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1. Introduction

In spectral analysis of time series the data are frequently tapered before calcu-
lating the statistics of interest. Instead of the original data {X(t), 0 ≤ t ≤ T}
the tapered data {h(t)X(t), 0 ≤ t ≤ T} with the data taper h(t) are used for all
further calculations. Benefits of tapering the data have been widely reported in
the literature. For example, data-tapers are introduced to reduce leakage effects,
especially in the case when the spectrum of the model contains high peeks. Other
application of data-tapers is in situations in which some of the data values are
missing. Also, the use of tapers leads to the bias reduction, which is especially
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important when dealing with spatial data. In this case, the tapers can be used
to fight the so-called “edge effects”.

Much of statistical inferences about the spectrum based on tapered data are
concerned with the discrete-time stationary models (see, e.g., Brillinger [7], R.
Dahlhaus [9, 10], R. Dahlhaus and H. Künsch [11], Guyon [25], and references
therein).

In this paper, we study the problem of nonparametric estimation of linear
spectral functionals based on tapered data, in the case where the underlying
model is a Lévy-driven continuous-time stationary linear process with possibly
unbounded or vanishing spectral density function.

The model. Let {X(t), t ∈ R} be a Lévy-driven, real-valued, continuous-time
stationary linear process defined by

X(t) =

∫
R

a(t− s)ξ(ds), (1.1)

where a(·) is a function from L2(R), and ξ(t) is a Lévy process satisfying the
conditions:

Eξ(t) = 0, Eξ2(1) = 1 and Eξ4(1) < ∞.

A Lévy process, {ξ(t), t ∈ R} is a process with independent and station-
ary increments, continuous in probability, with sample-paths which are right-
continuous with left limits (càdlàg) and ξ(0) = ξ(0−) = 0. The Wiener process
{B(t), t ≥ 0} and the centered Poisson process {N(t)−EN(t), t ≥ 0} are typ-
ical examples of centered Lévy processes. In the case where ξ(t) = B(t), X(t) is
a Gaussian process.

Notice that the covariance function r(t) of X(t), which is an even function
(r(−t) = r(t)), is given by

r(t) = EX(t)X(0) =

∫
R

a(t+ x)a(x)dx, (1.2)

and it possesses the spectral density

f(λ) =
1

2π
|â(λ)|2 =

1

2π

∣∣∣∣∫
R

e−iλta(t)dt

∣∣∣∣2 , λ ∈ R. (1.3)

The functions r(t) and f(λ) are connected by the Fourier integral:

f(λ) =
1

2π

∫
R

e−iλtr(t)dt, λ ∈ R. (1.4)

The function a(·) plays the role of a time-invariant filter.
Processes of the form (1.1) appear in many fields of science (economics, fi-

nance, physics, etc.), and cover a large class of popular models in continuous-
time time series modeling. For instance, the so-called continuous-time autore-
gressive moving average (CARMA) models, which are the continuous-time ana-
logs of the classical autoregressive moving average (ARMA) models in discrete-
time case, are of the form (1.1) and play a central role in the representations of
continuous-time stationary time series (see, e.g., Brockwell [8]).
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The nonparametric estimation problem. Let {X(t), t ∈ R} be a centered sta-
tionary process with an unknown spectral density f(λ), λ ∈ R. We assume that
f(λ) belongs to a given (infinite-dimensional) class F ⊂ Lp := Lp(R) (p ≥ 1) of
spectral densities possessing some specified smoothness properties. The problem
is to estimate the value J(f) of a given functional J(·) at an unknown “point”
f ∈ F on the basis of the observed data {X(t), 0 ≤ t ≤ T}, and investigate the
asymptotic (as T → ∞) properties of the suggested estimators, depending on
the dependence structure of the model X(t) and smoothness structure of the
“parametric” set F .

This problem for discrete time stationary Gaussian processes has been consid-
ered in a number of papers. We cite merely the papers Dahlhaus and Wefelmeyer
[12], Ginovyan [15, 19], and Ibragimov and Khas’minskii [26, 28], where can be
found additional references.

For continuous time stationary Gaussian processes the problem was studied
in Ginovyan [16, 17, 18, 20, 21], where efficient nonparametric estimators for
linear and some nonlinear smooth spectral functionals were constructed and
asymptotic bounds for minimax mean square risks of these estimators were
obtained.

The problem of construction of consistent and asymptotically normal non-
parametric estimators for linear and some nonlinear smooth spectral functionals
in the case where the underlying model X(t) is a Lévy-driven continuous-time
stationary linear process defined by (1.1) with possibly unbounded or vanishing
spectral density function has been studied in Ginovyan and Sahakyan [23].

In this paper we are interested in nonparametric estimation of spectral func-
tionals J(f) based on tapered data:

{hT (t)X(t), 0 ≤ t ≤ T}, (1.5)

where hT (t) := h(t/T ) with a taper function h(·) satisfying assumption (T)
below.

We assume that the estimand functional J(f) is linear and continuous in
Lp(R), p > 1. Then J(f) admits the representation

J = J(f) :=

∫
R

f(λ)g(λ)dλ, (1.6)

where g(λ) ∈ Lq(R), 1/p+ 1/q = 1.

The estimator. As an estimator for functional J(f), given by (1.6), we consider
the averaged periodogram (or a simple “plug-in” statistic) based on the tapered
data (1.5). To define the estimator, we first introduce some notation.

Denote by Hk,T (λ) the continuous-time tapered Dirichlet type kernel, defined
by

Hk,T (λ) :=

∫
R

hk
T (t)e

−iλtdt =

∫ T

0

hk
T (t)e

−iλtdt. (1.7)

We set

Hk :=

∫ 1

0

hk(t)dt, (1.8)
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and assume that H2 �= 0.
Define the finite Fourier transform of the tapered data (1.5):

dhT (λ) :=

∫ T

0

hT (t)X(t)e−iλtdt, (1.9)

and the tapered continuous periodogram IhT (λ) of the process X(t):

IhT (λ) : =
1

CT
dhT (λ)d

h
T (−λ) =

1

CT

∣∣∣∣∣
∫ T

0

hT (t)X(t)e−iλtdt

∣∣∣∣∣
2

=
1

CT

∫ T

0

∫ T

0

hT (t)hT (s)e
−iλ(t−s)X(t)X(s)dtds, (1.10)

where

CT := 2πH2,T (0) = 2π

∫ T

0

h2
T (t)dt = 2πH2 T �= 0. (1.11)

Notice that for non-tapered case (h(t) = 1), we have CT = 2πT .
An estimator Jh

T for functional (1.6) based on the tapered data (1.5) is defined
to be the averaged tapered periodogram (or a simple “plug-in” statistic) defined
by

Jh
T = J(IhT ) :=

∫
R

IhT (λ)g(λ)dλ

=
1

CT

∫ T

0

∫ T

0

hT (t)hT (s)b(t− s)X(t)X(s) dt ds, (1.12)

where CT is as in (1.11), and b(t) is the Fourier transform of function g(λ):

b(t) := ĝ(t) =

∫
R

eiλtg(λ)dλ, t ∈ R. (1.13)

We will refer to g(λ) and to its Fourier transform b(t) := ĝ(t) as a generating
function and generating kernel for the functional Jh

T , respectively.

Notation. Given numbers p ≥ 1, 0 < α < 1, r ∈ N0 := N∪{0}, we set β = α+ r
and denote by Hp(β) the Lp-Hölder class, that is, the class of those functions
ψ(λ) ∈ Lp(R), which have r-th derivatives in Lp(R) and with some positive
constant C satisfy

||ψ(r)(·+ h)− ψ(r)(·)||p ≤ C|h|α.
Throughout the paper the letters C, c and M are used to denote positive

constants, the values of which can vary from line to line. Also, by IA(·) we
denote the indicator of a set A ⊂ R.

The paper is structured as follows. In Section 2 we state the main results of
the paper (Theorems 2.1 - 2.3). In Section 3 we give a number of preliminary
results that are used in the proofs of main results, and also represent independent
interest. In Section 4 we analyze the bias of the estimator Jh

T , and prove Theorem
2.1. In Section 5 we study the asymptotic distribution of a stochastic process
generated by a tapered Toeplitz type quadratic functional of a Lévy-driven
continuous-time linear process, and prove Theorems 2.2.
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2. Main results

In this section we state the main results of this paper, involving bias rate conver-
gence theorem, a central limit theorem and asymptotic normality of the estima-
tor Jh

T . To this end, we first formulate conditions on model, generating function
and taper function needed to state the results.

(A1) The filter a(·) and the generating kernel b(·) are such that

a(·) ∈ Lp(R) ∩ L2(R), b(·) ∈ Lq(R) (2.1)

with

1 ≤ p, q ≤ 2,
2

p
+

1

q
≥ 5

2
. (2.2)

The spectral density f and the generating function g satisfy one of the fol-
lowing conditions.

(A2) f, g ∈ L1(R) ∩ L2(R) and g is of bounded variation.
(A2′) f ∈ Hp(β1), β1 > 0, p ≥ 1 and g(λ) ∈ Hq(β2), β2 > 0, q ≥ 1 with

1/p+ 1/q = 1 and β1 + β2 > 1/2.
(T) The taper h : R → R is a continuous nonnegative function of bounded

variation and of bounded support [0, 1].

Our first theorem controls the bias E(Jh
T ) − J and provides sufficient con-

ditions assuring the proper rate of convergence of bias to zero, necessary for
asymptotic normality of the estimator Jh

T . Specifically, we have the following
result, the proof of which is given in Section 4.

Theorem 2.1 (Bias). Let the functionals J := J(f) and Jh
T := J(IhT ) be defined

by (1.6) and (1.12), respectively. Then under the conditions (A2) (or (A2 ′) and
(T) the following asymptotic relation holds:

T 1/2
[
E(Jh

T )− J
]
→ 0 as T → ∞. (2.3)

The next theorem contains sufficient conditions for functional Jh
T to obey the

central limit theorem (CLT), and is proved in Section 5.

Theorem 2.2 (CLT). Let J := J(f) and Jh
T := J(IhT ) be defined by (1.6) and

(1.12), respectively. Then under the conditions (A1) and (T) the functional Jh
T

obeys the central limit theorem. More precisely, we have

T 1/2
[
Jh
T − E(Jh

T )
] d→ η as T → ∞, (2.4)

where the symbol
d→ stands for convergence in distribution, and η is a normally

distributed random variable with mean zero and variance σ2
h(J) given by

σ2
h(J) = 4πe(h)

∫
R

f2(λ)g2(λ)dλ+ κ4e(h)

[∫
R

f(λ)g(λ)dλ

]2
. (2.5)



260 M. S. Ginovyan and A. A. Sahakyan

Here κ4 is the fourth cumulant of ξ(1), and

e(h) :=
H4

H2
2

=

∫ 1

0

h4(t)dt

(∫ 1

0

h2(t)dt

)−2

. (2.6)

Taking into account the equality

T 1/2
[
Jh
T − J

]
= T 1/2

[
E(Jh

T )− J
]
+ T 1/2

[
Jh
T − E(Jh

T )
]
, (2.7)

as an immediate consequence of Theorems 2.1 and 2.2, we obtain the next result
that contains sufficient conditions for a simple “plug-in” statistic J(IhT ) to be
an asymptotically normal estimator for a linear spectral functional J(f).

Theorem 2.3. Let the functionals J := J(f) and Jh
T := J(IhT ) be defined by

(1.6) and (1.12), respectively. Then under the conditions (A1), (A2) (or (A2 ′)
and (T) the statistic Jh

T is an asymptotically normal estimator for functional J .
More precisely, we have

T 1/2
[
Jh
T − J

] d→ η as T → ∞, (2.8)

where η is as in Theorem 2.2, that is, η is a normally distributed random variable
with mean zero and variance σ2

h(J) given by (2.5) and (2.6).

Remark 2.1. Notice that if the underlying process X(t) is Gaussian, then
in formula (2.5) we have only the first term. Using the results from Ginovyan
[17] and Ginovyan and Sahakyan [22], it can be shown that in this case the
conditions (A2′) and (T) are sufficient for Theorem 2.3 to be true.

Remark 2.2. The result of Theorem 2.3 under different more restrictive con-
ditions were stated in Avram et al. [2] (see also Sakhno [31]). For non-tapered
case (h(t) = I(0,1)(t)), Theorems 2.1–2.3 were proved in Ginovyan [20, 21].

Remark 2.3. One of the common used approaches to derive central limit the-
orems for random quadratic functionals is the method-of-moments (see, e.g., R.
Dahlhaus [9, 10], Avram et al. [2], and references therein). Taking into account
the complexity of computing the moments of multiple integrals with respect to
non-Gaussian Lévy noise (see Peccati and Taqqu [30], Chapter 7), it is not clear
how this method can be carried out for our model. In this paper, similar to Bai
et al. [3] and Ginovyan and Sahakyan [22], our proofs of the central limit theo-
rems are based on a new approximation approach which reduces the quadratic
integral form to a single integral form. This method can also be adapted to the
discrete-time case.

Remark 2.4. Notice that linear and non-linear functionals of the periodogram
play a key role in the parametric estimation of the spectrum of stationary pro-
cesses, when using the minimum contrast estimation method with various con-
trast functions (see, e.g., Anh et al. [1], Ginovyan and Sahakyan [23], Leonenko
and Sakhno [29], Sakhno [31], Taniguchi [32], and references therein). So, the
results obtained in the present paper can be applied to prove consistency and
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asymptotic normality of minimum contrast estimators based on the Whittle and
Ibragimov’s contrast functionals for Lévy-driven continuous-time stationary lin-
ear models with tapered data. The details will be reported elsewhere.

3. Preliminaries

In this section we prove a number of auxiliary lemmas involving properties
of continuous-time tapered Dirichlet and Fejér type kernels. Some of these
properties for discrete-time tapered case were proved in Dahlhaus [9], and for
continuous-time non-tapered case were established in Ginovyan and Sahakyan
[22].

An important role in our analysis of the above mentioned properties is played
by the function LT (·) : R → R, T ∈ R+, defined by

LT (t) =

{
T for |t| ≤ 1/T
1/|t| for |t| > 1/T .

(3.1)

The function LT (t) possesses a number of interesting properties, allowing to
estimate the cumulants of functional Jh

T defined (1.12) (see Dahlhaus [9] for
discrete-time case, and Eichler [13] for continuous-time case). In this paper we
will use the following property of function LT (t).

Lemma 3.1. Let m = 0, 1, . . ., and

L(t) := L1(t) =

{
1 for |t| ≤ 1

1/|t| for |t| > 1,
t ∈ R. (3.2)

Then for u ∈ R we have

Q(u) :=

∫
R

L(t)L(t+ u) lnm(2 + |t|)dt ≤ M lnm+1(2 + |u|)L(u), (3.3)

where M is a constant depending on m.

Proof. For |u| ≤ 2 we have

Q(u) ≤ lnm 3

∫
|t|≤3

dt+

∫
|t|>3

1

|t(t+ u)| ln
m(2 + |t|)dt

≤ M +M

∫ ∞

1

1

t2
lnm(2 + |t|)dt ≤ M lnm+1(2 + |u|)L(u). (3.4)

In the case when |u| > 2, we can write

Q(u) =

∫
|t|≤1

lnm(2 + |t|)
|t+ u| dt+

∫
|t+u|≤1

lnm(2 + |t|)
|t| dt

+

∫
|t|>1, |t+u|>1

lnm(2 + |t|)
|t(t+ u)| dt =: Q1(u) +Q2(u) +Q3(u). (3.5)
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Now we estimate the functions Qi(u), i = 1, 2, 3. Assuming, without loss of
generality, that u > 2, for Q1(u) we have

Q1(u) =

∫ 1

−1

lnm(2 + |t|)
t+ u

dt ≤ M

u− 1
≤ M lnm+1(2 + |u|)L(u). (3.6)

Similarly, for Q2(u) we get the estimate

Q2(u) ≤ M lnm+1(2 + |u|)L(u). (3.7)

For Q3(u) we have

Q3(u) =

∫ −u−1

−∞
+

∫ −1

−u+1

+

∫ ∞

1

lnm(2 + |t|)
|t(t+ u)| dt

=: Q31(u) +Q32(u) +Q33(u). (3.8)

We have

Q31(u) ≤
∫ ∞

1

lnm(t+ u+ 2)

t(t+ u)
dt ≤ lnm 3u

u

∫ u

1

1

t
dt+M

∫ ∞

u

lnm(t+ u)

(t+ u)2
dt

≤ M
lnm+1 u

u
+M

∫ ∞

2u

lnm t

t2
dt ≤ M

lnm+1 u

u

≤ M lnm+1(2 + |u|)L(u). (3.9)

Similarly,

Q33(u) ≤ M lnm+1(2 + |u|)L(u). (3.10)

Finally,

Q32(u) ≤
∫ u+1

1

lnm t

t(t− u)
dt ≤ lnm+1 u

u
≤ M lnm+1(2 + |u|)L(u). (3.11)

Combining the inequalities (3.4)– (3.11) we obtain (3.3).
Lemma 3.1 is proved.

The next two lemmas contain some properties of the Dirichlet type kernel
Hk,T (λ) defined by (1.7). The next assertion is the continuous analog of formula
(4) in Dahlhaus [9].

Lemma 3.2. The function Hk,T (λ) defined by (1.7) satisfies the following iden-
tity: ∫

R

Hk,T (λ− u)Hj,T (u− μ)du = 2πHk+j,T (λ− μ), λ, μ ∈ R. (3.12)

Proof. Without loss of generality we assume that μ = 0, and observe thatHk,T ∈
L2(R). Hence by (1.7) we have Ĥk,T (ζ) = 2πhk

T (−ζ) and ̂Hk,T (λ− ·)(ζ) =
2πhk

T (ζ)e
−iλζ , where ĝ is the Fourier transform of g. Hence using Plansherel’s
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identity, we get∫
R

Hk,T (λ− u)Hj,T (u)du =
1

2π
(2π)2

∫
R

hk
T (ζ)h

j
T (ζ)e

−iλζdζ

= 2π

∫
R

hk+j
T (ζ)e−iλζdζ = 2πHk+j,T (λ),

and the result follows.
Lemma 3.2 is proved.

Lemma 3.3 (see Eichler [13]). Let the functions Hk,T (·) and LT (·) be defined by
(1.7) and (3.1), respectively. Then for all k ∈ N and a constant Ck independent
of T , the following inequality holds:

|Hk,T (λ)| ≤ Ck LT (λ). (3.13)

Proof. Since the taper function h is assumed to be of bounded variation, then
denoting by V (h) the total variation of h, we can write∫

R

∣∣∣∣∣
k∏

i=1

h(t+ ui)− hk(t)

∣∣∣∣∣ dt ≤ ||h||k−1
∞ V (h)

k∑
i=1

|ui|. (3.14)

Therefore

|Hk,T (λ)| ≤
1

2

∫
R

∣∣∣hk(t)− hk
(
t− π

λ

)∣∣∣ dt ≤ 1

2
||h||k−1

∞ V (h)kπ|λ|−1. (3.15)

Taking into account that |Hk,T (λ)| ≤ ||h||k∞T , we obtain (3.13).
Lemma 3.3 is proved.

For a number k (k = 2, 3, . . .) and a taper function h satisfying assumption
(T) consider the following Fejér type kernel function:

Φh
k,T (u) :=

HT (u)

(2π)k−1Hk,T (0)
, u = (u1, . . . , uk−1) ∈ Rk−1, (3.16)

where

HT (u) := H1,T (u1) · · ·H1,T (uk−1)H1,T

⎛⎝−
k−1∑
j=1

uj

⎞⎠, (3.17)

and the function Hk,T is defined by (1.7) with Hk,T (0) = T ·Hk �= 0 (see (1.8)).
The next lemma shows that the kernel Φh

k,T is an approximation identity.

Lemma 3.4. For any k = 2, 3, . . . and a taper function h satisfying assumption
(T) the kernel Φh

k,T (u), u = (u1, . . . , uk−1) ∈ Rk−1, possesses the following
properties:

a) supT>0

∫
Rk−1

∣∣∣Φh
k,T (u)

∣∣∣ du = C1 < ∞;

b)
∫
Rk−1 Φ

h
k,T (u) du = 1;

c) limT→∞
∫
E
c
δ

∣∣∣Φh
k,T (u)

∣∣∣ du = 0 for any δ > 0;
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d) If k > 2 for any δ > 0 there exists a constant Mδ > 0 such that for T > 0∥∥Φh
k,T

∥∥
Lpk (Ec

δ)
≤ Mδ, (3.18)

where pk = k−2
k−3 for k > 3, p3 = ∞ and

Ec
δ = Rk−1 \ Eδ,

Eδ = {u = (u1, . . . , uk−1) ∈ Rk−1 : |ui| ≤ δ, i = 1, . . . , k − 1}.

e) If the function Ψ ∈ L1(Rk−1)
⋂

Lk−2(Rk−1) is continuous at v = (v1, . . . ,
vk−1) (L0 is the space of measurable functions), then

lim
T→∞

∫
Rk−1

Ψ(u+ v)Φh
k,T (u)du = Ψ(v). (3.19)

Proof. We start with a). Observe that by (1.7),

H1,T (λ) :=

∫
R

h

(
t

T

)
e−iλtdt = T

∫
R

h(t)e−iTλtdt = T ĥ(Tλ), (3.20)

where ĥ is the Fourier transform of h. Hence, in view of (3.17), we can write∫
Rk−1

|HT (u)| du

= T k

∫
Rk−1

∣∣∣ĥ(Tu1) · · · ĥ(Tuk−1)ĥ(Tu1 + · · ·+ Tuk−1)
∣∣∣ du1 · · · duk−1

= T

∫
Rk−1

∣∣∣ĥ(u1) · · · ĥ(uk−1)ĥ(u1 + · · ·+ uk−1)
∣∣∣ du1 · · · duk−1. (3.21)

Since h is a function of bounded variation with support on [0, 1], we have∣∣∣ĥ(u)∣∣∣ ≤ M · L(u) for u ∈ R,

where L is defined in (3.2) and M is a constant depending on h. Taking into
account that Hk,T (0) = T ·Hk, from (3.3), (3.16) and (3.21) we obtain∫

Rk−1

∣∣Φh
k,T (u)

∣∣ du
≤ M

∫
Rk−1

|L(u1) · · ·L(uk−1)L(u1 + · · ·+ uk−1)| du1 · · · duk−1

≤ M

∫
Rk−2

|L(u1) · · ·L(uk−2)L(u1 + · · ·uk−2)|

× ln(2 + |u1 + · · ·+ uk−2|)du1 · · · duk−2

≤ M

∫
Rk−3

|L(u1) · · ·L(uk−3)L(u1 + · · ·uk−3)|

× ln2(2 + |u1 + · · ·+ uk−3|)du1 · · · duk−3
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≤ · · · · · · · · · · · · · · · · · · · · ·

≤ M

∫
R

∣∣L2(u1)
∣∣ lnk−2(2 + |u1|)du1 < ∞, (3.22)

and the assertion a) is proved.
The assertion b) follows immediately from (3.12), (3.16) and (3.17).
To prove assertion c) we write∫

E
c
δ

|Φh
k,T (u)| ≤

∫
|u1|>δ

+

∫
|u2|>δ

+ · · ·+
∫

|uk−1|>δ

|Φh
k,T (u)|du =: J1+J2+· · ·+Jk−1.

Using the same arguments as in (3.22), for s = 1, 2 . . . , k − 1 we get

Js ≤ M

∫
|us|>Tδ

∣∣L2(us)
∣∣ lnk−2(2 + |us|)dus → 0 as T → ∞,

and the result follows.
To prove assertion d), we first observe that by (3.13),∫

R

Hpk

1,T (u)du ≤ C · T pk−1 and |H1,T (u)| ≤ Cδ for |u| > δ, T > 0.

(3.23)
For k = 3 by (3.13) we have

∣∣Φh
3,T (u1, u2)

∣∣ = ∣∣∣∣H1,T (u1)H1,T (u2)H1,T (u1 + u2)

(2π)2TH3

∣∣∣∣ ≤ Mδ, (u1, u2) ∈ Ec
δ,

since for any (u1, u2) ∈ Ec
δ at least two of three numbers |u1|, |u2|, |u1+u2| are

greater then δ/3.
In the case where k ≥ 4 we have∫

E
c
δ

∣∣Φh
k,T (u)

∣∣pk
du ≤

∫
|u1|>δ

∣∣Φh
k,T (u)

∣∣pk
du+ · · ·

+

∫
|uk−1|>δ

∣∣Φh
k,T (u)

∣∣pk
du =: I1 + · · ·+ Ik−1. (3.24)

We estimate I1, the integrals I2, . . . , Ik−1 can be estimated similarly. We have

I1 ≤
∫

|u1|>δ, |u2|>δ/k

∣∣Φh
k,T (u)

∣∣pk
du+ · · ·+

∫
|u1|>δ, |uk−1|>δ/k

∣∣Φh
k,T (u)

∣∣pk
du

+

∫
|u1|>δ, |u2|≤δ/k,...,|uk−1|≤δ/k

∣∣Φh
k,T (u)

∣∣pk
du

=: I12 + I13 + · · ·+ I1k. (3.25)
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According to (3.16) and (3.23), we have

I12 ≤ Cδ ·
1

T pk

×
∫

|u2|>δ/k

Hpk

1,T (u2) · · ·Hpk

1,T (uk−1)H
pk

1,T (u1 + · · · +uk−1)du1du3 · · · duk−1du2

≤ CδT
(k−2)(pk−1)−pk

∫
|u2|>δ/k

1

u2
2

du2 ≤ Mδ. (3.26)

Likewise, we get

I1s ≤ Mδ, s = 3, 4, . . . , k − 1. (3.27)

Note that in the integral I1k, we have |u1 + · · ·+ uk−1| > δ− δ(k− 2)/k > δ/k,
and hence by (3.23) we obtain

I1k ≤ Cδ/k · 1

T pk

∫
|u1|>δ

Hpk

1,T (u1)H
pk

1,T (u2) · · ·Hpk

1,T (uk−1)du2 · · · duk−1du1

≤ Mδ

∫
|u1|>δ

1

u2
1

du1 ≤ Mδ. (3.28)

From (3.24) – (3.28) we obtain (3.18), and thus the assertion d) is proved.

The assertion e) we prove for v = 0 := (0, . . . , 0), in the general case one can
consider the function Ψ(u) = Ψ(u + v) with Ψ(0) = Ψ(v). By assertion b) of
the lemma we have

Rh
k,T :=

∫
R3

Ψ(u)Φh
k,T (u)du−Ψ(0) =

∫
Rk−1

[Ψ(u)−Ψ(0)]Φh
k,T (u)du. (3.29)

Next, for any ε > 0 we can find δ > 0 to satisfy

|Ψ(u)−Ψ(0)| < ε

C1
for u ∈ Eδ, (3.30)

where C1 is the constant from assertion a).

Now, if k = 2 we have∣∣Φh
2,T (u)

∣∣ = ∣∣∣∣H1,T (u)H1,T (−u)

(2π)TH2

∣∣∣∣ ≤ Mδ

T
, |u| > δ,

and hence, by assertions a) and c) of the lemma and (3.29), for sufficiently large
T we obtain

|Rh
2,T | ≤

∫
|u|≤δ

+

∫
|u|>δ

|Ψ(u)−Ψ(0)|
∣∣Φh

2,T (u)
∣∣ du

≤ ε

C1

∫
R

∣∣Φh
2,T (u)

∣∣ du+
Mδ

T

∫
R

|Ψ(u)|du+ |Ψ(0)|
∫
|u|>δ

∣∣Φh
2,T (u)

∣∣ du
≤ 3ε.
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If k > 2 we consider the decomposition Ψ = Ψ1 +Ψ2 such that

‖Ψ1‖k−2 ≤ ε

Mδ
and ‖Ψ2‖∞ < ∞, (3.31)

where Mδ is as in assertion d). Applying assertions a) - d) of the lemma and
formulas (3.29) - (3.31) for sufficiently large T we obtain

|Rh
k,T | ≤

∫
Eδ

|Ψ(u)−Ψ(0)|
∣∣Φh

k,T (u)
∣∣ du+

∫
E
c
δ

|Ψ1(u)|
∣∣Φh

k,T (u)
∣∣ du

+

∫
E
c
δ

|Ψ2(u)−Ψ(0)|
∣∣Φh

k,T (u)
∣∣ du ≤ ε

C1

∫
Eδ

∣∣Φh
k,T (u)

∣∣ du
+ ‖Ψ1‖k−2

∥∥Φh
k,T

∥∥
Lpk (Ec

δ)
+
(
‖Ψ2‖∞ + |Ψ(0)|

) ∫
E
c
δ

∣∣Φh
k,T (u)

∣∣ du ≤ 3 ε.

This combined with (3.29) yields (3.19) for v = 0. Lemma 3.4 is proved.

Remark 3.1. For nontapered case (h(t) = I(0,1)(t)), Lemma 3.4 was stated in
Ginovyan and Sahakyan [22] (see also Bentkus [4]). For discrete time tapered
case the assertions a)-c) and e) of Lemma 3.4 were proved in Dahlhaus [9].

4. The Bias. Proof of Theorem 2.1

In this section we prove Theorem 2.1, that is, we show that under the condi-
tions (A2) (or (A2′) and (T) the bias E(Jh

T ) − J of estimator Jh
T satisfies the

asymptotic relation (2.3).
We first prove two lemmas.

Lemma 4.1. Assume that the conditions (A2) and (T) are satisfied. Then the
following asymptotic relation holds as T → ∞:∫

R

∫
R

f(λ)g(λ+ μ)Φh
2,T (μ)dλdμ =

∫
R

f(λ)g(λ)dλ+ o
(
T−1/2

)
, (4.1)

where Φh
2,T (μ) is given by (3.16).

Proof. We have

IT :=

∫
R2

f(λ)g(λ+ μ)Φh
2,T (μ)dλdμ

=

∫
R

ψ(μ)Φh
2,T (μ)dμ =

1

2π

∫
R

ψ̂(ζ)Φ̂h
2,T (ζ)dζ, (4.2)

where

ψ(μ) =

∫
R

f(λ)g(λ+ μ)dλ, ψ̂(ζ) = f̂(ζ)ĝ(ζ), λ, ζ ∈ R. (4.3)

According to (3.16) and (3.20) we can write

Φh
2,T (μ) =

H1,T (μ)H1,T (−μ)

2πTH2,T (0)
=

T

2πH2
ĥ(Tμ)ĥ(−Tμ) =

T

2πH2
ϕ(Tμ), (4.4)

where H2 =
∫ 1

0
h2(t)dt and ϕ(ζ) := ĥ(ζ)ĥ(−ζ).
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Observe that for function q(λ) :=
∫
R
h(t)h(t − λ)dt we have q̂ = ϕ ∈ L1(R).

Hence

q(λ) =
1

2π

∫
R

ϕ(ζ)eiλζdζ =
1

2π
ϕ̂(−λ)

and

ϕ̂(ζ) = 2πq(−ζ) = 2π

∫
R

h(t)h(t+ ζ)dt = 2π

∫ 1

0

h(t)h(t+ ζ)dt.

Now, by (4.4) we have

Φ̂h
2,T (ζ) =

1

H2

∫ 1

0

h(t)h

(
t+

ζ

T

)
dt,

and hence, by (4.2) and (4.3), we obtain

IT =
1

2πH2

∫
R

f̂(ζ)ĝ(ζ)

∫ 1

0

h(t)h

(
t+

ζ

T

)
dtdζ.

Therefore, we can write

IT −
∫
R

f(λ)g(λ)dλ = IT − 1

2π

∫
R

f̂(ζ)ĝ(ζ)dζ

=
1

2πH2

∫
R

f̂(ζ)ĝ(ζ)

∫ 1

0

[
h(t)h

(
t+

ζ

T

)
− h2(t)

]
dtdζ

=
1

2πH2

∫
|ζ|≤T

f̂(ζ)ĝ(ζ)

∫ 1

0

h(t)

[
h

(
t+

ζ

T

)
− h(t)

]
dtdζ

− 1

2π

∫
|ζ|>T

f̂(ζ)ĝ(ζ)dζ =: R1 −R2. (4.5)

Since by assumption g and h are of bounded variation, we have

|ĝ(ζ)| ≤ K
1

|ζ| , |h(ζ)| < K,

∫ 1

0

|h (t+ ζ)− h(t)| dt ≤ K|ζ|, ζ ∈ R,

where the constant K does not depend on ζ. Hence, we have

|R1| ≤ K3

∫
|ζ|≤T

∣∣∣∣f̂(ζ) · 1ζ · ζ
T

∣∣∣∣ dζ
≤ K3

T

[∫
|ζ|≤

√
T

|f̂(ζ)|dζ +
∫
√
T<|ζ|≤T

|f̂(ζ)|dζ
]

≤ K3

T

⎡⎣‖f̂‖2(2√T )1/2 +

{∫
|ζ|>

√
T

|f̂(ζ)|2dζ
}1/2

T 1/2

⎤⎦ (4.6)

= o
(
T−1/2

)
,
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and

|R2| ≤ K

∫
|ζ|>T

∣∣∣∣f̂(ζ)1ζ
∣∣∣∣ dζ

≤ K

{∫
|ζ|>T

∣∣∣f̂(ζ)∣∣∣2 dζ}1/2{∫
|ζ|>T

1

ζ2
dζ

}1/2

= o
(
T−1/2

)
(4.7)

as T → ∞. Combining (4.5) – (4.7), we obtain (4.1).
Lemma 4.1 is proved.

Denote

Δh
2,T :=

∣∣∣∣∫
R2

f(λ)g(λ+ μ)Φh
2,T (μ)dλdμ−

∫
R

f(λ)g(λ)dλ

∣∣∣∣ . (4.8)

Lemma 4.2. Assume that the conditions (A2 ′) and (T) are satisfied. Then the
following inequality holds:

Δh
2,T ≤ Ch

⎧⎪⎨⎪⎩
T−(β1+β2), if β1 + β2 < 1

T−1 lnT, if β1 + β2 = 1

T−1, if β1 + β2 > 1,

T > 0, (4.9)

where Ch is a constant depending on h.

Proof. According to (3.16) and (3.17) we have

Φh
2,T (μ) =

H1,T (μ)H1,T (−μ)

2πTH2(0)
, (4.10)

where H2 =
∫ 1

0
h2(t)dt > 0. The following properties of the kernel Φh

2,T follow
from Lemma 3.4, and formulas (3.13) and (4.10):∫

R

Φh
2,T (μ)(μ) dμ = 1,

∫
|μ|≥1

∣∣Φh
2,T (μ)

∣∣ dμ ≤ Ch T
−1,

∫
|μ|≤1

∣∣Φh
2,T (μ)μ

α
∣∣ dμ ≤ Ch

⎧⎨⎩
T−α, if 0 < α < 1
T−1 lnT, if α = 1
T−1, if α > 1.

(4.11)

Since the function Φh
2,T (μ) is even, we have∫

R2

f(λ)g(λ+ μ)Φh
2,T (μ)dλdμ =

∫
R2

f(λ+ μ)g(λ)Φh
2,T (μ)dλdμ,

and hence, using the equality∫
R

f(λ)g(λ)dt =

∫
R

f(λ+ μ)g(λ+ μ)dt, u ∈ R,
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we get

2Δh
2,T =

∣∣∣∣∫
R

Φh
2,T (μ)

∫
R

[f(λ+ μ)− f(λ)] [g(λ+ μ)− g(λ)] dλdμ

∣∣∣∣ . (4.12)

Using Hölder’s inequality from (4.12) we get

2ΔT ≤
∫
R

∣∣Φh
2,T (μ)

∣∣ · ‖f(μ+ ·)− f(·)‖Lp‖g(μ+ ·)− g(·)‖Lqdμ (4.13)

and hence by the conditions of the lemma,

ΔT ≤ C

∫
|μ|≤1

∣∣Φh
2,T (μ)μ

β1+β2
∣∣ dμ+ C‖f‖Lp‖g‖Lq

∫
|μ|>1

∣∣Φh
2,T (μ)

∣∣ dμ. (4.14)

From (4.11) and (4.14) follows (4.9).
Lemma 4.2 is proved.

Remark 4.1. For nontapered case (h(t) = I(0,1)(t)), Lemma 4.2 was proved
in Ginovyan [17] (Lemma 4), (see also, Ginovyan et al. [24], Theorem 2.4). For
discrete-time tapered case it was proved in Dahlhaus [9] (Lemma 4).

Proof of Theorem 2.1. We first show that the expected value of the estimator
Jh
T is given by formula:

E(Jh
T ) =

∫
R

∫
R

f(λ)g(λ+ μ)Φh
2,T (μ)dλdμ, (4.15)

where Φh
2,T (·) is defined by (3.16). Indeed, using (1.4), (1.12) and (3.16), we can

write

E(Jh
T ) =

1

CT

∫ T

0

∫ T

0

hT (t)hT (s)ĝ(t− s)r(t− s) dt ds

=
1

CT

∫ T

0

∫ T

0

hT (t)hT (s)

∫
R

eiλ(s−t)g(λ)dλ

∫
R

eiμ(t−s)f(μ)dμ dt ds

=
1

CT

∫
R

∫
R

g(λ)f(μ)

∫ T

0

∫ T

0

hT (t)hT (s)e
i(λ−μ)(s−t) dt dsdλdμ

=
1

CT

∫
R

∫
R

g(λ)f(μ)

∣∣∣∣∣
∫ T

0

hT (t)e
−i(λ−μ)tdt

∣∣∣∣∣
2

dλdμ

=
1

CT

∫
R

∫
R

f(λ)g(μ) |H1,T (λ− μ)|2 dλdμ

=

∫
R

∫
R

f(λ)g(μ)Φh
2,T (λ− μ)dλdμ,

and (4.15) follows. Thus, for the bias E(Jh
T )− J of estimator Jh

T we have

E(Jh
T )− J =

∫
R

∫
R

f(λ)g(λ+ μ)Φh
2,T (μ)dλdμ−

∫
R

f(λ)g(λ)dλ. (4.16)
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Now, the asymptotic relation (2.3) under conditions (A2) and (T) follows from
(4.16) and Lemma 4.1, while under the conditions (A2′) and (T) it follows from
(4.16) and Lemma 4.2.

Theorem 2.1 is proved.

5. A central limit theorem for tapered Toeplitz type quadratic
functionals. Proof of Theorem 2.2

In this section we study the asymptotic distribution of a suitable normalized
stochastic process {Qh

T (t), t ∈ [0, 1]}, generated by a tapered Toeplitz type
quadratic functional of a Lévy-driven continuous-time linear process X(t) given
by (1.1). We show that under conditions (A1) and (T) the process QT (t) obeys
a central limit theorem, that is, the finite-dimensional distributions of the stan-
dard

√
T normalized process QT (t) tend to those of a normalized standard

Brownian motion. Then, using this result we prove Theorem 2.2.
We will use the following notation. The symbol ∗ will stand for the convolu-

tion:

(ϕ1 ∗ ϕ2)(u) =

∫
R

ϕ1(u− x)ϕ2(x)dx,

while the symbol ∗̄ will be used to denote the reversed convolution:

(ϕ∗̄2)(u) = (ϕ ∗̄ϕ)(u) =
∫
R

ϕ(u+ x)ϕ(x)dx.

Also, we will use the following well-known identities:

F(ϕ1 ∗ ϕ2) = F(ϕ1) · F(ϕ2) and F(ϕ1∗̄ϕ2) = F(ϕ1) · F(ϕ2), (5.1)

where F(h) := ĥ denotes the Fourier transform of a function h.
Denote by Qh

T the tapered Toeplitz type quadratic functional of the process
X(t) from formula (1.12), that is,

Qh
T :=

∫ T

0

∫ T

0

hT (u)hT (v)b(u− v)X(u)X(v) du dv. (5.2)

We are interested in the asymptotic distribution (as T → ∞) of the stochastic
process {Qh

T (t), t ∈ [0, 1]}, generated by the functional Qh
T :

Qh
T (t) :=

∫ Tt

0

∫ Tt

0

hT (u)hT (v)X(u)X(v)dudv, t ∈ [0, 1]. (5.3)

The next theorem, which is the tapered version of Theorem 2.1 of Bai et
al. [3], contains sufficient conditions for the process {Qh

T (t), t ∈ [0, 1]} to obey
central limit theorem.

Theorem 5.1. Under the conditions (A1) and (T) the process Qh
T (t) defined

in (5.3) obeys central limit theorem. More precisely, we have

Q̃h
T (t) := T−1/2

(
Qh

T (t)− EQh
T (t)

) f.d.d.−→ σh(Q)B(t), as T → ∞, (5.4)
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where the symbol
f.d.d.−→ stands for convergence of finite-dimensional distributions,

B(t) is a standard Brownian motion, and

σ2
h(Q) = H4

∫
R

[2KA(v) + κ4KB(v)] dv, (5.5)

where H4 is as in (1.8), κ4 is the fourth cumulant of ξ(1), and

KA(v) =
(
(a ∗ b)∗̄2 · a∗̄2

)
(v), KB(v) =

(
(a∗b) · a

)∗̄2
(v). (5.6)

We first introduce the notions of multiple off-diagonal (Itô-type) and with-
diagonal (Stratonovich-type) stochastic integrals with respect to Lévy noise, and
briefly discuss their properties (see, e.g., Bai et al. [3], Farré et al. [14], Peccati
and Taqqu [30]). Let f be a function in L2(Rk), then the following off-diagonal
multiple stochastic integral, called Itô-Lévy integral, is well-defined:

Iξk(f) =

∫ ′

Rk

f(x1, . . . , xk)ξ(dx1) . . . ξ(dxk), (5.7)

where ξ(t) is a Lévy process with Eξ(t) = 0 and Var[ξ(t)] = σ2
ξ t, and the prime

′ indicates that we do not integrate on the diagonals xi = xj , i �= j.

The multiple integral Iξk(·) satisfies the following inequality:

‖Iξk(f)‖2L2(Ω) ≤ k!σ2k
ξ ‖f‖2L2(Rk), (5.8)

and the inequality in (5.8) becomes equality if f is symmetric:

‖Iξk(f)‖2L2(Ω) = k!σ2k
ξ ‖f‖2L2(Rk). (5.9)

We will need a stochastic Fubini’s theorem (see Bai et al. [3], Lemma 3.1, or
Peccati and Taqqu [30], Theorem 5.13.1).

Lemma 5.1. Let (S, μ) be a measure space with μ(S) < ∞, and let f(s, x1, . . . ,
xk) be a function on S × Rk such that∫

S

∫
Rk

f2(s, x1, . . . , xk)dx1 . . . dxkμ(ds) < ∞,

then we can change the order of the multiple stochastic integration Iξk(·) and the
deterministic integration

∫
S
f(s, ·)μ(ds):∫

S

Iξk
(
f(s, ·)

)
μ(ds) = Iξk

(∫
S

f(s, ·)μ(ds)
)
.

The with-diagonal counterpart of the integral Iξk(f), called a Stratonovich-
type stochastic integral, is defined by

I̊ξk(f) :=

∫
Rk

f(x1, . . . , xk)ξ(dx1) . . . ξ(dxk), (5.10)
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which includes all the diagonals. We refer to Farré et al. [14] for a compre-

hensive treatment of Stratonovich-type integrals I̊ξk(f). Observe that for the

with-diagonal integral I̊ξk(f) to be well-defined, the integrand f needs also to be
square-integrable on all the diagonals of Rk (see Bai et al. [3], Farré et al. [14]).

The with-diagonal integral I̊ξk(f) can be expressed by off-diagonal integrals
of lower orders using the Hu-Meyer formula (see Farré et al. [14], Theorem 5.9).
We will only use the special case when k = 2, in which case we have

I̊ξ2 (f) =

∫ ′

R2

f(x1, x2)ξ(dx1)ξ(dx2) +

∫
R

f(x, x)ξ(2)c (dx) +

∫
R

f(x, x)dx, (5.11)

where
ξ(2)c (t) = ξ(2)(t)− Eξ(2)(t) = ξ(2)(t)− |t|, (5.12)

and ξ(2)(t) is the quadratic variation of ξ(t), which is non-deterministic if ξ(t) is

non-Gaussian (see Farré et al. [14], equation (10)). The centered process ξ
(2)
c (t)

is called a second order Teugels martingale, which is a Lévy process with the
same filtration as ξ(t), whose quadratic variation is deterministic:

[ξ(2)c (t), ξ(2)c (t)] = κ4t,

where κ4 is the fourth cumulant of ξ(1). For any f, g ∈ L2(R), one has (see
Farré et al. [14], page 2153),

E

[∫
R

f(x)ξ(2)c (dx)

∫
R

g(x)ξ(2)c (dx)

]
= κ4

∫
R

f(x)g(x)dx. (5.13)

The decomposition (5.11) implies that

EI̊ξk(f) =

∫
R

f(x, x)dx.

Consider now the following integrals, the first of which is an off-diagonal dou-
ble integral and the second is a single integral with respect to Teugels martingale

ξ
(2)
c (t): ∫ ′

R2

f(x1, x2)ξ(dx1)ξ(dx2) and

∫
R

g(x)ξ(2)c (dx). (5.14)

Notice that for any f ∈ L2(R2) and g ∈ L2(R) the integrals in (5.14) are
uncorrelated (see Bai et al. [3]).

To prove Theorem 5.1, we first establish two lemmas. We set

Rh
T (x1, x2) =

1√
T

∫ T

0

∫ T

0

hT (u)hT (v)b(u− v)a(u− x1)a(v − x2)dudv, (5.15)

and

Sh
T (x1, x2) =

1√
T

∫ T

0

|hT (v)|2 [(a ∗ b)(v − x1)] [a(v − x2)] dv. (5.16)
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Lemma 5.2. Let Rh
T (x1, x2) and Sh

T (x1, x2) be as in (5.15) and (5.16) with
x1 �= x2. Then under conditions (A1) and (T) the following assertions hold.

(a) We have

lim
T→∞

‖Sh
T ‖2L2(R2) = H4

∫
R

KA(u)du, (5.17)

where KA(·) is as in (5.6).
(b) We have

lim
T→∞

‖Rh
T − Sh

T ‖L2(R2) = 0. (5.18)

(c) For any M > 0, there exists a function chM (·, ·) supported on [−2M, 2M ]2,
so that the function

Sh
T,M (x1, x2) =

1√
T

∫ T

0

chM (v − x1, v − x2)dv,

satisfies the relation:

lim
M→∞

lim sup
T→∞

‖Rh
T − Sh

T,M‖L2(R2) = 0. (5.19)

Proof. In the proof we use Young’s inequality for convolution (see, e.g., Bo-
gachev [6], Theorem 3.9.4), stating that for any numbers p, q, r satisfying 1 ≤
p, q, r ≤ ∞ and 1

r = 1
p + 1

q − 1, and for any functions f ∈ Lp(R), g ∈ Lq(R) the

function f ∗ g is defined almost everywhere, f ∗ g ∈ Lr(R), and one has

‖f ∗ g‖r ≤ ‖f‖p‖g‖q. (5.20)

In view of Riesz-Thorin theorem, without loss of generality, we can assume that

a(·) ∈ Lp(R), b(·) ∈ Lq(R),
2

p
+

1

q
=

5

2
. (5.21)

Let p and q be as in (5.21). Define the numbers q1, q
∗
1 , q2 to satisfy the following

equations:

1

q1
+

1

q∗1
= 1, 1 +

1

q∗1
=

2

p
, 1 +

1

q1
=

2

q2
, 1 +

1

q2
=

1

p
+

1

q
. (5.22)

(Going from the last to the first equality in (5.22), one can solve successively
for q2, q

∗
1 , q1 and then verify using (5.21) that the first equality in (5.22) holds.)

To prove (5.17) observe first that

‖Sh
T ‖2L2(R2)

=
1

T

∫ T

0

∫ T

0

|hT (v1)|2|hT (v2)|2
∫
R

[(a ∗ b)(v1 − x1)] [(a ∗ b)(v2 − x1)] dx1

×
∫
R

[a(v1 − x2)] . [a(v2 − x2)] dx2dv1dv2
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=
1

T

∫
R

∫
R

|hT (v1)|2|hT (v2)|2
(
(a ∗ b)∗̄2 · a∗̄2

)
(v1 − v2)dv1dv2

=
1

T

∫
R

|hT (v2)|2
∫
R

|hT (v + v2)|2
(
(a ∗ b)∗̄2 · a∗̄2

)
(v)dvdv2

=
1

T

∫
R

(
(a ∗ b)∗̄2 · a∗̄2

)
(v)

∫
R

|hT (u)|2|hT (v + v2)|2dv2dv

=

∫
R

(
(a ∗ b)∗̄2 · a∗̄2

)
(v)

∫ 1

0

|h(u)|2|h( v
T

+ u)|2dudv. (5.23)

Since h is a bounded and continuous function, we have by the dominated con-
vergence theorem, that

lim
T→∞

∫ 1

0

|h(u)|2|h( v
T

+ u)|2du = H4, v ∈ R. (5.24)

On the other hand, by using Hölder’s inequality and Young’s inequality for
convolution (see (5.20)), we can write (with Mh = ‖h‖∞ < ∞)

‖Sh
T ‖2L2(R2) ≤ M4

h

∫
R

(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v) dv

≤
Hölder

M4
h‖(|a| ∗ |b|)∗̄2‖q1‖|a|∗̄2‖q∗1

≤
Young

M4
h‖(|a| ∗ |b|)∗̄2‖q1‖a‖2p ≤

Young

M4
h‖|a| ∗ |b|‖2q2‖a‖

2
p

≤
Young

M4
h‖a‖4p‖b‖2q < ∞. (5.25)

Hence, by dominated convergence theorem, from (5.23) and (5.24) we obtain
(5.17).

Observe that similar to (5.25) we can prove that

‖Rh
T ‖2L2(R2) ≤ M4

h‖a‖4p‖b‖2q. (5.26)

Next, we have

Rh
T (x1, x2)− Sh

T (x1, x2)

=
1√
T

∫ T

0

∫ T

0

hT (u)ht(v)b(u− v)a(u− x1)a(v − x2)dudv

− 1√
T

∫ T

0

∫
R

|ht(v)|2 b(u− v)a(u− x1)a(v − x2)dudv

=
1√
T

∫ T

0

∫ T

0

[hT (u)− hT (v)]hT (v)b(u− v)a(u− x1)a(v − x2)dudv

− 1√
T

∫ T

0

∫
R\[0,T ]

|hT (v)|2 b(u− v)a(u− x1)a(v − x2)dudv

=: I1T (x1, x2)− I2T (x1, x2). (5.27)
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Consider first the case when the functions a(·) and b(·) have compact support.
Assuming that supp b ⊂ [−M,M ] we have

I1T (x1, x2) ≤ ω

(
2M

T
, h

)
Mh√
T

∫ T

0

∫
R

|b(u− v)a(u− x1)a(v − x2)| dudv

= ω

(
2M

T
, h

)
Mh√
T

∫ T

0

(|a| ∗ |b|) (v − x1)|a(v − x2)|dv,

where ω(δ, h) is the modulus of continuity of function h. As in (5.25) we can
show that

‖I1T ‖L2(R2) ≤ ω

(
2M

T
, h

)
Mh‖a‖4p‖b‖2q → 0 as T → ∞. (5.28)

For I2T (x1, x2) we have

I2T (x1, x2) ≤ M2
h√
T

∫ T

0

∫ ∞

T

|b(u− v)a(u− x1)a(v − x2)| dudv

+
M2

h√
T

∫ T

0

∫ 0

−∞
|b(u− v)a(u− x1)a(v − x2)| dudv

=
M2

h√
T

∫ T

T−M

∫ T+M

T

|b(u− v)a(u− x1)a(v − x2)| dudv

+
M2

h√
T

∫ M

0

dv

∫ 0

−M

|b(u− v)a(u− x1)a(v − x2)| dudv

=: I2T,1(x1, x2) + I2T,2(x1, x2).

We have

I2T,1(x1, x2) ≤ M2
h√
T

∫ T

T−M

∫
R

|b(u− v)a(u− x1)du| |a(v − x2)| dv

=
M2

h√
T

∫ T

T−M

(|a| ∗ |b|)(v − x1) |a(v − x2)| dv.

Similar to (5.23) we obtain

‖I2T,1‖2L2(R2) ≤ M2
h

T

∫ T

T−M

∫ T

T−M

(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v1 − v2)dv1dv2

≤ M2
hM

T

∫
R

(
(|a| ∗ |b|)∗̄2 · |a|∗̄2

)
(v)dv ≤ M2

hM

T
‖a‖4p‖b‖2q → 0

as T → ∞. Similarly, we get

‖I2T,2‖L2(R2) → 0 as T → ∞,

and hence
‖I2T ‖L2(R2) → 0 as T → ∞.
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This, combined with (5.27) and (5.28) proves (5.18).
In the case when the supports of functions a(·) and b(·) are not bounded, for

M > 0 we set

aM (x) = a(x)1[−M,M ](x), āM (x) = a(x)− aM (x),

bM (x) = b(x)1[−M,M ](x), b̄M (x) = b(x)− bM (x)

and define

Rh
M,T (x1, x2) =

1√
T

∫ T

0

∫ T

0

hT (u)hT (v)bM (u− v)a(u− x1)a(v − x2)dudv,

Sh
M,T (x1, x2) =

1√
T

∫ T

0

|hT (v)|2 [(aM ∗ bM )(v − x1)] [aM (v − x2)] dv. (5.29)

In view of (5.15), (5.29) and the identity

baa− bMaMaM = (baa− bMaa) + (bMaa− bMaMa) + (bMaMa− bMaMaM )

= b̄Maa+ bM āMa+ bMaM āM ,

we have

Sh
T (x1, x2)− Sh

M,T (x1, x2)

=
1√
T

∫ T

0

∫
R

|hT (u)|2
[
b̄M (u− v)a(u− x1)a(v − x2)

+bM (u− v)āM (u− x1)a(v − x2) + bM (u− v)aM (u− x1)āM (v − x2)
]
dudv,

and similar to (5.25), we get

‖Sh
T−Sh

M,T ‖2L2(R2) ≤ M4
h

(
‖b−M‖2q‖a‖4p+‖bM‖2q‖a−M‖2p‖a‖2p+‖bM‖2q‖aM‖2p‖a−M‖2p

)
,

where the right-hand side does not depend on T .
Since ‖āM‖p → 0 and ‖b̄M‖q → 0 as M → ∞, one obtains

lim
M→∞

sup
T>0

‖Sh
T − Sh

M,T ‖L2(R2) = 0. (5.30)

Similarly, we get
lim

M→∞
sup
T>0

‖Rh
T −Rh

M,T ‖L2(R2) = 0 (5.31)

which proves (5.18) in the general case.
To prove assertion (c) it is enough to set

cM (x1, x2) = (aM ∗ bM )(x1)aM (x2), (5.32)

and use (5.18), (5.30) and the inequality

‖Rh
T − Sh

T,M‖L2(R2) ≤ ‖Rh
T − Sh

T ‖L2(R2) + ‖Sh
T − Sh

T,M‖L2(R2).

Lemma 5.2 is proved.
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The next result is similar to Lemma 5.2, where R2 is replaced by R. We set

Rh
T (x) = Rh

T (x, x) =
1√
T

∫ T

0

∫ T

0

hT (u)hT (v)b(u− v)a(u− x)a(v − x)dudv

and

Sh
T (x) = Sh

T (x, x) =
1√
T

∫ T

0

|hT (v)|2(a ∗ b)(v − x)a(v − x)dv,

where Rh
T (·, ·) and Sh

T (·, ·) are as in (5.15) and (5.16) with x1 = x2 = x.

Lemma 5.3. Let a(·) and b(·) be as in (2.1), with p and q satisfying

1 ≤ p, q ≤ 2,
2

p
+

1

q
≥ 2. (5.33)

Then under condition (T) the following assertions hold.

(a) We have

lim
T→∞

‖Sh
T ‖2L2(R) = H4

∫
R

KB(u)du, (5.34)

where KB(·) is as in (5.6).
(b) We have

lim
T→∞

‖Rh
T − Sh

T ‖L2(R) = 0. (5.35)

(c) For any M > 0, there exists a function dhM (·) supported on [−2M, 2M ],
so that the function

Sh
T,M (x) =

1√
T

∫ T

0

dhM (v − x)dv,

satisfies the relation:

lim
M→∞

lim sup
T→∞

‖Rh
T − Sh

T,M‖L2(R) = 0. (5.36)

Remark 5.1. Obviously the condition (5.33) is implied by condition (2.2).

Proof of Lemma 5.3. The proof is similar to that of Lemma 5.2. We thus outline
the key steps of the proof omitting the details.

As in the proof of Lemma 5.2, in view of Riesz-Thorin theorem, without loss
of generality, we can assume that

2

p
+

1

q
= 2.

Define the number p∗ to satisfy the following equations:

1

p
+

1

p∗
= 1, 1 +

1

p∗
=

1

p
+

1

q
. (5.37)
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To prove (5.34) observe that

‖Sh
T ‖2L2(R2) =

1

T

∫ T

0

∫ T

0

|hT (v1)|2|hT (v2)|2

×
∫
R

[(a ∗ b)(v1 −x)] [(a ∗ b)(v2 −x)] [a(v1 −x)] . [a(v2 −x)] dxdv1dv2

=
1

T

∫
R

∫
R

|hT (v1)|2|hT (v2)|2
(
(a ∗ b) · a

)∗̄2
(v1 − v2)dv1dv2

=
1

T

∫
R

|hT (v2)|2
∫
R

|hT (v + v2)|2
(
(a ∗ b) · a

)∗̄2
(v)dvdv2

=
1

T

∫
R

(
(a ∗ b) · a

)∗̄2
(v)

∫
R

|hT (u)|2|hT (v + v2)|2dv2dv

=

∫
R

(
(a ∗ b) · a

)∗̄2
(v)

∫ 1

0

|h(u)|2|h( v
T

+ u)|2dudv. (5.38)

Using Hölder’s inequality and Young’s inequality for convolution (see (5.20))
and (5.37), we can write (Mh = ‖h‖∞ < ∞)

‖Sh
T ‖2L2(R2) ≤ M4

h

∫
R

(
(a ∗ b) · a

)∗̄2
(v) dv ≤

Young

M4
h‖(|a| ∗ |b|) · a‖21

≤
Hölder

M4
h‖(|a| ∗ |b|)‖2p∗‖a‖2p ≤

Young

M4
h‖a‖4p‖b‖2q < ∞.

Using (5.24) and the dominated convergence theorem, from (5.38) we obtain
(5.34).

The proof of items (b) and (c) is similar to that of Lemma 5.2, and so is
omitted.

Lemma 5.3 is proved.

Proof of Theorem 5.1. By (5.11) and Lemma 5.1 one can write

Q̃h
T = Ah

T (t) +Bh
T (t),

where

Ah
T (t)=

∫ ′

R2

1√
T

∫ Tt

0

∫ Tt

0

hT (u)hT (v)b(u−v)a(u−x1)a(v−x2)dudv ξ(dx1)ξ(dx2),

and

Bh
T (t) =

∫
R

1√
T

∫ Tt

0

∫ Tt

0

hT (u)hT (v)b(u− v)a(u− x)a(v − x)dudvξ(2)c (dx).

(5.39)
Choosing chM (x1, x2) as in Lemma 5.2 and setting

Ah
T,M (t) =

∫ ′

R2

1√
T

∫ Tt

0

chM (u− x1, u− x2)du ξ(dx1)ξ(dx2), (5.40)
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one has by (5.9) and relation (5.19) of Lemma 5.2 that

lim
M→∞

lim sup
T→∞

E|Ah
T (t)−Ah

T,M (t)|2 = 0, ∀t > 0. (5.41)

Choosing dhM (x) as in Lemma 5.3 and setting

Bh
T,M (t) =

∫
R

1√
T

∫ Tt

0

dhM (u− x)du ξ(2)c (dx), (5.42)

one has by (5.9) and relation (5.36) of Lemma 5.3 that

lim
M→∞

lim sup
T→∞

E|Bh
T (t)−Bh

T,M (t)|2 = 0, ∀t > 0. (5.43)

To complete the proof of the theorem, in view of (5.41) and (5.43), it is
enough to show that

Q̃h
T,M (t) := Ah

T,M (t) +Bh
T,M (t)

f.d.d.−→ σh,M (Q)B(t) as T → ∞ (5.44)

with σh,M (Q) ≥ 0 satisfying

lim
M→∞

σ2
h,M (Q) = lim

T→∞
Var[Ah

T (1) +Bh
T (1)] = σ2

h(Q). (5.45)

To this end, observe first that by the stochastic Fubini Lemma 5.1, one has

Q̃h
T,M (t) =

1√
T

∫ Tt

0

Y h
M (u)du,

where

Y h
M (u) =

∫ ′

R2

chM (u− x1, u− x2)ξ(dx1)ξ(dx2) +

∫
R

dhM (u− x) ξ(2)c (dx),

and ξ
(2)
c (·) is the Teugel martingale defined in (5.12). Note that Y h

M (u) is inde-
pendent of the σ-field generated by {ξ(s) : s < u − 2M, s > u + 2M} since
chM (·, ·) vanishes outside [−2M, 2M ]2 and dhM (·) vanishes outside [−2M, 2M ],
implying that Y h

M (u) is a stationary 4M -dependent process. Then the conver-
gence in (5.44) can be deduced from a classical central limit theorem for M -
dependent processes by combining the discretization argument in the proof of
Theorem 18.7.1 of Ibragimov and Linnik [27] and Theorem 5.2 of Billingsley [5].

To show (5.45), we first note that the random variables AT (1) and BT (1) are
uncorrelated. Hence by (5.9) and (5.17) with k = 2, we have

Var[Ah
T ] → 2H4

∫
R

KA(u)du,

and by (5.9), (5.13) and (5.34) we obtain

Var[Bh
T ] → H4κ4

∫
R

KB(u)du.

This completes the proof of Theorem 5.1.
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Proof of Theorem 2.2. We have to prove that

T 1/2
[
Jh
T − E(Jh

T )
] d→ η ∼ N

(
0, σ2

h(J)
)

as T → ∞, (5.46)

where σ2
h(J) is given by (2.5) and (2.6).

Now we show that the relation (5.46) follows from Theorem 5.1. Indeed,
observe first that in view of (1.8), (1.11), (1.12), (5.2) and (5.4) we can write

T 1/2
[
Jh
T − E(Jh

T )
]

= T 1/2C−1
T

[
Qh

T − E(Qh
T )
]

=
T 1/2

2πH2T

[
Qh

T − E(Qh
T )
]
=

1

2πH2
Q̃h

T (1). (5.47)

It follows from Theorem 5.1 that

Q̃h
T (1) := T−1/2

(
Qh

T (1)− EQh
T (1)

) d→ η1 ∼ N
(
0, σ2

h(Q)
)

as T → ∞,
(5.48)

where σ2
h(Q) is given by

σ2
h(Q) = H4

∫
R

[2KA(u) + κ4KB(u)] du. (5.49)

Next, using (5.1) and Parseval-Plansherel theorem, we can write (see Bai et al.
[3]): ∫

R

KA(u)du =

∫
R

(
(a ∗ b)∗̄2 · a∗̄2

)
(u)du = 8π3

∫
R

f2(λ)g2(λ)dλ (5.50)

and ∫
R

KB(u)du =

∫
R

(
(a∗b) · a

)∗̄2
(u)du = 4π2

[∫
R

f(λ)g(λ)dλ

]2
. (5.51)

Therefore, in view of (5.47) and (5.49)-(5.51), we have

σ2
h(J) =

1

4π2H2
2

σ2
h(Q)

= 4πe(h)

∫
R

f2(λ)g2(λ)dλ+ κ4e(h)

[∫
R

f(λ)g(λ)dλ

]2
, (5.52)

where e(h) is as in (2.6). Now the relation (5.46) with σ2
h(J) given by (2.5) and

(2.6) follows from (5.47), (5.48) and (5.52).
Theorem 2.2 is proved.
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