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LOCAL LAW AND TRACY–WIDOM LIMIT FOR SPARSE SAMPLE
COVARIANCE MATRICES

BY JONG YUN HWANG∗,1, JI OON LEE∗,1 AND KEVIN SCHNELLI†,2

KAIST∗ and KTH Royal Institute of Technology†

We consider spectral properties of sparse sample covariance matrices,
which includes biadjacency matrices of the bipartite Erdős–Rényi graph
model. We prove a local law for the eigenvalue density up to the upper spec-
tral edge. Under a suitable condition on the sparsity, we also prove that the
limiting distribution of the rescaled, shifted extremal eigenvalues is given by
the GOE Tracy–Widom law with an explicit formula on the deterministic shift
of the spectral edge. For the biadjacency matrix of an Erdős–Rényi graph with
two vertex sets of comparable sizes M and N , this establishes Tracy–Widom
fluctuations of the second largest eigenvalue when the connection probability
p is much larger than N−2/3 with a deterministic shift of order (Np)−1.

1. Introduction. Sample covariance matrices form one fundamental class of
random matrices. They are of great importance in high-dimensional data and multi-
variate statistics. Spectral properties of sample covariance matrices are particularly
interesting as they are crucial in various procedures in real data analysis such as
principal component analysis (PCA).

It is well known that the limiting spectral distribution of a sample covariance
matrix is governed by the Marchenko–Pastur law when the sample size is compa-
rable to the dimension [28]. In this case, the fluctuations of the largest eigenvalue of
the sample covariance matrix follow the Tracy–Widom laws. This was first proved
for the complex Wishart ensemble by Johansson [19] and for the real Wishart
ensemble by Johnstone [20]. For sample covariance matrices with non-Gaussian
entries but identity population covariance, the Tracy–Widom limit for the largest
eigenvalue was established by Pillai and Yin [31], and a necessary and sufficient
condition on the entries’ distribution for the limit to hold was obtained by Ding
and Yang [9]. In the general nonnull case, where the general population matrix is
not a multiple of the identity matrix, the Tracy–Widom limit was identified in [10,
24] and the edge universality was proved in [3, 21].
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The Tracy–Widom laws are also the answer to the question about the fluctu-
ations of the largest eigenvalues of various random matrix models, including the
adjacency matrix of random graphs. The simplest case is the Erdős–Rényi graph,
where any pair of vertices are connected with probability p, independently from
other pairs. For the adjacency matrices of the Erdős–Rényi graph, while the largest
eigenvalue is macroscopically separated from the bulk of the spectrum, the second
largest eigenvalue exhibits Tracy–Widom fluctuations as long as the connection
probability p is independent of the size N . We remark that the fluctuations of
the second largest eigenvalue encode key properties of the random graph in many
applications, including hypothesis testing for community detection in stochastic
block model [5, 26].

The study of the behavior of the second largest eigenvalue becomes significantly
harder when p ≡ p(N) scales as N varies. If p → 0 as N → ∞, we say that
the graph (or the corresponding adjacency matrix) is sparse. The analysis for the
sparse case was only recently done by Erdős, Knowles, Yau and Yin [11, 12] and
was further extended in [24] and [17]. The main idea in a deeper analysis of the
local eigenvalue density, especially for sparse matrices, is the local semicircle law.
It is the further local refinement of Wigner’s semicircle law that governs the global
behavior of the eigenvalue density of Wigner matrices.

If the underlying random graph is directed, we lose the symmetry of the adja-
cency matrix, and we are led to consider the singular values of the matrices instead
of the eigenvalues. Related to such a model is a bipartite random graph, where
the vertices can be decomposed into two groups within which vertices are not
connected to each other. In these cases, the adjacency matrices can naturally be
identified with sample covariance matrices, and when the connection probability
p tends to zero as the size of matrix grows, we are led to consider sparse sample
covariance matrices.

Another motivation for our research on the largest eigenvalues of sample co-
variance matrices stems from PCA in statistics and signal processing. In practice,
one of the most significant challenges in using PCA is to determine the number of
components, that is, the rank of the signal matrix in a noisy matrix. For the null
hypothesis testing, which tests whether a signal is present, the largest eigenvalues
can be exploited for the test statistics as discussed in [4, 29]. The idea can be fur-
ther extended to the estimation of the true rank by a sequential application of the
strategy in [22] or by a method based on the conditional singular value test [8]. We
refer to [3] for more applications of the largest eigenvalues in high-dimensional
statistical inference.

In this paper, we study the spectral properties of sparse sample covariance ma-
trices, including the local law for p � N−1 and the behavior of the largest eigen-
values. We prove that the limiting distribution of the shifted, rescaled largest eigen-
value is given by GOE Tracy–Widom distribution if p � N−2/3, which was also
assumed in [25]. The shift is deterministic, and it can be precisely computed in
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terms of N and p. As in [25], while the shift for the case p � N−1/3 is negligible,
it is larger than the Tracy–Widom fluctuations if p � N−1/3.

Our analysis is based on a refined local Marchenko–Pastur law that provides es-
timates for the local eigenvalue density down to the optimal scale at the upper edge
of the spectrum. Following the strategy in [25], we introduce a polynomial P that
describes a deterministic correction to Marcenko–Pastur law. These corrections
provide the crucial information about the precise location of the largest eigenvalue.
Adapting the approach in [25], we obtain the polynomial by using resolvent ex-
pansions instead of the Schur complement formula, but due to the structure of the
sample covariance matrix, we employ a linearization trick before applying resol-
vent expansion methods. Technically, we control high moments of |P | by a recur-
sive moment estimate, where the bound utilizes the lower moments of |P |. After
establishing the local Marchenko–Pastur law, we use the Green function compari-
son method to prove the Tracy–Widom limit of the largest eigenvalue. In the Green
function comparison, instead of applying the Lindberg swapping trick with match-
ing moments, we use a continuous flow that interpolates the given sparse sample
covariance matrix and a “nicely-behaving” sample covariance matrix, which is a
Wishart ensemble. The continuous interpolation has been successfully used in the
context of edge universality in various random matrix models; we refer to Sec-
tion 2.4 for further details. Another technical difficulty stems from the lack of
symmetry in Marchenko–Pastur law. Compared to the Wigner case in [25], the
polynomial P has a more complicated form, and it makes the analysis for the lim-
iting distribution more involved; see Section 3 for technical details.

The sparse sample covariance matrices we consider in this work is of the form
X†X, which means that the population covariance matrix is the identity. A natu-
ral extension of the model is of the form X†�X, where � is a general positive
semidefinite matrix. We believe that our method can be adapted to the general
model to prove the improved local law at the edge and also the Tracy–Widom
limit of the largest eigenvalue. It will be an interesting result as the shift of the
largest eigenvalue of X†�X may depend on the eigenvalues of �. However, the
proof will be more involved for the general model, especially for nondiagonal �,
and we will hence focus only on the null case of the form X†X.

For sparse matrices of Wigner-type, the result in [25] was extended by Huang,
Landon and Yau [17] to cover the regime N−7/9 � p ≤ N−2/3. In that case they
proved that the shifted, rescaled largest eigenvalue exhibits a phase transition from
Tracy–Widom to Gaussian fluctuations at p ∼ N−2/3. We expect an analogous
transition to occur for sparse sample covariance matrices, but we do not pursue
this direction in the current article.

This paper is organized as follows: In Section 2, we define the model and intro-
duce the main results with the outline of the strategy for the proof. In Section 3,
we prove some properties of the deterministic refinement of the Marchenko–Pastur
law. In Section 4, we prove the local law based on the key technical result on the
recursive moment estimates. In Section 5, we prove the Tracy–Widom limit of the
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largest eigenvalue via the Green function comparison method. Some technical re-
sults are adaptions from [25] and are therefore postponed to the Supplementary
Material [18].

REMARK 1.1 (Notational remark 1). We use the symbols O(·) and o(·) for
the standard big-O and little-o notation. The notation O , o, �, � refer to the limit
N,M → ∞ with N/M = d fixed unless otherwise stated. The notation a � b

means a = o(b). We use c and C to denote positive constants that do not depend
on N , usually with the convention c ≤ C. Their values may change from line to
line. We write a ∼ b if there is C ≥ 1 such that C−1|b| ≤ |a| ≤ C|b|.

2. The model and main results.

2.1. Motivating examples. Before presenting our model in detail and stating
our main results, we outline a few motivating examples for the present work.

2.1.1. Signal detection with missing values. Consider an M-dimensional
signal-plus-noise vector

y := As + z,(2.1)

where s is an N -dimensional signal vector, A is an M × N deterministic matrix,
and z is an M-dimensional random vector. To understand the case where the coor-
dinates zi (1 ≤ i ≤ M) are mostly zero, hence z is sparse, we let

zi = BiVi,(2.2)

where (Bi) and (Vi) are independent families of independent, identically dis-
tributed (i.i.d.) centered random variables. The random variables (Vi) represent
the noise and satisfy EV 2

i = 1 and EV 2k
i ≤ Ck for some constants (Ck). The ran-

dom variables (Bi) are of Bernoulli type with parameter p, that is,

P

(
Bi = 1√

Np

)
= p, P(Bi = 0) = 1 − p.(2.3)

The sparsity of the noise, which is determined by the probability p, may originate
from the existence of a certain error threshold or the lack of data due to missing
observations.

The first step in the analysis is to determine whether there is any signal present.
Under the null hypothesis, the sample covariance matrix associated with y is noth-
ing more than the one associated with z. The limiting distribution of its largest
eigenvalue is assumed to be determined by Tracy–Widom–Airy statistics if p ∼ 1.
One can also use the statistics of Onatski [30] given by R := (μ1 −μ2)/(μ2 −μ3),
where μ1, μ2, μ3 denote the first, second, and the third largest eigenvalue, respec-
tively. It was shown [30] in the complex setting that R is asymptotically pivotal
under the null hypothesis.
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We introduce the sparsity parameter q through

p = q2

N
(2.4)

with 0 < q = √
Np ≤ N1/2, where we allow q to depend on N . When q = N1/2,

we regain a usual sample covariance matrix.
The concept of the sparsity is crucial in the analysis for small N . For example,

while the case with probability p = 0.3 would not be classified as a sparse case for
large N , with N = 30 the sparsity parameter q = 9 = Nφ for φ ≈ 0.323, which
falls into the regime we are interested in.

2.1.2. Simple Markov switching model. The simplest Markov switching
model involves a random vector

y := μs + σsz,(2.5)

where s denotes the unobserved state indicator; see for example, equation (1) in
[34]. If the entries of s are i.i.d. Bernoulli random variables, it is called the random
two-regime model; see, for example, [32]. Under the null hypothesis

H0 : μs = 0,(2.6)

this model reduces to the one in Section 2.1.1, if we simply write

σszi = σBiVi,(2.7)

where Bi is a Bernoulli random variable defined in (2.3). To generalize it further,
one can choose a Markov chain with states {0,1} instead of a Bernoulli variable.
Then, one can apply the results on the largest eigenvalues of sparse sample covari-
ance matrices by analyzing the 2 × 2 transition matrix.

2.1.3. Bipartite stochastic block model. Consider a graph with two vertex sets
V1 and V2 of size M and N , respectively. Each Vi is further divided into two or
more communities. In the simple case of two communities in each vertex set, each
Vi (i = 1,2) is with partition (Pi,Qi), and edges are added independently at ran-
dom between V1 and V2 with probabilities depending on which parts the vertices
are in; edges between P1 and P2 or Q1 and Q2 are added with probability p,
while the other edges are added with probability p′. This model was proposed by
Feldman, Perkins, and Vempala [14] as a generalization of the classic stochastic
block model to unify graph partitioning and planted constraint satisfaction prob-
lems (CSP’s) into one problem. The spectral analysis on the model was studied in
[15].

In the spectral analysis for the graph partitioning, the M ×N biadjacency matrix
X can be considered, which is defined as follows:

Xαi =
{

1 if vα ∈ V1 and wi ∈ V2 are connected,

0 otherwise.
(2.8)
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Then, the singular vector of X corresponding to the second largest singular value,
or equivalently, the second eigenvector XX† is correlated with the partition of V1.
Such an algorithm requires that the second largest eigenvalue is well-separated
from the spectral norm of the noise matrix. If the probability p and p′ tend to 0
as M,N → ∞, the graph is sparse and the noise matrix becomes a sparse sample
covariance matrix. The null model in this case is the biadjacency matrix of the
bipartite Erdős–Rényi graph where p = p′.

2.2. Definitions and notation. We consider the following type of sample co-
variance matrices:

DEFINITION 2.1 (Sample covariance matrices). Let X = (Xαi) be a real M ×
N matrix with independent entries satisfying the moment conditions

EXαi = 0, E(Xαi)
2 = 1

N
.(2.9)

The sample covariance matrix associated with X is given by S = X†X. Further-
more, M ≡ M(N) with

dN = N

M
→ d ∈ [1,∞),(2.10)

as N → ∞. For simplicity, we assume that dN is constant, hence we use d instead
of dN .

The assumption M ≡ M(N) with N/M → d is reasonable in high-dimensional
settings. We remark that our results also hold for the case d < 1 after taking
(M − N) zero eigenvalues into consideration.

Next, we introduce some basic definitions and set notation.

DEFINITION 2.2 (High probability event). We say that an N -dependent event
� ≡ �(N) holds with high probability if, for any large D > 0,

P
(
�(N)) ≥ 1 − N−D,(2.11)

for sufficiently large N ≥ N0(D).

DEFINITION 2.3 (Stochastic domination). Let Y1 ≡ Y
(N)
1 , Y2 ≡ Y

(N)
2 be N -

dependent nonnegative random variables. We say that Y1 stochastically dominates
Y2 if, for all small ε > 0 and large D > 0,

P
(
Y

(N)
1 > NεY

(N)
2

) ≤ N−D,(2.12)

for sufficiently large N ≥ N0(ε,D), and we write Y1 ≺ Y2.
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DEFINITION 2.4 (Stieltjes transform). Given a probability measure ν on R,
its Stieltjes transform is the analytic function mν : C+ → C

+, with C
+ := {z =

E + iη : E ∈ R, η > 0}, defined by

mν(z) :=
∫
R

dν(x)

x − z

(
z ∈ C

+)
.(2.13)

Note that limη→∞ iηmν(iη) = −1 since ν is a probability measure. Conversely,
if an analytic function m :C+ →C

+ satisfies limη→∞ iηm(iη) = −1, then it is the
Stieltjes transform of a probability measure; see, for example, [1].

Choosing ν to be the Marchenko–Pastur law with density

1

2πx

√
(λ+ − x)(x − λ−)

on [λ−, λ+], where

λ+ =
(

1 + 1√
d

)2
, λ− =

(
1 − 1√

d

)2
,(2.14)

one can shows that mν , denoted by mMP, is explicitly given by

mMP(z) = −(z + 1 − 1
d
) +

√
(z + 1 − 1

d
)2 − 4z

2z
,(2.15)

where we choose the branch of the square root such that mMP(z) ∈C
+, z ∈ C

+. It
directly follows that

1 +
(
z + 1 − 1

d

)
mMP(z) + zmMP(z)2 = 0

(
z ∈ C

+)
.(2.16)

DEFINITION 2.5 (Green function and its normalized trace). Given a real sym-
metric matrix H we define its Green function by

GH(z) := 1

H − zI

(
z ∈ C

+)
,(2.17)

and the normalized trace of GH by

mH(z) := 1

N
TrGH(z)

(
z ∈ C

+)
.(2.18)

The matrix entries of GH(z) are denoted by GH
ij (z). In the following we often drop

the explicit z-dependence from the notation for GH(z) and mH(z).
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2.3. Main results. The sparse sample covariance matrices we consider satis-
fies the following assumption.

ASSUMPTION 2.6. Fix any small φ > 0. We assume that X = (Xαi) is a real
M ×N matrix whose entries are independent, identically distributed (i.i.d.) random
variables. We also assume that (Xαi) satisfy the moment conditions

EXαi = 0, E(Xαi)
2 = 1

N
, E|Xαi |k ≤ (Ck)ck

Nqk−2 (k ≥ 3),(2.19)

with sparsity parameter q satisfying

Nφ ≤ q ≤ N1/2.(2.20)

Note that the real Wishart ensemble corresponds to the case φ = 1/2. We de-
note by κ(k) the kth cumulant of the i.i.d. random variables (Xαi). Under Assump-
tion 2.6 we have κ(1) = 0, κ(2) = 1/N ,

∣∣κ(k)
∣∣ ≤ (2Ck)2(c+1)k

Nqk−2 (k ≥ 3).(2.21)

For example, if Xαi is the Bernoulli random variable defined in (2.8) with p = p′,
then letting q = √

Np,

E
[
(Xαi)

k] = (−p)k(1 − p) + (1 − p)kp

(Np(1 − p))k/2

= 1

Nqk−2

(
1 + O(p)

) = κ(k)(1 + O(p)
)
.

(2.22)

We will also use the normalized cumulants, s(k), by setting

s(1) := 0, s(2) := 1, s(k) := Nqk−2κ(k) (k ≥ 3).(2.23)

2.3.1. Improved local law up to the upper edge for sparse random matrices.
Let λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 be the ordered eigenvalues of X†X. Note that mX†X

is the Stieltjes transform of the empirical eigenvalue distributions, μX†X , of X†X

given by

μX†X := 1

N

N∑
i=1

δλi
.(2.24)

Recall d from (2.10). We introduce the following domain of the upper half-plane:

E =
{
E + iη : λ−

2
≤ E ≤ λ+ + 1,0 < η < 3

}
if d > 1,(2.25)
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respectively,

E =
{
E + iη : 1

10
≤ E ≤ λ+ + 1,0 < η < 3

}
if d = 1.(2.26)

Our first main result is the local law for mX†X up to the upper spectral edge.

THEOREM 2.7. Let X satisfy Assumption 2.6 with φ > 0. Then, there exist
deterministic numbers L+ ≥ L− ≥ 0 and an algebraic function m̃ : C+ → C

+
such that the following hold:

(1) The function m̃ is the Stieltjes transform of a deterministic probability mea-
sure ρ̃, that is, m̃(z) = mρ̃(z). The measure ρ̃ is supported on the interval [L−,L+]
and is absolutely continuous with respect to Lebesgue measure with a strictly pos-
itive, continuous density on (L−,L+).

(2) The function m̃ ≡ m̃(z), z ∈ C
+, is a solution to the polynomial equation

Pz(m̃) := 1 +
(
z + 1 − 1

d

)
m̃ + zm̃2 + s(4)

q2 m̃2
(
zm̃ + 1 − 1

d

)2
= 0.(2.27)

(3) The normalized trace mX†X of the Green function of X†X satisfies the local
law ∣∣mX†X(z) − m̃(z)

∣∣ ≺ 1

q2 + 1

Nη
,(2.28)

uniformly on the domain E, z = E + iη.

The right endpoint L+ is given by

L+ =
(

1 + 1√
d

)2
+ 1√

d

(
1 + 1√

d

)2 s(4)

q2 + O
(
q−4)

(2.29)

and the left endpoint L− for the case d > 1 is given by

L− =
(

1 − 1√
d

)2
− 1√

d

(
1 − 1√

d

)2 s(4)

q2 + O
(
q−4)

.(2.30)

The sparsity of the entries of X makes its eigenvalues follow the deterministic
law ρ̃ that depends on the sparsity parameter q . While this law approaches the
Marchenko–Pastur law, ρMP, when N → ∞, its deterministic refinement to the
standard Marchenko–Pastur law for finite N accounts for the nonoptimality at the
edge of previous results obtained in [9]. (See (2.52) below for the estimate in [9].)

From the local law (2.28), we can also obtain estimates on the local density of
states of X†X. For E1 < E2, define

n(E1,E2) := 1

N

∣∣{i : E1 < λi ≤ E2}
∣∣, nρ̃(E1,E2) :=

∫ E2

E1

ρ̃(x)dx.(2.31)

Applying the Helffer–Sjöstrand calculus with Theorem 2.7, we get the following
corollary.



LOCAL LAW FOR SPARSE SAMPLE COVARIANCE MATRICES 3015

COROLLARY 2.8. Suppose that X satisfies Assumption 2.6 with φ > 0. Let
E1,E2 ∈R, E1 < E2. Then,

∣∣n(E1,E2) − nρ̃(E1,E2)
∣∣ ≺ E2 − E1

q2 + 1

N
.(2.32)

We can obtain the following estimates of the operator norm ‖X†X‖ of X†X,
by combining the local law with the deterministic refinement to the Marchenko–
Pastur law. This allows us to assert a strong statement on the location of the ex-
tremal eigenvalues of X†X.

THEOREM 2.9. Suppose that X satisfies Assumption 2.6 with φ > 0. Then,

∣∣∥∥X†X
∥∥ − L+

∣∣ ≺ 1

q4 + 1

N2/3 ,(2.33)

where L+ is the right endpoint of the support of the measure ρ̃ given in (2.29).

2.3.2. Tracy–Widom limit of the largest eigenvalues. Our second main result
shows that the rescaled largest eigenvalues of the sparse sample covariance matri-
ces of sparse random matrix converge in distribution to Tracy–Widom law, if the
sparsity parameter q satisfies q � N1/6.

THEOREM 2.10. Suppose that H satisfies Assumption 2.6 with φ > 1/6. De-
note by λX†X

1 the largest eigenvalue of X†X. Then

lim
N→∞P

(
γN2/3(

λX†X
1 − L+

) ≤ s
) = F1(s),(2.34)

where L+ is given in (2.29), γ is a constant defined as

γ = d1/2(1 + √
d)−4/3,(2.35)

and F1 is the cumulative distribution function of the GOE Tracy–Widom law.

In the regime q ≤ N1/3, the deterministic shift of the right endpoint L+ is cru-
cial in the analysis of the largest eigenvalue, since the shift is of order q−2, which
is larger than N−2/3, the scale of the Tracy–Widom fluctuation. Thus, to use the
Tracy–Widom fluctuation of the largest eigenvalue in this regime, the correction
from the fourth cumulant should be taken into consideration.

We further remark that all results in this subsection also hold for complex sparse
sample covariance matrices with the GUE Tracy–Widom law as the governing law
for the limiting edge fluctuation.
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2.4. Outline of proofs. In the proof of the local law, we apply the strategy of
cumulant expansion, which was used for sparse Wigner-type matrices in [25]. For
the basic ideas of the cumulant expansion method in the proof of the local law, we
refer to Sections 3.1 and 3.2 in [25], where the local law for the Gaussian Orthog-
onal Ensemble (GOE) matrices is proved with the method. For a GOE matrix W ,
it is based on the observation

1 + zGW
ii =

N∑
k=1

WikG
W
ki

and the expectation of the right-hand side can be obtained by the Stein lemma.
Since

E
[
WikG

W
ki

] = −E
[
GW

kkG
W
ii

] −E
[
GW

ki G
W
ki

]
,

the method suggests to consider the polynomial 1 + zmW + (mW)2. In case the
matrix is sparse, we need to add a correction term to the polynomial, which can
be obtained from the following generalized Stein lemma, introduced in [33] and
applied to the proof of CLT for the linear eigenvalue statistics of random matrices
by Lytova and Pastur [27].

LEMMA 2.11. Fix � ∈ N and let F ∈ C�+1(R;C+). Let Y be a centered ran-
dom variable with finite moments to order � + 2. Then,

(2.36) E
[
YF(Y )

] =
�∑

r=1

κ(r+1)(Y )

r! E
[
F (r)(Y )

] +E
[
��

(
YF(Y )

)]
,

where E denotes the expectation with respect to Y , κ(r+1)(Y ) denotes the (r + 1)-
st cumulant of Y and F (r) denotes the r th derivative of the function F . The error
term ��(YF(Y )) satisfies

E
[
��

(
YF(Y )

)] ≤ C�E
[|Y |�+2]

sup
|t |≤Q

∣∣F (�+1)(t)
∣∣

+ C�E[|Y |�+21
(|Y | > Q

)
sup
t∈R

∣∣F (�+1)(t)
∣∣,(2.37)

where Q > 0 is an arbitrary fixed cutoff and C� satisfies C� ≤ (C�)�/�! for some
numerical constant C.

While the cumulant expansion method is applicable to the sample covariance
matrices we consider, we face a new problem with the direct application of the
method; since the Green function of X†X is GX†X(z) = (X†X − zI)−1, we are
led to consider

1 + zGX†X
ii =

N∑
k=1

(
X†X

)
ikG

X†X
ki ,
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and the Stein lemma applied on the right-hand side proposes a cubic polynomial
instead of the quadratic polynomial we use for the Wigner case. This makes the
analysis significantly harder, especially when the correction term due to the spar-
sity is taken into consideration.

The difficulty is resolved by introducing the self-adjoint linearization of a
sample covariance matrix X†X, which showed to be useful in the study of
sample covariance matrices, for example, in [2, 9, 16, 21, 24]. Let H be an
(N + M) × (N + M) matrix such that

H(X,z) ≡ H = T HT + T HT + T HT + T HT ,

where

T HT := −zI, T HT := X†, T HT := X, T HT := −I.

Here T is the projection on the first N coordinates in R
N+M and T := 1 − T . In

block matrix form, this is written as

H =
(

−zI X†

X −I

)
.(2.38)

Define the inverse matrix of H(X,z) by G := H(X,z)−1. From the Schur com-
plement formula, we find that

Gab(z) = (
T G(z)T

)
ab = (

X†X − zI
)−1
ab , 1 ≤ a, b ≤ N,(2.39)

Gαβ(z) = (
T G(z)T

)
αβ = z

(
XX† − zI

)−1
αβ , N + 1 ≤ α,β ≤ M + N.(2.40)

Thus,

1

N

N∑
a=1

Gaa = 1

N
Tr

(
X†X − zI

)−1 = mX†X(z),(2.41)

and

1

N

M+N∑
α=N+1

Gαα = 1

N
Tr

(
z
(
XX† − zI

)−1)
= zmX†X(z) + 1

N
(N − M) = zmX†X(z) + 1 − 1

d
.

(2.42)

We get the last line from the fact that XX† have M eigenvalues identical to eigen-
values of X†X except (N − M) zero eigenvalues.

With the linearization trick, we can identify the quadratic polynomial that nat-
urally arises from the sample covariance matrices, and we can also estimate the
correction term as in (2.27). With the quartic polynomial in (2.27), we perform the
analysis and prove the local law by the recursive moment method. The details for
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the recursive moment method are discussed in Appendix A of the Supplementary
Material [18].

To prove the Tracy–Widom fluctuations of the largest eigenvalue, we consider
the Dyson matrix flow with initial condition X0 = X defined by

Xt := e−t/2X0 + √
1 − e−tWG (t ≥ 0),(2.43)

where WG is an M × N matrix with i.i.d. Gaussian entries independent of H0.
The Dyson matrix flow is one of the key ideas in the proof of universality results
in random matrix theory. For its application to the proof of Tracy–Widom limit,
we refer to [6, 7, 23].

In this work, we use the Dyson matrix flow in the Green function comparison
in Section 5 in conjunction with the linearization trick. Let Ht := H(Xt, z) be
an (N + M) × (N + M) matrix defined as in (2.38). The local law can also be
established for the normalized trace of the Green function of Ht by considering

Gt(z) = (Ht)
−1, mt (z) = 1

N

N∑
i=1

(Gt)ii(z)
(
z ∈ C

+)
.(2.44)

Let κ
(k)
t be the kth cumulant of (Xt)ij . Then, by the linearity of the cumulants

under the addition of independent random variables, we have κ
(1)
t = 0, κ(2)

t = 1/N

and κ
(k)
t = e−kt/2κ(k) for k ≥ 3. In particular, we have the bound

∣∣κ(k)
t

∣∣ ≤ e−t (Ck)ck

Nqk−2
t

(k ≥ 3),(2.45)

where we introduced the time-dependent sparsity parameter

qt := qet/2.(2.46)

We also let s
(k)
t be the normalized cumulants defined by

(2.47) s
(k)
t := Nqk−2

t κ
(k)
t .

With the parameters depending on t , we generalize Theorem 2.9 as follows:

PROPOSITION 2.12. Let X0 satisfy Assumption 2.6 with φ > 0. Then, for any
t ≥ 0, there exist deterministic numbers L+

t ≥ L−
t ≥ 0 and an algebraic function

m̃t :C+ →C
+ such that the following hold:

(1) The function m̃t is the Stieltjes transform of a deterministic probability mea-
sure ρ̃t , that is, m̃t (z) = mρ̃t (z). The measure ρt is supported on [L−

t ,L+
t ] and ρ̃t

is absolutely continuous with respect to Lebesgue measure with a strictly positive
density on (L−

t ,L+
t ).
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(2) The function m̃t ≡ m̃t (z), z ∈ C
+, is a solution to the polynomial equation

Pz(m̃t ) := 1 +
(
z + 1 − 1

d

)
m̃t + zm̃2

t + e−t s
(4)
t

q2
t

m̃2
t

(
zm̃t + 1 − 1

d

)2

= 0.

(2.48)

(3) The normalized trace mX†X
t of the Green function of X

†
t Xt satisfies the

local law ∣∣mX†X
t (z) − m̃t (z)

∣∣ ≺ 1

q2
t

+ 1

Nη
,(2.49)

uniformly on the domain E and uniformly in t ∈ [0,6 logN ].
We remark that the local eigenvalue statistics of Xt and WG agree up to negli-

gible error for t ≥ 6 logN .
For simplicity, we let Lt ≡ L+

t , the upper edge of the support of ρ̃t . In Section 3,
we show that

Lt =
(

1 + 1√
d

)2
+ 1√

d

(
1 + 1√

d

)2
e−t q−2

t s(4) + O
(
e−2t q−4

t

)
,(2.50)

and also satisfies

L̇t = − 2√
d

(
1 + 1√

d

)2
e−t q−2

t s(4) + O
(
e−2t q−4

t

)
,(2.51)

where L̇t denotes the derivative of Lt with respect to t . The actual proof of the
Tracy–Widom fluctuation in Section 5 will be done by comparing L̇t and the time
change of a suitable functional of the Green function.

In the proof of the local law, Theorem 2.7, we use the following results of [9] as
a priori estimates.

PROPOSITION 2.13 (Lemma 3.11 and Lemma 3.12 of [9]). Suppose X satis-
fies Assumption 2.6 with φ > 0. Then,

(1) (Local Marchenko–Pastur law) The following estimates hold uniformly for
z ∈ E : ∣∣mX†X(z) − mMP(z)

∣∣ ≺ min
{

1

q
,

1

q2√κ + η

}
+ 1

Nη
,(2.52)

max
i,j

∣∣Gij(z) − δij�ij(z)
∣∣ ≺ 1

q
+

√
ImmMP(z)

Nη
+ 1

Nη
,(2.53)

where κ ≡ κ(z) := |E − λ+|, z = E + iη, and

�(z) =
(

mMP(z)IN×N 0

0 −(
1 + mMP(z)

)−1
IM×M

)
.
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(2) (Delocalization) For the �2-normalized eigenvectors (uX†X
k ) and (vXX†

α ),

(2.54) max
k

∥∥uX†X
k

∥∥∞ + max
α

∥∥vXX†

α

∥∥∞ ≺ 1√
N

.

(3) For the (N + M) × (N + M) matrix H defined as (2.38),

‖H‖2 − λ+ ≺ 1

q2 + 1

N2/3 .(2.55)

Note that the estimate (2.52) is essentially optimal as long as the spectral pa-
rameter z stay away from the spectral edges, for example, for energies in the bulk
E ∈ [λ− + δ, λ+ − δ] for some (N -independent) δ > 0. For the individual Green
function entries Giα , we believe that the estimate (2.53) is already essentially op-
timal.

REMARK 2.14 (Notational remark 2). We use Latin letters for indices in
[1,N], Greek letters for indices in [N + 1,M + N ], and fraktur letters for indices
ranging from 1 to M + N . For Latin, respectively Greek, indices, we abbreviate∑

i

:=
N∑

i=1

,
∑
α

:=
M+N∑

α=N+1

.

For simplicity, we also let∑
i,α

:= ∑
1≤i≤N

N+1≤α≤N+M

,
∑
i

:=
M+N∑
i=1

.

3. Stieltjes transform of ρ̃. In this section, we prove several properties of m̃t

and its Stieltjes inversion ρ̃t .

LEMMA 3.1. For fixed z = E + iη ∈ E and t ≥ 0, the equation Pt,z(wt ) = 0
has a unique solution wt ≡ wt(z) satisfying Imwt > 0 and |wt | ≤ 6λ+

λ− . Further-
more, wt satisfies the following properties:

(1) There exists a probability measure ρ̃t such that the analytic continuation of
wt(z) coincides with the Stieltjes transform, mρ̃t (z), of ρ̃t .

(2) The probability measure ρ̃t is supported on [L−
t ,L+

t ] for some L−
t ≥ 0 and

L+
t ≡ Lt ≥ (1 + √

1/d)2, and it exhibits a square-root decay at the upper edge,
that is,

ρ̃t (E) ∼ √
Lt − E

(
E ∈

[
Lt − 1√

d
,Lt

])
.(3.1)

Moreover,

Lt =
(

1 + 1√
d

)2
+ 1√

d

(
1 + 1√

d

)2
e−t q−2

t s(4) + O
(
e−2t q−4

t

)
.(3.2)
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(3) Setting

κt ≡ κt (E) := min
{|E + Lt |, |E − Lt |},(3.3)

the solution wt satisfies that∣∣P ′
t,z(wt )

∣∣ ∼
√
κt (E) + η(3.4)

and

Imwt(E + iη) ∼ η√
κt (E) + η

if E > Lt,

Imwt(E + iη) ∼
√
κt (E) + η if Lt − 1√

d
≤ E ≤ Lt,(3.5)

Imwt(E + iη) = O(1) if E < Lt − 1√
d

.

PROOF. Assume first that d > 1. Recall the definition of P ≡ Pt,z,

P(w) = 1 +
(
z + 1 − 1

d

)
w + zw2 + s(4)e−t

q2
t

w2
(
zw + 1 − 1

d

)2
.(3.6)

Solving the equation P = 0 for z by the quadratic formula, we get

z = Q(w) ≡ Qz,t (wt )

= −(2e−t q−2
t s(4)(1 − 1

d
)w2 + w + 1) +

√
−4e−t q−2

t s(4)w2 · 1
d

+ (w + 1)2

2e−t q−2
t s(4)w3

.

(3.7)

For w ∼ 1, its derivative is given by

Q′(w) = 1

2e−t q−2
t s(4)

(
2e−t q−2

t s(4)

(
1 − 1

d

)
w−2 + 2w−3 + 3w−4

+ 8e−t q−2
t s(4)w−5 · 1

d
− (w−3 + w−2)(2w−3 + 3w−4)√

−4e−t q−2
t s(4)w−4 · 1

d
+ (w−3 + w−2)2

)

= 1

2e−t q−2
t s(4)

(
2w−3 + 3w−4

− (
2w−3 + 3w−4)[

1 − 4e−t q−2
t s(4) 1

d

w2

(1 + w)2

]−1/2
(3.8)

+ 2e−t q−2
t s(4)

(
1 − 1

d

)
w−2 + 8e−t q−2

t s(4) 1

w2(1 + w)
· 1

d

)
+ O

(
q−2
t

)
= − 2w + 3

w2(1 + w)2 · 1

d
+

(
1 − 1

d

)
w−2 + 4

w2(1 + w)
· 1

d
+ O

(
e−t q−2

t

)
.
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Let

Q̃′(w) = − 2w + 3

w2(1 + w)2 · 1

d
+

(
1 − 1

d

)
w−2 + 4

w2(1 + w)
· 1

d

= 1

w2 − 1

d

1

(1 + w)2 .

(3.9)

Then, Q̃′(w) is independent of qt and strictly increasing on (−1,0). Furthermore,

Q̃′
(
− 1

1 + 1√
d

)
= 0.(3.10)

Thus, there exists a unique solution w = τt of the equation Q′(w) = 0 in (−1,0),
which satisfies

τt = − 1

1 + 1√
d

+ O
(
e−t q−2

t

)
.(3.11)

Let Lt = Q(τt ). Calculating the terms of order e−t q−2
t precisely, we get

τt = 1

−1 − 1√
d

+ O
(
e−2t q−4

t

)
,

Lt =
(

1 + 1√
d

)2
+ 1√

d

(
1 + 1√

d

)2
e−t q−2

t s(4) + O
(
e−2t q−4

t

)
.

(3.12)

For simplicity, we let L ≡ Lt and τ = τt . We now expand z about τ to find that

z = Q(τ) + Q′(τ )(w − τ) + Q′′(τ )

2
(w − τ)2 + O

(|w − τ |3)
= L + Q′′(τ )

2
(w − τ)2 + O

(|w − τ |3)(3.13)

in a q
−1/2
t -neighborhood of τ . Since

Q′′(τ ) = Q̃′′(τ ) + O
(
e−t q−2

t

)
(3.14)

and Q̃′′(τ ) ∼ 1 where Q̃′ is monotone increasing on (−1,0), we find that
Q′′(τ ) > 0. We hence find that

w = τ +
(

2

Q′′(τ )

)1/2√
z − L + O

(|z − L|)(3.15)

in this neighborhood. Choosing the branch of the square root so that
√

z − L ∈ C
+,

we find that Imw > 0.
Let B0 := {w ∈ C : |w| < 6λ+

λ− }. For z ∈ E and |w| = 6λ+
λ− ,

∣∣zw2∣∣ = |w|
2

|zw| + |zw|
2

|w| ≥ 3|zw| + λ+|w| > 2 + |zw| +
∣∣∣∣1 − 1

d

∣∣∣∣|w|(3.16)
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hence ∣∣∣∣1 +
(
z + 1 − 1

d

)
w + zw2

∣∣∣∣ ≥ ∣∣zw2∣∣ − ∣∣∣∣(z + 1 − 1

d

)
w

∣∣∣∣ − 1

> 1 >

∣∣∣∣s(4)e−t

q2
t

w2
(
zw + 1 − 1

d

)2∣∣∣∣.
(3.17)

Now, Rouché’s theorem implies that the polynomial P(w) has the same number
of roots as the quadratic polynomial 1 + (z + 1 − 1

d
)w + zw2 = 0 in B0. Hence,

we conclude that P(w) = 0 has two solutions on B0.
Let us extend w ≡ w(z) to cover z ∈ ∂E ∩ R. Then, w forms a curve w : ∂E ∩

R → C, which we will denote by �. We already know that � intersects the real
axis at τ . Let τ̃ be the largest real number such that τ̃ < τ and � intersects the real
axis at τ̃ . Since

1 +
(
τ̃ + 1 − 1

d

)
w(τ̃ ) + τ̃w(τ̃ )2 = O

(
e−t q−2

t

)
,(3.18)

it can be easily checked from the quadratic formula

w = 1

2z

[
−

(
z + 1 − 1

d

)

+
√(

z + 1 − 1

d

)2
− 4z

(
1 + e−t q−2

t s(4)w2
(
zw + 1 − 1

d

)2)](3.19)

that mMP(τ̃ ) − w(τ̃ ) = O(e−t/2q−1
t ) and also |τ̃ − λ−| = O(e−t q−2

t ), where mMP
is the Stieltjes transform of the Marchenko–Pastur law; see (2.15). Since we chose
the branch of the square root in (3.15) so that

√
z − L ∈C

+, we find that the curve
� ∈ C

+ ∪R, joining τ and τ̃ . This shows that one solution of P(w) = 0 is in C
+.

Choosing the other branch for the square root in (3.15), we can identify another
solution of P(w) = 0 in C

−. Since there are only two solutions of P(w) = 0 in B0,
this proves the uniqueness statement of the lemma. Furthermore, by the analytic
inverse function theorem, we also find that w(z) is analytic for z ∈ (w−1(τ̃ ),L)

since Q′(w) �= 0 for such z.
For a large but N -independent z, we can find from the quadratic formula (3.19)

that w(z) = −1
z
+ o(1

z
). By continuity, this shows that the analytic continuation of

w(z) for z ∈C
+ is in the domain D� enclosed by � and the real axis. In particular,

|w(z)| < 6λ+
λ− for all z ∈ C

+.

We then prove the analyticity of w(z) in C
+. It suffices to show that Q′(w) �= 0

for w ∈ D� . If Q′(w) = 0 for some w ∈ D� , we have

0 = w2Q′(w) = 1 − 1

d

w2

(1 + w)2 + O
(
e−t q−2

t

)
.(3.20)
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We again use Rouché’s theorem. Since d ≥ 1, we have 1− 1
d

w2

(1+w)2 > c � e−t q−2
t

for |w| = 6λ+
λ− . Hence, w2Q′(w) = 0 has two solutions in the disk B0. We already

know that those solutions are τ and τ̃ . Thus, Q′(w) �= 0 for w ∈ D� and w(z) is
analytic.

Let ρ̃ ≡ ρ̃ be the Stieltjes inversion of w ≡ w(z). In order to show that ρ̃ is a
probability measure, it suffices to show that limy→∞ iyw(iy) = −1. By consid-
ering z = iy in (3.19), it can be easily checked. This proves the first part of the
lemma.

The second part of the lemma is already proved in the previous computation in
the proof. To prove the last part of the lemma, with a slight abuse of notation, let
Pt(w, z) = Pt,z(w). We notice that

0 = d

dw
Pt(w, z) = ∂z

∂w
· ∂

∂z
P (w, z) + ∂

∂w
P (w, z).(3.21)

From (3.13) and (3.15), we find that

∂z

∂w
∼ √

z − L ∼ √
κ + η.(3.22)

We claim that ∂
∂z

P (w, z) ∼ 1, which would prove the first relation in the last part
of the lemma. Since

∂

∂z
P (w, z) = w + w2 + 2s(4)e−tw

q2
t

w2
(
zw + 1 − 1

d

)
,(3.23)

it suffices to prove that

|w|, |1 + w| > c > 0,(3.24)

for some constant c independent of N . If we assume |w| ≤ c, then∣∣P(w, z)
∣∣ ≥ 1 − c

∣∣∣∣z + 1 − 1

d

∣∣∣∣ − c2|z| − Cq−2
t > c,(3.25)

for some (small) c > 0, which contradicts that P(w, z) = 0. Similarly, if we as-
sume |1 + w| ≤ c, then∣∣P(w, z)

∣∣ ≥ 1

d
− |1 + w| − |zw| · |1 + w| − |1 + w|

d
− Cq−2

t > c,(3.26)

for some (small) c > 0. This proves that ∂
∂z

P (w, z) ∼ 1, and we find that

P ′
t,z(w) = ∂

∂w
P (w, z) = − ∂z

∂w
· ∂

∂z
P (w, z) ∼ √

κ + η.(3.27)

This proves the first relation in the last part of the lemma. Other relations in the
last part of the lemma can be easily proved from the first property and (3.15).
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If d = 1, the polynomial P(w) reduces to

P(w) = 1 + zw + zw2 + e−t q−2
t s(4)z2w4(3.28)

and

Q(w) = −(w + 1) +
√

−4e−t q−2
t s(4)w2 + (w + 1)2

2e−t q−2
t s(4)w3

.(3.29)

The square root behavior does not change in this case, with τt = −1
2 +O(e−t q−2

t ).
For uniqueness, we consider the disk B10 = {w ∈C : |w| < 10}. For z ∈ E and w ∈
∂B10, |zw2| ≥ |zw| + 2. Hence, we can use Rouché’s theorem and the uniqueness
statement follows.

For the analyticity, if Q′(w) = 0 then

0 = w2Q′(w) = 1 − w2

(1 + w)2 + O
(
e−t q−2

t

)
.(3.30)

In this case, the equation 1 − w2

(1+w)2 = 0 has only one solution w = −1
2 . Thus,

w2Q′(w) = 0 has only one solution in the disk B10, and it proves the analyticity.
The remaining parts can be proved with suitable changes. �

4. Proof of local laws.

4.1. Proof of Proposition 2.12. In this subsection, we prove Proposition 2.12.
The following lemma provides the main tool of the proof, which is the recur-
sive moment estimate for P(mt). It is analogous to Lemma 5.1 in [25] for sparse
Wigner matrices.

LEMMA 4.1 (Recursive moment estimate). Fix φ > 0 and t ≥ 0. Let X0 satis-
fies Assumption 2.6. Then, for any D > 10 and small ε > 0, the normalized trace
of the Green function, mt ≡ mt(z), of the matrix Ht satisfies

E
∣∣P(mt)

∣∣2D

≤ Nε
E

[(
1

q4
t

+ Immt

Nη
+ N − M

N2

)∣∣P(mt)
∣∣2D−1

]
+ N−ε/4q−1

t E
[|mt − m̃t |2

∣∣P(mt)
∣∣2D−1] + Nεq−8D

t

+ Nεq−1
t

2D∑
s=2

s−2∑
u′=0

E

[(
Immt

Nη
+ N − M

N2

)2s−u′−2∣∣P ′(mt)
∣∣u′ ∣∣P(mt)

∣∣2D−s
]

+ Nε
2D∑
s=2

E

[(
1

Nη
+ 1

qt

(
Immt

Nη
+ N − M

N2

)1/2
+ 1

q2
t

)

×
(

Immt

Nη
+ N − M

N2

)s−1∣∣P ′(mt)
∣∣s−1∣∣P(mt)

∣∣2D−s
]
,

(4.1)

uniformly on the domain E , for any sufficiently large N .
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We prove Lemma 4.1 in Appendix A of the Supplementary Material [18]. In
the following, we sketch the proof of the local law in Proposition 2.12; the details
are found in Appendix B of the Supplementary Material [18]. The remaining parts
of this section are partly adapted from Section 5 in [25], and we reproduce the
argument here in a more structured and clear way.

Let m̃t be the solution wt in Lemma 3.1. To simplify the notation, we introduce
the following z- and t-dependent deterministic parameters:

α1(z) := Im m̃t (z), α2(z) := P ′(m̃t (z)
)
, β := 1

Nη
+ 1

q2
t

,(4.2)

with z = E + iη. From Lemma 3.1, we check that α1 ≤ C|α2|. Further let

�t(z) := ∣∣mt(z) − m̃t (z)
∣∣ (

z ∈ C
+)

.(4.3)

Note that from Proposition 2.13 and (3.19), we have that �t(z) ≺ 1 uniformly on
E .

The strategy is now as follows. We apply Young’s inequality to split up all the
terms on the right side of (4.1) and absorb resulting factors of E|P(mt)|2D into the
left hand side. For example, for the first term on the right of (4.1), we get, upon
using the notation in (4.3), that

Nε

(
Immt

Nη
+ N − M

N2 + q−4
t

)∣∣P(mt)
∣∣2D−1

≤ Nε α1 + �t

Nη

∣∣P(mt)
∣∣2D−1 + Nεq−4

t

∣∣P(mt)
∣∣2D−1

(4.4)

≤ N(2D+1)ε

2D
C2Dβ2D(α1 + �t)

2D + N(2D+1)ε

2D
q−8D
t

+ 2(2D − 1)

2D
N− ε

2D−1
∣∣P(mt)

∣∣2D
,

and note that the last term can be absorbed into the left side of (4.1). The same
idea can be applied to the second term on the right side of (4.1). To hand the other
terms, we Taylor expand P ′(mt) around m̃t as∣∣P ′(mt ) − α2 − P ′′(m̃t )(mt − m̃t )

∣∣ ≤ Cq−2
t �2

t ,(4.5)

where we used (4.2). Noticing that P ′′(m̃t ) = 2z+O(q−2
t ), we proceed in a similar

way as above using Young’s inequality. Skipping over some details, we eventually
find

E
[∣∣P(mt)

∣∣2D]
≤ CN(2D+1)ε

E
[
β2D(α1 + �t)

D(|α2| + 15�t

)D] + C
N(2D+1)ε

2D
q−8D
t
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+ C
N−(D/4−1)ε

2D
q−2D
t E

[
�4D

t

]
(4.6)

≤ N3Dεβ2D|α2|2D + N3Dεβ2D
E

[
�2D

t

]
+ N3Dεq−8D

t + N−Dε/8q−2D
t E

[
�4D

t

]
,

uniformly on E , where we used α1 ≤ Cα2 to get the second line.
Next, we aim to control �t in terms of |P(mt)|. For that we Taylor expand

P(mt) around m̃t to get∣∣∣∣P(mt) − α2(mt − m̃t ) − 1

2
P ′′(m̃t )(mt − m̃t )

2
∣∣∣∣ ≤ Cq−2

t �3
t ,(4.7)

since P(m̃t ) = 0 and P ′′′(m̃t ) = 8e−t q−2
t s(4)(z2m̃t + z(zm̃t + 1 − 1

d
)). Then using

�t ≺ 1 and P ′′(m̃t ) = 2z + O(q−2
t ) we obtain

�2
t ≺ 2|α2|�t + 2

∣∣P(mt)
∣∣ (z ∈ E).(4.8)

This estimate can upon applying a Schwarz inequality be fed back into (4.6), to
get the bound

E
[∣∣P(mt)

∣∣2D] ≤ N5Dεβ2D|α2|2D + N5Dεβ4D + q−2D
t |α2|4D,(4.9)

uniformly on E . For any fixed z ∈ E , Markov’s inequality then yields |P(mt)| ≺
|α2|β +β2 + q−1

t |α2|2. Uniformity in z is easily achieved using a lattice argument
and the Lipschitz continuity of mt(z) and m̃t (z) on E . Finally, a Taylor expansion
of P(mt) around m̃t will give the following self-consistent equation for mt(z) −
m̃t (z):

LEMMA 4.2. Under the assumptions of Lemma 4.1, we have∣∣α2(mt − m̃t ) + z(mt − m̃t )
2∣∣ ≺ β�2

t + |α2|β + β2 + q−1
t |α2|2,(4.10)

uniformly on E .

The detailed proof of Lemma 4.2 is given in Appendix B of the Supplementary
Material [18].

We remark that the last term on the right-hand side of (4.10) is not yet optimal.
To get a better estimate, we use the behavior of the α2(z) to refine the analysis and
obtain the following corollary.

COROLLARY 4.3. Under the assumptions of Lemma 4.1, we have∣∣α2(mt − m̃t ) + z(mt − m̃t )
2∣∣ ≺ β�2

t + |α2|β + β2,(4.11)

uniformly on E .
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PROOF. Recall from Lemma 3.1 that there is a constant C0 > 1 such that
C−1

0

√
κt (E) + η ≤ |α2| ≤ C0

√
κt (E) + η, where we can choose C0 uniform in

z ∈ E . Note that, for a fixed E, β = β(E+ iη) is a decreasing function of η whereas√
κt (E) + η is increasing. Hence there is η̃0 ≡ η̃0(E) such that

√
κ(E) + η̃0 =

C0qtβ(E + iη̃0). We consider the subdomain Ẽ ⊂ E defined by

Ẽ := {
z = E + iη ∈ E : η > η̃0(E)

}
.(4.12)

On this subdomain Ẽ , β ≤ q−1
t |α2|, hence we get from (4.10) that there is a high

probability event �̃ such that∣∣α2(mt − m̃t ) + z(mt − m̃t )
2∣∣ ≤ Nεβ�2

t + Nεq−1
t |α2|2

and thus

|α2|�t ≤ (|z| + Nεβ
)
�2

t + Nεq−1
t |α2|2

uniformly on Ẽ on �̃. Hence, on �̃,

|α2| ≤ 2
(|z| + 1

)
�t ≤ 12�t or �t ≤ 2Nεq−1

t |α2| (z ∈ Ẽ).(4.13)

When η = N−ε , it is easy to see that

|α2| ≥
∣∣∣∣z + 1 − 1

d
+ 2zm̃t

∣∣∣∣ − Cq−2
t ≥ 2E Im m̃t

≥ c
√

η � 2Nεq−1
t |α2|,

(4.14)

for some constant c and sufficiently large N . We have that either N−ε/2/12 ≤ �t

or �t ≤ 2Nεq−1
t |α2| on �̃. From the a priori estimate (2.52), we know that |�t | ≺

1
qt

+ 1
Nη

, we hence find that

�t ≤ 2Nεq−1
t |α2|,(4.15)

holds on the event �̃. Putting (4.15) back into (4.6), we obtain that

E
[∣∣P(mt)

∣∣2D] ≤ N4Dεβ2D|α2|2D + N3Dεq−8D
t + q−6D

t |α2|4D

≤ N6Dεβ2D|α2|2D + N6Dεβ4D,
(4.16)

for any small ε > 0, and large D, uniformly on Ẽ . Note that, for z ∈ E\Ẽ , it is direct
to check the estimate E[|P(mt)|2D] ≤ N6Dεβ2D|α2|2D + N6Dεβ4D . Applying a
lattice argument and the Lipschitz continuity (see, e.g., the proof of Lemma 4.2),
we find from a union bound that for any small ε > 0 and large D there exists an
event � with P(�) ≥ 1 − N−D such that∣∣α2(mt − m̃t ) + z(mt − m̃t )

2∣∣ ≤ Nεβ�2
t + Nε |α2|β + Nεβ2,(4.17)

on �, uniformly on E for any sufficiently large N . �

We now prove Proposition 2.12, which will also imply Theorem 2.9.
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PROOF OF PROPOSITION 2.12 AND THEOREM 2.9. Fix t ∈ [0,6 logN ]. Let
m̃t be the solution wt in Lemma 3.1. We proved statements (1) and (2) in
Lemma 3.1, it hence remains to prove statement (3) of Proposition 2.12.

Recall that for fixed E β = β(E+ iη) is a decreasing function of η,
√
κt (E) + η

is an increasing function of η, and η0 ≡ η0(E) satisfies that
√
κ(E) + η0 =

10C0N
εβ(E + iη0). Further notice that η0(E) is a continuous function. We con-

sider the subdomains of E defined by

E1 := {
z = E + iη ∈ E : η ≤ η0(E),10Nε ≤ Nη

}
,

E2 := {
z = E + iη ∈ E : η > η0(E),10Nε ≤ Nη

}
.

We consider the cases z ∈ E1, z ∈ E2 and z ∈ E\(E1 ∪ E2), and split the stability
analysis accordingly. Let � be a high probability event such that (4.17) holds.

Case 1: If z ∈ E1, we note that |α2| ≤ C0
√
κ(E) + η ≤ 10C2

0Nεβ(E + iη).
Then, we find that

|z|�2
t ≤ |α2|�t + Nεβ�2

t + Nε |α2|β + Nεβ2

≤ 10C2
0Nεβ�t + Nεβ�2

t + (
10C2

0Nε + 1
)
Nεβ2,

on �. Hence, there is some finite constant C such that on �, we have �t ≤ CNεβ ,
z ∈ E1.

Case 2: If z ∈ E2, we obtain that

|α2|�t ≤ (|z| + Nεβ
)
�2

t + |α2|Nεβ + Nεβ2,(4.18)

on �. We then notice that C0|α2| ≥ √
κt (E) + η ≥ 10C0N

εβ , that is, Nεβ ≤
|α2|/10, so that

|α2|�t ≤ (|z| + 1
)
�2

t + (
1 + Nε)|α2|β,(4.19)

on �, where we used that Nεβ ≤ 1. Hence, on �, either

|α2| ≤ 2
(
1 + |z|)�t or �t ≤ 3Nεβ.(4.20)

We now follow the dichotomy argument and the continuity argument used to obtain
(4.15). Since 3Nεβ ≤ |α2|/8 on E2, by continuity, we find that on the event �,
�t ≤ 3Nεβ for z ∈ E2.

Case 3: For z ∈ E\(E1 ∪ E2) we use that |m′
t (z)| ≤ Immt (z)

Im z
, z ∈ C

+, since mt is
a Stieltjes transform of a probability measure. Set η̃ := 10N−1+ε and observe that∣∣mt(E + iη)

∣∣ ≤
∫ η̃

η

s Immt(E + is)

s2 ds + �t(E + iη̃) + ∣∣m̃t (E + iη̃)
∣∣.(4.21)

From the definition of the Stieltjes transform, it is easy to check that s →
s Immt(E + is) is monotone increasing. Thus, we find that∣∣mt(E + iη)

∣∣ ≤ 2η̃

η
Immt(E + iη̃) + �t(E + iη̃) + ∣∣m̃t (E + iη̃)

∣∣
≤ C

Nε

Nη

(
Im m̃t (E + iη̃) + �t(E + iη̃)

) + ∣∣m̃t (E + iη̃)
∣∣,(4.22)
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for some C where we used η̃ = 10N−1+ε to obtain the second inequality. Since
z = E + iη̃ ∈ E1 ∪ E2, we have �t(E + iη̃) ≤ CNεβ(E + iη̃) ≤ C on �. Using
that m̃t is uniformly bounded on E , we get that, on �, �t ≤ CNεβ , for all z ∈
E\(E1 ∪ E2).

In sum, we get �t ≺ β uniformly on E for fixed t ∈ [0,6 logN ]. Choosing
t = 0, we have proved Theorem 2.9. To prove that this bound holds for all t ∈
[0,6 logN ], we use the continuity of the Dyson matrix flow. Choosing a lattice
L ⊂ [0,6 logN ] with spacings of order N−3, we find that �t ≺ β , uniformly on E
and on L, by a union bound. Thus, by continuity, we can extend the conclusion to
all t ∈ [0,6 logN ] and conclude the proof of Proposition 2.12. �

4.2. Proof of Theorem 2.9. Theorem 2.9 is a direct consequence of the follow-
ing result.

LEMMA 4.4. Let X0 satisfy Assumption 2.6 with φ > 0. Then,∣∣∥∥X†
t Xt

∥∥ − Lt

∣∣ ≺ 1

q4
t

+ 1

N2/3 ,(4.23)

uniformly in t ∈ [0,6 logN ].

The proof of Lemma 4.4 is split into a lower and an upper bound. The lower
bound is a direct consequence of the local law in Proposition 2.12. The upper
bound requires an additional stability analysis starting from the first inequality
in (4.6). This time we capitalize on the fact that α1(z) = Im m̃t (z) behaves as
η/

√
κt (E) + η, for E ≥ L+, to get sharper estimates outside of the spectrum.

Since the arguments for the lower and upper bounds are similar to the ones in
[25], we postpone their proofs to the Appendix B of the Supplementary Material
[18].

5. Proof of Tracy–Widom limit for the largest eigenvalue. In this section,
we prove the Theorem 2.10, the Tracy–Widom limiting distribution of the largest
eigenvalue. Following the idea from [13], we consider the imaginary part of the
normalized trace of the Green function m ≡ mX†X of X†X. For η > 0, let

θη(y) = η

π(y2 + η2)
(y ∈R).(5.1)

It can be easily checked from the definition of the Green function that

Imm(E + iη) = π

N
Tr θη

(
X†X − E

)
.(5.2)

The first proposition in this section shows how we can approximate the distri-
bution of the largest eigenvalue by using the Green function. Recall that L+ is the
right endpoint of the deterministic probability measure in Theorem 2.7.
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PROPOSITION 5.1. Let X satisfy Assumption 2.6, with φ > 1/6. Denote by
λX†X

1 the largest eigenvalue of X†X. Fix ε > 0 and let E ∈ R be such that
|E − L+| ≤ N−2/3+ε . Set E+ := L+ + 2N−2/3+ε and define χE := 1[E,E+]. Let
η1 := N−2/3−3ε and η2 := N−2/3−9ε . Let K : R → [0,∞) be a smooth function
satisfying

K(x) =
{

1 if |x| < 1/3,

0 if |x| > 2/3,
(5.3)

which is a monotone decreasing on [0,∞). Then, for any D > 0,

E
[
K

(
Tr(χE ∗ θη2)

(
X†X

))]
> P

(
λX†X

1 ≤ E − η1
) − N−D(5.4)

and

E
[
K

(
Tr(χE ∗ θη2)

(
X†X

))]
< P

(
λX†X

1 ≤ E + η1
) + N−D(5.5)

for N sufficiently large, with θη2 .

For the proof, we refer to Proposition 7.1 of [25]. We remark that the lack of the
improved local law near the lower edge does not alter the proof of Proposition 5.1.

Next, we state the Green function comparison result for our model. We let WG

be a M × N Gaussian matrix independent of X and denote by mG ≡ mWG
the

normalized trace of its Green function.

PROPOSITION 5.2. Under the assumptions of Proposition 5.1 the follow-
ing holds. Let ε > 0 and set η0 = N−2/3−ε . Let E1,E2 ∈ R satisfy |E1|, |E2| ≤
N−2/3+ε . Consider a smooth function F :R →R such that

max
x∈R

∣∣F (l)(x)
∣∣(|x| + 1

)−C ≤ C
(
l ∈ [1,11]).(5.6)

Then, for any sufficiently small ε > 0, there exists δ > 0 such that∣∣∣∣EF

(
N

∫ E2

E1

Imm(x + L+ + iη0)dx

)

−EF

(
N

∫ E2

E1

ImmG(x + λ+ + iη0)dx

)∣∣∣∣
≤ N−δ,

(5.7)

for large enough N .

Proposition 5.2 directly implies Theorem 2.10, the Tracy–Widom limit for the
largest eigenvalue. A detailed proof is found, for example, with the same notation
in [25], Section 7.

In the remainder of the section, we prove Proposition 5.2. We begin by the
following application of the generalized Stein lemma.
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LEMMA 5.3. Fix � ∈ N and let F ∈ C�+1(R;C+). Let Y ≡ Y0 be a random
variable with finite moments to order � + 2 and let W be a Gaussian random
variable independent of Y . Assume that E[Y ] = E[W ] = 0 and E[Y 2] = E[W 2].
Introduce

Yt := e−t/2Y0 + √
1 − e−tW,(5.8)

and let Ẏt ≡ dYt/dt . Then,

E
[
ẎtF (Yt )

] = −1

2

�∑
r=2

κ(r+1)(Y0)

r! e− (r+1)t
2 E

[
F (r)(Yt )

] +E
[
��

(
ẎtF (Yt )

)]
,(5.9)

where E denotes the expectation with respect to Y and W , κ(r+1)(Y ) denotes the
(r + 1)th cumulant of Y and F (r) denotes the r th derivative of the function F . The
error term �� in (5.9) satisfies∣∣E[

��

(
ẎtF (Yt )

)]∣∣ ≤ C�E
[|Yt ||�+2]

sup
|x|≤Q

∣∣F (�+1)(x)
∣∣

+ C�E
[|Yt |�+21

(|Yt | > Q
)]

sup
x∈R

∣∣F (�+1)(x)
∣∣,(5.10)

where Q > 0 is an arbitrary fixed cutoff and C� satisfies C� ≤ (C�)�

�! for some
numerical constant C.

PROOF OF PROPOSITION 5.2. Fix a (small) ε > 0. Consider x ∈ [E1,E2]. For
simplicity, let

G ≡ Gt(x + Lt + iη0), m ≡ mt(x + Lt + iη0),(5.11)

with η0 = N−2/3−ε , and define

Y ≡ Yt := N

∫ E2

E1

Imm(x + Lt + iη0)dx.(5.12)

Note that Y ≺ Nε and |F (l)(Y )| ≺ NCε for l ∈ [1,11]. Recall from (2.50) and
(2.51) that

Lt = λ+ + 1√
d

(
1 + 1√

d

)2
e−t s(4)q−2

t + O
(
e−2t q−4

t

)
,

L̇t = −2
1√
d

(
1 + 1√

d

)2
e−t s(4)q−2

t + O
(
e−2t q−4

t

)
,
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with qt = et/2q0. Let z = x + Lt + iη0 and G ≡ G(z). Differentiating F(Y ) with
respect to t , we get

d

dt
EF(Y ) = E

[
F ′(Y )

dY

dt

]
= E

[
F ′(Y ) Im

∫ E2

E1

N∑
i=1

dGii

dt
dx

]

= E

[
F ′(Y ) Im

∫ E2

E1

(∑
i,j,α

Ẋαj

∂Gii

∂Hαj

+ L̇t

∑
1≤i,j≤N

GijGji

)
dx

]
,

(5.13)

where by definition

Ẋαj ≡ (Ẋt )αj = −1

2
e−t/2(X0)αj + e−t

2
√

1 − e−t
WG

αj .(5.14)

Thus, we find that∑
i,j,α

E

[
ẊαjF

′(Y )
∂Gii

∂Xαj

]

= −2
∑
i,j,α

E
[
ẊαjF

′(Y )GiαGji

]

= e−t

N

�∑
r=2

q
−(r−1)
t s(r+1)

r!
∑

1≤i≤j

∑
j,α

E
[
∂r
αj

(
F ′(Y )GiαGji

)] + O
(
N1/3+Cε),

(5.15)

for � = 10, where we use the short hand ∂jα = ∂/∂Hjα . Here, the error term
O(N1/3+Cε) in (5.15) corresponds to �� in (5.9), which is O(NCεN2q−10

t ) for
Y = Hjα .

We claim the following lemma which is proved in Appendix C of Supplemen-
tary Material [18].

LEMMA 5.4. For an integer r ≥ 2, let

Jr := e−t

N

q
−(r−1)
t s(r+1)

r!
∑
i,j,α

E
[
∂r
jα

(
F ′(Y )GijGαi

)]
.(5.16)

Then, for any r �= 3,

Jr = O
(
N2/3−ε′)

(5.17)

and

J3 = 2√
d

(
1 + 1√

d

)2
e−t s(4)q−2

t

∑
i,j

E
[
F ′(Y )GijGji

] + O
(
N2/3−ε′)

.(5.18)
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Assuming Lemma 5.4, we find that there exists ε′ > 2ε such that, for all t ∈
[0,6 logN ],∑

i,j,α

E

[
ẊjαF ′(Y )

∂Gii

∂Xjα

]
= −L̇t

∑
i,j

E
[
GijGjiF

′(Y )
] + O

(
N2/3−ε′)

,(5.19)

which implies that the right-hand side of (5.13) is O(N−ε′/2). Integrating equation
(5.13) from t = 0 to t = 6 logN , we get∣∣∣∣EF

(
N

∫ E2

E1

Imm(x + Lt + iη0)dx

)
t=0

−EF

(
N

∫ E2

E1

Imm(x + Lt + iη0)dx

)
t=6 logN

∣∣∣∣ ≤ N−ε′/4.

We remark that the comparison between Imm|t=6 logN and ImmG is trivial as in
the Wigner-type case. Comparing ith largest eigenvalues of X†X and λG

i , we find
that ∣∣Imm|t=6 logN − ImmG

∣∣ ≺ N−5/3.(5.20)

This completes the proof of desired proposition. �
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SUPPLEMENTARY MATERIAL

Supplement: Proofs of some lemmas (DOI: 10.1214/19-AAP1472SUPP;
.pdf). In the Supplementary Material [18], we will provide the proofs of Lem-
mas 4.1, 4.2, 4.4 and 5.4.
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