y2(νn(dy) − ν(dy)
)∣∣∣∣≤ 1

4n2 ,

which concludes the proof. �

5. Summary and possible extensions. We believe that our paper offers an
important and pioneering contribution to computational methods for MOT prob-
lems. Our first main result, Theorem 2.2, establishes an approximation result of a
general MOT problem P(μ) via LP problems by discretising the marginal distri-
butions and relaxing the martingale condition. Further, we introduce two kinds of
approximations: a deterministic one, μn, and a stochastic one, μ̂n. We investigate
W⊕(μn,μ) and E[W⊕(μ̂n

,μ)] such that the computation of suitable LP problems
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Pεn(μ
n) and Pεm(μn̂m) can be carried out. In addition, we provide some numerical

examples for illustration.
Our second main result, Theorem 2.5, provides an estimation on the conver-

gence rate for the one-dimensional case. This result, in particular, allows us to
deduce a complete scheme for calculating P(μ, ν) to a given precision.

As a relatively immediate, but practically relevant, extension of our setup, for
the computation of P(�μ) defined in (9), Theorem 2.2 can be easily extended to
show limn→∞ Pεn(�μn) = P(�μ), where the sequence (εn)n≥1 converges to zero and
satisfies

εn ≥
N∑

k=1

d∑
i=1

W
(
μn

k,i,μk,i

)
for all n ≥ 1.

Further investigation of this setup, which is of practical relevance, is an ongoing
work.

Last, but not least, we point out that solving efficiently the LP problems Pεn(μ
n)

and Pεm(μn̂m) is also an interesting avenue of research and may attract the attention
from practitioners. We notice that Pεn(μ

n) and Pεm(μn̂m) are in fact LP problems
with a particular structure, that is, the constraints are given by a sparse matrix, and
some existing algorithms can be extended to their setup:

• If N = 2 and d = 1, the iterative Bregman projection in [7] can be applied to
solve Pεn(μ

n, νn) with an additional entropic regularization.
• If N = 2, the stochastic averaged gradient approach (see, e.g., Genevay et al.

[21]) may deal with Pεn(μ
n, νn) = Dεn(μ

n, νn) by the duality.

We believe that extending the above algorithms to multiple steps and higher
dimensions is an important and challenging problem.

APPENDIX: SUPPLEMENTARY PROOFS

PROOF OF THEOREM 4.1. The existence of P
∗ is a consequence the com-

pactness of Mε(μ). As for the duality, we prove a slightly stronger result. Let
H ⊂ H be the subset of H = (Hk)1≤k≤N−1 such that Hk ∈ Cb(


k;Rd) for
k = 1, . . . ,N − 1. Define the minimization problem:

Dε(μ) := inf
(H,ψ)∈Dε

[
N∑

k=1

∫
Rd

ψk(x)μk(dx)

]
where Dε := Dε ∩ (H× �N ).

Then, by definition, Pε(μ) ≤ Dε(μ) ≤ Dε(μ). Define the function � : P(μ) ×
H →R by

�(P,H) := EP

[
c(S1, . . . ,SN) −

N−1∑
k=1

Hk(S1, . . . ,Sk) · (Sk+1 − Sk)

]
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+ ε

N−1∑
k=1

‖Hk‖∞.

Since �(·,H) is continuous and concave for all H ∈ H and �(P, ·) is continu-
ous and convex for all P ∈ P(μ), then it holds that supP∈P(μ) infH∈H �(P,H) =
infH∈H supP∈P(μ) �(P,H) in view of the min-max theorem as P(μ) is convex
and compact. Hence,

Dε(μ) = inf
H∈H

inf
ψ∈�N :∑N

k=1 ψ(xk)≥c(x1,...,xN)−∑N−1
k=1 (Hk(x1,...xk)·(xk+1−xk)−ε‖Hk‖∞)

×
N∑

k=1

∫
Rd

ψk(x)μk(dx)

= inf
H∈H

sup
P∈P(μ)

�(P,H) = sup
P∈P(μ)

inf
H∈H

�(P,H)

= sup
P∈Mε(μ)

inf
H∈H

�(P,H) ≤ sup
P∈Mε(μ)

EP

[
c(S1, . . . ,SN)

]= Pε(μ),

where the second equality follows from the classical duality of Kantorovich, and
the fourth equality is by the fact infH∈H �(P,H) = −∞ once P /∈ Mε(μ). �

PROOF OF PROPOSITION 3.7. As W⊕(μ̂n
,μ) =∑N

k=1 W(μ̂n
k ,μk) with every

μk satisfying Assumption 3.2, it suffices to deal with W(μ̂n
1,μ1). For notational

simplicity, we write μ̂n ≡ μ̂n
1 and μ ≡ μ1. In the rest of the proof, we refer to [19].

Combining Lemmas 5 and 6 together with the proof of Theorem 1, it holds that

E
[
W
(
μ̂n,μ

)]≤ 24(Mθ + 1)d(1−θ)/22θ
∑
i≥0

2i
∑
j≥0

2−j min
(
εi,2dj/2(εi/n)1/2)

with εi := 2−θi .

For every ε ∈ (0,1), it follows by a straightforward computation that

∑
j≥0

2−j min
(
ε,2dj/2(ε/n)1/2)≤ 9

2 log 2

⎧⎪⎪⎨
⎪⎪⎩

min
(
ε, (ε/n)1/2) if d = 1,

min
(
ε, (ε/n)1/2 log(2 + εn)

)
if d = 2,

min
(
ε, ε(εn)−1/d) if d > 2.

Next, we substitute ε by εi and distinguish different d . If d = 1, then

∑
i≥0

2i min
(
εi, (εi/n)1/2)≤

⎧⎪⎪⎨
⎪⎪⎩

2
√

2n1/θ−1/
((

21−θ/2 − 1
)(

1 − 21−θ )) if θ < 2,

4(1 + logn)n−1/2 if θ = 2,

n−1/2/
(
1 − 21−θ/2) if θ > 2.

If d = 2, then ∑
i≥0

2i min
(
εi, (εi/n)1/2 log(2 + εin)

)
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≤

⎧⎪⎪⎨
⎪⎪⎩

7n1/θ−1/
(
21−θ/2 − 1

)2 if θ < 2,

6
(
1 + (logn)2)n−1/2 if θ = 2,

(1 + logn)n−1/2/
(
1 − 21−θ/2) if θ > 2.

If d > 2, then∑
i≥0

2i min
(
εi, εi(εin)−1/d)

≤

⎧⎪⎪⎨
⎪⎪⎩

3n1/θ−1/
((

21−θ(1−1/d) − 1
)(

1 − 21−θ )) if θ < d/(d − 1),

6(1 + logn)n−1/d if θ = d/(d − 1),

n−1/d/
(
1 − 21−θ(1−1/d)) if θ > d/(d − 1).

The proof is completed with C(θ, d) being the product of the corresponding coef-
ficients. �

LEMMA A.1. With the same conditions and notation of Proposition 4.2, there
exist measurable functions f1, . . . , fN : 
2 → R

d such that Q ◦ (Xk,Yk)
−1 = Pk ,

where Yk := fk(Xk,Zk) for k = 1, . . . ,N .

PROOF. Without loss of generality, we only prove for k = 1. Further, we
drop the subscript without any danger of confusion, that is, X ≡ X1, Z ≡ Z1,
μ ≡ μ1, P ≡ P1, etc. Disintegrating with respect to μ, one has P(dx, dy) =
μ(dx) ⊗ λx(dy), where (λx(dy))x∈Rd denotes the regular conditional probability
distribution (r.c.p.d.). Hence, the above claim is equivalent to the existence of a
measurable function f : 
2 →R

d satisfying, for μ-a.e. x ∈ R
d ,

Q
[
f (x,Z) ∈ A|X = x

]= λx(A) for all A ∈ B
(
R

d),
or namely, f (x, ·) transfers the law of Z to λx for μ-a.e. x ∈ R

d . We first prove this
claim for the case of d = 1, that is, x = x and then conclude for the general case.

(i) Let F and Gx be respectively the cumulative distribution functions of Z and
λx , and define the right-continuous inverse by G−1

x (t) := inf{y ∈ R : Gx(y) > t}.
Define further f : R2 → R by f (x, y) := G−1

x ◦ F(y), then f is measurable by
the definition of r.c.p.d. Moreover, it follows by Villani [38], pages 19–20, that for
μ-a.e. x ∈ R one has Q[Y ∈ A|X = x] = λx(A) for all A ∈ B(R), which concludes
the proof.

(ii) Now let us treat the general case. Recall that x = (x1, . . . , xd), y =
(y1, . . . , yd) and z = (z1, . . . , zd). We proceed as follows.

Step 1: Take the marginal distributions on the first coordinate for Z and λx,
denoted by F1(z1) dz1 and λ1

x(dy1), where we note that Z admits a density function
on R

d . Then repeat the the procedure of (i), and construct the measurable map
f1(x, ·) which may transfers the law F1(z1) dz1 to the other one λ1

x(dy1).
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Step 2: Next take the marginals on the first two coordinates for Z and λx,
F2(z1, z2) dz1 dz2 and λ2

x(dy1, dy2), and disintegrate them with respect to the first
one. This yields

F2(z1, z2) dz1 dz2 := F1(z1) dz1 ⊗ Fz1,2(z2) dz2 and

λ2
x(dy1, dy2) := λ1

x(dy1) ⊗ λ2
x,y1

(dy2).

For each z1, set y1 = f1(x, z1), and define f1,2(x, z1, ·) according to (i), which
transfers thus Fz1,2(z2) dz2 to λ2

x,f1(x,z1)
(dy2).

Step 3: We repeat the construction of Step 2 by adding coordinates one after the
other and defining f1,2,3(x, z1, z2, ·), etc. After N steps, this produces the required
map f (x, z) which transports the law of Z to λx. �
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