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Flexible Low-Rank Statistical Modeling
with Missing Data and Side Information
William Fithian and Rahul Mazumder

Abstract. We explore a general statistical framework for low-rank model-
ing of matrix-valued data, based on convex optimization with a generalized
nuclear norm penalty. We study several related problems: the usual low-rank
matrix completion problem with flexible loss functions arising from gener-
alized linear models; reduced-rank regression and multi-task learning; and
generalizations of both problems where side information about rows and
columns is available, in the form of features or smoothing kernels. We show
that our approach encompasses maximum a posteriori estimation arising
from Bayesian hierarchical modeling with latent factors, and discuss rami-
fications of the missing-data mechanism in the context of matrix completion.
While the above problems can be naturally posed as rank-constrained opti-
mization problems, which are nonconvex and computationally difficult, we
show how to relax them via generalized nuclear norm regularization to ob-
tain convex optimization problems. We discuss algorithms drawing inspira-
tion from modern convex optimization methods to address these large scale
convex optimization computational tasks. Finally, we illustrate our flexible
approach in problems arising in functional data reconstruction and ecologi-
cal species distribution modeling.

Key words and phrases: Matrix completion, nuclear norm regularization,
matrix factorization, convex optimization, missing data.

1. INTRODUCTION

Matrix completion (Candès and Recht, 2009,
Mazumder, Hastie and Tibshirani, 2010, Bennett and
Lanning, 2007) via low-rank matrix modeling is a
central problem in modern multivariate statistics and
machine learning. This is due in large part to the ad-
vent of collaborative filtering and recommender sys-
tems (Agarwal and Chen, 2015), but matrix comple-
tion and matrix factorization applications extend to
fields as diverse as image processing (Angst, Zach and
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Pollefeys, 2011), X-ray crystallography (Candès et al.,
2015), seismology (Yang, Ma and Osher, 2013), and
political science (Martin and Quinn, 2002, Gerrish and
Blei, 2011).

In matrix completion, we partially observe a re-
sponse matrix Y ∈ R

n×m, where each entry Yij rep-
resents a binary, categorical, or real-valued outcome.
Typically each row and each column represents an en-
tity of interest such as a user, a test question, an ad-
vertisement, or a point in time, and the response Yij

is a result of some interaction between the ith row en-
tity and the j th column entity. Typically, only a sparse
subset of entries � ⊆ {1, . . . , n} × {1, . . . ,m} are ob-
served, and the analyst’s goal is to predict the miss-
ing entries as accurately as possible. To make progress,
a common modeling assumption is that each row and
column entity can be represented in a latent space of
dimension r � n,m. If ui, vj ∈ R

r are the latent repre-
sentations of row i and column j respectively, then any
row–column interaction between i and j is assumed to
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depend only on the inner product u′
ivj . Matrix comple-

tion has attracted a great deal of attention in the statis-
tical machine learning community in recent years; see,
for example, Candès and Recht (2009), Candès and
Tao (2010), Candes and Plan (2010), Keshavan, Mon-
tanari and Oh (2010), Mazumder, Hastie and Tibshi-
rani (2010). A parallel line of work in the multivariate
statistics literature discusses iterative methods to deal
with missing values encountered in classical tasks such
as principal components analysis (Josse and Husson,
2012), correspondence analysis (de Leeuw and van
der Heijden, 1988) multiple correspondence analysis,
and multivariate analysis of mixed data sets (Audigier,
Husson and Josse, 2016).

Matrix completion became a major focal point of
methodological and applied machine learning research
in part due to the famous Netflix Prize competition
of 2006–2009 (Bennett and Lanning, 2007, Bell and
Koren, 2007), in which researchers competed to im-
prove on Netflix’s baseline algorithm for recommend-
ing movies to users. In the Netflix data, row i is a
particular Netflix user and column j is a movie, and
the observed entries are movie ratings from 1–5. Yij

is observed if user i has assigned a rating to movie j ;
otherwise we can interpret it as the rating that user i

would assign to movie j if she were to watch and rate
it. Among approximately 480K users and 20K movies,
on average each user rates only 200 movies leading
to |�| ≈ 108 observed entries out of nm ≈ 1010 total
entries. An objective in such movie-recommender sys-
tems is to recommend movies that their users would
enjoy.

As we discuss in Section 2.1, many of the most fa-
miliar methods in classical multivariate statistics in-
cluding principal components analysis, reduced-rank
regression, multidimensional scaling, canonical cor-
relation analysis and correspondence analysis can be
viewed as estimating lower-dimensional latent factors
ui and vj to approximate a fully observed matrix under
a generalized least-squares loss criterion. These classi-
cal methods can flexibly incorporate diverse types of
side information about row and column entities by im-
posing constraints or quadratic penalties on the latent
factors, with the (truncated) singular value decompo-
sition (SVD) (Golub and Van Loan, 1983) providing
a generic tool for optimizing quadratic objectives with
rank constraints. However, if either (a) the matrix is
not fully observed or (b) the objective is not quadratic,
this optimization framework breaks down. This is be-
cause the associated nonconvex optimization problems

become difficult due to the presence of the rank con-
straint; and solutions to these problems can no longer
be obtained via a simple SVD. Global optimization
of nonconvex problems involving rank-constraints are
problematic from an algorithmic viewpoint (see, for
example, Bertsimas, Copenhaver and Mazumder, 2017
and references therein). Inspired mainly by the suc-
cess of nuclear norm regularization methods in matrix
completion, we propose to explore convex relaxations
of the rank constraint and study the associated con-
vex optimization problems as surrogates to the noncon-
vex rank constrained problems. These lead to instances
of semidefinite optimization problems (Boyd and Van-
denberghe, 2004) which are challenging to scale to
large scale instances.

Our main aim in this article is to explore an alterna-
tive computational and modeling framework, based on
convex optimization with a generalized nuclear norm
penalty. This viewpoint expands the scope of the SVD
framework described above, adapting it to the more
general setting where some entries are missing or the
loss function is not quadratic. Section 1.2 reviews low-
rank approximation and the relationship between the
singular value decomposition, the nuclear norm and
quadratic regularization in the row and column latent
factors, and shows how we can flexibly impose model-
ing assumptions on the latent variables in matrix com-
pletion problems. Section 4 reviews algorithmic op-
tions for these large scale semidefinite optimization
problems.

Despite their advantages, convex (semidefinite) op-
timization approaches are often dismissed in the col-
laborative filtering literature as impractical for large
problems since their worst-case scaling is poor and
vanilla implementations are not practical; see, for ex-
ample, Salakhutdinov and Mnih (2008b), Menon and
Elkan (2010). However, despite the poor worst-case
performance, there are rich classes of models in which
a generalized version of nuclear norm regularization
scales well with problem size, as we will see in Sec-
tion 4. Finally, to predict missing data as well as possi-
ble, we must understand the missing data mechanism;
that is, we must understand why the data are missing.
While the missing-data mechanism has received com-
paratively little attention in the machine learning liter-
ature on matrix completion, the winning team in the
Netflix prize reported they saw a breakthrough in their
prediction error once they appreciated that users are
not selecting movies wholly at random, and the choice
of which movies to watch may be quite informative
about the user’s latent type (Bell and Koren, 2007). By
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contrast, there is a greater awareness of the missing-
data mechanism in the multivariate statistics literature;
see Audigier, Husson and Josse (2016) for a discus-
sion. Section 3 discusses how assumptions about the
missing-data mechanism can be incorporated into our
low-rank modeling framework and how they may com-
plicate the interpretation of our predictions.

Organization of paper: The remainder of the pa-
per is organized as follows. Section 2 presents a uni-
fied framework of modeling with low-rank and nu-
clear norm regularization for several problems in clas-
sical multivariate statistics and modern collaborative
filtering applications—we also draw parallels with
Bayesian modeling schemes. Section 3 presents a con-
nection between the classical missing data literature in
statistics and the matrix completion framework. Sec-
tion 4 presents a broad overview of optimization al-
gorithms that can be used for the class of problems
studied herein. Section 5 presents some illustrative ex-
amples.

1.1 Preliminaries and Notation

For a matrix A, we will generically denote the ith
row with a lower-case letter a′

i . We denote 1n as the
length-n vector with 1 in every coordinate, and for a
matrix A we write the Moore–Penrose pseudo-inverse
as A+. Multiplying AA+ we obtain the projection ma-
trix into the column space of A, which we will denote
as �A, and we denote the projection into its orthog-
onal complement as �⊥

A = (I − �A), where I is the
identity matrix. We assume without loss of generality
that n ≥ m. We write the singular values of a matrix A

as σ1(A), . . . , σm(A), arranged in decreasing order. Let
‖A‖2

F = Tr(A
′
A) = ∑

ij A2
ij = ∑

i ‖ai‖2
2 denote the

Frobenius norm of matrix A. Let ‖A‖∗ = ∑m
k=1 σk(A)

denote the nuclear norm of A, or the sum of its singu-
lar values. By contrast ‖A‖2

F is equal to the sum of its
squared singular values, and rank(A) is the number of
nonzero singular values. In this sense, the rank, nuclear
norm, and Frobenius norm are natural matrix (spectral)
counterparts of the �0, �1, and �2 norms for vectors.

1.2 Low-Rank Approximation and the Nuclear
Norm

Our mathematical point of departure is the prototyp-
ical problem of low-rank approximation of a matrix
Y in R

n×m, wherein we attempt to find r-dimensional
row and column variables ui, vj ∈ R

r such that Yij ≈
u′

ivj . In matrix notation, Y ≈ UV ′ for U ∈ R
n×r , V ∈

R
m×r , where the quality of approximation is generi-

cally measured in terms of some loss function L(·;Y):

(1) minimize
U∈Rn×r ,V ∈Rm×r

L
(
UV ′;Y )

.

Note that in (1), the row and column variables ui, vj

are intrinsically unidentifiable: for any invertible ma-
trix A ∈ R

r×r we could replace U with Ũ = UA′ and
V with Ṽ = V A−1. Then Ũ Ṽ ′ = UV ′, leading to the
same loss. To eliminate this ambiguity, we can intro-
duce the optimization variable � = UV ′, constraining
its rank to be at most r , leading to

(2) minimize
�∈Rn×m

L(�;Y) s.t. rank(�) ≤ r.

Certain constraints or penalties that we might impose
on U or V translate to constraints or penalties on �.
For example, in reduced-rank regression we have a fea-
ture matrix X ∈ R

n×d and require U = XB for some
B ∈ R

d×r ; in terms of �, it is equivalent to require that
�⊥

X� = 0. Once we find the best fitting �, decompos-
ing it into row variables U and column variables V is
essentially a matter of interpretation; if prediction is
our aim, it is enough to estimate �.

If L(�;Y) is the simple least squares loss ‖Y −
�‖2

F , it is well known that (2) is solved by the rank-r
truncated SVD (Golub and Van Loan, 1983) of Y . That
is, � = UrDrV r ′, where the columns of Ur ∈ R

n×r

and V r ∈ R
m×r consist, respectively, of the first r left

and right singular vectors of Y , and Dr ∈ R
r×r is di-

agonal with Dr
kk = σk(Y ). If the eigenvalues of Y are

all distinct, then the decomposition is unique for ev-
ery r , up to reversing signs of the columns of Ur and
V r . As we will see in Section 2.1, the truncated SVD
provides a powerful computational framework for in-
corporating flexible side information and modeling as-
sumptions about the row and column variables.

Unfortunately, if L(·; ·) departs from the Frobenius
norm, then Problem (2), a nonconvex problem ow-
ing to the nonconvexity of the rank constraint, is gen-
erally computationally intractable. In matrix comple-
tion, we can only measure errors on the observed en-
tries; thus the natural least-squares loss is L(�;Y) =∑

(i,j)∈�(Yij − �ij )
2. This seemingly minor variant

of the Frobenius norm makes Problem (2) difficult to
solve using a simple SVD. In addition to matrix com-
pletion, non-Frobenius loss functions are strongly mo-
tivated in several other settings including:

1. Sparsely observed functional data: We are given
noisy observations Yij = gi(tij ) + εij for a smooth
function gi at various locations in a temporal, spatial
or other domain, and we wish to reconstruct the func-
tions gi at unobserved locations. tj could be values on
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a real interval or can correspond to spatial locations.
This setting is similar to matrix completion, but with
notionally infinitely many “column entities” represent-
ing locations in the domain that may not occur at all in
the entire data set; as a result smoothness assumptions
are crucial to recover identifiability. We revisit this set-
ting in Section 5.1.

2. Exponential families: If Yij arises from an expo-
nential family model such as binomial, Poisson, etc.,
we can model its natural parameter �ij as arising from
a low-rank model (Roweis, 1998, Rennie and Srebro,
2005, Srebro, Rennie and Jaakkola, 2005). Further gen-
eralizing this approach, Yee and Hastie (2003) suggest
reduced-rank vector generalized linear models (RR-
VGLMs) in which � = XB for some observed covari-
ates X ∈ R

n×d .
3. Robust loss functions: If some of the Yij val-

ues are outliers (or arise from a heavy tailed distri-
bution), we may choose to replace the squared er-
ror loss with a more robust entry-wise loss function
such as the least absolute deviation loss L(�;Y) =∑

ij |�ij − Yij | or the Huber loss (Huber, 1996)
L(�;Y) = ∑

ij ργ (�ij − Yij ) where

ργ (x) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
x2, |x| ≤ γ,

γ

(
|x| − 1

2
γ

)
, |x| > γ

is a quadratic function for small x but linear in the
tails. The least absolute deviation loss (formulated dif-
ferently), paired with the nuclear norm relaxation (dis-
cussed below), forms the basis for the celebrated robust
PCA method of Candès et al. (2011).

Although there are many specialized algorithms for
finding approximate solutions or local minima to such
models (given by nonconvex optimization problems),
there is no guarantee that we can obtain a global mini-
mum of the problem as posed. A well-designed method
may find a suitable local solution or saddle point for
many problems, but it can be difficult to predict how
these specialized algorithms will perform once we
modify the problem to incorporate side information.

1.2.1 Nuclear norm regularization. By analogy to
the Lasso (Tibshirani, 1996) relaxation of sparse re-
gression, Fazel (2002) propose a convex relaxation
scheme replacing the rank constraint with a constraint
on the nuclear norm, leading to the convex semidefinite
optimization problem:

(3) min
�

L(�;Y) s.t. ‖�‖∗ ≤ δ,

or in Lagrangian form,

(4) min
�

L(�;Y) + λ‖�‖∗.

Like the Lasso in linear regression, the nuclear norm
plays two roles: first, it promotes a low-rank solu-
tion by setting many of the singular values of � to
zero; and second, it regularizes the low-rank solution
by shrinking the singular values of � toward zero. If
L(�;Y) = 1

2‖Y − �‖2
F then the problem is solved by

the nuclear-norm soft thresholding operator or the sin-
gular value thresholding operator

(5) Sλ(Y ) ∈ argmin
�

1

2
‖Y − �‖2

F + λ‖�‖∗,

where Sλ(A) is defined as diag((A11 − λ)+, . . . ,

(Arr − λ)+) if A is a diagonal r × r matrix, and other-
wise Sλ(A) = USλ(D)V ′ where UDV ′ is the (full-
rank) SVD of A, with D a diagonal matrix. Soft-
thresholding the singular values leads to low-rank solu-
tions, for large values of λ. That is, rather than directly
constraining the rank, we add a nuclear norm penalty
that favors low-rank solutions.

The nuclear norm may alternatively be viewed as
a regularization applied to the latent factors U and
V , which can be seen from the following identity ap-
pearing in Fazel (2002), Srebro, Rennie and Jaakkola
(2005):

(6) ‖�‖∗ = min
U,V :UV

′=�

{
1

2
‖U‖2

F + 1

2
‖V ‖2

F

}
.

Let �̂ be an optimal solution to Problem (4) with r̂ =
rank(�̂). In the light of (6) and observing �̂ has low
rank, it is easy to see that the following optimization
problem:

(7) min
U∈Rn×r ,V ∈Rm×r

L
(
UV ′;Y ) + λ

2
‖U‖2

F + λ

2
‖V ‖2

F

is equivalent to Problem (4) for any r ≥ r̂ ; and �̂ =
Û V̂ ′ where (Û , V̂ ) is a minimizer of Problem (7)—
see Hastie et al. (2015), and references therein. We
note that Problem (7) for varying r and λ, leads to
a richer class of problems1 than the convex formula-
tion (4). Depending upon the context or modeler’s pref-
erence, it may be reasonable to consider Problem (7)
for r < r̂ . However, in the latter case, it may not be pos-
sible to obtain a global minimizer to Problem (7) in a

1This will happen as soon as we take r in Problem (7) to be
smaller than r̂ .
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tractable fashion. Criterion (7) lends itself to nice inter-
pretation: If L(·;Y) is a negative log-likelihood func-
tion or can be interpreted as such (Tipping and Bishop,
1999), then Problem (7) is a maximum a posteriori
(MAP) estimation criterion with independent Gaussian
priors on the entries of U and V (Salakhutdinov and
Mnih, 2008b, Angst, Zach andPollefeys, 2011, Menon
and Elkan, 2010). Problem (7) is an optimization prob-
lem in (U,V )—and if r is small—performing simple
gradient descent or block coordinate descent methods
on Problem (7) is quite simple. A caveat however, is
that Problem (7) is not convex in (U,V ) (owing to the
product terms involving entries in U and V )—thus one
may get stuck in poor stationary points/saddle points.
However, as we discuss in Section 4.1.2; under some
conditions, a locally optimal solution to Problem (7)
corresponds to the global minimum of Problem (4) (as-
suming of course that r ≥ r̂). Note that r̂ or a tight es-
timate of it is not known before solving Problem (4)—
however, it can be estimated via iterative schemes as
a part of the optimization algorithm (see Section 4.1.2
for details).

Interestingly, solutions to Problem (3) often approx-
imate solutions to Problem (2) quite well. In their sem-
inal work, Candès and Recht (2009) and Candès and
Tao (2010) study the noiseless matrix completion prob-
lem showing that the nuclear norm leads to exact re-
covery of an underlying low-rank matrix under coher-
ence like assumptions on the underlying matrix even
when a few entries of the matrix are observed. Candes
and Plan (2010) and Negahban and Wainwright (2012)
study theoretical properties of the noisy matrix com-
pletion problem using nuclear norm regularization.

Theoretical properties of Problems (3) and (4) for
loss functions beyond squared error have been stud-
ied by several authors. For example, Davenport et al.
(2014) study the problem of one-bit matrix comple-
tion, where the response is binary and the entry wise
loss is logistic, with an additional �∞-norm constraint
on the entries of the matrix; and Lafond (2015) study
prediction error bounds for matrix completion for ex-
ponential family models with a nuclear norm penalty.
Carpentier et al. (2016) discuss confidence sets for the
low-rank matrix completion problem and Klopp et al.
(2015) consider a multinomial matrix completion prob-
lem where the observed entries are quantized with a
few levels (in their framework the missingness need
not be uniform). They study a regularized negative log-
likelihood problem, where the latent variables are reg-
ularized by a nuclear norm penalty and an additional

constraint on the maximal absolute entries of the ma-
trix. Udell et al. (2016) extend a previous version of
this manuscript (Fithian and Mazumder, 2013) and dis-
cuss computational aspects of low-rank modeling aris-
ing in machine learning problems.

1.2.2 The generalized nuclear norm. We can gener-
alize the penalty in Problem (4) to consider the follow-
ing optimization problem:

(8) min
�

L(�;Y) + λ‖P�Q‖∗

for a priori specified (possibly data dependent) positive
semidefinite matrices P and Q. We can interpret P and
Q in Problem (8) as modulating the degree of �2 penal-
ization for U and V respectively, by penalizing some
directions more than others. For example, if X ∈ R

n×d

is a matrix of features for the rows then we might use
P = I− �X (where I is the identity matrix) so that the
component of � explained by X is unpenalized (see
Section 2.2).

Several other authors have proposed interesting spe-
cific applications of the generalized nuclear norm—
Salakhutdinov and Srebro (2010) advocate a special
case of Problem (8) with diagonal P and Q, and Angst,
Zach andPollefeys (2011) apply the generalized nu-
clear norm to the structure-from-motion problem in
computer vision. Abernethy et al. (2009) frame col-
laborative filtering in very general terms of estimating
compact linear operators in Hilbert space. Their pro-
posals for regularizing � have the most overlap with
ours but with less focus on scalable computation.

Provided that � 
→ L(�;Y) is convex, Problems
(3), (4), and (8) can be solved in polynomial time using
standard convex optimization techniques for semidef-
inite optimization problems (Boyd and Vandenberghe,
2004). Convex optimization is appealing because it al-
lows abstraction of our statistical model from our es-
timation algorithm. Even so, the computational cost
of off-the-shelf interior point solvers become pro-
hibitively large as soon as the problem sizes become
larger than a few hundred. Toward this end, first order2

2First-order optimization algorithms are iterative methods with
significantly low per iteration cost when compared to Interior Point
algorithms. Even if first order methods take many more iterations
than an Interior Point algorithm to converge to a solution with com-
parable accuracy, their low-memory requirement and cheap per it-
eration cost makes them applicable to modern large scale prob-
lem instances. In addition, low to moderate accuracy solutions lead
to excellent estimates with good statistical properties especially in
large noisy datasets (Bottou and Bousquet, 2008).
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methods (Nesterov, 2004) are used to obtain low-to-
moderate accuracy solutions. Indeed, as we discuss in
Section 4, developing fast, scalable and rigorous algo-
rithms for nuclear norm regularized problems contin-
ues to be an active area of research, across the fields of
statistics, machine learning and optimization.

If P and Q are invertible then a simple change of
variables argument shows that we can rewrite Prob-
lem (8) as L(UV ′;Y)+ λ

2‖PU‖2
F + λ

2‖QV ‖2
F . In fact,

the same holds for generic semidefinite P and Q, as
we state below in Proposition 1 (the proof is in Ap-
pendix A).

PROPOSITION 1. Let P ∈R
n×n and Q ∈R

m×m be
positive semidefinite. Then for any function L(·;Y) :
R

n×m →R, we have

inf
U∈Rn×r ,V ∈Rm×r

L
(
UV ′;Y )

(9)

+ 1

2
‖PU‖2

F + 1

2
‖QV ‖2

F

= inf
�

L(�;Y) + ‖P�Q‖∗(10)

= inf
�1,�2,�3

L
(
P +�1Q

+ +�⊥
P �2 +�3�

⊥
Q;Y )

(11)
+ ‖�1‖∗

for any r ≥ rank(�̂) with �̂ being a minimizer of (10);
and P + and Q+ are the Moore–Penrose pseudo-
inverses of P and Q, and �⊥

P and �⊥
Q are projections

onto their respective null spaces.

Proposition 1 is useful because it allows us to move
easily back and forth between modeling latent factors
via the more interpretable formulations (9)–(10) and
Problem (11). As we will discuss further in Section 4,
when � 
→ L(�;Y) is convex and smooth, formula-
tion (11) is often computationally attractive for two
reasons. First, we may be able to represent �2 and �3
as matrices of much smaller dimension, while �1 is
low-rank and can be represented efficiently as an outer
product of smaller matrices. If P = �⊥

X , for example,
then �⊥

P = �X , and we can replace the unpenalized
term �⊥

P �2 with XB , where B ∈ R
d×m. Second, if we

use proximal gradient descent then the proximal steps
for �1 can be solved using a soft-thresholded SVD (by
contrast, proximal gradient steps with respect to a gen-
eralized nuclear norm generically cannot be solved in
closed form). We refer the reader to Section 4 for fur-
ther details pertaining to the computational aspects of
this problem; and its special cases.

1.3 Other Approaches

The max-norm regularization: The max-norm is an-
other convex proxy for the rank of a matrix that is often
used in the context of matrix completion and related
problems (Srebro, Rennie and Jaakkola, 2005, Srebro
and Shraibman, 2005). Convex and closely related to
the nuclear norm, the max-norm of a matrix � can be
defined via matrix factorizations as:

(12) ‖�‖max = min
U,V :�=UV ′

(‖U‖2,∞‖V ‖2,∞
)
,

where ‖A‖2,∞ denotes the maximum �2 row norm
of the matrix A, that is, ‖A‖2,∞ = maxi (

∑
j a2

ij )
1/2.

Lee et al. (2010) demonstrate that the empirical per-
formance of a max-norm regularized version of matrix
completion may lead to better predictive performance
on some collaborative filtering datasets. Theoreti-
cal properties of the max-norm have been studied
by Srebro, Rennie and Jaakkola (2005), Srebro and
Shraibman (2005), Foygel and Srebro (2011), Cai and
Zhou (2013), but it seems that max-norm regulariza-
tion is computationally more challenging and much
less studied than the nuclear-norm counterpart.

Bayesian methods: Another way to incorporate do-
main knowledge or side information is to use complex
hierarchical Bayes models which can be fit using var-
ious specialized approaches. For example, Salakhutdi-
nov and Mnih (2008a) study a generative model with
additional priors on the hyper-parameters and develop
a Gibbs sampling scheme for the problem, leading to a
computationally intensive method requiring 200 hours
to train a model with r = 60 on the Netflix dataset.
Aggarwal and Chen (2009) also propose a more gen-
eral Bayesian modeling framework which we revisit
later in Section 2.2. Agarwal, Zhang and Mazumder
(2011) study an example where these covariance ma-
trices are unknown and they are estimated via inverse
covariance matrix estimation. Todeschini, Caron and
Chavent (2013) place a prior on the singular values of
the matrix and propose an EM-stylized algorithm for
the task. Cottet and Alquier (2018) study the one-bit
matrix completion from a Bayesian perspective using
variational techniques.

Because the resulting model specifications are highly
nonconvex, doing tractable inference or making for-
mal (computational) statements about the quality of
the estimates obtained are rather challenging. How-
ever, as we show in Section 2.2, our generalized nu-
clear norm regularization framework can be used to
perform MAP inference in these models. Even if our
goal is to sample from the posterior rather than find the
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MAP estimate, it is often practically useful to use op-
timization techniques to understand properties of the
posterior distribution or help with the sampling. In this
vein, Aggarwal and Chen (2009) empirically compare
several methods for fitting the same model, and set-
tle on an estimation method of their own devising,
called Monte Carlo-EM, to find a local maximum of
the marginal likelihood.

2. MODELING IN LATENT SPACE

2.1 Low-Rank Modeling with the SVD

Some of the most familiar methods in classical statis-
tics amount to low-rank least-squares approximation
of an appropriate matrix, along with some preprocess-
ing of the matrix and postprocessing of the singular
vectors. We review some examples here, for more de-
tails and a classical perspective see Mardia, Kent and
Bibby (1979). A main purpose of this section is to re-
formulate well-known low-rank modeling tasks aris-
ing in the classical multivariate statistics literature into
stylized optimization problems, to set the stage for the
more elaborate modeling techniques described in Sec-
tion 2.2.

Principal components analysis: Principal compo-
nents analysis (PCA) computes the directions of great-
est variation among rows of a data matrix. We begin by
subtracting the mean from each column, obtaining the
column-centered matrix Ỹ = Y − n−11n1′

nY = �⊥
1n

Y .
The first r principal components and principal compo-
nent loadings are, respectively, the columns of UrDr

and V r where UrDrV r ′ is the rank-r truncated SVD
of Ỹ . If Y = n−1Y ′1n, the vector of column means,
then we can reconstruct a least-squares approximation
to Y as Ŷ = 1nY

′ + UrDrV r ′.
Consider modeling Yij

ind.∼ N(�ij , σ
2) where �ij =

βj +u′
ivj , or in matrix form � = 1nβ

′ +UV ′ (1n ∈ R
n

is a vector of all ones) where β ∈ R
m,U ∈ R

n×r , and
V ∈ R

m×r . Because UV ′ can be any matrix with rank
less than r , we can equivalently write � = 1nβ

′ + 


where 
 ∈ R
n×m with rank(
) ≤ r . In this model, the

maximum likelihood estimator for � solves

(13)
min
�

‖Y − �‖2
F

s.t. � = 1nβ
′ + 
, rank(
) ≤ r.

Including the saturated column effect vector β explic-
itly as an unpenalized term guarantees that the fitted 


matrix is a function only of the column-centered ma-
trix Ỹ .

Note that for any solution (β,
) to Problem (13)
with 1′

n
 �= 0 (i.e., some column of 
 has nonzero
mean), the alternate solution (β + n−1
′1n,�

⊥
1n


)

leads to exactly the same � value, and hence the
same likelihood. Because rank(�
) ≤ rank(
) for any
projection matrix �, we have no reason to enter-
tain solutions with 1′

n
 �= 0. Thus, we can add the
constraint �1n
 = 0 without changing the estimation
problem. As a result, we have �⊥

1n
� = 
 and �1n� =

1nβ
′.

Eliminating β and 
 from the problem, we can
rewrite it in condensed form as

(14) min
�

‖Y − �‖2
F s.t. rank

(
�⊥

1n
�

) ≤ r.

In other words, the rank constraint only applies to the
portion of the column space of � that is orthogonal
to 1n. In that sense, we can say 1n is an unregularized
column direction.

Having derived Problem (14), we can easily solve for
the maximum likelihood estimator by noting that

‖Y − �‖2
F = ‖�1nY − �1n�‖2

F + ∥∥�⊥
1n

Y − �⊥
1n

�
∥∥2
F

= ∥∥1nY
′ − �1n�

∥∥2
F + ∥∥Ỹ − �⊥

1n
�

∥∥2
F .

We can set the first term to zero by taking �1n� =
1nY

′
(leading to β = Y ) and minimizing ‖Ỹ −�⊥

1n
�‖2

F

via the SVD (leading to 
 = UDV ′).
Reduced rank regression: As a second example, sup-

pose we have a response matrix Y ∈ R
n×m and feature

matrix X ∈ R
n×d , and consider regressing each col-

umn of Y on the predictors X, but sharing information
across the m responses via a rank constraint. That is,

suppose we again model Yij
ind.∼ N(�ij , σ

2), but now
modeling �ij = αj + x′

iβj , for j = 1, . . . ,m, and with
a constraint on the rank of B = [β1 · · ·βm], leading to
the popular reduced-rank regression model (Anderson,
1951, Reinsel and Velu, 1998). The maximum likeli-
hood problem can then be written as

(15)
min
�

‖Y − �‖2
F

s.t. � = 1nα
′ + XB, rank(B) ≤ r.

By a similar logic as before, we may assume with-
out loss of generality that the columns of X have mean
zero: if X̃ = �⊥

1n
X and (α,B) solves Problem (15)

with data (X̃, Y ) then (α + n−1(XB)′1n,B) solves
Problem (15) with data (X,Y ). Furthermore, noting
that {

XB : B ∈R
d×m, rank(B) ≤ r

}
= {

A ∈ R
n×m : �⊥

XA = 0, rank(A) ≤ r
}
,
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we can eliminate α and B and obtain

(16)
min
�

‖Y − �‖2
F

s.t. rank
(
�⊥

1n
�

) ≤ r, �⊥[1n,X]� = 0.

In Problem (16), we see a similar prioritization of col-
umn directions as in Problem (14), only now with three
levels of prioritization: 1n is unregularized, the column
space of X is regularized via a rank constraint, and all
other directions are completely killed.

As before, we can solve Problem (16) by decompos-
ing the Frobenius norm into the three column spaces of
interest:

‖Y − �‖2
F = ‖�1nY − �1n�‖2

F + ‖�XY − �X�‖2
F

+ ∥∥�⊥[1n,X]Y
∥∥2
F .

We can eliminate the first term by taking α = Y .
To minimize the second term, we set �X� = XB =
UDV ′, the rank-r truncated SVD of �XY , and solv-
ing for B we obtain B = X+UDV ′. The third term
depends only on Y and does not influence the solution.

Non-identity covariance, row effects and further
generalizations: The basic formulations of PCA and
reduced-rank regression above are natural if the m

columns of Y are measured in the same units and
errors are of a comparable scale. In other cases, it
would be more natural to measure the approxima-
tion error relative to a different metric based on the
modified log-likelihood. For example, suppose that

Yij
ind.∼ N(�ij ,�) for some known or estimated error

covariance matrix � � 0.
In that case, the maximum-likelihood problem for

PCA becomes

(17) min
�

∥∥(Y − �)�−1/2∥∥2
F s.t. rank

(
�⊥

1n
�

) ≤ r.

Making the same decomposition as before, we will set
β = Y to eliminate the residual in the direction of 1n,
but to minimize the second term the solution for 
 will
solve

(18) min



∥∥Ỹ�−1/2 − 
�−1/2∥∥2
F s.t. rank(
) ≤ r.

To solve Problem (18) we can simply change vari-
ables to 
̃ = 
�−1/2, noting that rank(
) = rank(
̃)

for any 
 ∈ R
n×m. Then we see the minimizer is


̃ = UDV ′, the rank-r truncated SVD of Ỹ�−1/2, and

 = UDV ′�1/2. Using a further change of variables,
we could also handle the more general case where the
loss function is replaced by ‖�−1/2(Y − �)�−1/2‖2

F .
Generalizing in another direction, we might wish our

model to incorporate row-wise fixed effects in addition

to column-wise fixed effects, but with low-rank inter-
actions between rows and columns. In that case, we
might model �ij = αi + βj + 
ij , leading to the like-
lihood criterion

(19)
min
�

‖Y − �‖2
F

s.t. � = α1′
m + 1nβ

′ + 
, rank(
) ≤ r.

By a similar argument as in the previous section, we
can assume without loss of generality that both 1′

n
 =
0 and 
1m = 0, leading to the condensed criterion

(20) min
�

‖Y − �‖2
F s.t. rank

(
�⊥

1n
��⊥

1m

) ≤ r.

In this case, there is an unregularized column direction
and an unregularized row direction; the rank constraint
only applies to the portion of the model orthogonal to
both. The answer can still be computed in closed form
via a truncated SVD of �⊥

1n
��⊥

1m
.

By combining and extending the ideas above, many
further generalizations are possible. As long as we use
a generalized least-squares loss function of the form
‖�−1/2(Y − �)�−1/2‖2

F , we can choose from a great
variety of models for � that are all computable in
closed form using a common computational frame-
work based on the SVD. Unfortunately, a simple SVD
is no longer sufficient to get solutions for more gen-
eral loss functions. For matrix completion with squared
error loss, for example, a closed form solution cannot
be obtained via a low-rank SVD. The computational
difficulty in these problems stems from the presence
of the rank constraint resulting in notoriously difficult
optimization problems. One way to bypass this com-
putational difficulty is to relax the rank constraint into
the convex nuclear norm constraint—thereby leading
to convex optimization problems, which can (in the-
ory) be solved in polynomial time.

2.2 Low-Rank Modeling with Nuclear-Norm
Regularization

When we move from the rank-constrained problem
to the nuclear-norm-regularized problem we can use
essentially all of the same manipulations as in the pre-
vious section to reduce any constraints on U and V to
constraints on �. In addition to constraining the latent
factors, however, we have an additional option to im-
pose Bayesian priors on the factors and fit the resulting
models by MAP estimation. We again discuss several
examples below. The basic statistical models explored
in this section have appeared before, especially in the
context of Bayesian hierarchical models (Aggarwal
and Chen, 2009) (see also references therein) popularly
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used in the data-mining community in recommender
systems. However, we provide a new perspective on the
MAP estimation of these problems—exploring how
they can be tied to convex optimization problems in-
volving the generalized nuclear norm.

2.2.1 Matrix completion. In matrix completion
problems like the Netflix challenge, a simple and ap-
pealing model is to assign a marginal effect (Koren,
Bell and Volinsky, 2009, Hastie et al., 2015) to each
row and column entity (e.g., a movie’s overall quality
and a user’s overall affect) as well as a low-rank in-
teraction, leading to the model �ij = αi + βj + u′

ivj .
In matrix form, we can write the constraint on � as
� = α1′

m + 1nβ
′ + UV ′, or equivalently that

(21)
min

�,α,β,

L(�;Y) + λ‖
‖∗

s.t. � = α1′
m + 1nβ

′ + 
.

We can eliminate α and β from the problem using a
similar argument as in the last section to rewrite Prob-
lem (19) as (20): for any solution (α,β,
) with 1′

n
 �=
0, the alternate solution (α,β + n−1
′1n,�

⊥
1n


) leads
to the same loss but a smaller nuclear norm for 
,
since 
′�⊥

1n

′ � 
′
 in semidefinite ordering. Making

a similar argument for α, we can rewrite Problem (21)
as

(22) min
�

L(�;Y) + λ
∥∥�⊥

1n
��⊥

1m

∥∥∗,

leading to a well-defined convex optimization prob-
lem. The positive-semidefinite matrices P = �⊥

1n
and

Q = �⊥
1m

in the penalty encode our decision to include
αi and βj as free parameters; if � = UV ′ then U and
V are only penalized insofar as they deviate from con-
stants.

The reduction outlined above, as far as we can tell,
has not explicitly appeared before—we do this to set
the stage for the more general case with side informa-
tion in Section 2.2.2. Note that nothing about the reduc-
tion above required any assumption on the form of L.
Hence, we can use the same reduction with an entry-
wise exponential family likelihood, or Huber or abso-
lute deviation loss; as long as � 
→ L(�;Y) is convex,
the resultant problem is convex.

2.2.2 Features and reduced-rank vector GLMs. Ex-
tending the previous model, we might choose to model
the row effects as a linear function of the row-feature
matrix X ∈ R

n×d . One option already discussed is
to penalize only �⊥

X�, imposing the model3 �ij =
3Aggarwal and Chen (2009) discuss similar models in the con-

text of Bayesian hierarchical modeling—see Section 2.2.4.

αj + x′
iβj + 
ij where only the saturated interaction

matrix 
 is penalized. If B = [β1 · · ·βm] ∈ R
d×m, this

model leads to the criterion

(23)
min

�,α,B,

L(�;Y) + λ‖
‖∗

s.t. � = 1nα
′ + XB + 
,

which in condensed form is

(24) min
�

L(�;Y) + λ
∥∥�⊥[1,X]�

∥∥∗.

As above, 
 is then penalized insofar as it is not ex-
plained by the features X.

A second option is to constrain 
 = XB while using
nuclear-norm regularization to enforce that B is (ap-
proximately) low-rank, leading to a reduced-rank vec-
tor GLM. If we still allow for an unpenalized intercept
αj , we could write the problem as

(25) min
�

L(�[1n,X]�;Y) + λ
∥∥�⊥

1n
�

∥∥∗,

which is always minimized by some � for which
�[1,X]� = � (otherwise �X� would give a smaller
nuclear norm without changing the loss). We note
that Yuan et al. (2007) use a nuclear norm proxy in
place of the rank constraint in reduced rank regression
with the least squares loss.

Note that if we allow the matrices P and Q to have
some infinite eigenvalues, then (abusing notation) we
could alternatively write

(26) min
�

L(�;Y) + λ
∥∥(

�⊥
1n

+ ∞�⊥[1,X]
)
�

∥∥∗,

where the infinite eigenvalues mean only that � is
completely disallowed from varying in that direction
[more precisely we can imagine Problem (26) as a
limit of problems with C�⊥[1,X] replacing ∞�⊥[1,X],
C → ∞]. Thus, intercepts are unpenalized, the other
directions in the span of X are penalized equally, and
directions outside the span of [1,X] are completely
killed.

The two solutions discussed above are quite differ-
ent but both enforce multitiered regularization among
different left-directions of �. One can imagine several
types of penalization schemes obtained by prioritizing
left- and right-directions in the same way.

2.2.3 Priors on latent factors and MAP estimation.
By interpreting the nuclear norm penalty as a ridge
penalty on latent factors (Section 1.2.1), we refor-
mulate MAP estimation in a variety of interesting
Bayesian models as convex optimization problems. If
� ∈ R

n×n and � ∈ R
m×m are positive-definite covari-

ance matrices reflecting correlations between rows of
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the latent-factor matrices U and V , we can impose the
Bayesian model:

(27)

Uk
i.i.d.∼ Nn(0,�), Vk

i.i.d.∼ Nm(0,�),

k = 1, . . . , r,

Yij | ui, vj
ind.∼ N

(
u′

ivj , τ
2)

, (i, j) ∈ �,

where Uk is the kth column of U and ui is the ith row.
Up to a constant shift, the negative log-posterior is

∑
(i,j)∈�

1

2τ 2

(
Yij − u′

ivj

)2

(28)

+ ∑
k

1

2
U ′

k�
−1Uk + ∑

k

1

2
V ′

k�
−1Vk

= L
(
UV ′;Y )

(29)

+ 1

2

∥∥�−1/2U
∥∥2
F + 1

2

∥∥�−1/2V
∥∥2
F ,

where L(UV ′;Y) = ∑
(i,j)∈�

1
2τ 2 (Yij − u′

ivj )
2. Using

Proposition 1, we can rewrite (29) as

(30) L(�;Y) + ∥∥�−1/2��−1/2∥∥∗.

As always, this reduction is equally correct if we re-
place the Gaussian log-likelihood for Y with any other
log-likelihood for Y given UV ′. As long as the nega-
tive log-likelihood is convex in UV ′, we obtain a con-
vex problem in terms of � (as long as the rank of U,V

is sufficiently large).

2.2.4 MAP estimation for hierarchical priors. To
incorporate more domain knowledge or side infor-
mation, various authors have proposed more complex
hierarchical Bayes models which they estimate us-
ing various specialized approaches. A general mod-
eling framework to tackle complex problems arising
in recommender systems where we observe covari-
ates xi ∈ R

dx for user i, zj ∈ R
dz for movie j , and

dyadic covariates wij ∈ R
dw for the pair (i, j) (for

example, how many times the user has watched the
movie). Following the approach of Aggarwal and Chen
(2009), we can propose the more flexible generative
model

ηk
i.i.d.∼ Ndx (0,�), ζk

i.i.d.∼ Ndz(0,�),

k = 1, . . . , r,

Uik | ηk
ind.∼ N

(
x′
iηk, σ

2)
, Vjk | ζk

ind.∼ N
(
z′
j ζk, σ

2)
,

k = 1, . . . , r,(31)

�ij (α,β, ν,X,Z,W,U,V )

= α′xi + β ′zj + ν′wij + u′
ivj ,

Yij | �ij
ind.∼ π�ij

(y), (i, j) ∈ �.

In the above model, πθ(y) represents some model
with convex (negative) log-likelihood such as a Gaus-
sian, other exponential family, or log-concave loca-
tion family. We can also impose a log-concave prior
on (α,β, ν) ∈ R

d1+d2+d3 without really increasing the
difficulty of the problem, but we treat them as fixed ef-
fects for simplicity. Even if (31) is a Bayesian model,
it might be more practical to study nonlinear optimiza-
tion methods to perform MAP estimation, as compared
to using Monte Carlo methods to compute the posterior
mean—in a similar vein, Aggarwal and Chen (2009)
use a Monte Carlo EM procedure to compute an ap-
proximate MAP.

We take a different route—we explore when MAP
estimation for the above model can be interpreted as a
generalized nuclear norm regularized problem; and is
hence amenable to computation via convex optimiza-
tion techniques.

To see why the generalized nuclear norm framework
is flexible enough to handle MAP estimation even in
this complex model; observe that (up to a constant
shift) the negative log-posterior is

(32)
L(�;Y) + 1

2σ 2 ‖U − Xη‖2
F + 1

2σ 2 ‖V − Zζ‖2
F

+ 1

2

∥∥�−1/2η
∥∥2
F + 1

2

∥∥�−1/2ζ
∥∥2
F ,

where we have suppressed the dependence of � on the
other variables.

The function (32) may appear daunting at first blush
due to many nonconvex bilinear terms. However, by
partially minimizing with respect to η and ζ we can
massage it into a friendlier form. We first write

1

2σ 2 ‖U − Xη‖2
F + 1

2

∥∥�−1/2
η η

∥∥2
F

= ∑
k

(
1

2σ 2 ‖Uk − Xηk‖2
2 + 1

2

∥∥�−1/2
η ηk

∥∥2
2

)
,

which is a separable sum of generalized ridge regres-
sion criteria, each regressing Uk against X. For any
fixed Uk , the kth term is minimized by setting ηk =
(X′X + σ 2�−1)−1X′Uk . Substituting back into the
original expression and simplifying, we obtain

min
ηk

1

2σ 2 ‖Uk − Xηk‖2
2 + 1

2

∥∥�−1/2
η ηk

∥∥2
2

= 1

2σ 2 U ′
k(I − H)Uk,
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where H = X(X′X + σ 2�−1)−1X′. After eliminating
ζ the same way, we obtain the criterion:

(33)
L(�;Y)

+ 1

2σ 2

∥∥(I− H)U
∥∥2
F + 1

2σ 2

∥∥(I− G)V
∥∥2
F ,

where G = Z(Z′Z + σ 2�−1)−1Z′. In light of Propo-
sition 1, the above leads to the equivalent minimization
problem

(34)
L(�;Y) + 1

σ 2

∥∥(I− H)
(I− G)
∥∥∗

s.t. � = Xα + β ′Z′ + 〈ν,W 〉 + 
,

if r ≥ rank(
̂), where 
̂ is a solution to Problem (34);4

and we write 〈ν,W 〉 = (ν′wij : i ≤ n, j ≤ m). The con-
vex optimization formulation (34) provides a new per-
spective of the highly nonconvex MAP estimation task
implied by the model (31); and is novel, to the best of
our knowledge.

Equation (34) shows that we are now only penaliz-
ing the residuals of Uk and Vk relative to the (ridge-
penalized) linear models in X and Z. If desired, we can
further eliminate the variables α and β as discussed in
previous sections.

3. MISSING DATA AND LEARNING

In most of the matrix completion literature, the miss-
ingness pattern � is implicitly assumed to be unin-
formative. However, in many of the most salient ap-
plications for matrix completion and low-rank model-
ing, missingness is highly informative. For example, in
the case of Netflix data, it is highly implausible that
a user chooses movies to watch without any regard to
whether they anticipate enjoying those movies. As a re-
sult, which movies the users choose to rate can provide
a great deal of insight into their latent types, one of the
key insights driving the prize-winning algorithm (Bell
and Koren, 2007). We will use the Netflix problem as
a running example in this section.

In matrix completion problems, the row and column
identities play a very different role than they do in more
typical data matrices where each row represents an
independent observational unit. Though we abstractly
represent these identities by the indices i and j , they
are not merely anonymous replicates: for example, in

4We note that if r < rank(
̂) then this equivalence does not hold
and a solution to Problem (33) may not be obtained via convex
optimization.

the Netflix data they correspond to the identities of the
individual users and movies about which we are inter-
ested in learning. Thus, we consider each entry of the
matrix Y to be an observational unit, with possibly un-
observed response Yij and observed predictor variables
given by the observed row and column identities i and
j , as well as any other side information relating to the
row, column or entry. Viewed in this way, the parameter
matrix �ij = f (i, j) is a regression function mapping
the predictors i and j to determine the conditional dis-
tribution of the response Yij , and this mapping is pa-
rameterized by quantities such as αi , βj , ui , and vj ,
which we view as fixed parameters.

Following convention in the missing-value literature,
we can introduce Bernoulli indicator variables for the
missingness pattern Mij = 1{(i, j) /∈ �}. For simplic-
ity, we will assume throughout that (Mij , Yij ) pairs are
independent of each other, with

(35) �ij = log
P((i, j) ∈ �)

P((i, j) /∈ �)
,

or equivalently EMij = (1+exp{�ij })−1. The data are
missing completely at random, then, if Mij is com-
pletely independent of i, j , and Yij —that is, if every
entry is equally likely to be observed. This scenario
seems highly unlikely for Netflix data as well as most
other matrix completion problems.

3.1 Data Missing at Random

The missing data are ignorable in this case if and
only if Yij is independent of Mij given the categorical
row and column predictors i and j—that is, in terms of
the framework of Rubin (1976), whether the data are
missing at random (MAR). For example, in the Netflix
data, a user may preferentially watch movies that she
expects to align with her preferences, but once she de-
cides to watch a movie her decision of whether to rate
it is unrelated to her evaluation of the movie.

If the data are MAR in the sense above, then the con-
ditional likelihood of Yij given Mi = 1 is the same as
the conditional likelihood of Yij given Mi = 0. There-
fore, we can still learn to predict the missing cases by
analyzing the non-missing cases. However, as Bell and
Koren (2007) found, this may be a highly suboptimal,
especially if �ij is partly driven by the same parame-
ters αi, βj , ui , and vj that determine �ij .

Viewed this way, missingness at random is a special
case of the multi-task learning problem, simply adding
more data for estimating the same parameters, possi-
bly in addition to some more parameters. For exam-
ple, we might add an extra parameter ρi for user i,
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parameterizing her propensity to watch more movies,
and τj parameterizing movie j ’s overall prevalence,
and model �ij = ρi + τj + uiv

′
j or equivalently � =

ρ1′ +1τ ′ +UV ′. We could fit this model with minimal
modification to the algorithmic framework described
below

Alternatively, we might believe the user/movie inter-
action should be similar but not exactly the same for �

and �. Then, we could model

�ij = ρi + τj + ri t
′
j ,

and penalize λru‖ri −ui‖2
2 and λtv‖tj −vj‖2

2. Mapping
this back to a matrix completion problem, we would
arrive at partially missing data matrix Ỹ , and parameter
matrix �̃, where

Ỹ =
[
Y —
— M

]
, �̃ = Ũ Ṽ ′ =

[
U

R

] [
V ′ T ′] .

The character “—” denotes completely missing blocks
of Ỹ that play no role in the likelihood; note this means
that the values of UT ′ and RV ′ do not matter. Finally,
we would be left with the penalized likelihood crite-
rion

L(�̃; Ỹ ) + λru‖U − R‖2
F + λtv‖T − V ‖2

F ,

where the quadratic penalties can be rewritten as
‖U − R‖2

F = ‖[1n1′
n − (1n1′

n)]Ũ‖2
F .

More generally, we can imagine an infinitude of pos-
sible ways of modeling the missing data pattern, many
of which fit quite neatly into the computational frame-
work described here.

3.2 Data Missing Not at Random

By contrast, we might imagine that another user
rates movies strategically, only bothering to rate those
movies he especially likes or dislikes, or searching his
memory to rate his favorite movies that he watched
long ago. In that case, the movies are missing not at
random (MNAR), the most general and least favorable
scenario. If the missing mechanism is MNAR then,
even if we successfully learn to predict Yij for observed
entries (i, j) ∈ �, we cannot necessarily rely on our
predictions to perform well for values of Yij for the
not-yet-observed entries (i, j) /∈ �. From the perspec-
tive of a firm like Netflix, this may pose a major prob-
lem, especially if they aim to use the data to recom-
mend movies that a user has not yet rated, but which
they believe he would like.

As in most problems, it is impossible to determine
from the data alone whether the data are MAR or

MNAR (or to correct for MNAR data). To determine
whether (or how badly) the data are MNAR, we could
however use auxiliary data. For example, we could
imagine that Netflix keeps data about (a) which movies
a user watched on Netflix’s recommendation, (b) which
movies he watched by his own choice (e.g., by search-
ing for them), and (c) which movies he rated without
watching on Netflix. Then Netflix could train a model
on ratings in groups (b) and (c), and test for group (a);
if the predictions are unsuccessful, Netflix could mod-
ify its model to take this into account—for example,
by introducing a categorical predictor variable Wij en-
coding a, b, c, or d if the rating is still missing, and
modeling the way that Wij influences Yij .

4. COMPUTATION

We now review several computational methods that
can be used to solve optimization problems with
generalized nuclear norm regularization. Many of
these methods have been used successfully to address
the special case of matrix completion with nuclear
norm regularization and closely related problems. We
present an overview of these methods highlighting
their advantages and disadvantages. We then discuss
how these ideas may generalize to the class of prob-
lems we discuss in this paper.

4.1 Algorithms for Solving the Nuclear Norm
Regularized Problem

In the discussion below, with a slight abuse of nota-
tion, we will denote L(�;Y) by L(�). We will assume
that L(�) in Problem (4) is convex and differentiable.
These methods also extend to a fairly large family of
non-smooth functions by applying Nesterov’s smooth-
ing technique (Nesterov, 2005).

4.1.1 Proximal gradient algorithms. We first dis-
cuss obtaining approximate solutions to Problem (4),
that is, we are interested in minimizing the function
H(�) := L(�) + λ‖�‖∗ w.r.t. �. If L(�) is differen-
tiable with Lipschitz continuous gradient5

(36)

∥∥∇L(A) −L(B)
∥∥
F ≤ L‖A − B‖F ,

∀A,B ∈ R
n×m,

5We note that for the Poisson distribution, L(·) does not satisfy
this property. However, if an optimal solution is bounded (which is
typically the case), it will effectively satisfy (36) with L < ∞—see,
for example, Atchadé, Mazumder and Chen (2015) for a formal
treatment of this aspect, in the context of the graphical lasso prob-
lem.
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then proximal gradient methods (Beck and Teboulle,
2009) can be used, leading to the updates

(37)

�k+1 ∈ argmin
�

L

2

∥∥∥∥� −
(
�k − 1

L
∇L(�k)

)∥∥∥∥2

F

+ λ‖�‖∗

= Sλ/L

(
�k − 1

L
∇L(�k)

)
,

where Sτ (A) is defined in (5). It follows from the con-
vergence properties of proximal gradient methods that
H(�k) → min� H(�) as k → ∞; and the conver-
gence rate is sublinear, that is, after k many iterations,
H(�k) is at most O(1/k)-away from the minimum of
H(�) (Beck and Teboulle, 2009). When the loss func-
tion is taken as the squared error over the observed en-
tries �, and L = 1, this is the Soft-Impute algorithm
of Mazumder, Hastie and Tibshirani (2010). We note
that accelerated gradient methods (Beck and Teboulle,
2009) can also be used, which have a (superior) con-
vergence rate of O(1/k2) as compared to the sublinear
rate of proximal gradient methods.6 Every iteration re-
quires computing the singular value thresholding oper-
ator, which can be done fairly quickly via a full SVD if
the problem size is small (few hundred rows/columns).
If the matrices are larger, computing (37) becomes
more involved; and specialized numerical linear alge-
bra routines for low-rank SVDs are needed. Note that if
λ is large then the number of nonzero singular values
in Sλ(A) is small—it therefore suffices to compute a
low-rank SVD of A, which can be significantly cheaper
than computing a full SVD of A with cost O(m2n) (as-
suming that n ≥ m). If A has special structure (for ex-
ample, a sparse matrix) for which matrix-vector mul-
tiplications of the form Ab1 and A′b2 are cheap, then
an approximate low-rank SVD can be computed with
several such matrix-vector multiplications. The popu-
lar power method (Golub and Van Loan, 1983) is of-
ten used to compute the largest singular-vector/value
of large matrices. The block QR method or alternat-
ing least squares (Golub and Van Loan, 1983) (see
also the Soft-Impute package of Hastie et al., 2015)
method and algorithms based on Lanczos subspace it-
erations (Golub and Van Loan, 1983) as implemented

6Accelerated gradient methods should be used with caution for
large problems, especially with inexact computation of the proxi-
mal steps. The latter arises from approximate low-rank SVD com-
putations and may lead to possible unstable behavior and noncon-
vergence of the algorithm due to error accumulation (Devolder,
Glineur and Nesterov, 2014).

in the PROPACK software (Larsen, 2004) are ex-
tremely effective methods for computing the top few
singular values and vectors for large matrices for which
matrix-vector multiplications are cheap. Below we pro-
vide some examples wherein A is structured—this en-
ables fast multiplications of A and A′ with a vector.

Matrix completion: For the matrix completion prob-
lem with least squares loss, we have

L(�) = 1

2

∑
(i,j)∈�

(θij − yij )
2 = 1

2

∥∥P�(� − Y)
∥∥2
F ,

where P�(�) is the projection matrix onto the ob-
served entries, that is, the (i, j)th entry of P�(�) is
θij if (i, j) ∈ � and zero otherwise. We let P ⊥

� (�) =
� − P�(�). P�(�) is a sparse matrix with atmost |�|
many nonzeros, which can be potentially much smaller
than mn. For the Netflix dataset for example, |�|/mn

is 1.2%. Update (37) for this problem entails comput-
ing a low-rank SVD of the matrix P�(Y ) + P ⊥

� (�k),
which, curiously can be written as the sum of a sparse
and low-rank matrix:

(38)

�̃k := P�(Y ) + P ⊥
� (�k)

= P�(Y − �k)︸ ︷︷ ︸
Sparse

+ �k︸︷︷︸
Low rank

,

wherein �k is anticipated to be of low-rank since a suf-
ficiently large value of λ in Problem (4) encourages a
low-rank solution. In practice, one maintains an upper
bound r on the maximum allowable rank on �k for im-
proved memory and storage usage (Mazumder, Hastie
and Tibshirani, 2010). In addition, we never need to
store or form the entire matrix �k . Instead, we store
factors (Ak,Bk) where �k = AkB

′
k and this stems from

the low-rank SVD of �k . Suppose r̃ is the “working”
rank of �k , that is, Ak,Bk have r̃ columns each. We
note that computing P�(Y − �k) = P�(Y ) − P�(�k)

requires evaluating the entries of �k for all (i, j) ∈ �

which can be done with cost O(|�|r̃) by using the
factored representation of �k . Note that multiplying
�̃k with a vector is of cost O(|�|) + O((m + n)r̃).
Usually in matrix completion problems, we seek r̃

latent factors with r̃ � m,n; and |�| is comparable
to O((m + n)r̃)—thus the matrix vector multiplica-
tions are of cost O((m + n)r̃). When |�| is small, the
above techniques also generalize to loss functions cor-
responding to other members of the generalized linear
model family as long as (36) holds true.

Structured gradients: Let us consider some other
loss functions L(�) arising in problems that are dif-
ferent from missing data/matrix completion problems
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discussed above. To efficiently compute (37), we will
need to efficiently compute the gradient of the loss
function L(�) w.r.t. � and also perform fast matrix-
vector multiplications of the form: ∇L(�)b1 and
∇L(�)′b2. For a problem of the form (11), the method
of Section 4.1.1 requires us to compute the gradi-
ent of the smooth mapping � 
→ L(P̃�Q̃) w.r.t. �.
Writing � = AB ′ (assuming that A,B have a small
working rank) the gradient is given by ∇�L(P̃�Q̃) =
P̃∇ZL(Z)Q̃ with Z = P̃�Q̃. A key to efficiently
computing (37) requires performing fast matrix-vector
multiplications of the form: P̃∇ZL(Z)Q̃b1 [and also
(P̃∇ZL(Z)Q̃)′b2]. This is easy to compute as long as:
Multiplying Q̃ and P̃ with a vector is computation-
ally cheap. This is the case when the matrices P̃ , Q̃

are sparse, low-rank or the sum of a sparse and low-
rank matrix (for example). All examples discussed in
the paper including the ones in Section 5 satisfy this
property.

For large problems, that is, when the number of
rows/columns become a few thousand (say, 5000 or
larger), the computational cost of these iterative pro-
cedures relying on matrix-vector multiplications, will
increase substantially if the gradients do not have suf-
ficient structure (similar to that described above).

4.1.2 Nonconvex optimization algorithms. Another
class of algorithms that are commonly used for matrix
completion problems exploit the equivalence between
Problems (7) and (4). Herein, we attempt to directly op-
timize the nonconvex objective L(UV ′) + λ

2‖U‖2
F +

λ
2‖V ‖2

F in terms of the variables (Un×r , Vm×r ). Note
that we need to consider a value of r that is large
enough to ensure that Problems (7) and (4) are equiv-
alent. We acknowledge that choosing this value of r is
difficult, as the rank of �̂, a minimizer of Problem (4)
is not known in advance. However, this can be esti-
mated during the course of the algorithm, as we discuss
below.

Rennie and Srebro (2005) propose using gradient
descent on Problem (7) for the matrix completion
problem. Hastie et al., 2015 use an inexact block co-
ordinate stylized method for the matrix completion
problem, motivated by the EM-algorithm underlying
Soft-Impute (Mazumder, Hastie and Tibshirani, 2010).
While nonconvex problems are prone to local minima
and saddle points, it turns out that under certain addi-
tional verifications/checks (Burer and Monteiro, 2005,
Hastie et al., 2015, Journée et al., 2010), these non-
convex algorithms lead to solutions of the convex op-
timization problem (4). We note however, that certify-
ing whether a pair (U,V ) is a local minimizer requires

checking the positive semi-definiteness of a Hessian
operator (Journée et al., 2010), which may be difficult
to verify for large scale problems. Hastie et al. (2015)
show that a singular value thresholding operation, in-
spired by Soft-Impute, can be performed to check if a
stationary point of (7) corresponds to the global min-
imizer of the convex nuclear norm regularized Prob-
lem (4). We refer the reader to the work of Hastie et al.
(2015) for a detailed investigation of these issues for
the matrix completion problem, wherein the authors
also show that nonconvex algorithms for the matrix
completion problem can be much more efficient than
usual proximal gradient type methods for the problem.
We note that a key requirement in this approach is the
choice of r , if r is smaller than r̂ then Problem (7) will
not be equivalent to Problem (4); if r is taken to be
too large then this nonconvex optimization approach
(in the U,V variables) will be computationally expen-
sive. A practical strategy is to (i) start with a small
value of r and optimize Problem (7) with respect to
(U,V ) to get a stationary point; (ii) check if the condi-
tions of optimality with respect to the convex problem
are met; (iii) if the conditions are not satisfied, then one
can increase r and repeat the optimization process with
warm-starts (Hastie et al., 2015).

4.1.3 Frank–Wolfe type algorithms. Fairly recently,
a class of first order methods known as Frank–Wolfe
aka Conditional Gradient algorithms have gained pop-
ularity in the context of nuclear norm regularized prob-
lems; and in particular, the problem of matrix com-
pletion with the squared error loss function. We refer
the reader to an incomplete list of papers by Frank and
Wolfe (1956), Jaggi and Sulovsk (2010), Freund, Gri-
gas and Mazumder (2017) (see also references therein)
that have pursued this line of investigation. The Frank–
Wolfe algorithm operates on the constrained version
of the nuclear norm regularized problem (3) given by:
min{L(�) : ‖�‖∗ ≤ τ }. Note that we will assume that
condition (36) holds true. A particularly appealing as-
pect of this algorithm is that at every iteration it com-
putes a rank-one SVD of a n × m matrix.

The Frank–Wolfe algorithm gives rise to the update
sequence:

(39)
�k+1 = �k + αk(�̃k+1 − �k) where

�̃k+1 ∈ argmin
{〈∇L(�k),�

〉 : ‖�‖∗ ≤ τ
}

for a sequence αk = 2/(k + 2), where k denotes the it-
eration counter. This sequence L(�k) converges to the
optimum of Problem (3) with a finite time convergence
rate of O(1/k). An appealing trait of this algorithm is
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that �̃k+1 [as in (39)] requires computing the largest
singular vector/value of the matrix ∇L(�k) which can
be done via the power-method, for example. For matrix
completion with the squared error loss, the gradient of
the loss function is: ∇L(�k) = P�(Y −�k) which is a
sparse matrix with O(|�|) nonzero entries and hence a
power method will entail a per-iteration cost of O(|�|).
When L(�k) has no specialized structure, computing
�̃k+1 can be achieved via the power method with cost
O(mn)—this is usually much cheaper than comput-
ing a thresholded SVD as in (37). The caveat of the
Frank–Wolfe method is that it can take several itera-
tions to reach an approximate solution to Problem (3)
with a small rank, even if we assume that the problem
admits a low-rank solution. If τ is taken such that �̂,
an optimal solution to Problem (3), has a rank of 20
(say), then rank(�k) can quite easily become of the or-
der of a thousand with as many iterations. As the num-
ber of iterations increase and �k makes its way to an
optimal solution, the rank gradually decreases. This is
in contrast to proximal gradient methods (Mazumder,
Hastie and Tibshirani, 2010, Hastie et al., 2015) where
the nuclear norm thresholding operator induces a low-
rank solution via the soft-thresholding operation on the
singular values. There are sophisticated variants of the
Frank–Wolfe method with “In face” extensions that
can address these shortcomings, with marginally more
computational cost—we refer the reader to Freund,
Grigas and Mazumder (2017) and references therein
for an in-depth investigation.

For general problems where ∇L(�k) is not sparse or
sufficiently structured, pre or post-multiplying ∇L(�k)

with a vector will cost O(mn); thereby, computing
�̃k+1 for many iterations will become computation-
ally expensive. Since the vanilla version of the Frank–
Wolfe method does not necessarily lead to low-rank
solutions along the course of the algorithm, stor-
age/memory constraints will limit storing �k as soon
as k becomes sufficiently large.

4.1.4 Other algorithms. Another approach for low-
rank models directly operate on the rank constrained
optimization problem (1) in terms of the latent fac-
tors U,V . In this approach, we do not consider the
regularization term as discussed in Section 4.1.2. If
� 
→ L(�) is convex, then L(UV ′) is convex in V

(for fixed U ); and vice-versa. One can apply alternating
minimization or block coordinate descent (Bertsekas,
1999) algorithms for this problem. However, as ex-
plained in Section 4.1.2 the algorithm may lead to
undesirable stationary points or saddle points. Addi-
tional assumptions on the problem data are needed to

make the algorithm more well behaved. Toward this
end, Jain, Netrapalli and Sanghavi (2013) analyze the
behavior of such algorithms in the context of ma-
trix completion problems with squared error loss un-
der incoherence-like assumptions on the underlying
data generating mechanism. This is similar in spirit
to conditions required for nuclear norm regularized
matrix completion (Candès and Tao, 2010) to recover
an underlying low-rank matrix. Chen and Wainwright
(2015) study the behavior of these algorithms for more
general loss functions. The quality of the solutions pro-
duced by these algorithms when such assumptions are
violated, however, is not clear. It is useful to remind
ourselves that the nuclear norm regularization provides
shrinkage on the singular values of the matrix; and this
may lead to better generalization error. This may be a
reason why criterion (3) may be preferred over the (un-
regularized) rank constrained version (1). We refer the
reader to the recent work of Mazumder, Radchenko and
Dedieu (2017) for similar discussions in the context of
high dimensional sparse linear regression.

Approximate message passing: Another appealing
approach to low-rank matrix completion is based on
the Approximate Message Passing (AMP) algorith-
mic framework. These class of algorithms have been
inspired by the success of similar algorithms in the
compressed sensing literature; and have been stud-
ied by a series of recent works (Parker, Schniter
and Cevher, 2014a, 2014b, Lesieur, Krzakala and
Zdeborová, 2015). In the context of matrix comple-
tion, Parker, Schniter and Cevher (2014b) show that
their proposed algorithm leads to superior reconstruc-
tion error and also faster runtimes when compared to
other off-the-shelf algorithms for matrix completion,
and related problems. Understanding deeper statisti-
cal and computational connections between these al-
gorithms and other methods described herein (see for
example, Section 2.2) might be an interesting direction
for future research. It may also be interesting to explore
if AMP based methods can be extended to handle side-
information as discussed in Section 2.2.

4.2 Solving the Generalized Nuclear Norm Problem

Motivated by Problem (8), we discuss techniques to
minimize G(�) := L(�;Y)+λ‖P�Q‖∗, for different
choices of P,Q.

If P,Q are invertible, G(�) can be reformulated as
an instance of Problem (4) upon performing a suitable
change of variables; and the methods described above
are applicable. We note that as long as m,n are of the
order of a few thousands each, the matrix inversions for
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P,Q are computationally feasible. If m,n are larger
(in the order of tens of thousands, for example), it may
still be computationally feasible to invert P provided it
has some special structure. For example, if P = I− H

for H low-rank, then P −1 (assumed to exist) can be
obtained by using the Sherman Woodbury formula.
A similar story applies to Q as well. In addition to be-
ing able to compute inverses of P,Q; one also needs to
compute the gradient quite efficiently—this is possible
as long as it is fast to multiply P −1,Q−1 with vectors.

If at least one of P or Q is low rank, then G(�) can
be minimized using the Alternating Direction Method
of multipliers method (Boyd et al., 2011) as we discuss
in Appendix B.

Finally, another approach to minimize G(�) is to
express � in terms of U,V (note that we assume
� = UV ′) and consider an optimization problem in
the form of Problem (9). One can then directly apply
nonlinear optimization methods on the problem; as dis-
cussed in Section 4.1.2. For example, one can apply
gradient descent on the function with respect to latent
variables Un×r , Vm×r . A stationary point of such an al-
gorithm will correspond to the minimum of the convex
problem (8) if: r is chosen sufficiently large, and the
point �̂ = Û V̂ ′ corresponds to a local minimum of the
objective function. Checking the latter usually entails
verifying whether Û V̂ ′ satisfies the optimality condi-
tion of the corresponding convex problem.

Multiple blocks: Let us consider the general
convex problem (34), where �ij = Xα + β ′Z′ +
〈ν,W 〉 + 
. We can apply a block coordinate descent
algorithm (Bertsekas, 1999) across the blocks (α,β, ν)

and 
. The optimization problem w.r.t. (α,β, ν) is a
simple convex optimization problem and is straight-
forward to do. The optimization problem w.r.t. 
 is a
(generalized) nuclear norm regularized problem, and
has been discussed above.

4.3 A Summary of the Current Computational
Landscape

As we have discussed above, there are a wide num-
ber of possible algorithmic approaches for the nuclear
norm regularized matrix completion problem. In our
opinion, every method has its advantages and disad-
vantages. It is not clear to us if any one method com-
pletely dominates the rest in terms of speed, robust-
ness, generalizability to different loss functions, scala-
bility and computational guarantees. Due to the close
ties of these convex problems to low-rank matrix de-
compositions, it is not surprising that many of these

approaches make heavy use of techniques from numer-
ical linear algebra such as those arising from comput-
ing low-rank SVDs. The basic versions of most of the
methods described above are rather simple to imple-
ment; and are likely to lead to (more or less) similar
performances on many moderate-sized instances. We
do note however, that additional work may be needed
for specialized and careful implementations of these
algorithms to obtain improved performance in prac-
tice, especially for large scale problems. For instance,
the proximal gradient methods require a knowledge of
the Lipschitz constant, though a line-search (Beck and
Teboulle, 2009) can be used to estimate it, if it is un-
known. However, the latter may become quite expen-
sive for large scale instances due to multiple evalua-
tions of the proximal step which involves a singular
value thresholding operation (37). On the other hand,
the basic version of the Frank–Wolfe method is rela-
tively simple to implement, and unlike proximal gra-
dient methods, it does not require any prior knowl-
edge of the value of the Lipschitz constant. However,
to encourage low-rank solutions along the course of
the algorithm, non-trivial modifications to the basic
Frank–Wolfe algorithm are required. For large prob-
lems, nonconvex optimization based approaches or al-
ternating (bi-convex) optimization procedures are per-
haps the easiest to implement and require a minimal
working knowledge of modern convex optimization al-
gorithms. However, the quality of the stationary points
can be quite suboptimal; and additional considerations
are needed to verify the quality of the solution on ar-
bitrary real-data instances (provided we do not make
any unverifiable assumption on the problem data). For
large problems, when rows/columns are of the order of
tens of thousands, memory management issues become
important: Anticipating a low rank solution to �, it is
imperative that � be stored in factored form in terms
of its latent factors. Almost all the methods mentioned
above, take that into account in some form or the other.

When one considers general smooth and convex loss
functions, beyond those arising in the context of matrix
completion, all algorithms are likely going to be much
slower, especially, for larger problem sizes. The gen-
eralized nuclear norm problem is arguably more chal-
lenging than the vanilla nuclear norm regularized prob-
lem and the current computational landscape for these
problems is not as well understood as the vanilla nu-
clear norm regularized problem. This should perhaps
not come across as too surprising, as a similar story
arises in the context of usual penalized regression. It
is well known that in regularized linear regression,
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the two dimensional total variation denoising problem
or the generalized lasso problem is computationally
more challenging than the usual Lasso (Hastie, Tib-
shirani and Wainwright, 2015, Nesterov, 2004, Beck
and Teboulle, 2009). Furthermore, nuclear norm reg-
ularization leads to semidefinite optimization prob-
lems. They are widely acknowledged to be signifi-
cantly more difficult optimization problems when com-
pared to quadratic optimization problems arising in
high dimensional linear regression. Developing faster
algorithms for the generalized nuclear norm regular-
ized problem is an important direction for future re-
search. We contend that specialized methods need to
be tailored to the structure and dimensions of the ma-
trices P,Q; and the stylized loss function.

5. DATA EXAMPLES

We now describe the results of our method on two
applications, meant both to illustrate the scalability of
our algorithm, and to suggest the level of generality of
possible models by way of example.

5.1 Functional Data Reconstruction

Our first example is of a nonparametric flavor and
involves real data. We begin with 200 noisy functions
measured at 256 equally spaced frequency points. Each
function is a log-periodogram computed from a 32 ms
recording of a male research subject speaking one of
five phonemes. The data were originally collected in
the TIMIT speech corpus from the U.S. Department
of Commerce and processed and analyzed in Hastie,
Buja and Tibshirani (1995) to demonstrate a variant
of discriminant analysis with smoothness penalty ap-
plied, with a goal of classifying the phonemes. Because
each log-periodogram shows erratic variation around
a smooth trend, a successful statistical analysis must
extract the smooth structure without overfitting to the
noise.

Each log-periodogram is a 256-dimensional vector,
and we combine them to form a matrix Y ∈ R

200×256,
whose ith row is the ith log-periodogram. We expect
the signal in this matrix to be low-rank, and the la-
tent column factors should be smooth in frequency. We
then artificially construct a sparsely-observed data set
by sampling each curve at 26 random points, and set
ourselves the objective of reconstructing the functions
based on these relatively few samples, exploiting the
assumptions of smoothness and low rank. The purpose
of this example is to show that forcing the latent vari-
ables to be smooth in frequency can demonstrably im-
prove in reconstruction accuracy.

To proceed, we impose a simple model on the col-
umn variables vj ; they are constrained to lie in the
natural spline basis with 12 degrees of freedom, and
we shrink them toward the natural spline basis with 4
degrees of freedom. We estimate the principal compo-
nents analysis model with unpenalized marginal col-
umn (time) effects:

minL(�;Y) + λ


∥∥
(2)
ij

∥∥∗(40)

s.t. �ij = μ + βj + 

(1)
ij H4 + 


(2)
ij H12,(41)

where Hd represents a d-dimensional natural spline ba-
sis (with intercept). This can be framed (somewhat ar-
tificially) as a Bayesian prior on V with flat variance in
the directions of H4, finite positive variance in the di-
rections of H12, and zero variance on other directions.
Although this data set is relatively small, it can be com-
putationally advantageous to constrain 
 as we have
done here, since it reduces the size of our optimiza-
tion variables (e.g., 
(2) is n × 12 instead of n × 256).
We compare our proposed method to matrix comple-
tion using the standard nuclear norm, which does not
exploit smoothness. The right panel of Figure 1 shows
that side information cuts MSE by a sizeable fraction.

5.2 Reduced-Rank Poisson Regression for
Ecological Modeling

As a second example to illustrate the richness of
our modeling framework, we consider an ecologi-
cal application, species distribution modeling using
presence-only data. On a geographic domain D, we
observe a process of point observations for each of m

species, with the goal of determining the abundance
of each species as a function of geographic location,
or understanding the determinants of habitat suitabil-
ity. The observations typically arise from opportunistic
sources such as museum collections or citizen science
data, leading to a strong sampling bias toward popula-
tion centers. Our model extends a model proposed in
Fithian et al. (2015) by introducing low-rank regular-
ization to borrow strength across species.

For s ∈ D, let x(s) denote a d-variate vector of
habitat covariates that drive species abundance, and let
z(s) denote other covariates driving the sampling bias.
We assume that species j has a latent species process
Sj representing all locations where species j occurs,
modeled as an inhomogeneous Poisson point process
with species intensity νj (s) = exp{αj + x(s)′βj }. The
species process is then filtered through a biased ob-
servation model wherein each occurrence is observed
with probability bj (s), so that we only observe the
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(a) (b)

FIG. 1. Phoneme data, comparison of Soft-Impute (matrix completion with the standard nuclear norm penalty) against a generalized
nuclear norm penalty with smoothness enforced. (a) Reconstruction for the first four phoneme curves, with regularization parameter λ

chosen by cross-validation. (b) Mean squared error for held-out data as a function of λ.

thinned Poisson process Tj with intensity νj (s)bj (s).
We model bj (s) = exp{εj +z(s)′δ} (with δ not varying
by species), reflecting an opinion that the spatial bias is
a function of observer behavior only.

Typically the geographic domain is discretized into
n pixels reflecting the resolution of covariate measure-
ments; if s represents a pixel with unit area, let Ysj de-
note the number of s ∈ T| falling into pixel s. Then,

Ysj ∼ Pois
(
exp

{
αj + x(s)′βj + εj + z(s)′δ

})
.

Since αj and εj are unidentifiable in this model, the
species intensity νj is also unidentifiable. However,
we can estimate the normalized species distribution
pj (s) = νj (s)/

∫
D νj (s), which depends only on βj

and is therefore identifiable.
To borrow strength across species, we can model

B = UV ′, where B = [β1 · · ·βm], and U ∈ R
d×r , V ∈

R
m×r . In effect we are positing that r latent habitat co-

variates w(s) = x(s)′U can capture all of the impor-
tant signal, with V ′ = [v1 · · ·vm] representing the ef-
fect of the latent covariates on each species. Replac-
ing the nonconvex rank constraint with a nuclear norm
penalty, we arrive at a reduced-rank Poisson regression
objective:

(42) min
α,�,δ

L
(
�X� + 1ζ ′ + δ′Z1′, Y

) + λ‖�‖∗,

where �X denotes projection onto the column space
of X and ζj = αj + εj . Note that while this applica-
tion is not posed directly as matrix completion as such,
estimating pj (s) essentially amounts to predicting the
locations of the missing observations.

We illustrate this method on simulation data, where
the ground truth is known and estimation accuracy
can be directly measured. On a 20 × 30 grid of pix-
els in the unit square D = [0,1] × [0,1], we generate
d = 30 covariates x(s) as moving-average Gaussian
processes. We then randomly generate latent factors U

and species loadings V for each of m = 30 species,
populating both matrices with i.i.d. Gaussian random
variables. Next, we plant a “town” at location s∗ =
(0.8,0.5) and let z(s) = −‖s − s∗‖2

2. Finally, we set αj

to normalize the intensities so that
∫
D νj (s)bj (s) = 150

for each species. Figure 2(a) shows the species inten-
sity, biased intensity, and reconstructed species distri-
bution for the first two species, for the best-performing
value of λ on a validation set.

We compare our regularized estimator to a simpler
method wherein we estimate βj for j = 1, . . . ,m via a
separate log-linear Poisson regression for each species.
To simplify estimation, the separate-regressions
method is given perfect a priori knowledge of δ, so
δ need not be estimated. Even with this advantage, the
separate-regressions method overfits badly; 150 obser-
vations are not enough to accurately estimate a density
with 30 parameters. Figure 2(b) shows a boxplot of
the Kullback–Leibler distance DKL(p̂j‖pj ) for each
value of λ, and for the separate regressions method.
Figure 2(b) illustrates that combining multiple GLM
models into a single RR-VGLM model can dramati-
cally improve estimation performance, by borrowing
strength across the different species. Note that unlike
the phoneme data, these data are simulated so we know
the assumptions of a low-rank structure are justified;
we would not expect the RR-VGLM to improve on
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(a) (b)

FIG. 2. Results for ecological simulation. (a) Top row: The left panel shows ν1, the species intensity. The middle panel shows ν1b1, the
biased intensity, with the observed process T1 plotted as red circles. The red star denotes the location of the “town” which drives the bias.
The right panel shows the reconstructed species distribution p̂1, for the value of λ selected by cross-validation. Bottom row: Same quantities
for species 2. (b) Comparison of the reconstruction error for the separate-regressions method versus the regularized method for a range of λ

values. For each fit, the box summarizes DKL(p̂j ,pj ) for j = 1, . . . ,30. The separate-regressions method performs quite poorly compared
to the regularized method.

separate GLMs if the species distributions shared no
common structure.

6. DISCUSSION

We presented a framework for scalable convex op-
timization on matrix completion problems incorporat-
ing side information. The information can be diverse
in its source, as long as it can be represented ultimately
as some quadratic penalty which can be applied or in-
verted with ease. We have seen two examples where
side information of different kinds is advantageous for
predictive performance.

Although the bottleneck in our algorithm is an SVD
of a large matrix, we can attain rapid convergence by
exploiting the structure of the SVD target, which is of-
ten easy to apply.

6.1 When Is Side Information Helpful?

The phoneme data and ecological simulation provide
two example problems where side information can be
quite useful in providing better-targeted regularization
for a specific scientific problem. Generally speaking,
side information is likely to be helpful when we have
good reason to believe that the row or column enti-
ties are related to each other in important ways that are
likely to be reflected in the latent variables. In particu-
lar if rows or columns represent points in time or space,
it will often be quite helpful to use our modeling frame-
work to encode a smoothness assumption on the left or
right singular vectors.

We can think of the advantages and disadvantages of
including side information in terms of a typical bias-
variance tradeoff. If we know ahead of time that sev-
eral movies are in the same genre, or several genes are
in the same pathway, then the methods in this article
will let us borrow strength across the similar movies
or genes to estimate their latent types. This borrowed
strength is especially effective when some of the row
or column entities are sparsely observed: for a sparsely
observed row, its similarity to other, better observed
rows may be the best information we have to go on
in estimating its latent type. By contrast, if we have a
great deal of information, then constraining latent row
types to lie in a low-dimensional space can induce an
estimation bias that hurts our predictive accuracy more
than enough to counteract the variance reduction we
achieve by borrowing strength.

In this paper, we have not discussed theoretical (sta-
tistical) properties of the estimators produced by the
generalized nuclear norm regularized estimators. Un-
derstanding the theoretical statistical properties of the
estimators proposed herein, formalizing the benefits of
side-information is an interesting direction for future
work.

6.2 Challenges and Potential Directions for Future
Research

There are several important challenges to address be-
fore the framework described herein can see its full ap-
plication in scientific problems. Statistically, we will
often be interested in learning and interpreting the
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latent factors, in addition to simply making predic-
tions for held out data. To justify any interpretation
of estimated factors, however, it is important to es-
tablish theoretical guarantees on consistency and es-
timation accuracy, as well as methods for uncertainty
quantification, for example by extending recent ad-
vances in uncertainty quantification for PCA (Josse,
Wager and Husson, 2016) and low-rank matrix com-
pletion (Carpentier et al., 2016). Finally, we are un-
aware of any methods for sensitivity analysis of the
predictions or latent factors when the data may be
MNAR; this may be an important topic for future work.

In addition, there are important avenues of com-
putational research including systematic comparisons
across the different competing methods described in
Section 4.1 for the nuclear norm regularized problem,
including matrix completion beyond the squared er-
ror loss function, especially when the gradient of the
loss function is not Lipschitz. Developing specialized
robust and scalable algorithms for the generalized nu-
clear norm problem is an interesting and in our opinion
an important direction for future research—see Sec-
tion 4.3 for specific details and outstanding challenges.

Temporal dynamics (Koren, 2010) play an important
part in recommender systems and a key role in improv-
ing the predictive performance for the Netflix data-
set (Bell and Koren, 2007, Koren, Bell and Volinsky,
2009)—it will be interesting to study if these models
popularly used in the recommender systems commu-
nity can be expressed in the generalized nuclear norm
framework (or variations thereof) presented herein.

APPENDIX A: PROOF OF PROPOSITION 1

Let �P and �Q denote projections onto the images
of P and Q. Then

inf
�

L(�) + ‖P�Q‖∗(43)

= lim
ε↓0

inf
�

L(�)

(44)
+ ∥∥(

P + ε�⊥
P

)
�

(
Q + ε�⊥

Q

)∥∥∗

= lim
ε↓0

inf
U,V

L
(
UV

′) + 1

2

∥∥(
P + ε�⊥

P

)
U

∥∥2
F

(45)

+ 1

2

∥∥(
Q + ε�⊥

Q

)
V

∥∥2
F

= inf
U,V

L
(
UV

′) + 1

2
‖PU‖2

F + 1

2
‖QV ‖2

F .(46)

We can see (45) by changing variables to �̃ = (P +
ε�⊥

P )−1�(Q + ε�⊥
Q)−1, Ũ = (P + ε�⊥

P )−1U , and

Ṽ = (Q + ε�⊥
Q)−1V . (43) and (46) follow from the

fact that ‖�‖∗ ≥ ‖��‖∗ for any projection � (in this
case �P ), and similarly ‖U‖F ≥ ‖�U‖F .

For any � we can find �1,�2,�3 for which
� = P +�1Q

+ + �⊥
P �2 + �3�

⊥
Q. Then

inf
�

L(�) + ‖P�Q‖∗(47)

= inf
�1,�2,�3

L
(
P +�1Q

+ + �⊥
P �2 + �3�

⊥
Q

)
(48)

+ ‖�P �1�Q‖∗
= inf

�1,�2,�3
L

(
P +�1Q

+ + �⊥
P �2 + �3�

⊥
Q

)
(49)

+ ‖�1‖∗.
(47) holds because

P
(
P +�1Q

+ + �⊥
P �2 + �3�

⊥
Q

)
Q = �P �1�Q.

(49) holds because ‖�P �1�Q‖∗ ≤ ‖�1‖∗ and
we can attain the minimum by replacing �1 with
�P �1�Q, which does not change the L(·) term.

APPENDIX B: SOLVING PROBLEM (8) WHEN P IS
LOW RANK

Assuming wlog that P is low-rank with SVD P =
UDU ′ (with D a J × J diagonal matrix) the problem
can be reformulated as:

(50) min

,�

L(�;Y) + λ‖
‖∗ s.t. DU ′�Q = 
.

The above problem where 
 is a wide matrix with low
rank (at most the rank of P ) can be solved quite easily
with a splitting method with the ADMM method (Boyd
et al., 2011). A simple application of the ADMM pro-
cedure leads to Problem (50):

H(
,Z) = L(�;Y) + λ‖
‖∗ + 〈
Z,DU ′�Q − 


〉
+ ρ

2

∥∥DU ′�Q − 

∥∥2
F .

Note that 
 is a low rank rectangular matrix 
 ∈ R
J×m

with J small. The ADMM procedure requires optimiz-
ing H(
,Z) w.r.t. 
 for Z fixed—this can be achieved
easily using a proximal gradient method—the nuclear
norm thresholding operation can be performed quite
easily since it requires the SVD of a low-rank rectan-
gular matrix (same dimension as 
). The update step
minZ H(
,Z) with 
 held fixed can be achieved by
solving a simple (unconstrained) convex function by
performing gradient descent, for example.

We note that this problem can also be solved by us-
ing Proposition 1; and using proximal gradient descent
methods on the reformulated problem of the form (11).
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