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Abstract. The theory of cointegration has been a leading theory in econo-
metrics with powerful applications to macroeconomics during the last
decades. On the other hand, the theory of phase synchronization for weakly
coupled complex oscillators has been one of the leading theories in physics
for many years with many applications to different areas of science. For
example, in neuroscience phase synchronization is regarded as essential for
functional coupling of different brain regions. In an abstract sense, both theo-
ries describe the dynamic fluctuation around some equilibrium. In this paper,
we point out that there exists a very close connection between both theories.
Apart from phase jumps, a stochastic version of the Kuramoto equations can
be approximated by a cointegrated system of difference equations. As one
consequence, the rich theory on statistical inference for cointegrated systems
can immediately be applied for statistical inference on phase synchroniza-
tion based on empirical data. This includes tests for phase synchronization,
tests for unidirectional coupling and the identification of the equilibrium from
data including phase shifts. We study two examples on a unidirectionally cou-
pled Rossler—Lorenz system and on electrochemical oscillators. The methods
from cointegration may also be used to investigate phase synchronization in
complex networks. Conversely, there are many interesting results on phase

synchronization which may inspire new research on cointegration.
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1. INTRODUCTION

Phase synchronization has a long history dating back
to 1665, where the mathematician and physicist C.
Huygens discovered synchronization of two pendu-
lum clocks suspended close to each other on the same
wooden beam. From that time on, the phenomenon
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got more and more into the focus of scientists. Dur-
ing the last decades, the behavior of two or several
interacting oscillators has been intensively studied in
the physics literature—in particular, in the context of
nonlinear dynamical systems (cf. Pecora and Carroll,
1990, Kocarev and Parlitz, 1996, Rosenblum, Pikovsky
and Kurths, 1996, Boccaletti, Pecora and Pelaez,
2001, Boccaletti et al., 2002; see also the monographs
Pikovsky, Rosenblum and Kurths, 2001a, Osipov,
Kurths and Zhou, 2007). In contrast to other types
of synchronization, phase synchronization purely de-
pends on the phases of self-sustained weakly-coupled
oscillators while the amplitudes may even be empir-
ically uncorrelated. Weak coupling means that the
phases of all oscillators may be subject to individual
disturbances and the whole system adjusts itself af-
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terward. Thus phase synchronization is regarded as a
complex dynamical process rather than a fixed state.

The phenomena of phase synchronization has been
found experimentally in many fields, for example, elec-
trical circuits in Pujol-Pere et al. (2003), Baptista et al.
(2003), lasers in DeShazer et al. (2001), electrochem-
istry in Kiss and Hudson (2001, 2002), biological sys-
tems in Elson et al. (1998), Tass et al. (1998), popu-
lation dynamics in Blasius, Huppert and Stone (1999),
between El Nifio and the Indian monsoon in Maraun
and Kurths (2005) and even tennis in Palut and Zanone
(2005). Since phase synchronization purely depends
on the phases of the oscillators, it can also be de-
tected between oscillators which are of a different type.
A practical example is the phase synchronization of the
cardiac and respiratory system in Stefanovska (2002),
Stefanovska et al. (2000) or between maternal breath-
ing and the fetal-maternal heart rate coordination in
Van Leeuwen et al. (2009).

In neuroscience, phase synchronization is regarded
as essential for functional coupling of different brain
regions. Single neuronal activity, coupled to an ensem-
ble of oscillatory neuronal activity through the phase,
enables the cells to transmit their information content
long-range across different cortical areas. To cite from
the abstract of Fell and Axmacher (2011): “In recent
years, studies ranging from single-unit recordings in
animals to EEG and MEG studies in humans have
demonstrated the pivotal role of phase synchroniza-
tion in memory processes. Phase synchronization—
here referring to the synchronization of oscillatory
phases between different brain regions—supports both
working memory and long-term memory and acts by
facilitating neural communication and by promoting
neural plasticity.” Colgin and Moser (2010) discuss
mechanisms of gamma oscillations in the hippocam-
pus and the functional role of the synchronization of
such oscillations in several key hippocampal opera-
tions, including cell grouping, dynamic routing and
memory. In Womelsdorf et al. (2007), synchronization
in the gamma band is investigated, and it is discovered
that the mutual influence among neuronal groups de-
pends on the phase relation between rhythmic activities
within the groups. Furthermore, the pattern of synchro-
nization is related to the pattern of neuronal interac-
tions. Further reviews on phase synchronization in neu-
roscience are Engel, Fries and Singer (2001), Varela
et al. (2001) and David et al. (2003).

To study the synchronization of a larger population
of interacting units theoretically, for example, fireflies
flashing or crickets chirping at the same time, Winfree

(1967) studied the nonlinear dynamics of a large popu-
lation of weakly coupled oscillators with intrinsic fre-
quencies that were distributed according to some pre-
scribed probability distribution. He also ignored the
amplitude and considered phase oscillators and worked
with a mean field model. Kuramoto (1975, 1984) in-
troduced a sound mathematical model to describe this
phenomenology leading to a theoretical treatment of
the mean field approach. He also studied the limit be-
havior when the number of oscillators tends to infinity.
This model has been used since then in different forms
to discuss theoretically phase synchronization in a pop-
ulation of weakly coupled oscillators. For example, the
onset of synchronization is discussed in this framework
in Strogatz (2000).

Although some stochastic methods are used to an-
alyze phase synchronization (e.g., the spectral coher-
ence), there hardly exist any stochastic models for the
dynamics of synchronized phase processes. Establish-
ment of experiment-adapted stochastic phase models
would be an important task to estimate the dynamics
of the phases. Specific outcomes could be statistical
tests for phase synchronization, the presence of unidi-
rectional coupling and the identification of the equilib-
rium from data including phase shifts.

In this paper, we propose that the theory of coin-
tegration provides a good stochastic model for phase
synchronization and therefore is a good framework for
investigating these questions. In the method, cointegra-
tion is not used directly as a model for the oscillators,
but rather as a model for the phase processes driv-
ing the oscillators. Using the phase processes as the
key element for describing oscillators has been stan-
dard in physics for many years. On the other hand,
this approach has never been used to our knowledge
in statistics or econometrics to model oscillators. Here,
oscillators have typically been investigated with spec-
tral methods such as Fourier or wavelet transforms.
Furthermore, statisticians focused on building mod-
els directly for the oscillating processes instead of the
phases.

The theory of cointegration may be used in phase
synchronization both for theoretical studies and for
identifying unknown systems based on empirical data.
The link may also be of importance in the other direc-
tion in that the known results on phase synchroniza-
tion may lead to new insights or stimulate research
in cointegration. The common ground of both theo-
ries is that two or several processes fluctuate randomly
around some equilibrium.
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The concept of cointegration was introduced by
Granger (1981) for the joint modeling of several
macroeconomic variables over time. In 2003, he re-
ceived the Nobel Prize for his discovery jointly with
Engle. The aim of the theory is to model common
stochastic trends, for example, of income and con-
sumption where the short-run dynamics is affected by
random disturbances and the long-run dynamics is re-
stricted by economic equilibrium relationships. Other
examples are the exchange rates and the price levels,
the short and long-term interest rates and the prices on
spot and future markets.

Since its introduction the theory of cointegration has
been developed by many researchers and it has become
a leading theory in econometrics with many applica-
tions in macroeconomics and beyond; for references,
see the monographs Banerjee et al. (1993), Johansen
(1995), Engle and White (1999), Liitkepohl (2005) and
Juselius (2006) among many others. Phillips (1991)
and Kessler and Rahbek (2001) have developed the the-
ory for continuous time diffusion processes.

We now give a heuristic and elementary argument
why the setting of cointegration is of importance for

phase synchronization: Suppose we observe y,(i) =

A; cos(qﬁt(i)) + e,(i) fori=1,2and r=1,..., T with
phase processes qbt(’) (alternatively we may just have

the phases d),(’) from some oscillators calculated by
means of the Hilbert transform or some other method).
A naive model for a random phase could be ¢; =
wt + ¢g + 8; with some random error &; which could be
a white noise process or some stationary process. This
model had the drawback that it fluctuates around the
deterministic linear phase wt 4 ¢o and would there-
fore only be adequate if some external force or con-
straint would keep the phase close to this linear phase.
Instead a better model for most situations is the cor-
responding model for the phase increments A¢, =
¢ — ¢r—1 = o + &, where §; is a stationary process
with mean zero and positive correlation (in a more re-
fined model one would in addition request positivity
of the phase increments; cf. Appendix A). In the sim-
plest case where §; is i.i.d. Gaussian, this means that
¢ = ot + o + Y L_, & has the same distribution as
a Brownian motion with drift. In this case, var(¢;) ~ ¢
which means that the phase may depart substantially
from ¢, = wt + ¢ for large ¢. This feature remains if
the process d; is stationary with mean 0. Such a process
¢, is called an integrated process.

If we look at two processes with synchronized
phases, then both phases may evolve like a Brownian

motion with drift; however, the difference d)t(]) — ,(2)

should stay relatively small; in particular, it should not
explode. A proper model therefore is that these dif-
ferences follow a stationary process. This is exactly
the concept of cointegration: both phase-processes are
integrated but the difference remains stationary. The
heuristics presented here is formalized in Appendix A.

The paper is organized as follows. Section 2 provides
a brief introduction to phase synchronization with fo-
cus on testing for phase synchronization and the Ku-
ramoto model for interacting oscillators. We point out
that a cointegrated system arises as the solution of
a system of stochastic difference equations which is
similar to the Kuramoto equations. In Section 3, we
give a brief introduction to the theory of cointegration
and review some tests for cointegration. Section 4 de-
scribes the use of cointegration for the statistical analy-
sis of phase synchronization. In particular, we give our
definition of stochastic phase synchronization. In Sec-
tion 5, we present a simulation showing the application
of the proposed method to a coupled Rossler—Lorenz
system, and an experimental example of electrochem-
ical oscillators. Conclusions and an outlook are given
in Section 6 followed by the definition of VEC-state
oscillators in Appendix A and some computational and
modeling aspects in Appendix B.

2. PHASE SYNCHRONIZATION AND THE
KURAMOTO MODEL FOR INTERACTING
OSCILLATORS

2.1 Phase Synchronization of Weakly Coupled
Oscillators

The starting point of phase synchronization is the
definition of the phase ¢, of an oscillator. For chaotic
phase synchronization, the phase often is defined via
the Hilbert transform of the signal. If the projection of
the attractor on some plane has only one rotation cen-
ter (as in Figure 2), then the phase can be defined by
the rotation angle around this center. The Hilbert phase
of a signal y; is defined through the analytic signal ¢;
given by & = y; + i ytH = a; exp(i¢;). The imaginary
part of ¢; is obtained using the Hilbert transform; for
a definition in the continuous case cf. Pikovsky et al.
(1997), Appendix A.2, and for a definition in the dis-
crete time case, cf. Brillinger (2001), Section 2.7. a; is
the amplitude, and the phase ¢, is computed through

H
¢r = arctanyL.
YVt



COINTEGRATION AND PHASE SYNCHRONIZATION 337

Alternatively, one may look at stochastic systems, for
example, of the form

(D Ve =a;cos(¢y) + &, tel

or even at systems like

2) ye=ai f(dr) + &1,

where f is a 2w periodic real valued function rep-
resenting the oscillation pattern. Here, the ¢; may
be determined by a particle filter (Dahlhaus et al.,
2017). The latter model may, for example, be used
for ECG signals. Further methods for phase estima-
tion are based on the wavelet transform (Grossmann,
Kronland-Martinet and Morlet, 1989), or on a local pe-
riodogram (Hannan, 1973, Paraschakis and Dahlhaus,
2012).

In the next step, two weakly coupled oscillators with
phases d)t(l) and d),(z) are called m : n phase synchro-
nized if there exists some constant ® (phase shift) and
some small § > 0 such that

3) |(mg” — ngp® — d)mod 27| < 8

te’,

holds for all t. m and n are integers which are usu-
ally known in a practical application. The idea be-
hind this definition is that the (rescaled) phases “stay
together” and do not move arbitrarily far from each
other. A standard statistic for testing the hypothesis “no
phase synchronization” is the phase synchronization
index (Mormann et al., 2000, Quian Quiroga, Kreuz
and Grassberger, 2002b) defined through

N 2
4) R? = T Zexp{i(mqﬁt(l) — nd),(z))} )
=1

The synchronization index has values between 0 and
1 where values close to one indicate phase synchro-
nization. A value close to 1 is obtained for an almost
constant phase difference of |m¢,(1) - n¢,(2)|, which
can occur even for two nonidentical chaotic oscillators
(Rosenblum, Pikovsky and Kurths, 1996). R? has of-
ten been used for testing phase synchronization and
there exist several articles where the distribution of
R? or other test statistics is approximated by differ-
ent methods, for example, with surrogate data. The
most advanced approach from a statistical perspective
is Schelter et al. (2007) where the distribution of R?
under the null hypothesis is approximated by using two
independent stochastic processes. Reviews and com-
parisons of various phase synchronization measures
and tests can be found in Quian Quiroga, Kreuz and

Grassberger (2002b), Allefeld and Kurths (2004b) and
Schelter et al. (2007).

Despite of these results, the situation is not satisfy-
ing from a statistical perspective, because there usu-
ally does not exist a clearly defined population quantity
corresponding to R2. We show in this paper that coin-
tegrated systems provide a statistical framework with
which questions like existence of synchronization and
unidirectional coupling can be investigated.

2.2 Cointegration as a Stochastic Kuramoto-Type
Model

As mentioned in the Introduction, Kuramoto (1975,
1984) introduced a mathematical model to describe the
synchronization of a larger population of interacting
units. A simple version of the Kuramoto model for the
phases of d oscillators is

0 Kﬁ: (69 — ¢
¢ =w;i +— ) sin(¢p") —¢"
(5) d i

i=1,...,d).

Allefeld and Kurths (2004a) discuss the following
stochastic generalization of the model:

d
¢V =wi+ Y kijsin(@V) — D) +n;
(6) =1

i=1,...,d),

where the 7n; are taken to be independent Gaussian
white noise variables.

There is a striking similarity of this model to coin-
tegration: For ¢/) — ¢ small, we can approximate
sin(gb(j ) — @) by ¢(j ) — W) leading to the discretized

approximation for the vector ¢, = (qbt(l), e ,(d))/ ,

w=(01,...,00)

(7 Ay =w+ -1 +

with I1 = K — diag(Z?:1 kij,..., Z?zl kqj) where
K = (kij)i,j=1,..,a- This is exactly the representation

(9) from below with p = 1 and w = u, that is, the coin-
tegrated system (11), (10) with p =1 is exactly the
solution of the stochastic difference equations (7). We
mention that cointegration requires the matrix IT to be
of reduced rank which is fulfilled in this case since the
columns sum up to 0.

Being a bit more specific at this point gives us a
deeper insight into the relevance of cointegration the-
ory for phase synchronization in networks: The above
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IT can be written in the form IT = aB’ with d x r-
matrices o and 8 of full rank » where (in this case)
r =d — 1, namely

, 1 0 -~ 0 —1

p él 0 1 0 —1
_IB’,_: . :

r 00 --- 1 —1

and « consisting of the first d — 1 columns of IT (only
for this specific 8). The ﬂ}gb, = 0 are obviously the
M _ ..
p =

d — 1 phase synchronization relations ¢

d),(d). The matrix « is sometimes called adjustment or
loading matrix.

In the following, we apply the concept of cointe-
gration to phase synchronization. For the model (7),
this means testing for cointegration (phase synchro-
nization) via determining (testing) » = rank I'l. This re-
sults in the reduced rank representation IT = o8’ with
d x r-matrices « and B of full rank r. After the param-
eters o and B have been estimated, B’¢; are the r coin-
tegration (phase synchronization) relations and o gives
the intensities with which deviations from the equilib-
rium lead to corrections. In particular, o can be tested
for unidirectional coupling.

The use of the cointegration model (7) for phase syn-
chronization has several benefits: The model can be fit-
ted in both situations (phase synchronization/nonphase
synchronization) to the data and the hypothesis of
phase synchronization can be tested on the matrix IT,
for example, by looking at the fitted model. In addi-
tion, one is able to identify the parameters from real
data, and to conclude to the phase synchronization re-
lations, unidirectional coupling, etc. This can easily be
done by using the large number of existing tools for
cointegration.

On the other hand, it is very important to keep the
difference between the two models in mind: The major
difference is that the Kuramoto model (6) has the equi-
librium ¢ — ¢ = 0 mod 27 while the cointegration
model (7) has the equilibrium ¢/) — ¢ = 0. In case
of (say) /2 < ¢\V) — ¢ < 7, the Kuramoto model
has a force to the “equilibrium” o) —p® =27 while
the cointegration model still has a force to ¢*/) — ") =
0. This means that the Kuramoto model allows for
phase jumps of one of the two processes while the
cointegration model does not. One may term the for-
mer “weak synchronization” and the latter “strong syn-
chronization.” Examples are the processes with € =
9.6,10.2,11.0,11.1 in Section 5.1 (Figure 4 and Fig-
ure 5) which exhibit phase jumps.

3. THE CONCEPT OF COINTEGRATION

3.1 Cointegration and the Granger Representation
Theorem

We now briefly review a small part of the the-
ory of cointegration (for more details see, for exam-
ple, the monographs Johansen, 1995, Liitkepohl, 2005,
Juselius, 2006)—the last one containing a more applied
view). As it is usual in many papers, we restrict our-
selves to vector autoregressive (VAR-) processes

Q) Xi=A1Xi 1+ F+AXi—p+utn,

where the coefficients A; are d x d-matrices, u =
(1, ..., q) and the innovations n, are ii.d. with
mean O and positive definite covariance matrix £2,,.
Let A(z) ;=I5 — A1z —--- — A,z” be the characteris-
tic polynomial. We restrict ourselves to VAR-processes
with roots outside the unit circle or equal to 1, that is,
where det(A(z)) = 0 implies |z| > 1 or z = 1.

We call a process integrated (of order 1 - 7(1) for
short) if X; is not stationary and the first-order dif-
ference AX; = X; — X;_ is stationary. We call a d-
dimensional process X; cointegrated if each univariate
series is integrated and some linear combination 8’ X,
(with an r x d-matrix 8 of rank r and 0 < r < d) is sta-
tionary (these definitions simplify the issue—for thor-
ough definitions we refer to the above monographs).
B is known as the cointegrating vector. It specifies the
long-term relationship between the involved univariate
series. The most relevant example for phase synchro-
nization of 2 oscillators is d =2 and B = (1, —1)":
B’ X, fluctuates stationary around a long run mean, that
is, it is bounded in probability.

With some straightforward calculations we can trans-
form the above representation to

p—1
©)  AX;=TXi—1+ ) TiAX—i +p+m,
i=1

where
Mi=—Ug—A1—---—A))
and
Fii=—Aiq1+---+A4Ap)
fori =1,..., p — 1. If the process X; is not station-

ary (in particular if it is cointegrated) then det(IT1) =
(=19 det(A(1)) = 0. Thus IT is singular with rank
r < d and it can be decomposed to IT = af’ with d x r-
matrices @ and S of full rank r.

Since the process is I (1), the first-order difference
AX; is stationary, and the representation (9) implies
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that also T1X;_| = aBf’X;_1 is stationary. Multiplying
this with (a’a) ™'’ implies that g’X;_; is stationary,
that is, each component of 8'X;_; is a cointegrating
relation. The corresponding representation

p—1
(10)  AX;=op' X1+ ) TiAXi—i +p+

i=1
is called vector error correction model (VEC-model or
VEC-representation). It shows that whenever the pro-
cess moves away from the equilibrium B'X;_; = By
(for the definition of By see below) it is pulled back to
the equilibrium with the forces o (see the end of Sec-
tion 5.1 for an illustrative example).

The Granger representation theorem (Engle and
Granger, 1987, Johansen, 1991) now gives another use-
ful representation of the process. Under the above con-
ditions, the process has the moving average represen-
tation

t
(11) X, =CY ni+Cut +C*(L)(n + 1) + X,
i=1
where

(12) C=Ri[a\ T8 ] ",

with T =1, — Y2, C*@Wo + w) =
Z?‘;O C;‘f (;—j+ ) is a stationary process and X con-
tains initial values with g’X§ = 0. 1 denotes an or-
thogonal complement of «, thatis, | isand x (d —r)-
matrix of rank d — r with ozloz = 0 (the same for 8).

The representation (11) shows that the d-dimensio-
nal process is driven by d — r I(1) components and
r stationary components. The first term on the right
hand side consists of d random walks Y_!_, n; which
are multiplied by a matrix of rank d — r denoted by C.
Thus, there are actually d — r stochastic trends driv-
ing the system. On the contrary, the representation (10)
[or (14)] shows how the process is pulled back to the
equilibrium if deviations occur. This is illustrated by
the example at the end of Section 5.1.

Of special importance for phase synchronization is
a decomposition u = I'wg — afy where wy is a trend-
term and By is a constant belonging to the error correc-
tion equation: Taking expectations in (11), we obtain
because of En; =0

(13) EX; =Cpt+ C*(L)n + EX;
and, therefore, wg := EAX; = Cu. Since AX; is sta-
tionary, we obtain from (10)

p—1
«E(B'X;—1) =E(AX,) — ) TiE(AX,—) —
i=1

—['C — Iyl

Let @ := a(@’a)”!. Since @'« = I., we have
E(B'X,—1) =a[I'C — I5lu =: Bo.

Obviously, we have u =I'Cu — [I'C — Izlpn =
"'wo — afy. Therefore, we obtain the modified VEC-
representation

(AX; —wo) =a(B'Xi—1 — Bo)

(14) p!
+ Z Fi(AXi—i — wo) + 1.

i=1
This means that the “true” cointegration relation de-
scribing the equilibrium is B’X,_1 — Bo = 0. If the
process deviates at time ¢ — 1 from this relation, it is
pulled in the next step with force o back towards this
equilibrium. (11) and (13) show that wg = Cpu is the
drift-vector of the process, that is the process X; has
a deterministic trend wpf. The intercept terms are con-
tained in X in (11).

Below we use this model as a stochastic model for
phase synchronization. In the case d = 2, the situation
is even more intuitive: If the system is cointegrated
(i.e., r = 1), we only have a one-dimensional cointe-
gration relation B'X;_; — Bo = 0 and the drift vector
wo has the same direction as the random walk part
CY!_,m (namely B). We discuss this simpler and
more intuitive case in Section 5.1 with a specific ex-
ample.

To keep the situation simple, we first restrict our-
selves to the case p = 2. In this case, the VEC-
representation takes the form (now replacing X; by ¢,)

AV = 061(4591 - ,3245;(3)1)
(15)

1 2 1
+y1800, + 81862, + 11 +1tY,

Aqbt(z) =y (¢t(1_)1 - ,32¢t(i)1)
(16)

2 2
+ 12882, + 6,800, + 1o + 12,

where we have assumed for the cointegrating vector
B = (1, —pB2) for identifiability. In that case, also o
and o are identifiable.

If the model is used for phase synchronization B,
usually is known (in the 1 : 1 synchronization case we
have B> = 1; Bp then is the mean phase difference in
the equilibrium). We expect that in many cases the re-
duced system with 6; = §, = 0 will suffice to describe
the joint phase dynamics. However, the parameters y,
y» are needed since successive increments usually are
correlated.
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In the reduced system where §; = 6, = 0, error cor-
rection toward the equilibrium is done solely by the
terms with coefficients o and «y. Of special impor-
tance are the cases ¢y <0, ap =0and o1 =0, 0 >0
meaning that there is unidirectional coupling; see Sec-
tion 5.1 for an illustrative example (in the nonreduced
system also the higher order terms contribute to er-
ror correction—cf. Johansen, 1995, Exercise 4.3). This
allows for testing whether there is an unidirectional
driver-response relationship between the phases.

A general state space model is discussed in Ap-
pendix A. There also the positivity of the phase incre-
ments is discussed.

3.2 Cointegration Testing and Model Fitting

In order to test for phase synchronization and for
unidirectional driver-response relationships, we apply
tests for cointegration. Two cases need to be distin-
guished: First, the case where the cointegrating vector
B is known and we want to test for a specific coin-
tegrating relationship. This may be the standard case
for phase synchronization of two oscillators where the
m : n synchronization relation as in (3) is often clear
from prior knowledge or eye-inspection.

The other case is the case of unknown S. For ex-
ample, in systems of higher dimension it may be clear
that the whole system is “somehow” 1 : 1 synchronized
but it usually is not clear at all how the synchronization
“propagates” through the network. In that case, the task
is to test for the rank of IT in (9) and to determine the
factorization IT = B’ as well as the vector By leading
to the phase synchronization relations, the mean phase
shift and the matrix « representing the strength and the
direction of coupling.

We start with the case of unknown 8 leading to the
likelihood theory of Johansen (1995) and to his likeli-
hood ratio test. Additional information on this case is
provided in Section 4. We then discuss the augmented
unit root test by Dickey and Fuller (1979, 1981). We
mention that there exist several other tests such as a
test based on residuals by Phillips and Ouliaris (1990)
and Lagrange multiplier tests (Saikkonen and Liitke-
pohl, 2000).

Johansen’s likelihood theory and rank test. The
likelihood theory for cointegrated systems is well
developed—the most famous result being Johansen’s
likelihood ratio test (LR-test) for the cointegration
rank, that is, for the determination of r = rank(I)
in (9) and the corresponding decomposition IT = af’
with o and B being d x r-matrices of rank r. Thus

a major advantage of the Johansen procedure is that
it can simultaneously identify multiple cointegration
relations in multivariate time series. The situation is
much more challenging than for the classical likeli-
hood ratio test since the integrated processes require
a different asymptotic theory leading, for example, to
a nonstandard limit distribution of the likelihood ratio
test.

We briefly sketch part of the results, for a more
detailed discussion, cf. Chapters 7 and 8 in Juselius
(2006). Note that in our case p in (9), (10) plays an
important role since it leads to the phase lag By and the
deterministic drift term wot of the phases, while the
additional term w1t often discussed in the cointegra-
tion literature (leading to quadratic drift) is not needed
in this context (i.e., the situation we consider is Case 3
in Juselius, 20006).

Suppose now we want to calculate the maximum
likelihood estimates for & and 8 in the system (10). In
the Gaussian case, the maximum likelihood estimates
are essentially the same as least squares estimates. In
the first step, n and the A X;_; are removed by regress-
ing them on AX; and X;_. If we denote the residuals
by AAX, and )?,\_/1 , we obtain the “concentrated model”

AX, = ap'X,_; + error.

Now, the optimal value & () is determined for given 3,
plugged into this equation, and finally the optimal 8 is
determined leading to the maximum of the likelihood.
This procedure can be viewed as finding the canoni-
cal correlations between AA)?, and )?;_/1 (cf. Juselius,
2006, Chapter 8). The resulting squared canonical cor-
relations are denoted by ):1 > ... > ):d > 0. The task
now is to split the )A\l > > )A\d into those )A»l, e, )A\r
which are different from zero and which belong to a
cointegration relation and those )A»H],...,)A»d which
are not significantly different from zero (more pre-
cisely where the corresponding unknown theoretical
values are zero). With view on (11) and the discussion
below, d — r is the number of driving “forces” of the
trend. In particular, r is the rank of the matrix IT we are
looking for.

A formal way to determine r = rank(IT) based on
the values of ):1, e id is the likelihood ratio test, for
example, the so-called trace-test where the null hy-
pothesis H(r) = {rank(IT) < r} is tested in H(d) :=
{rank(IT) < d} recursively forr =0, ...,d —1 (this re-
cursion is called “top — bottom” procedure with “top”
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meaning a large number of cointegration relations cor-
responding to a small rank). The test statistic is

d
Ty—r =LR(HT) | H(d) =—T Y log(l — i)
i=r+1

(called LR-test below) and the hypothesis is rejected
at a significance level « if 17—, > Cy(d — r) where
Cy(d — r) is from Appendix A of Juselius (2006)
(Case 3; p —r =d — r). The procedure stops if the
test accepts the hypothesis for some r.

Special attention is required for the case r = d. This
means that there are no stochastic trends and the sys-
tem in (9) is stationary. In particular, this case does not
mean that there are r cointegration relations; see the
discussion in the next section.

Augmented Dickey—Fuller unit root test. The Aug-
mented Dickey—Fuller (ADF) test allows one to test for
the presence of a unit root in a univariate time series Y;.
It is based on the regression

P

AYy=a+bt +cy,—1 + Z CiAY;_j + €.
Jj=1
The constant a and the time trend bt are only included
if required. For a # 0 and b = 0, the ADF-test tests the
null hypothesis ¢ = 0 integrated process with a deter-
ministic trend against the alternative ¢ < 0 stationarity
with a mean. The test statistic is the usual t-ratio given
by

A

_ C
"~ SE(8)

with ¢ being the ordinary least squares estimator of ¢
and SE(¢) being its estimated standard error. The cor-
responding quantiles can be found in Hamilton (1994)
where in our case the standard normal distribution must
be used. In case the potential cointegration relation
B’ X; is known, the ADF-test provides a simple method
for cointegration testing. We then apply the ADF-test
to the residuals Y; = 8'X;_1. Due to a # 0, it is not
necessary to include Sy.

The ADF-test can also be used to test the hypothesis
integrated process versus trend stationarity. An alter-
native is to use the KPSS-test by Kwiatkowski et al.
(1992) where the hypothesis are exchanged. A disad-
vantage of the ADF-test is the implicit common fac-
tor restriction which is imposed when the ADF-test is
used. The test loses power if the restriction is not sat-
isfied (Kremers, Ericsson and Dolado, 1992). An al-
ternative to the ADF-test is the Wald test which tests
for cointegration via the significance of the adjustment
coefficients o (Horvath and Watson, 1995).

DF;

4. THE COINTEGRATION APPROACH TO PHASE
SYNCHRONIZATION

The Cointegration Model for Phase Processes

We now use the concept of cointegration for a
stochastic definition of phase synchronization. The key
idea is that in a stochastic context phase synchroniza-
tion can be described in terms of stationarity of the
phase-differences, that is, by cointegration. That is we
propose to replace the fixed deterministic bound in (3)
by a stochastic bound: The difference may even get
large (with small probability) but the fact that the dif-
ference is stationary will always force it back to the
equilibrium.

Before we give the definition, we stress that here
we only want to discuss models for signals whose
phase increments can be regarded as stationary—that
is where the unwrapped phases are integrated processes
with a deterministic linear trend (the stochastic part of
the integrated process is sometimes called “stochas-
tic trend”). The case where the deterministic trend is
zero will hardly occur in practice; the case where the
stochastic trend is zero (i.e., the process is trend sta-
tionary) may occur in specific cases; see the discussion
below. By integrated, we always mean I(1)-integrated
in terms of the cointegration literature.

DEFINITION 1 (Stochastic Phase Synchronization).

d oscillators with phase processes ¢ = (', ...,

qbt(d))’ are called stochastically phase synchronized of
order r with 1 <r <d — 1, if all processes are inte-
grated and there exist r linearly independent vectors
B; such that the ,3}(]5; are stationary (i.e., ¢ is cointe-
grated with rank r). In the case of the VEC-model (9),
this means that rank(IT) = r and IT = aB’ as in (10)
with 8 = (B1, ..., B/). The ﬂ}q&, are up to a constant
and up to some nonidentifiability the phase synchro-
nization relations.

One may also use the term stochastically B-phase
synchronized of order r if the processes are cointe-
grated of rank r with cointegrating matrix/vector .

We now briefly discuss the different orders r of
phase synchronization which correspond to the rank of
the matrix IT in (9):

r = 0: If rank(IT) = O there do not exist any cointe-
gration (equilibrium) relations and the phases are inte-
grated processes with a deterministic drift term (which
for phase processes usually is different from 0) and a
stochastic drift term (meaning that the processes are in-
tegrated). Since the vector of phase increments follows
a VAR-process as in (9) with IT = 0 there is still some
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stochastic dependence of the stochastic drifts terms but
this does not lead to synchronization of the phases.

0 < r < d: In this case, we are having r phase syn-
chronization relations, meaning that r is a measure for
the degree of synchronization. We give some exam-
ples:

— if r = 1, we may have, for example, the relation
D = @ or, for example, the relation Z‘le B/ x
t(j ) _ Bo = 0 (this form may hardly occur in prac-
tise);
— if r =2, we may have two (linearly) independent
relations such as d),(l) = t(2) and ¢t(3) = ,(4), or two
generalized relations as above;

— if r =d — 1, we have, for example, the relations
1 _ _ 4
= =Y.

Recall that this means that the d-dimensional pro-
cess is stochastically fluctuating around these r phase
synchronization relations with some error correction
mechanism as given in (14). The phase synchronization
relations are not uniquely determined. This is reflected
by the equation IT = ap’ = a&’~ ' (B&) with any reg-
ular r x r-matrix & where now the columns of (8&)
are the phase synchronization relations. Instead of sin-
gle phase synchronization relations we have a phase
synchronization space spanned by B which is the row
space of IT1 (Johansen, 1991). Testing for the rank of
IT can be viewed as testing for certain subspaces of the
phase synchronization space represented by linear re-
strictions.

The case r = d is a special and difficult one.

,(1), s t(d) then no longer are cointegrated and there
does not exist any equilibrium around which the pro-
cesses fluctuate. Equation (11) then means that the d-
dimensional process is driven by d — r integrated com-
ponents. Thus in the case r = d no stochastic trend
terms remain, which are capable of driving the system;
the process in (10) is stationary in this case. Further-
more, the term u in (9) does not produce any trend in
case rank(IT) = d. One may investigate then whether
all processes are trend stationary, that is, processes with
some intercept y and trend §¢ plus some stationary
part. This may be caused by an external “pacemaker”
such as some daily cycle.

To determine r = rank(IT), we recommend using Jo-
hansen’s LR-test described above based on the VEC-
representation (9). It is important to include the pa-
rameter u since this generates the deterministic trend
wo and the phase shift By (as described above). If § is

known, one may use other testing methods such as the
ADF-test.

Kammerdiner and Pardalos (2010) and Hirsch, Par-
dalos and Murphey (2010) also had the idea to use
cointegration for phase synchronization and applied
this to absence epilepsy data and to the analysis of
neural data collected from primates. However, their ap-
proach is different to the one presented here since they
apply cointegration to the wrapped phases instead of
the unwrapped phases. We regard this as not adequate
since the wrapped phases can hardly be regarded as re-
alizations of an integrated process. As a consequence,
the phase processes in their examples were often tested
to be stationary and the rank test for cointegration did
often lead to the maximal rank r = d indicating station-
arity of the phase processes instead of cointegration of
integrated processes.

It is standard in physics to proceed as if the phases
were observed directly and to ignore the effect of es-
timating the phases. The estimation of the phases is
usually done by means of the Hilbert-transform on a
segment (cf. Section 2.1). We will proceed in the fol-
lowing and in the examples in Section 5.1 in the same
way.

Applying the Method to Phase Processes
We now summarize the main steps of the method.

1. Determination of the phases:

Given the original observations of the oscillators, com-
pute the phases processes (/5,(]) (j=1,...,d) by us-
ing the Hilbert transform or another method (see Sec-
tion 2.1). Unwrap the phases prior to the subsequent
analysis. For specific models such as (1), (2), other
methods may be used.

2. Testing for the rank of T1:

Use the VAR-model as in (9) with u #% 0 and con-
duct the Johansen LR-test as described above. We pre-
fer the trace test in the “top — bottom”-version. For
the choice of the order p, see the discussion in Ap-
pendix B. It is also possible to test specific 8 or hy-
pothesis about § (Johansen, 1995, Chapter 7).

In the situation where the possible phase synchro-
nization relations B’¢, are known (in particular for
d =2), one may use instead the ADF-test (with a #£ 0
and b = 0) to test for B'¢, the null hypothesis inte-
grated process versus stationary process. If the test re-
jects, we conclude to phase synchronization. In prin-
ciple, the use of our knowledge about § results in a
slightly higher power of the test.
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3. Estimation, interpretation and further testing of
the model:
If not already provided from step 2, fit the model (10)
with 8 from step 2 to the data and estimate all coef-
ficients. Check for significance of all coefficients and
delete those coefficients which are not significant. Cal-
culate wg and By as described above and write the
whole model in the form

(AX; — wo)

p—1
=a(B'Xi—1— Po) + Z Fi(AXi—i —wo) + ny
i=1

with the estimated parameters; see (24). Remember
that the parameters « and B are not uniquely de-
termined (only the cointegration space is unique).
This means that different 8 can be chosen to formu-
late the same equilibrium relations (see also Juselius,
2006, Section 8.5, “The cointegration rank: a difficult
choice”). For testing, the coefficients one can use the
t-ratio. In the case of cointegration, this t-ratio follows
a standard t-distribution.

4. Testing for unidirectional coupling:
An important special case of step 3 is the testing for
unidirectional coupling. If phase synchronization is de-
tected, one can test « for the direction of the depen-
dency. For example, in the VEC-model (15), (16) with
81 = 8 = 0, the direction of coupling can be investi-
gated with the adjustment coefficients o, a. If, for
example, a significance test suggests that o1 < 0 and
ar = 0 one can conclude that ¢t(2) influences/corrects

t(l) but not the other way round. Thus, ¢t(2) is the driv-

ing force of phase synchronization and ¢,(1) is forced
to adapt.

Software for performing these steps is discussed in
the Appendix B.1.

5. EXAMPLES
5.1 A Coupled Réssler—Lorenz System

As an example, we analyze with the above meth-
ods an unidirectionally coupled Rossler—Lorenz sys-
tem. We proceed through steps 1-4 above. Computa-
tional details and additional modeling aspects can be
found in Appendix B.

0. Simulation of the data: The system is defined
through an autonomous Rossler attractor with configu-
ration

X1 =—12(y1 +z1) +wi,

y1=12(x1 +0.2yy),
71 = 12[0.2 +z1(x1 — 5.7)],
and a driven Lorenz attractor given by
X2 =16(y2 — x2) — €(x2 — x1) + wa,
Yo =45.92x7 — y» — X222,
2 =x2y2 — 422

with system noise variables wj, wy being i.i.d. N (0,
0.15%) distributed similar to the system analyzed in
Schelter et al. (2007). The parameters are taken from
Guan, Lai and Wei (2005). The coupling is induced
through the inclusion of the x; term in the equation of
X with coupling strength €. Related systems have been
discussed before in Guan, Lai and Wei (2005), Quian
Quiroga, Kreuz and Grassberger (2002a), Palus et al.
(2001), Palu$ and Vejmelka (2007). In our study, cou-
pling strengths € between 8.0 and 12.0 are used (see
below).

The solution is approximated by integration from
0 to 50 with step size 0.01 by using a fourth-order
Runge—Kutta algorithm (cf. Press et al., 1992) lead-
ing to 5000 data points. Note that the above notation
is common in physics but in a mathematical sense not
correct (there are derivatives on the left-hand side and
discrete time noise on the right-hand side). The precise
meaning is, that in the discrete approximation with the
Runge—Kutta algorithm the right-hand side is used at
each gridpoint in time with additional discrete noise.
To make the setting more realistic, stationary observa-
tion noise is added to the oscillators: To the computed
values x; s, yi t, Zi at time ¢, we add u§ = O.9u§_1 + vg
with v/ ~ N(0,0.1).

The trajectory of the Lorenz attractor (in the xz-
plane) for € =0 (no coupling) and € = 12 (coupling)
are given in Figure 1. It can be observed that, in con-
trast to the Rossler attractor [see Figure 2(a)—(c)], the
Lorenz attractor has two rotation centers in the uncou-
pled case. Therefore, the phase of the Lorenz attractor

is usually defined in the uz-plane where u = /x2 + y?
(cf. Pikovsky et al., 1997). In the uz-plane, only one ro-
tation center exists which is illustrated in Figure 2(d)—
(®.

1. Determination of the phases: We apply the Hilbert
transform to estimate the phases as described in Sec-
tion 2.1. The Hilbert transform is applied to the x coor-
dinate of the Rossler attractor and to the u coordinate
of the Lorenz attractor, using a rolling window of 1000
data points. After phase estimation, we have removed
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FIG. 1. Rossler—Lorenz system: Trajectory of the Lorenz attractor in the xz-plane (zp vs. xp) for coupling strengths € =0 (a) and € = 12

(b). (c) shows the trajectory in (b) corrupted by noise.

the first and last 500 data points finally leading to 4000
data points.

Figure 3(a), (b) show 500 data points of the x and
u coordinate of the Rossler and Lorenz attractors, re-
spectively, for the uncoupled case (¢ = 0) and the cou-
pled case (¢ = 12). In (c), (d), the wrapped phase es-
timates are given. It can be seen that in the uncou-
pled case the mean frequency of the Rossler system is
smaller than the mean frequency of the Lorenz system.

In fact, for the given configuration the natural frequen-
cies of the Rossler system and the Lorenz system are
wpr =0.129 and w;, = 0.137, respectively (see below),
that is, the natural frequencies differ significantly in the
uncoupled system. In (e), (f), the unwrapped phases are
plotted and in (g), (h) the “stochastic trend” (in terms
of cointegration), that is, the unwrapped phases minus
0.129¢ are plotted (the latter being the deterministic
trend of the Rossler-attractor and the coupled system as
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FIG. 2. Rossler—Lorenz system: Trajectories of the Rossler attractor in the xy-plane (a)—(c) (y1 vs. x1) and Lorenz attractor in the uz-plane
(d)—(f) (z vs. up) for coupling strengths € =0 (a), (d) and € =12 (b), (e) [as a result of the unidirectional coupling (a) and (b) are identical].

(©)/(f) show the trajectories in (b)/(e) corrupted by noise.
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FI1G. 3. Rossler—Lorenz system: 500 data points of the x coordinate of the Rossler attractor (solid lines) and of the u coordinate of Lorenz
attractor (dashed lines) for € =0 (a) and € = 12 (b). The data points are corrupted by noise. (c), (d) give the corresponding wrapped phase
estimates, (e), (f) the unwrapped phases, and (g), (h) the stochastic trend of the unwrapped phases.
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determined below). The shape of the stochastic trend in
(g) already indicates no cointegration (phase synchro-
nization) while in (h) it indicates cointegration. The os-
cillation of the phase of the Lorenz attractor is due to
the fact that the Lorenz attractor has a slightly steeper
ascent than a descent (this can be overcome by choos-
ing a higher AR-model order; see the comments in Ap-
pendix B).

2. and 2a. Testing for phase synchronization:

We first apply the Johansen rank test in the “top —
bottom’-version where we set the AR-order for sim-
plicity to p = 2. For example, for ¢ = 12 the hypoth-
esis H(0) is clearly rejected with a LR-value of 92.44
(5%-critical value: 15.41) and the hypothesis H(1) is
clearly not rejected (i.e., accepted) with a LR-value of
0.01 (5%-critical value: 3.84). Thus the test reveals
rank I[1 = 1, and we conclude to phase synchroniza-
tion. Furthermore, the procedure also detects the 1: 1-
relation of the phase synchronization from the corre-
sponding eigenvector.

Figure 4(a) shows the values of the 7 (0)-test statis-
tic for different € (but the same values for the noise
variates). The dashed line and the dotted line are the
critical values 15.41 and 19.62 for the significance
levels 0.05 and 0.01, respectively (cf. Juselius, 2006,
Appendix A, Case 3). For those € where the test re-
jects the hypothesis H (1) was tested afterward and in
all cases not rejected. Thus the plotted value of the
H(0)-statistic determined the decision phase synchro-
nization versus no phase synchronization. The values
for € > 11.1 are all highly significant corresponding
to phase synchronization while the values for e < 11.1
are nearly all not significant indicating no phase syn-
chronization.

In Figure 4(c), the phase synchronization index R?
is plotted. The associated critical values are computed
as explained in Schelter et al. (2007). The results of
the two tests agree apart from € =9.6, 10.2,11.0, 11.1
(and 10.6 as a “borderline”-case). The difference can
in all 4 cases be explained by 27 -jumps of the phase-
differences which are penalized by the LR-test but not
penalized by the R2-statistic. The situation is high-
lighted in Figure 5 where we have plotted the estimated
phase differences d),(l) — ¢t(2) for e =0, 9.6, 10.2 and
12 (the situation for 11.0, 11.1 being similar to the
cases 9.6 and 10.2). We think it is a matter of taste
whether one calls the cases 9.6, 10.2 phase synchro-
nized (see the comments below).

We have also used the testing procedure as described
under 2a based on the ADF-test. Here, we have to spec-
ify the possible phase synchronization relation in ad-

vance. Based on the plot in Figure 3(b), we have de-
cided to test for a 1 : 1 synchronization relation, that

is we have applied the ADF-test to ¢t(l) — qﬁt(z) . The
results are given in Figure 4(b) with the vertical axis
being upside down. The dashed line and the dotted
line are the critical values —1.65 and —2.33 associ-
ated with the significance levels 0.05 and 0.01, re-
spectively (from the standard normal distribution; see
Hamilton, 1994, page 529, Case 3). The results co-
incide with the LR-test (with a slight difference for
€ =10.5,10.6,10.7).

Figure 3(d)—(f) show the median and the 10% and
90% quantiles of a larger number of simulations where
the cases with phase jumps have been removed. The
plots and the severe limitations of this simulation are
discussed in detail in the last paragraph of this section.
As a positive outcome the plots confirm that the tests
behave similarly. They also indicate that the ADF-test
has a higher power than the Johansen rank test for val-
ues of € between 9.5 and 10.5 which is not surprising
since the ADF-test uses as an additional information
the form of the cointegration relation (however, the true
power of the tests is unknown and cannot be estimated
from this simulation).

It is remarkable that the LR-test and the ADF-test as
two standard tests from the theory of cointegration per-
form similar to the R2-test which has been explicitly
tailored for phase synchronization. The tests are only
different for processes with phase jumps which we re-
gard more as a feature of chaotic oscillators than of real
data; see also the discussion in Section 6. We also men-
tion that we do not regard the phase synchronization in-
dex R? from Figure 4(c) as some “gold-standard.” In-
stead we think that, for example, a (properly adjusted)
LR-test in an adequate model would be a better choice.

3. and 3a. Estimation, further testing and unidirec-

tional coupling: Given that ¢,(1), ,(2) are cointegrated
with cointegrating vector 8 = (1, —1)’, we estimate the
VEC-model (15), (16) to analyze the joint dynamics
with the aim to uncover the directional coupling. Here
we restrict to the case € = 12 from Figure 3(a)—(c). The

estimation results are given in Table 1.
In the equation of Aq’),(l) only w1 and y; have a sig-

nificant t-ratio. In the equation of A¢,(2) all parame-
ters except 8> are highly significant. Since §; and §>
as well as the cross-correlations of the residuals with
Corr(n,(l), nfz)) = (0.022 are not significantly different
from zero, the dependency of the phases is explained
in the model purely by the error correction mecha-
nism. Since o1 =0 and ap > 0, the VEC-model reli-
ably identifies the direction of coupling of the original
Rossler—Lorenz system.
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TABLE 1
Estimated VEC-model for the Rossler—Lorenz system

Parameter Estimate Std. error t-ratio p-value
ay 0.0009 0.0015 0.62 0.53
71 0.059 0.016 3.71 0.0002
31 0.024 0.014 1.70 0.089
i 0.1177 0.0029 41.12 <0.0001
o) 0.0110 0.0011 9.65 <0.0001
%) 0.726 0.011 68.38 <0.0001
8 0.028 0.012 2.38 0.017
no 0.0262 0.0022 12.11 <0.0001

Finally, a reestimation of the model with only the
significant parameters yields

ApD =0.06080",
(17)
+0.121 + 'Y,
(18)

+0. 727A¢(2) +0.030 + n®.

Note also the more informative representation (24) be-
low and its discussion.

We now discuss the estimated system in terms of
the modified VEC-representation (14) and the MA-
representation (11). At the same time, this system is
a nice illustration of the theoretical setting presented
in Section 3.1 (and a nice example for a cointegrated
system). With the above estimates, we obtain

1 1
=1 5=()
_ 0 (1 _{0.121
“=\oo11) “+=\o)> *=\0.030)"
This leads with straightforward calculation to the other
values
006 O
I :( 0 0.73)’
094 0
I= ( 0 0.27) ’
1 (1
C =094 | (1,0),

wo=Cu=0.129 G),

and By = 0.49. With these values, we obtain the VEC-
representation

(3%) - (613)]
(0011)(¢(1) ~ 9121~ 049)
(00 S (34)
~(5130) ]+

and the MA-representation

(N = ), (0.129
(20) ¢t_(1>,.221"" +<0-129)t
+ C*(L)(n; + 1) + ¢o.

Equation (24) has the meaning that the phase process is
pulled toward the equilibrium defined by 8'¢, — Bo =

D — ¢ —0.49 = 0 with the force & = (, J;,) which
gets active as soon as the process leaves the equilib-
rium. In this case, «; = 0, that is, the correction is on
process 2 only. This means that the unidirectional cou-
pling between the Rossler and the Lorenz system has
been detected correctly.

The equilibrium qb(l) ,(2) — 0.49 = 0 means that
the phase of the Rossler system is ahead of the phase
of the Lorenz system in the average by 0.49. This is
confirmed by the plot in Figure 3(d).

The representation (20) has the meaning that both
phases are mainly pushed in direction (})—both with a
deterministic and a random walk component. The sta-
tionary component C*(L)(n; + u) (whose precise form
is complicated) acts as a disturbance component push-
ing the system with little shocks again and again out of
the equilibrium.

For comparison, we also fit the phase model A¢; =
y A¢:—1 + 1 + n; to each oscillator in the uncoupled
case € = 0 which gives

19)

(AgpV —0.129)
(21
=0.060(A¢ ", —0.129) + ",
(Ap —0.137)
(22)

=0.735(A¢>| —0.137) +

[(17) and (21) are of course identical]. As mentioned
above the natural frequencies of the Rossler and the



COINTEGRATION AND PHASE SYNCHRONIZATION 349

Lorenz system therefore are wg = 0.129 and wy =
0.137, respectively, that is, the natural frequencies dif-
fer significantly in the uncoupled system, while in the
coupled system they both are w = 0.129 (remember
that wt is the deterministic part of the trend).

One effect should be kept in mind: The prior appli-
cation of the Hilbert transform leads to phases which
are smoother than the original “true” ones. This ef-
fect needs to be investigated in the future (see Ap-
pendix A). As a consequence, the estimated variances
of n; and ¢; will usually be smaller than the true
ones. In (21), (22) one finds Var nt(l) = 0.0034 and
Var n® = 0.0025 leading to Var(A¢\") = 0.0034 and
Var(Aqﬁ,(z)) = 0.0054. This means that the Lorenz at-
tractor has a more varying frequency than the Rossler
attractor and it is likely that this also holds for the true
frequencies.

Perhaps the most important aspect of this fitted VEC-
model is that the direction of coupling is detected cor-
rectly. In Figure 3(d), in total 1203 series have been
tested positively as being phase-synchronized with the
LR-test. Out of these, 93.6% have been tested by the
VEC-model as having unidirectional coupling. This
decision was characterized by a p-value larger than 0.1
for o1 and a p-value smaller than 0.01 for ap. This
means that in more than 93.6% cases of the synchro-
nized one sided-coupled Rossler-Lorenz system a test-
ing value smaller than the 90%-quantile of the stochas-
tic cointegration-model was obtained for «1. This also
confirms that the stochastic model is reasonable.

We finally mention the limitations of sampling from
the Rossler—Lorenz system, and of the plots in Fig-
ure 3(d)—(f) for the purpose of this paper: As a chaotic
oscillator the Rossler—Lorenz system is very sensitive
to the starting values and also to the random inputs
w; and w; leading under the simulation roughly to
4 different path-types: synchronized oscillators, non-
synchronized oscillators without phase jumps (over the
whole segment), oscillators with phase jumps, segmen-
twise combinations of the former three cases. Even for
the fist two cases the approximation with the cointegra-
tion model of this paper leads to very different param-
eter values and, therefore, to different models from a
stochastic viewpoint. For this reason, simulations from
the Rossler—-Lorenz system are not suitable, for exam-
ple, judging the properties of estimates or tests in de-
tail (with the above remarks on the higher power of
the ADF-test and the suitability for detecting unidi-
rectional coupling as an exception). In detail for Fig-
ure 3(d)—(f), we have done 100 simulations for each

€ (with the same noise variates). Out of a total of
5100 paths, those paths with phase jumps and segmen-
twise changing structure have been removed by ad hoc
testing and eye-inspection, leading to only 1530 cases
(e.g., € =8.8,9.2,9.4,9.6,9.7 less than 14 values re-
mained) which is the reason for the erratic behavior of
the quantiles in Figure 3(d)—(f). Of course, the subjec-
tive method of excluding the other cases is question-
able and it makes no sense to repeat the procedure for
a larger number of simulations. To summarize the coin-
tegration model of this paper is not a statistical model
for the Rossler—Lorenz system as a whole but only for
single paths of it, and moreover, for the detection of
phase synchronization of other time series not stem-
ming from chaotic oscillators.

5.2 Synchronization of Electrochemical Oscillators

We now investigate with the above methods phase
synchronization in a chaotic process in electrochem-
istry. The system is the electrodissolution of nickel in
sulfuric acid. The electrodissolution takes place on two
nickel wires, and the rate of the dissolution (corrosion
rate), measured as the current, exhibits chaotic behav-
ior; see Kiss and Hudson (2002). The oscillators are
coupled through a set of serial and parallel resistors.
Such coupling induces a bidirectional, electrical in-
teraction between the electrochemical processes. For
more details and a schematic diagram of the experi-
mental apparatus, see Kiss and Hudson (2002).

The phase synchronization of the chaotic chemical
process was established using nonstatistical methods
(an entropy based measure of the cyclic phase differ-
ence distribution) in Kiss and Hudson (2002) and Kiss,
Lv and Hudson (2005). In this section, we explore the
characteristics of the synchronization process using the
cointegration technique. The Hilbert transform is ap-
plied to estimate the phases of the two-dimensional
time series, and afterward more than 5 seconds of data
points are removed at the beginning and the end. A data
set is considered with data acquisition rate of 25 Hz
leading to about 21 data points per cycle. The whole
series then consists of 3750 2-dimensional data points.
In order to test the methods on a smaller data set, we
split this in 6 segments of equal length each consist-
ing of 625 data points. The results on each of the 6
segments are essentially the same and for clarity we
therefore report only the results for one segment (in-
stead of displaying summary statistics etc.). Further-
more, we mention some results for the whole stretch of
3750 data points. Figure 6 shows 300 data points of the
two oscillators from the investigated segment (the first



350 R. DAHLHAUS, I. Z. KISS AND J. C. NEDDERMEYER

component is in blue, the second in red), the estimated
phases before unwrapping and the phase differences
A¢;. The plot reveals that the phases and the phase-
differences have an in-cycle fluctuation which comes
from the phase slowing down at the minimum of the
oscillations and speeding up at the maximum.

The AR-order p in (10) is chosen by inspection of
the significant lags in the model fit below leading to the
choice p = 6. This order is necessary because of the
above mentioned in-cycle fluctuations. The red peak
for the phase differences is due to the fact that the cor-
responding cycle is rather short resulting in large phase
differences. As above, the Johansen LR test and the
ADF test are applied to test for cointegration of the
phases and therefore for phase synchronization of the
original series. The hypothesis H(0) is clearly rejected
with a LR-value of 52.68 (5%-critical value: 17.95)
and the hypothesis H(1) is clearly not rejected (i.e.,
accepted) with a LR-value of 0.02 (5%-critical value:
8.18). Thus the test reveals rank IT = 1, and we con-
clude to phase synchronization. Furthermore, the pro-
cedure also detects the 1 : 1-relation of the phase syn-
chronization from the corresponding eigenvector. For
the long series consisting of 3750 data the LR-value for
H(0) is even 321.94 and for H (1) itis 0.03. The ADF-
test leads with a testing value of —6.398 and a 1%-
critical value of —3.43 to the rejection of the hypothe-
sis that the phase are not cointegrated. The same result
is obtained with a testing value of —17.9464 for the
long series, that is, the ADF-test also confirms phase
synchronization. Given that ¢t(1), t(z) are cointegrated
with cointegrating vector 8 = (1, —1)" we estimate the
VEC-model (10) with order p = 6 to analyze in more
detail the joint dynamics. Different to the results in
Section 5.1 several AR-parameters are significant. The
estimated coefficients are displayed in Table 2.

As expected, there is no unidirectional coupling
which is reflected by «; < 0 and ap > 0. It is how-
ever remarkable that o is 3-times as large as «1. On
the whole segment with 3750 data, we obtain as es-
timates oy = —0.012 and ap = 0.026, that is, in total
o 1s more than twice as large as «1. The same holds
on all 6 segments and also when trying different AR-
orders. In addition, the AR-coefficients I'x indicate an
influence from series 2 to series 1. Summarizing, the
force toward the phase equilibrium is much stronger
from series 2 on series 1 than vice versa. These re-
sults thus show that while the physical form of the cou-
pling is symmetrical (through differences in the elec-
trode potentials, Kiss and Hudson, 2002), the effective

TABLE 2
Estimated VEC-model for the electrochemical oscillators. Note
that all other coefficients Flij ..... F5l.j are not significantly
different from 0

Parameter Estimate Std. error t-ratio p-value
o —0.011 0.003 —3.72 0.0002
1 0.073 0.008 8.96 <0.0001
IV 1.565 0.040 38.65 <0.0001
Iy, —1.150 0.075 —15.36 <0.0001
I 0.567 0.086 6.61 <0.0001
Ly, —0.206 0.076 —-2.71 0.007
o) 0.033 0.006 5.62 <0.0001
753 0.102 0.017 5.97 <0.0001
Iy, 0.427 0.084 5.06 <0.0001
Iy, 0.740 0.040 18.57 <0.0001
[, —0.444 0.156 —2.84 0.005
[, —0.142 0.050 —2.85 0.005
s, —0.207 0.088 —2.35 0.019

coupling on the phase dynamics could develop asym-
metries, likely due to the heterogeneities in the local
dynamics.

We finally discuss the estimated system in terms of
the modified VEC-representation (14). The above table
yields

1 1
(1) ()
_(—0.011 _(0.033 _(0.073
*=\o0033 ) **Tloo11): #*~\o.102
plus the values for the I'y (not listed here) leading

with T =1, — Y/ ' Ty, € = gLl TR o, a =
a(d’a)™! to

wp=Cp=0.302 (})

and

Bo=&'[I'C — Il =0.077
meaning that the “true” estimated equilibrium is qbt(l) —
[(2) —0.077 = 0. This leads to the VEC-representation

[(Aczﬁf”) ~ (0.302)}
AP 0.302
(23) —0.011
- < 0.033 ) (4", — 6, —0.077)

+ higher order AR-terms + 7,

which demonstrates the error correcting effect on the
first and second component if the oscillators are out
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Original Time Series

0
300 350 400

500 550 600

FIG. 6. Currents at 2 electrodes of an electrochemical oscillator: The figures show the original currents, the Hilbert estimate of the phases
before unwrapping, and the phase differences A@; for each phase process (the first component is in blue, the second in red).

of equilibrium. For completeness, we mention that the
corresponding fit to the long series leads to

|:(A</>z(l)> B (0.302)}
Ap® ) \0.302
@4 ~0.012
- ( 0.026 ) (62 — ¢, —0.152)

+ higher order AR-terms + ;.

In total, the methods from cointegration work well
with respect to phase synchronization on the dataset.
One critical issue is that the phases differences in the
lower plot of Figure 6 can hardly be viewed as Gaus-
sian random variables. A density plot shows clearly a
skewed distribution for the phase differences which po-
tentially leads to different p-values of the test statis-
tics. To investigate this, we have simulated the distri-
bution of the error-correction coefficients «; under the
hypothesis o; = 0 in this example with a parametric
VAR-bootstrap. The results surprisingly indicate that
the Gaussian approximation is reasonable. Details are
omitted since this topic needs a deeper investigation
which is postponed to future work.

6. CONCLUSION AND OUTLOOK

We have pointed out the connection between the the-
ory of cointegration and the theory of phase synchro-
nization. In particular, a cointegrated dynamical sys-
tem can be used as a stochastic model for a multi-
variate phase process which describes the behavior of
the phases in detail. Contrary to other concepts like
the spectral coherence which only describe the prop-
erties of the phase processes, we now have a specific
model in the time domain for the dynamics of the
phase processes. The model leads to the characteriza-
tion and identification of the equilibrium relations re-
lated to phase synchronization: For example, the un-
known coupling structure can be revealed by using
tests for unidirectional and bidirectional coupling. We
have demonstrated this in applications for a coupled
Rossler—Lorenz system with noise and electrochemical
oscillators.

In neuroscience where phase synchronization is re-
garded as essential for functional coupling of differ-
ent brain areas the new methods coming from coin-
tegration may enhance the present methods like spec-
tral analysis, correlation and coherence analysis, triplet
analysis, joint phase histograms, etc. This however
needs to be investigated and confirmed.
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From a physical view, the potential of cointegration
for phase synchronization can perhaps best be under-
stood from a comparison with the Kuramoto model. As
pointed out in this paper, cointegration can be under-
stood as an approximation to a stochastic Kuramoto-
type model which can be fitted to the data (apart from
the different treatment of phase shifts; see below). The
cointegrated system describes both: (1) how the sys-
tem is constantly pulled toward the equilibrium deter-
mined by the phase synchronization relations; and (2)
how the system is constantly disturbed by little shocks
and kicked out out of the equilibrium.

Another important aspect is that the cointegration
model covers both: the case where the phases are syn-
chronized and the case where they are not synchro-
nized. As a consequence, the diagnosis on synchro-
nization can be made from a statistical fit of the model
to the data.

At the same time, the comparison to the Kuramoto
model shows the difference to previous research: The
Kuramoto model (6) has the equilibrium ¢/ — ¢ =
0 mod 2 Vi, j while the cointegration model (7) has
the equilibrium ¢/) — ¢® = 0 Vi, j. This means two
processes whose phase difference is shifted (quickly)
by 27 may be diagnosed as phase synchronized in the
Kuramoto model while they will not be diagnosed as
phase synchronized in the cointegration model. One
may term this strong/weak synchronization. We ad-
vocate the view that phase jumps as in the Rossler—
Lorenz system hardly occur with real data meaning
that the cointegration model is a proper model in most
cases. Nevertheless, it would be important to have sim-
ilar techniques and results for the stochastic Kuramoto
model. Another aspect is that phase jumps may occur
erroneously caused by noise or wrong data. Of course,
this raises the question of robustness of the phase esti-
mate.

There is a wealth of possible directions for future re-
search: An important issue is a theoretical treatment of
the present model taking into account that the phases
are unobserved and the present cointegration model de-
scribes the dynamics of the phases as the unobserved
state in a nonlinear state space model (VEC-state oscil-
lators; see Appendix A). It seems to be challenging to
derive, for example, the asymptotic distribution of the
likelihood ratio test for phase synchronization in such
a setting. Another topic of interest is a larger number of
oscillators. In some example (e.g., for phase synchro-
nization of the cardiovascular and respiratory system)
the correcting forces are obviously different if the sys-
tem is out of the equilibrium to the positive or negative

side. Here, a nonlinear cointegration system would be
needed for a proper modeling.

APPENDIX A: VEC-STATE OSCILLATORS

Inspired by the motivation at the end of the introduc-
tion we define the class of

VEC-state oscillators as a general model for (possi-
bly phase synchronized) d-dimensional oscillators with
random phases. The model is the nonlinear state space
model with

State equation:

p—1
Agy =Tlg—1 + Z LiAgi—i + o+,
i=1

e~ N, Zy)

(or, alternatively, a model which guarantees positivity
of the phases; see below).

Observation equation:
YD = a; cos(p”) + b + £,

& ~ N0, Zp),

(A.1)

(A.2)

where ¢; and 1, are mutually and serially independent.
In its simplest form the amplitude a and the baseline b
are parameter vectors. In some cases, they need to be
time varying [see (ii) below]. The case rank(IT) =0 is
included [the case rank(IT) = d requires the additional
term vt in (A.1) for a meaningful phase-model; see
Section 4]. If 1 <rank(IT) <d — 1, we have phase syn-
chronization. In that case, we prefer writing the state
equation in the form

(A¢r — wo)
= 05(,3/4’1—1 - ,30)
p—1

+ Y Ti(A¢—i —wo) +m
i=1

(A.3)

(see Section 3) with the phase synchronization rela-
tions B'¢; — Bo = 0, the mean phase shift By and the
deterministic trend wgt. IT is now decomposed into
[T = B’ with d x r-matrices « and B of full rank r.
The most common approach in physics is to estimate
the phase process qb,(i) from the oscillator Yt(i) by means
of the Hilbert transform. In terms of state space mod-
els, one may regard this as a smoother for estimating
the mean of the conditional distribution (although its
properties are not clear). The approach of this paper is
to use the estimated phases “as if they were observed”
and to apply standard cointegration techniques to it.
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Of course, the effect of the Hilbert transform on the
properties of these estimates is not clear, and the sig-
nificance levels of the tests need to be investigated.
This is beyond the scope of this paper, but we want to
provide some heuristic arguments why everything re-
mains the same even in this situation: Taking the con-
ditional expectation (given Y1, ..., Y;) in (A.3) reveals
that the linear structure of the conditional means is the
same as before. The difference is that the variance of
the innovations will be smaller (the estimated phases
are smoother than the original ones) and the errors be-
come dependent. A least squares regression based on
the conditional expectations should also lead to consis-
tent estimates for the parameters and in particular the
t-statistic for a specific parameter (which is rescaled by
the empirical variance) should follow asymptotically a
t-distribution. The argument is the same for the ADF-
test in the case a # 0, b = 0 since this is the “regular”
case where the drift dominates the stochastic trend and
the asymptotic distribution of the unit root estimate is
Gaussian (Fuller, 1996, Theorem 10.1.5).

For the LR-test with its nonstandard distribution, a
different heuristics is needed: Inspection of the proof
of the asymptotic distribution of the LR-test (Johansen,
1995, Theorem 11.1) reveals that its limiting distribu-
tion only depends on the number d — r of common
stochastic trends and on the model for the deterministic
terms. The model for the deterministic terms is fixed—
so we only have to check that the number of stochastic
trends remains the same for the estimated phases (es-
timated with the Hilbert transform) as for the original
unobserved phases. To check this, we consider in this
heuristics only the case of 1 : 1 phase synchronization
relations, that is, where the system splits up into d — r
oscillators and each of the remaining d oscillators is
stuck to one of the former ones by the cointegration
relation, that is, we have d — r groups of oscillators of
different size (this is a common case for phase synchro-
nization). We now have only to check that the groups
of phase processes “stay together” under the Hilbert
transform. First, it is obvious that an integrated pro-
cess stays integrated: The phases will constantly in-
crease and a trend stationary process can be excluded
because this is the case where the length of the cycle
is almost stuck to a pregiven length and it is clear that
a true phase process with variable cycles will not be
transformed by the Hilbert transform into a phase pro-
cess with almost constant cycle-length. In addition, it is
also clear that the phase processes will stay in the same
group, that is, they will not jump to another group with
a different trend since this is clearly reflected by the

number of cycles. Thus the number of stochastic trends
should stay the same under the Hilbert transform.

We emphasize that these are only heuristic argu-
ments. A mathematical proof that the asymptotic dis-
tributions of the test statistics stay the same would be
highly welcome. It is obvious that deriving such a re-
sult may be very challenging.

A more sophisticated approach seems to be to esti-
mate the phases in the above model by means of a par-
ticle filter. This has been done in Dahlhaus et al. (2017)
in the univariate case d = 1 [in the more general setting
(1)—(ii) from below]. However, also with this approach
the situation is not clear: A proper test for synchroniza-
tion would then, for example, be a likelihood ratio test
based on the original observations Y;. The test statistic
for such a test could be approximated by means of a
particle filter but its distribution under the null hypoth-
esis is also not clear and difficult to derive.

Our personal view is that for systems with stronger
noise the above particle filter or a periodogram based
method lead to better estimation results. For chaotic os-
cillators as in Section 5.1, the Hilbert transform seems
to be the better choice. Furthermore, the Hilbert trans-
form is used in most applications.

Generalizations of the State Space Model

(i) Other oscillation patterns:
For noncosine type signals, one may use instead the
observation equation

Yi=a,f($) + b + &,

with f being a 2m-periodic real valued function rep-
resenting the oscillation pattern (cf. Dahlhaus et al.,
2017). f typically is unknown and needs to be esti-
mated. An example are ECG-data. In addition, one may
need a time varying amplitude and a baseline. This can
be achieved with a state space model also for a; and b;,
for example, a VAR-model with mean different from
zero.

(i) Positivity of the phase increments:
In nearly all cases, it is clear that the phase increments
of an oscillator should be positive. However, in the
above model with Gaussian noise also negative phase
increments may occur. This happens with small proba-
bility since wg usually is large in comparison with the
standard deviation of the ;. Furthermore, this should
not be a big problem if the model is mainly used for
estimation and testing (and not for simulation).

To overcome this problem, we have used in Dahlhaus
et al. (2017) in the case of a single oscillator an
integrated ACD (autoregressive conditional duration)
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model for the state. At present, we are having no idea
how this ACD-model can be extended to the cointe-
grated case (see, however, Mosconi and Olivetti, 2005,
for bivariate ACD-models).

APPENDIX B: APPENDIX 2: COMPUTATIONAL
AND MODELING ASPECTS

B.1 Computational Aspects

There exists several software programmes on coin-
tegration analysis. For example, the CATS module
within the RATS Econometrics Software (http://www.
estima.com/) and OxMetrics (http://www.oxmetrics.
net/). For the analysis of the Rossler—Lorenz system in
Section 5.1, we have used the R-packages urca (http://
cran.r-project.org/web/packages/urca/index.html—see
Pfaff, 2008) and systemfit (http://cran.r-project.org/
web/packages/systemfit/index.html; see Henningsen
and Hamann, 2007). Here are some details:

1. Initial situation:

The unwrapped phases are given as vectors phil, phi2
(e.g., determined by the Hilbert-transform). The first
values phil[1] and phi2[2] should both lie in [0, 27).

2. Johansen LR-test (top-bottom version):

require(urca)
joha.test <- ca.jo(cbind(phil,phi2),type = “trace”, ecdet
= “none”, K = 2, spec="transitory”)
print(summary(joha.test))
Note: The specification ecdet = “none” fits (9) with
W, that is, with wg and By (Case 3 in Juselius, 2006,
Chapter 6.3) (while ecdet = “const” and ecdet =
“trend” correspond to case 2 and case 4, resp.). We
recommend using the quantiles from the Appendix of
Juselius (2006) (Case 3) instead of the printed values
in the summary.

2a. ADF-test for testing phase synchronization (test-
ing the phase-difference for integrated process vs. sta-
tionary process):
require(urca)
beta2 <- 1  # Specify cointegration vector beta
adf.test <- ur.df(phil - beta2 * phi2, type="drift”)
print(summary(adf.test))

Note: The specification type=“drift” corresponds to
Case 3 in Hamilton (1994), page 529. The relevant
statistics is tau2 which should be compared with the
quantiles of the standard normal distribution (for sam-
ple sizes less than 300, the t-distribution probably gives
the better quantiles). The quantiles printed in the sum-
mary correspond to Case 2 in Hamilton (1994) where
a different hypothesis is tested with the same statistics.

3. and 3a. Estimation, further testing and unidirec-
tional coupling:
require(systemfit)
T <- length(phil)
errlagl <- (phil-beta2*phi2)[-c(T-1, T)]
err.lag2 <- (phil-beta2*phi2)[-c(T-1, T)]
dphil <- diff(phil)
dphi2 <- diff(phi2)
diff.dat <- data.frame(embed(cbind(dphil, dphi2), 2))
colnames(diff.dat) <- c(’dphil’, ’dphi2’, ’dphil.l’,
"dphi2.1”)
eqPhil <- dphil ~ err.lagl + dphil.1 + dphi2.1
eqPhi2 <- dphi2 ~ err.lag2 + dphi2.1 + dphil.1
system <- list(phil = eqPhil, phi2 = eqPhi2)
estSystem <- systemfit(system, data=diff.dat)
print(summary(estSystem)).

4. Final estimation of the reduced system:
eqPhil <- dphil ~ dphil.l
eqPhi2 <- dphi2 ~ err.lag2 + dphi2.1
system <- list(phil = eqPhil, phi2 = eqPhi2)
estReducedSystem <- systemfit(system, data=diff.dat)
print(summary(estReducedSystem)).

B.2 Modeling Aspects

One needs to be aware of the fact that the VEC-
model has been applied in Section 5.1 in the highly
misspecified situation of two noisy chaotic oscillators.
Our goal was to demonstrate that already a “simple”
VEC-model can be used to successfully identify phase
synchronization and unidirectional coupling. For that
reason, we have chosen the fixed order p = 2. In Fig-
ure 3, the oscillation of the phase of the Lorenz attrac-
tor is due to the slightly steeper ascent than the descent
of the Lorenz attractor. In an additional data analysis
(not reported here), we have taken this into account by
choosing the higher model order p = 4 for the AR-
part. This has led to a clear improvement of the fit for
the Lorenz attractor while higher model orders than
p =4 only showed smaller improvements. We there-
fore have redone the complete analysis of Section 5.1
with p = 4. There was a clear quantitative improve-
ment in the model fit but qualitatively all results stayed
the same.

In Section 5.2, we have chosen the higher order p =
6 due to the in-cycle fluctuation of the phases and the
phase-differences. Here, the model order was chosen
by inspection of the significant lags in the parametric
model fit.

A common suggestion in time series analysis is to
use a model selection criterion for choosing p such as
the AIC or the BIC (cf. Greene, 2008, page 752). In
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the case of the nonlinear Rossler—Lorenz system inves-
tigated in Section 5.1, we have found with the BIC the
exorbitant model order p = 31 and with the AIC even
p = 95 for the phases of the Lorenz attractor (although
not all lags were significant). This reflects the fact that
we need a very high order to obtain a good approxima-
tion of the misspecified system with a VEC-model. On
the other hand, we would hardly trust the outcome of
significance tests, etc. with such a large order. For that
reason, one has to refrain from these automatic proce-
dures for chaotic oscillators and look for a more par-
simonious model order. Of course, this topic requires
deeper investigation.
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