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Abstract: We propose an adaptive confidence interval procedure (CIP)
for the coefficients in the normal linear regression model. This procedure
has a frequentist coverage rate that is constant as a function of the model
parameters, yet provides smaller intervals than the usual interval proce-
dure, on average across regression coefficients. The proposed procedure is
obtained by defining a class of CIPs that all have exact 1 − α frequentist
coverage, and then selecting from this class the procedure that minimizes
a prior expected interval width. We describe an adaptive approach for es-
timating the prior distribution from the data, so that the potential risk of
a poorly specified prior is reduced. The resulting adaptive confidence in-
tervals maintain exact non-asymptotic 1−α coverage if two conditions are
met - that the design matrix is full rank (which will be known) and that
the errors are normally distributed (which can be checked empirically). No
assumptions on the unknown parameters are necessary to maintain exact
coverage. Additionally, in a “p growing with n” asymptotic scenario, this
adaptive FAB procedure is asymptotically Bayes-optimal among 1−α fre-
quentist CIPs.
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1. Introduction

Linear regression analyses routinely include point estimates and confidence
intervals for the regression coefficients β = (β1, . . . , βp) of the linear model
y ∼ Nn(Xβ, σ2I). The most widely-used confidence interval procedure (CIP)
for an element βj of β is perhaps the usual t-interval centered around the ordi-

nary least-squares (OLS) estimate β̂j . This interval is uniformly most accurate
among CIPs that are derived from inversion of unbiased tests, and so it is called
the uniformly most accurate unbiased (UMAU) CIP.

In this article we consider alternatives to the UMAU procedure that have
constant coverage, that is, interval procedures Cj(y) satisfying

Pr(βj ∈ Cj(y)|β, σ) = 1− α, ∀ (β, σ) ∈ R
p × R

+. (1)

This property is what we normally think of as the usual frequentist definition of
1− α coverage - the random interval Cj(y) covers the true value βj with prob-
ability 1 − α, no matter what β and σ are. We introduce the term “constant
coverage” to distinguish such intervals from other intervals whose coverage is
bounded below by 1 − α but varies with (β, σ2), or so-called “frequentist in-
tervals” whose coverage rate is only constant as a function of the parameters
asymptotically. For example, the usual score interval for a coefficient in a logistic
regression model has an actual finite-sample coverage rate that depends on the
values of the parameters.

The UMAU interval procedure of course has constant coverage, and it also
has an expected width that is constant for all values of β. However, in many
cases we have prior information that many of the elements of β may be close to a
particular value, such as zero. In this case, we might prefer a CIP for βj that has
a smaller expected width for “likely” values of βj in exchange for having wider
intervals for values of βj that are less likely. Specifically, if our prior information
could be quantified in terms of a prior distribution with density π(β), then
arguably we would be interested in an interval procedure that minimizes the
prior expected width

E[|Cj(y)|] =
∫ ∫

|Cj(y)| p(y|β, σ) dy π(β)dβ

among all CIPs that satisfy the constant coverage property (1). Such a procedure
would still be “frequentist” in that it would have 1− α constant coverage, but
it would also be Bayes-optimal among frequentist procedures. We refer to such
a statistical procedure as “frequentist, assisted by Bayes” or FAB.

The frequentist performance of such a FAB interval will be quite good if
the true value of β has high prior probability. However, if an appropriate prior
distribution is not known then the performance of a FAB interval using an
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arbitrarily chosen prior could be quite poor. For this reason, we present a method
for adaptively estimating a normal prior distribution for β from the data y,
and then using this estimated prior distribution to construct an approximately
Bayes-optimal CIP for each regression coefficient βj , j = 1, . . . , p. While such a
procedure may be viewed as an empirical Bayes method, it differs from typical
empirical Bayes procedures in that it satisfies the constant coverage condition
(1) exactly and non-asymptotically under the normal regression model with
n > p, while also being Bayes-optimal asymptotically as p and n increase to
infinity. In contrast, standard Bayes and empirical Bayes procedures generally
only maintain their coverage rates marginally with respect to the prior (Carlin
and Gelfand, 1990; Yoshimori and Lahiri, 2014).

Our proposed adaptive CIP builds on the work of Pratt (1963), who obtained
a Bayes-optimal frequentist confidence interval for the mean of a normal popu-
lation with a known variance. Pratt’s interval has a shorter expected width than
the UMAU interval for parameter values with high prior probability, but has an
arbitrarily large width for values with low prior probability. To guard against
a potential mismatch between the prior information and the true parameter
value, Farchione and Kabaila (2008), Kabaila and Giri (2009) and Kabaila and
Tissera (2014) developed confidence interval procedures that revert to the usual
UMAU procedure when the point estimate is far from an a priori likely value.
In this article, we instead guard against a potential mismatch between prior
information and truth by adaptively estimating the prior distribution from the
data itself.

Our confidence intervals are constructed by inverting classes of tests that
vary as a function of the parameter in terms of how type I error is “spent.” Pa-
rameterization of a class of confidence intervals with such a “spending function”
was first used by Stein (1962) and discussed further by Bartholomew (1971) to
construct confidence intervals for parameters known to lie in particular subsets
of the real line. This parameterization was also used by by Puza and O’Neill
(2006), who developed classes of asymmetric CIPs for one-sample problems.

In the next section we review Pratt’s FAB interval, obtain its representa-
tion in terms of a spending function, and discuss an extension developed in Yu
and Hoff (2018) to accommodate an unknown variance. In Section 3 we extend
these ideas to the case of interval estimation for a linear regression coefficient,
and show how we may adaptively estimate a normal prior distribution for the
elements of β. The resulting adaptive FAB confidence interval we propose main-
tains exact, non-asymptotic constant coverage. Additionally, since the accuracy
of our adaptive estimate improves as n and p increase, in Section 4 we show that
the adaptive FAB procedure is Bayes-optimal under this type of asymptotic
regime. In Section 5 we develop new alternative model-based spending func-
tions, including a modification of our adaptive FAB interval to guard against an
outlying parameter value, as well as an adaptive FAB procedure derived from a
“spike-and-slab” prior distribution. Section 6 includes several numerical exam-
ples illustrating the use of the adaptive FAB procedure, including analyses of
two datasets and a small simulation study. A discussion follows in Section 7.

Several other authors have studied alternatives to UMAU intervals for regres-
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sion parameters. O’Gorman (2001) developed a CIP based on a permutation test
that adapts to non-normal error distributions, as opposed to adapting to small or
sparse values of the regression coefficients. Kabaila and Tissera (2014) developed
an improved CIP based on an adaptive estimate of the variance σ2. Their proce-
dure depends on a user-specified spline function for which the constant coverage
property must be checked numerically. In contrast, our proposed CIP is obtained
by adaptively selecting from a class of constant-coverage intervals based on easy
to obtain estimates of a few parameters. For our procedure, constant coverage
follows by construction and does not need to be checked numerically. Lee et al.
(2016) developed a procedure that has exact conditional coverage, given a model
selection event and knowledge of σ2. However, for cases where σ2 is unknown,
their suggested modification uses a plug-in estimate of σ2 and achieves exact
coverage only asymptotically. Other authors (Bühlmann (2013), van de Geer
et al. (2014), Zhang and Zhang (2014)) have considered confidence interval con-
struction for sparse, high-dimensional regression, including the case that p > n.
These approaches generally work by de-biasing sparse estimators of the regres-
sion coefficients. However, the coverage rates of these methods are asymptotic,
and typically depend on the degree of sparsity of β. For example, in Section
4 we show that the finite-sample coverage of one such procedure can be very
good in a sparse setting, but extremely poor if β is not sparse. In contrast, our
proposed procedure maintains exact, non-asymptotic coverage if two conditions
are met - that the design matrix is full rank (a condition that will be known),
and that the errors are normally distributed (a condition that can be evaluated
empirically). No assumptions on the unobserved parameters are necessary to
maintain exact coverage.

2. Review of FAB intervals

Suppose θ̂ is normally distributed with unknown mean θ and known variance
σ2. Then for any choice of s ∈ [0, 1],

Pr(zα(1−s) < (θ − θ̂)/σ < z1−αs|θ) = (1− αs)− α(1− s)

= 1− α,

where zp denotes the pth quantile of the standard normal distribution. As no-
ticed by Stein (1962), Bartholomew (1971) and Puza and O’Neill (2006), this
implies that for any function s : R → [0, 1] the set-valued function

Cs(θ̂) =
{
θ : θ̂ + σzα(1−s(θ)) < θ < θ̂ + σz1−αs(θ)

}
(2)

is a 1 − α confidence procedure, satisfying Pr(θ ∈ Cs(θ̂)|θ) = 1 − α. Puza and
O’Neill (2006) referred to such a function s as a tail function, as it gets plugged
into the standard normal quantile function. In this article, we refer to s as a
spending function. This is because, as will be discussed, inversion of Cs yields a
class of hypothesis tests where s determines how much type I error is “spent”
in each part of the parameter space.
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The usual procedure is C1/2(θ̂), obtained from the constant spending func-
tion s(θ) = 1/2. While C1/2 is the uniformly most accurate unbiased (UMAU)
confidence interval procedure (CIP), the lack of a uniformly most powerful test

of Hθ : E[θ̂] = θ versus Kθ : E[θ̂] �= θ means there are confidence procedures
corresponding to collections of biased level-α tests that have smaller expected
widths than the UMAU procedure for some regions of the parameter space. If
prior information is available that θ is likely to be near some value μ, then we
may be willing to incur wider intervals for θ-values far from μ in exchange for
smaller intervals near μ. With this in mind, Pratt (1963) developed a Bayes-
optimal 1−α CIP that minimizes the “Bayes width” or expected interval width
averaged over values of both θ̂ and θ, where the latter averaging is done with
respect to a N(μ, τ2) prior distribution for θ. The resulting CIP has 1− α fre-
quentist coverage for each value of θ, but has lower expected width for values
of θ near the prior mean (and wider expected widths elsewhere). We describe
this interval as being “frequentist assisted by Bayes” or FAB. As shown in Yu
and Hoff (2018), the spending function corresponding to Pratt’s FAB confidence
interval is characterized as follows: If τ2 > 0, then

s(θ) = g−1(2σ(θ − μ)/τ2) (3)

where g(s) = Φ−1(αs) − Φ−1(α(1 − s)) and Φ is the standard normal CDF. If
τ2 = 0, then s(θ) = 1 if θ > μ and s(θ) < 0 if θ < μ. The value of s(μ) ∈ [0, 1]
does not affect the width of the confidence interval, but can affect whether or
not μ is included in the interval or not (as an endpoint). We suggest taking s(μ)
to be 1/2 when τ2 = 0, as it is in the case that τ2 > 0.

Now consider confidence interval construction for θ in the more typical case
that σ2 is unknown. Suppose we will observe independent statistics θ̂ and σ̂2,
where θ̂ ∼ N(θ, σ2) and qσ̂2/σ2 ∼ χ2

q . Letting tp be the pth quantile of the
t-distribution with q degrees of freedom, any spending function s : R → [0, 1]
defines a class of acceptance regions

As(θ) =
{
(θ̂, σ̂) : θ̂ + σ̂tα(1−s(θ)) < θ < θ̂ + σ̂t1−αs(θ)

}
,

so that for each θ, As(θ) is the acceptance region of a level-α test. Inversion of
this class of tests yields a CIP with exact 1− α constant coverage,

Cs(θ̂, σ̂) =
{
θ : θ̂ + σ̂tα(1−s(θ)) < θ < θ̂ + σ̂t1−αs(θ)

}
. (4)

Important properties of this CIP include the following:

Theorem 1. If θ̂ ∼ N(θ, σ2) and qσ̂2/σ2 ∼ χ2
q are independent, then

1. Pr(θ ∈ Cs(θ̂, σ̂)|θ, σ) = 1−α ∀ (θ, σ) ∈ R×R
+, so the procedure has 1−α

constant coverage;
2. If s(θ) is nondecreasing then Cs(θ̂, σ̂) is an interval with probability 1;

3. If s(θ) is not nondecreasing then Cs(θ̂, σ̂) is an interval with probability
less than 1.
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Items 1 and 2 were shown in Yu and Hoff (2018), and a proof of item 3
is in the appendix. This result says that every spending function corresponds
to a 1− α frequentist confidence procedure, and every nondecreasing spending
function corresponds to a 1−α confidence interval procedure. Yu and Hoff (2018)
showed that the spending function (3) that corresponds to Pratt’s z-interval is
strictly increasing. If such a nondecreasing spending function s is used, then the
lower and upper endpoints of the interval, θ and θ, are obtained by solving the
equations

F
(

θ−θ̂
σ̂

)
= α(1− s(θ)), F

(
θ̂−θ
σ̂

)
= αs(θ), (5)

where F is the CDF of the tq distribution. These equations can be solved using

a zero-finding algorithm, and noting that θ < θ̂ + σ̂tα and θ̂ + σ̂t1−α < θ.
Furthermore, this implies that θ < θ̂ < θ as long as α < 1/2.

The (frequentist) expected width of an interval based on Pratt’s spending
function (3) is low when θ is near the prior mean μ but is increasing in |θ − μ|.
To guard against a poor choice of of μ, Farchione and Kabaila (2008) suggest
an alternative confidence interval procedure that reduces to the UMAU inter-
val when θ̂ is far from μ. Alternatively, in multiparameter settings, reasonable
choices for μ and τ2 may be obtained from the data itself. For example, es-
timates of some parameters might suggest plausible values for others. In this
case, we may want to use a spending function s̃(θ) that minimizes a Bayes risk
corresponding to a “prior” distribution that is adaptively estimated from the
data. We refer to such as procedure as adaptive FAB. Fortunately, the results
of Proposition 1 hold not just for fixed spending functions, but also those that
are random but statistically independent of θ̂ and σ̂2:

Corollary 1. If θ̂ ∼ N(θ, σ2) and qσ̂2/σ2 ∼ χ2
q, and θ̂, σ̂2 and s̃ are indepen-

dent, then Pr(θ ∈ Cs̃(θ̂, σ̂)|θ, σ) = 1− α.

This result follows by conditioning on s̃: Pr(θ ∈ Cs̃(θ̂, σ̂)|θ, σ) = E[Pr(θ ∈
Cs̃(θ̂, σ̂)|s̃, θ, σ)|θ, σ], but the inner conditional probability is 1 − α since s̃ and

(θ̂, σ̂) are independent and Cs̃ has 1− α coverage for each fixed s̃. Yu and Hoff
(2018) made use of this fact to develop an adaptive FAB confidence interval
procedure for the means of multiple normal populations. Their adaptive proce-
dure for the mean θ of a given population is Cs̃(θ̂, σ̂), where s̃ is the spending
function (3) with (μ, σ2, τ2) replaced by estimates using data from the other
populations. This procedure provides exact 1 − α confidence intervals for each
population, and is asymptotically optimal in the case of the normal hierarchical
model.

3. FAB t-intervals for regression parameters

We now show how the results discussed in the previous section may be used to
construct adaptive frequentist confidence intervals for linear regression parame-
ters. Under the normal linear regression model, the intervals we construct have
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exact 1−α constant coverage and do not require asymptotic approximations or
assumptions on the unknown parameter.

Consider the problem of constructing confidence intervals for the elements
of an unknown vector β ∈ R

p based on data y ∈ R
n and X ∈ R

n×p from the
normal linear regression model y ∼ Nn(Xβ, σ2I). As is well known,

β̂ = (X�X)−1X�y ∼ Np(β, σ
2(X�X)−1)

σ̂2 = ||y −Xβ̂||2/(n− p) ∼ σ2

n−pχ
2
n−p,

with β̂ and σ̂2 being independent. In particular, (β̂j −βj)/(wj σ̂) ∼ tn−p, where
wj is the square-root of the jth diagonal entry of (X�X)−1. The UMAU confi-
dence interval for βj is

C(β̂j , σ̂) =
{
βj : β̂j + wj σ̂tα/2 < βj < β̂j + wj σ̂t1−α/2

}
. (6)

This interval has 1 − α coverage probability and an expected width that is
constant as a function of the true value of βj .

Now suppose that prior information about β suggests that β ∼ Np(0, τ
2I)

for some value of τ2 (other prior distributions will be discussed at the end of this
section, and in Sections 5 and 6). If τ2 and σ2 were known, the Bayes-optimal

CIP for βj would be obtained simply by replacing θ̂ and σ in (2) and (3) with

β̂j and wjσ, yielding

Cs(β̂j) =
{
βj : β̂j + wjσzα(1−s(βj)) < βj < β̂j + wjσz1−αs(βj)

}
(7)

s(βj) = g−1(2wjσβj/τ
2).

However, since τ2 and σ2 are unknown we alter this interval as follows:

• σ2 is replaced by σ̂2, which is independent of β̂j and satisfies (n−p)σ̂2/σ2 ∼
χ2
n−p;

• z-quantiles are replaced by the quantiles of the tn−p distribution;
• s(βj) is replaced by s̃(βj) = g−1(2wj σ̃βj/τ̃

2), where (τ̃2, σ̃2) are indepen-

dent of (β̂j , σ̂
2).

These modifications yield an adaptive FAB interval given by

Cs̃(β̂j , σ̂) =
{
βj : β̂j + wj σ̂tα(1−s̃(βj)) < βj < β̂j + wj σ̂t1−αs̃(βj)

}
. (8)

Such an interval satisfies the conditions of Corollary 1, thereby guaranteeing
exact 1 − α frequentist coverage, regardless of whether or not the values of β
are approximately normally distributed, or if the estimates τ̃2, σ̃2 are accurate.
However, if the normal approximation and adaptive estimates are accurate, then
we expect the resulting FAB interval (8) to be close to the “oracle” interval (7),
which is Bayes-optimal and narrower on average than the UMAU procedure
given by (6).
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The approximate optimality of Cs̃ is considered more formally in the next
section using an asymptotic argument. First, we discuss obtaining estimators
(τ̃2, σ̃2) that are independent of (β̂j , σ̂

2) so that the conditions of Corollary 1
are met. Let PX = X(X�X)−1X and P0 = I−PX be the projection matrices
onto the space spanned by the columns of X and the corresponding null space,
respectively. Recall that the OLS estimate β̂j is given by β̂j = a�y, where a is
the jth row of the matrix (X�X)−1X�. Let P1 = aa�/a�a be the projection
matrix associated with a, and let P2 = PX(I−P1). We can decompose y as

y = Iy = (P0 +PX)y

= (P0 +P1 +P2)y

= P0y +P1y +P2y ≡ y0 + y1 + y2.

Since PkPl = 0 for k �= l, we have that y0, y1 and y2 are statistically in-
dependent. Now the OLS estimate satisfies β̂j = a�P1y = a�y1, and σ̂2 =
y�
0 y0/(n− p), and so both estimates are statistically independent of each other

and the vector y2. Therefore, any estimates (τ̃2, σ̃2) that are functions of y2 will

be independent of (β̂j , σ̂
2) and so can be used to construct a spending function

s̃(βj) that satisfies the conditions of Corollary 1.
To obtain such an estimate (τ̃2, σ̃2), let G2 be an orthonormal basis for the

space spanned by P2 (for example, the matrix of eigenvectors of P2 that cor-
respond to non-zero eigenvalues). Then G2G

�
2 = P2, G

�
2 G2 = Ip−1, and z2 =

G�
2 y2 = G�

2 y ∼ Np−1(G
�
2 Xβ, σ2I). Under the prior model β ∼ N(0, τ2I), the

marginal distribution for z2 is therefore

z2 ∼ Np−1(0,X2X
�
2 τ

2 + σ2I), (9)

where X2 = G�
2 X. A variety of empirical Bayes estimates of (τ2, σ2) may be ob-

tained from this marginal distribution. For example, noting that E[z�2 A
�Az2] =

tr(X�
2 A

�AX2)τ
2 + tr(A�A)σ2 for any matrix A, unbiased moment estimates

may be obtained by finding (τ̃2, σ̃2) that solve simultaneously two equations,
given by z�2 A

�Az2 = tr(X�
2 A

�AX2)τ̃
2 + tr(A�A)σ̃2, for two different values

of A. Alternatively, (τ̃2, σ̃2) may be taken to be the maximum likelihood esti-
mate based on the marginal model (9). This estimate is discussed further in the
next section.

To summarize, we have constructed statistics β̂j , σ̂
2, τ̃2, σ̃2 such that for each

(β, σ2) ∈ R
p × R

+,

C1: β̂j ∼ N(βj , w
2
jσ

2), (n− p)σ̂2/σ2 ∼ χ2
n−p, and β̂j and σ̂2 are independent;

C2: (τ̃2, σ̃2) are independent of (β̂j , σ̂
2).

Therefore the spending function s̃(βj) = g−1(2wj σ̃βj/τ̃
2) is independent of

(β̂j , σ̂
2) and so the conditions of of Corollary 1 are met. We summarize these

results with the following theorem:

Theorem 2. If y ∼ Nn(Xβ, σ2I) and (β̂j , σ̂
2, τ̃2, σ̃2) satisfy C1 and C2, then

the adaptive FAB CIP given by (8) has 1−α coverage for every value of β and
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σ2, that is

Pr(βj ∈ Cs̃(β̂j , σ̂)|β, σ) = 1− α, ∀(β, σ) ∈ R
p × R

+.

The 1 − α frequentist coverage rate of this confidence interval does not rely
on the prior model β ∼ N(0, τ2I) being correct. Rather, the prior model just
determines how y2 is used to construct the spending function s̃(βj). If it is
plausible that the distribution of βj-values is not centered around zero, then it
makes sense to use a prior model with a non-zero mean, i.e. β ∼ Np(μ1, τ

2I). If
the regressor variables are related to each other in some known way, it may be
preferable to consider more complex prior models. For example, if the regressor
variables have spatial locations and their effects are likely to be smoothly varying
in space, then one might consider a prior model of the form β ∼ Np(0,Σ(ψ)),
where ψ is a low-dimensional parameter. Based on this model, the conditional
mean and variance of βj given y2 could be obtained and used to construct the
spending function s̃(βj). Since this spending function only depends on y2, it is

statistically independent of β̂j and σ̂2, and so exact 1 − α frequentist coverage
is maintained.

4. Approximate optimality

As discussed above, if βj ∼ N(0, τ2) and σ2 and τ2 were known then the oracle
FAB interval Cs given by (7) is Bayes-optimal in that it minimizes the prior
expected interval width E[|C|] among procedures C that have 1−α frequentist

coverage. This prior expected width is an expectation over both the estimate β̂j

and the value of βj with respect to the N(0, τ2) prior distribution.
The adaptive FAB interval Cs̃ given by (8) differs from the oracle FAB interval

in three ways: the value of σ2 has been replaced by σ̂2; the z-quantiles have been
replaced by t-quantiles; and the spending function s that depends on (τ2, σ2)
has been replaced by s̃ that depends on (τ̃2, σ̃2). In this subsection we take
(τ̃2, σ̃2) to be the maximizers of the likelihood given by the marginal model
(9). The resulting interval still has 1 − α frequentist coverage, but it is only
an approximation to Cs, and so we must have E[|Cs̃|] > E[|Cs|] since Cs is
Bayes-optimal. However, if n−p is large then the t-quantiles will be close to the
corresponding z-quantiles, and we expect that σ̂2 ≈ σ2. If p is also large then
under the prior β ∼ N(0, τ2I) we expect that τ̃2 ≈ τ2 and σ̃2 ≈ σ2. As a result,
we should have s̃(βj) ≈ s(βj) and so we expect that E[|Cs̃|] ≈ E[|Cs|], that is,
the FAB procedure will be approximately Bayes-optimal.

We investigate this more formally with an asymptotic comparison of the
widths of the adaptive and oracle FAB procedures. We first obtain an asymp-
totic result for a single scalar parameter βj , and then discuss the result in the
context of the linear regression model. Consider a sequence of experiments in-
dexed by n such that for each n we have statistics (β̂j , σ̂

2, τ̃2, σ̃2) that satisfy
coverage conditions C1 and C2 given above. Furthermore, suppose the following
asymptotic conditions hold as n → ∞:
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A1. (n− p) → ∞ and σ2/n → σ2
∞ > 0;

A2. (τ̃2, σ̃2/n) → (τ2, σ2
∞) in probability.

A3. w2
jn → w2

0 > 0;

We consider this case where σ2 grows with n since otherwise, if σ2 were fixed
then the widths of the oracle FAB, adaptive FAB and UMAU intervals would
all converge to zero at the same rate.

Lemma 1. Under the conditions C1, C2, A1, A2 and A3, the width |Cs̃| of the
FAB procedure (8) satisfies E[|Cs̃|] → E[|Cs|] as n → ∞, where Cs is the Bayes-

optimal FAB procedure for the case that β̂j ∼ N(βj , w
2
0σ

2
∞) and βj ∼ N(0, τ2).

A proof is in the appendix. The lemma says that under this asymptotic
regime, the performance of the adaptive FAB interval is asymptotically equiva-
lent to that of the oracle FAB interval: They both have 1−α frequentist coverage
for each n, and the prior expected width of the FAB procedure approaches that
of the oracle FAB interval as n → ∞.

We now consider how this result applies to the linear regression model and the
specific estimates β̂j , σ̂

2, τ̃2, σ̃2 described in the previous subsection. Consider a
sequence of experiments indexed by n such that the following conditions hold:

B1. For each n,

• X is full-rank;

• y ∼ Nn(Xβ, σ2I) with σ2 = nσ2
∞;

• β ∼ N(0, τ2I).

B2. p/n → c ∈ (0, 1) as n → ∞.
B3. The empirical distribution of the eigenvalues of X�X/n is bounded uni-

formly in n, and converges in distribution to a non-degenerate limit as
n → ∞.

If conditions B1, B2 and B3 are met then the estimates (β̂j , σ̂
2, τ̃2, σ̃2) defined

in Section 3.1 satisfy the conditions C1, C2, A1 and A2 and so the FAB interval
for βj of any variable j satisfying condition A3 will satisfy the conditions of
Theorem 1, and hence be asymptotically optimal. To see that this holds, first
note that the definition of the model in condition B1 implies that (β̂j , σ̂

2, τ̃2, σ̃2)
satisfy the coverage conditions C1 and C2. Second, asymptotic condition A1 is
met by the definition σ2 = nσ2

∞ in B1 and that n is growing faster than p as
assumed by B2. The remaining necessary result is the following:

Lemma 2. Suppose B1, B2 and B3 hold, and that (τ2, σ2
∞) ∈ Θ, a compact

subset of [0,∞)× (0,∞). Let (τ̃2, σ̃2) be the maximizers over Θ of the likelihood
given by the marginal model (9). Then (τ̃2, σ̃2/n) → (τ2, σ2

∞) in probability as
n → ∞.

This result is proven in the appendix. Putting Lemma 1 and Lemma 2 gives
the following summary of the asymptotic behavior of Cs̃:

Theorem 3. Under the conditions of Lemma 2, for any variable j for which A3
holds, the FAB interval Cs̃(β̂j , σ̂

2) has prior expected width E[|Cs̃|] that satisfies
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E[|Cs̃|] → E[|Cs|] as n → ∞, where Cs is the Bayes-optimal FAB procedure for

the case that β̂j ∼ N(βj , w
2
0σ

2
∞) and βj ∼ N(0, τ2).

This result makes precise the heuristic idea that if n and p are large, then
the adaptive FAB interval should be nearly as good as the oracle FAB interval.

5. Alternative spending functions

5.1. Bounded-width adaptive FAB interval

As discussed above, the adaptive FAB interval based on a normal prior distrib-
tion is approximately optimal if the βj ’s are normally distributed with a common
mean and variance. If the empirical distribution of the βj ’s is not approximately
normal, then, while the adaptive FAB procedure will still have 1 − α coverage
for each βj , some modifications to the procedure may be desired to achieve bet-
ter expected interval width, particularly if there are a small number of outliers
among β1, . . . , βp.

If it is known in advance that certain subvectors of β are likely to have
very different magnitudes (for example, if β includes main effects as well as
interactions), it makes sense to adaptively estimate a separate prior distribution
for each subvector. This possibility is discussed further in Section 6.3.

If a single but unknown element of β, say β1, is an extreme outlier relative
to the others, then the width improvement of the adaptive FAB intervals for
β2, . . . , βp will be reduced, while the width for β1 could be much larger than
the UMAU interval. To see this, recall that the adaptive FAB interval for βj is
based on a N(0, τ̃2) prior distribution, where τ̃2 is an estimate of the variability
of β1, . . . , βj−1, βj+1, . . . , βp around zero. If β1 is an extreme outlier relative
to the other βj ’s, then the estimate τ̃2 will be inflated relative to the average
magnitude of the other βj ’s, making the adaptive FAB interval closer to the
UMAU interval than if β1 were smaller in magnitude. Of more concern may be
the interval for the outlying value β1. Since the value of τ̃2 used in the prior
for β1 is estimating the magnitude of βj ’s that are much smaller than β1, the
value of τ̃2 could be much smaller than β2

1 , and so the adaptive FAB interval
is expected to be larger than the UMAU interval, with width increasing as β1

increases in magnitude.

Such an issue can be avoided by modifying the adaptive FAB interval so
that its width relative to the UMAU interval is bounded. The modification is to
construct an adaptive bounded-width FAB confidence interval Cš via Equation
8 but with the estimated spending function s̃(βj) replaced by

š(βj) = max{γ,min{s̃(βj), 1− γ}},

where γ is a user-specified value between 0 and 1/2. To see how this bounds the
interval width, let βl and βu be the lower and upper endpoints of the interval,
respectively, for a given value of β̂j . Recall that these endpoints are defined
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as solutions to βl = β̂j + σ̂tα(1−š(βl)) and βu = β̂j + σ̂t1−αš(βu). Therefore,

the interval width as a function of β̂j is given by σ̂ × (t1−αš(βu) − tα(1−š(βl))).

Suppose β̂j is large and negative and so š(βl) = γ, the minimum value of š.
Then š(βu) ≥ γ because š is nondecreasing, and so the interval width is less

than or equal to σ̂× (t1−αγ − tα(1−γ)). Similarly, if β̂j is very large and positive
so that š(βu) = 1 − γ, the maximum value of š, then the width is less than
σ̂×(t1−α(1−γ)−tαγ), which is also equal to σ̂×(t1−αγ−tα(1−γ)). For in-between

values of β̂j for which neither š(βl) = γ nor š(βu) = 1− γ, this bounded-width
FAB interval is the same as the standard FAB interval.

We illustrate this numerically in Figure 1, in the slightly simpler case of a
95% FAB z-interval based on β̂ ∼ N(β, 1) and the assumed prior distribution
β ∼ N(0, 1). The plot on the left side of the figure shows the spending function
corresponding to Pratt’s z-interval given by Equation 3, plotted with a thick
gray line. As β̂ → ∞, the spending function at values of β near β̂ converges to
one, causing the quantile associated with the lower endpoint of Pratt’s interval to
decrease without bound. This property was mentioned in Pratt (1963), and also
discussed for the special case of τ2 = 0 by Bartholomew (1971) and Farchione
and Kabaila (2008). However, by using š(β) = max{γ,min{s̃(β), 1 − γ}} to
construct the interval, we are never using quantiles below zαγ or above z1−αγ ,
and the width of the interval will be bounded. The second plot of Figure 1
shows the expected interval width of Pratt’s FAB interval and its bounded-
width modification, where the expectation is over β̂ ∼ N(β, 1). The original
FAB interval achieves lower expected width than the UMAU and bounded-
width FAB intervals over a set of β-values with high prior probability, but the
width increases without bound as |β| → ∞. In contrast, the bounded-width FAB
interval still achieves improved expected width relative to the UMAU interval
over a similar range of β-values, but has a bounded expected width as |β| → ∞.
The bound on the width can be made arbitrarily close to the width of the UMAU
interval by letting γ → 1/2, but doing so decreases the improvement relative to
the UMAU interval.

While this bounded-width FAB interval can be used to bound the interval
width in cases where there is concern that the prior variance τ2 might be much
smaller than the actual parameter value, in adaptive multiparameter settings
this bounded interval procedure may have limited appeal over the non-bounded
adaptive FAB version. First, if there are two or more outliers, then the estimate
of τ̃2 used by each adaptive FAB interval will be based on at least one other
outlier and so won’t be exceedingly small. Second, in the case of a single large
outlier, some practitioners may be willing to risk having a large interval for one
parameter in exchange for narrow intervals for most other parameters.

5.2. Adaptive FAB regions for arbitrary prior distributions

When a normal model for the regression coefficients does not seem reasonable,
an alternative to the adaptive FAB or bounded-width FAB procedures is to use
a different family of prior distributions, perhaps one with heavy tails or one that
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Fig 1. Comparison of spending functions and expected interval widths for the UMAU interval
(solid black line), Pratt’s FAB interval (thick gray line) and the bounded-width FAB interval
(dashed black line) for the case that σ2 = τ2 = 1, α = .05 and γ = .25. The dashed gray line
in the second plot is the bound on the width of the bounded-width FAB interval.

reflects potential sparsity among the βj ’s. Here we illustrate a general procedure
for obtaining FAB confidence procedures from arbitrary prior distributions, and
discuss “spike-and-slab” prior distributions as a special case.

First consider constructing a confidence procedure for a single parameter β,
with estimator β̂ ∼ N(β, σ2) where σ2 is known. For every level-α confidence
procedure there is a corresponding set-valued function A(β0) such that for each
β0 ∈ R, A(β0) is the acceptance region of a level-α test of H : β = β0 versus
K : β �= β0. Given a prior distribution for β with density π(β), the Bayes-
optimal confidence region is obtained via Aπ(β0), which for each value of β0 is

the acceptance region of the most powerful test of H : β̂ ∼ N(β0, σ
2) versus

Kπ : β ∼ Fπ, where Fπ has density

fπ(β̂) =

∫
σ−1φ([β̂ − β]/σ)π(β) dβ,

with φ being the standard normal density function. Here, Fπ is the marginal
distribution of β̂, obtained by integrating the normal sampling distribution for
β̂ with respect to the prior distribution for β. By the Neyman-Pearson lemma,
the most powerful level-α test of H versus Kπ accepts when the likelihood ratio
L(β̂ : β0) = fπ(β̂)/(σ

−1φ([β̂ − β0]/σ)) is less than some constant cα(β0). The
acceptance regions of the tests of H : β = β0 versus Kπ are then, for each
β0, given by Aπ(β0) = {β̂ : L(β̂ : β0) < cα(β0)}. If Aπ(β0) is an interval for

each β0, then we can write Aπ(β0) = {β̂ : l(β0) < β̂ < u(β0)}. We claim that
such an acceptance region function corresponds to a spending function given by
s(β0) = Φ([l(β0) − β0]/σ)/α. To see this, recall that Aπ(β0) is the acceptance

region of a level-α test and β̂ ∼ N(β0, σ
2) under the null hypothesis, so we

must have α = 1 − Φ([u(β0) − β0]/σ) + Φ([l(β0) − β0]/σ)), or equivalently,
1−Φ([u(β0)− β0]/σ) = α(1− s(β0)) and Φ([l(β0)− β0]/σ)) = αs(β0) for some
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s(β0) ∈ [0, 1]. Solving for u(β0) and l(β0) gives u(β0) = β0 + σz1−α(1−s(β0)) and
l(β0) = β0 + σzαs(β0). Inverting the acceptance intervals and a doing a bit of
algebra gives the FAB confidence region as

Cπ(β̂) = {β0 : β̂ + σzα(1−s(β0)) < β0 < β̂ + σz1−αs(β0)}.

A FAB t-region is obtained by replacing σ in the above formula with an estimate
σ̂, and replacing the z-quantiles with t-quantiles. An adaptive FAB interval is
obtained by replacing the spending function s(β0) with an estimate s̃ based on

data that are statistically independent of β̂ and σ̂.
In theory, this procedure could be applied to any class of prior distributions to

obtain an adaptive FAB confidence procedure. In practice, finding and inverting
the acceptance region can be numerically challenging. The relatively simple
form of Pratt’s FAB interval given by (3) results from fπ having a closed-
form expression (it is a normal density). In general, if there is not a closed-
form expression for fπ, then the interval will require numerical integration to
construct.

One class of prior distributions for which fπ is available are finite mixtures of
normal distributions. A special case of such distributions are the so-called “spike
and slab” prior distributions (Mitchell and Beauchamp, 1988), under which β is
equal to a N(0, τ2) random variable with probability λ, and is otherwise equal to

zero. Under this prior distribution, the marginal distribution Fπ of β̂ is a mixture
of a N(0, σ2) distribution and a N(0, τ2 + σ2) distribution, with probabilities

1− λ and λ respectively. The log likelihood ratio for testing H : β̂ ∼ N(β0, σ
2)

versus Kπ : β̂ ∼ Fπ can be shown to be equal to

l(β̂ : β0) = −β̂β0 + log(aebβ̂
2/2 + 1) + k,

where a = λ
1−λ (

σ2

σ2+τ2 )
1/2, b = σ−2 τ2

σ2+τ2 and k is constant in β̂. This is convex

in β̂ and so the acceptance region for each β0 is an interval. Based on the
discussion above, the spending function corresponding to this prior distribution
can be obtained by numerically finding l(β0) for each β0 ∈ R and setting s(β0) =
Φ([l(β0)− β0]/σ)/α.

The spending function corresponding to one such spike and slab prior dis-
tribution (with τ2 = 25, λ = .10, α = .05 and σ2 = 1) is displayed in the
left panel of Figure 2. For these values of the parameters the spending function
is not non-decreasing, and so by item 3 of Theorem 1, the FAB t-region may
not be an interval. To illustrate this, the middle panel of Figure 2 plots the
acceptance region and confidence interval of the FAB t-test with 5 degrees of
freedom and conditional on the standard deviation estimate σ̂ being equal to 1.
The acceptance region, obtained by looking at the range of β̂ values between the
two solid lines for each β, is an interval. However, the corresponding confidence
procedure does not yield an interval for each value of β̂. For values of β̂ between
about 8.18 and 9.52 (and between about -9.52 and -8.18), the confidence region

consists of two disconnected intervals, one that contains β̂ and another that is
close to the prior mean (zero).
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Fig 2. The spending function (left panel) and confidence region (right panel) corresponding
to a spike and slab prior distribution. Dashed lines in the right plot indicate the bounds of
the UMAU t-interval.

Overall, the FAB region corresponding to this spike and slab prior is narrower
than the UMAU interval in a range near zero, and similar to the UMAU interval
for moderately large values of β̂ (e.g. on the scale of τ). However, the procedure
has poor performance for values in-between. This mirrors to some extent some
known results about shrinkage estimators obtained from sparsity-inducing prior
distributions or penalties. For example, Leeb and Pötscher (2008) generalize
some results on Hodge’s estimator (LeCam, 1953) to show how certain sparse
estimators of linear regression coefficients have poor performance not at zero,
but nearby.

6. Numerical examples

In this section we illustrate the adaptive FAB procedure numerically, and show
how it can be modified to accommodate different adaptation strategies. For ex-
ample, in the next subsection we use an empirically estimated prior distribution
that is not centered around zero, thereby providing improved performance if
most of the effects are of a common sign. In the following subsection, we show
how adaptation may be done separately for different groups of parameters, such
as main effects and interactions. We also provide a simulation study that illus-
trates how a CIP that adapts to sparsity may have very poor coverage if the
regression parameter is not actually sparse, whereas the adaptive FAB procedure
maintains constant coverage for all parameter values.

6.1. Motif regression

Conlon et al. (2003) measured the binding intensity of a protein to each of n =
287 DNA segments, and related each intensity to scores measuring abundance
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of the DNA segment in p = 195 genetic motifs. These data were also used as an
example by Meinshausen et al. (2009), among others.

Assuming a normal linear regression model for the centered and scaled data,
the usual unbiased estimate of σ2 is 0.77, and the usual standard errors for
the OLS regression coefficients range from 0.12 to 0.85 with a mean of 0.30.
On the other hand, empirical Bayes estimates of μ and τ2 under the prior
β ∼ Np(μ1, τ

2I) are around 0.004 and 0.001 respectively, (τ̂ ≈ 0.036) suggest-
ing that the true values of the elements of β are highly concentrated around
zero.

We constructed 95% FAB confidence intervals for the effects of the p = 195
genetic motifs, using the adaptive FAB procedure described in Section 3.1 except
under aNp(μ1, τ

2I) distribution for β. This is to allow for the possibility that the
distribution of true effects is not centered around zero, which seems reasonable
for this particular dataset where it is expected that abundance has either a
positive or negligible effect on binding intensity. In the analysis that follows, for
each coefficient j, values of (μ̃, τ̃2, σ̃2) are estimated from the j-specific vector

y2 defined in Section 3.1, thereby ensuring that β̂j is independent of (μ̃, τ̃2, σ̃2)
and constant coverage of the FAB confidence interval for each βj is maintained.

The intervals are shown graphically in Figure 3, along with the UMAU inter-
vals for comparison. The FAB intervals are shorter than the UMAU intervals for
189 of the 195 effects (97%), with relative widths ranging from 0.83 to 1.11, and
being 0.85 on average across effects. The number of “significant” effects identi-
fied by the two procedures is similar: twelve of the FAB CIs and eleven of the
UMAU CIs do not contain zero. However, the two procedures identify somewhat
different significant motifs: seven motifs are identified by both procedures, all
with positive OLS effect estimates. The FAB procedure identifies an additional
five motifs all with positive effect estimates, whereas the four additional motifs
identified by the UMAU procedure all have negative effect estimates.

We also computed the bounded-width FAB intervals described in Section
5.1, where the γ parameter was set to 0.25, which ensures that the t-quantiles
used to construct the intervals are bounded by 0.0125 for the lower endpoint and
0.9875 for the upper. This results in shorter intervals than the standard adaptive
FAB intervals for four of the parameters, with the maximum improvement being
about 8%. This comes at a cost of being wider than the standard adaptive FAB
interval for 191 of the parameters, and being larger by about 8% on average
across all parameters.

6.2. Motif regression simulation study

Zhang and Zhang (2014) developed a confidence interval procedure for sparse
parameters in high-dimensional normal linear regression models. When applied
to the motif dataset, this low dimensional projection (LDP) procedure produces
intervals that are narrower than the FAB intervals for all regression coefficients,
with relative widths ranging from 0.27 to 0.71, and being about half as wide
on average across coefficients. However, unlike the FAB and UMAU procedures,
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Fig 3. 95% confidence intervals for motif regression effects. UMAU intervals are thick gray
lines, FAB intervals are thin black lines.

the actual coverage rates of LDP intervals are guaranteed to achieve their nom-
inal rates only asymptotically, and only if certain sparsity conditions on β are
met.

To compare the performance of the UMAU, FAB and LDP procedures we con-
structed two related simulation studies based on the motif binding dataset de-
scribed in the previous subsection. In each study, we obtained estimates (β0, σ

2
0)

from the real data y and X, and used these estimates to simulate new response
vectors y(k) ∼ N(Xβ0, σ

2
0I) independently for k = 1, . . . , 5000. For each re-

sponse vector y(k) we construct UMAU, FAB and LDP confidence intervals for
each of the p = 195 regression coefficients. These intervals are used to obtain
Monte Carlo approximations to the finite-sample coverage rates of the LDP pro-
cedure, as well as approximations to the expected interval widths of the UMAU,
FAB and LDP procedures.

In the first of these two simulation studies we simulated 5000 datasets from
the model y(k) ∼ Nn(Xβ0, σ

2
0I), where X is the original design matrix and β0

is the lasso estimate from the original data, using an empirical Bayes estimate
of the L1-penalty parameter. This resulted in a sparse β0-vector with 176 of the
195 coefficients being identically zero, so in the context of this simulation study,
the “truth” is highly sparse. The value of σ2

0 used to simulate the data was
the usual unbiased estimate from the original data. We computed the UMAU,
FAB and LDP confidence intervals for each of the 5000 simulated datasets.
The widths of the FAB and LDP intervals were 85% and 43% of the UMAU
interval widths respectively, on average across datasets and parameters. The
empirical coverage rates of the nominal 95% LDP intervals ranged between 93.8
and 96.1 percent. There was some evidence that the coverage rates were not
exactly 95%: Exact level-.05 binomial tests rejected the hypothesis that the
coverage rates were 95% for 71 of the 195 regression parameters (36%). All of
these 71 parameters had true values of 0, and the empirical coverage rates of
64 of these 71 parameters were larger than 95%, suggesting that LDP intervals
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Fig 4. Relative interval widths (left panel) and coverage rates (right panel) for the motif
simulation study with non-sparse β. Error bars for the coverage rates are Clopper-Pearson
95% intervals.

slightly overcover βj when it is zero. However, in general the coverage rates of
the LDP procedure were very close to the nominal rates, in this case where the
truth is sparse.

The second simulation study was the same as the first except the value β0

used to generate the simulated data was the OLS estimate from the original
data, and so in this case the “true” regression model is not sparse. On average
across the 5000 simulated datasets and 195 parameters, the widths of the FAB
and LDP intervals were 88% and 54% of the UMAU interval widths respectively,
similar to the results from the first study. These relative widths are shown in the
left panel of Figure 4. However, the coverage rates for the LDP intervals were
generally far from their nominal levels: Based on exact binomial tests, coverage
rates for 183 of the 195 parameters were significantly different from 95% (at
level 0.05). As shown in the right panel of Figure 4, the LDP intervals generally
overcover parameter values near zero, and greatly undercover parameters larger
in magnitude. For comparison, the empirical coverage rates of the FAB intervals
are also shown. These rates show no evidence of deviation from the nominal
rates, as should be the case - the FAB intervals have exact 95% coverage for
each component of β by construction.

6.3. Diabetes progression

Efron et al. (2004) considered parameter estimation for a model of diabetes pro-
gression from data on ten explanatory variables from each of n = 442 subjects.
The expected progression of a subject was assumed to be a linear function of the
linear, quadratic and two-way interaction effects of the ten variables, resulting
in a linear model with p = 64 regressors total (the binary sex variable does not
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have a separate quadratic effect).
We expect that main effects will be larger than quadratic effects and two-

way interactions. For this reason, we obtain adaptive intervals separately for
these three types of parameters, so that the spending function s̃ used to obtain
the confidence interval for the effect of a given regressor is obtained adaptively
from the estimated effects of regressors in the same category. This can easily
be done as follows: Write the design matrix X as X = [X1,X2,X3], where X1,
X2, X3 are the design matrices corresponding to the main effects, quadratic
effects and two-way interactions, respectively, and let β� = [β�

1 ,β
�
2 ,β

�
3 ] be the

corresponding partition of β. To obtain the FAB CIs for the main effects, we
let G be an orthonormal basis for the null space of [X2,X3]. Letting ỹ = G�y
and X̃ = G�X, we have ỹ ∼ Nn−p2−p3(X̃β1, σ

2I). We can then apply the FAB

CI procedure to (ỹ, X̃) to obtain intervals that adapt to the magnitude of β1

(and not to the magnitudes of β2 and β3). Adaptive confidence intervals for β2

and β3 can be obtained analogously.
In the analysis that follows we use an adaptively estimated N(0, τ2) prior

distribution for each coefficient. Recall that our FAB procedure generates an
empirical Bayes estimate τ̃2 of τ2 = Var[βj ] for each coefficient j that is sta-

tistically independent of the OLS estimate β̂j . For the main effects the values
of τ̃ ranged between 0.19 and 0.21, with a mean of 0.20, and were larger than
the standard errors of the OLS coefficients except for those of four somewhat
co-linear predictors. In contrast, values of τ̃ for the quadratic and interaction
terms were all less than 0.03, and were all less than the corresponding standard
errors.

We computed the adaptive FAB interval for each regression coefficient us-
ing these coefficient-specific estimates of τ2. The FAB intervals are as narrow
or narrower than all but three of the corresponding UMAU intervals, with the
relative interval widths ranging from 0.84 to 1.0003, and being 0.86 on average.
The FAB CIs for the main effects are essentially the same as the UMAU CIs,
whereas the FAB CIs for the quadratic and interaction terms are all narrower
than the corresponding UMAU intervals, by about 16% on average. This exam-
ple illustrates some flexibility of the FAB procedure, in that the adaptation for
a particular parameter may be based on a subset of the data information that
is deemed most relevant for that parameter.

7. Discussion

We have constructed a class of 1−α confidence interval procedures (CIPs) for in-
dividual regression coefficients of the normal regression model y ∼ Nn(Xβ, σ2I).
Each member of this class corresponds to a spending function s : R → [0, 1].
Under the regression model, every member of the class has constant 1− α cov-
erage for all possible values of β, σ2 and full-rank design matrices X. We have
described a method of adaptively selecting the spending function so that the
across-parameter average interval width is reduced, and the 1−α coverage rate
is maintained for each regression coefficient. The coverage guarantee is non-
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asymptotic, does not rely on β being sparse and does not rely on conditions on
the design matrix (other than it being full rank). However, under some assump-
tions on the distribution of the elements of β and the design matrix, the adaptive
technique we propose is asymptotically optimal as both n and p increase.

The spending function s(β) that we adaptively estimate from the data is
based on a normal prior distribution for the elements of β. As such, we expect
our procedure to provide the most improvement when the empirical distribution
of β1, . . . , βp is approximately normal. If instead we suspect that β is sparse,
it may seem preferable to base the adaptation on other families of prior dis-
tributions, such as Laplace or “spike and slab” distributions. Some numerical
work not presented here suggests that FAB intervals obtained using the Laplace
family of priors are in practice similar to those obtained with normal priors.
However, FAB procedures based on spike and slab priors do seem more efficient
but also present a problem: The spending function for a spike and slab prior is
not generally nondecreasing, and so by Theorem 1 the corresponding confidence
region may not be an interval. We suspect that non-interval confidence regions
have limited appeal in practice, but even if they were of interest they present
the numerical challenge of identifying multiple disconnected sets of parameter
values to include in the region.

Adaptive FAB intervals for linear regression coefficients may be computed
using the R-package fabCI. Complete replication code for the numerical exam-
ples in this article is available at the first author’s website. This research was
partially supported by NSF grant DMS-1505136.

Proofs

Proof of Theorem 1

Items 1 and 2 of the theorem were shown in Yu and Hoff (2018). To prove Item 3,
suppose s(θ) is not nondecreasing so that there exists θ1 < θ2 with s(θ1) > s(θ2).

We will show that there are a range of values of (θ̂, σ̂) with θ̂ < θ1 for which θ2
(and θ̂) are in Cs(θ̂, σ̂) but θ1 is not. Let tj = tα(1−s(θj)) and t̄j = t1−αs(θj) for
j = 1, 2. Both tα(1−s) and t1−αs are decreasing in s so t1 < t2 < t̄1 < t̄2. For θ2

to be in the confidence region and θ1 not to be, we need θ̂+ σ̂t2 < θ2 < θ̂+ σ̂t̄2
and θ1 > θ̂ + σ̂t̄1, or equivalently

t̄1 < (θ1 − θ̂)/σ̂ (10)

t2 < (θ2 − θ̂)/σ̂ < t̄2. (11)

The set of values (θ̂, σ̂) for which this holds has positive Lebesgue measure on

(−∞, θ1) × (0,∞). For example, both (θ1 − θ̂)/σ̂ and (θ2 − θ̂)/σ̂ can be made
simultaneously arbitrarily close to any number between t̄1 ∧ t2 and t̄2 by taking

σ̂ and −θ̂ to be sufficiently large. The probability of observing values of (θ̂, σ̂)
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satisfying (10) and (11) that yield a non-interval confidence region is therefore
greater than zero.

Proof of Lemma 1

For notational convenience, in this proof we write βj and wj as β and w, and
write the α-quantile of the tq distribution as t(α), suppressing the index that
denotes the degrees of freedom. We begin the proof of Lemma 2 with another
lemma:

Lemma 3. The width |Cs̃| of Cs̃ satisfies |Cs̃| < |β̂|+wσ̂(|t(α/2)|+|t(1−α/2)|).
Proof. Recall that the endpoints β and β̄ of Cs̃ are solutions to

β̂ = β̄ − wσ̂t(1− αs̃(β̄))

β̂ = β − wσ̂t(α(1− s̃(β)))

Here s̃(β) is defined as s̃(β) = g−1(2wσ̃β/τ̃2), where g(s) = Φ−1(αs)−Φ−1(α(1−
s)). At the upper endpoint, we have s̃(β̄) = F ((β̂− β̄)/(wσ̂))/α, where F is the
CDF of the tq-distribution. When β̄ > 0, we have s̃(β̄) > g−1(0) = 1/2. Thus

β̄ < β̂ − wσ̂t(α/2). Also, g−1(2wσ̃β̄/τ̃2) < 1, so β̄ > β̂ − wσ̂t(α). When β̄ < 0,

β̂ − wσ̂t(α/2) < β̄. This implies that

β̂ − wσ̂t(α) < β̄ < β̂ − wσ̂t(α/2) if β̄ > 0

β̂ − wσ̂t(α/2) < β̄ < 0 if β̄ < 0.

Similarly we have

0 < β < β̂ − wσ̂t(1− α/2) if β > 0

β̂ − wσ̂t(1− α/2) < β < β̂ − wσ̂t(1− α) if β < 0.

Therefore
|Cs̃| = β̄ − β < |β̂|+ wσ̂(|t(α/2)|+ |t(1− α/2)|).

Now we prove Lemma 1. We denote the endpoints of the oracle CIP Cs as β̄
and β, which are the solutions to

β̄ − w0σ∞Φ−1(1− αs(β̄)) = β̂

β − w0σ∞Φ−1(α(1− s(β))) = β̂.

We denote the endpoints of Cs̃ as β̄n and βn, which are the solutions to

β̄n − wσ̂t(1− αs̃(β̄n)) = β̂n

βn − wσ̂t(α(1− s̃(βn))) = β̂n.
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We first prove that |Cs̃| − |Cs| = (β̄n − β̄) + (β − βn)
p→ 0 as n → ∞ for each

fixed β̂. We can write the upper endpoints as β̄n = Gn(wσ̂, wσ̃, τ̃
2, β̂n), and

β̄ = G(w0σ∞, w0σ∞, τ2, β̂), where G and Gn are continuous functions of their
parameters. The functions G and Gn are different in that the former is based
on z-quantiles, while the latter uses t-quantiles. We have

|β̄n − β̄| = |Gn(wσ̂, wσ̃, τ̃
2, β̂n)−G(w0σ∞, w0σ∞, τ2, β̂)|

≤ |Gn(wσ̂, wσ̃, τ̃
2, β̂n)−G(wσ̂, wσ̃, τ̃2, β̂n)|

+ |G(wσ̂, wσ̃, τ̃2, β̂n)−G(w0σ∞, w0σ∞, τ2, β̂)|.
(12)

The second term converges to zero in probability because (wσ̂, wσ̃, τ̃2, β̂n)
p→

(w0σ∞, w0σ∞, τ2, β̂). Elaborating on the convergence of the first term, note that
Gn is a monotone sequence of continuous functions: Given Gn1 and Gn2 where
n2 > n1, and suppose the corresponding degrees-of-freedom of the t-quantiles
are q1 and q2. We have q2 ≥ q1, thus tq2(1 − αs̃) ≤ tq1(1 − αs̃). Hence β̂n −
wσ̂tq2(1−αs̃(β̂n)) ≥ β̂n−wσ̂tq1(1−αs̃(β̂n)). Therefore Gq2(wσ̂

2, wσ̃2, τ̃2, β̂n) ≤
Gq1(wσ̂

2, wσ̃2, τ̃2, β̂n), and so by Dini’s theorem, Gn → G uniformly on a com-

pact set of (s2σ̂2, s2σ̃2, τ̃2, β̂n) values. Since (s2σ̂2, s2σ̃2, τ̃2, β̂n) converges in

probability to (v2σ2
∞, v2σ2

∞, τ2, β̂), for arbitrary ε > 0 and δ > 0, there exists a
number N(ε, δ) such that when n > N(ε, δ), |wσ̂−w0σ∞| ≤ δ, |wσ̃−w0σ∞| ≤ δ,

|τ̃2 − τ2| ≤ δ and |β̂n − β̂| ≤ δ with probability at least 1 − ε. Therefore, for
arbitrary η > 0,

lim
n→∞

P (|Gn(wσ̂, wσ̃, τ̃
2, β̂n)−G(wσ̂, wσ̃, τ̃2, β̂)| < η) > 1− ε.

Since ε is arbitrary, we conclude that the first term in (12) converges to zero in
probability.

Now we show the expected width converges to the oracle width by integrating
over β̂. This is done by first showing |Cs̃| is uniformly integrable and then
applying Vitali’s theorem. By the previous lemma we know that

|Cs̃| < |β̂n|+ wσ̂(|t(α/2)|+ |t(1− α/2)|).

Note that |t(α/2)|+ |t(1−α/2)| < |t1(α/2)|+ |t1(1−α/2)| = c1 < ∞, where t1
is the t-quantile with one degree of freedom. We now show |Cs̃| is L2-bounded.
We have

|Cs̃|2 < |β̂n|2 + c21w
2σ̂2 + 2|β̂n|c1wσ̂.

Here E[|β̂n|2] = β2 + w2σ2 and E[w2σ̂2] = w2σ2. Since w2σ2 → w2
0σ

2
∞ <

∞, thus E[|β̂n|2] and E[w2σ̂2] are both bounded for all n. Similarly, E[wσ̂]

and E[|β̂n|] are also bounded. Therefore, it is easy to see that |Cs̃| is L2-
bounded, which implies that |Cs̃| is uniformly integrable. By Vitali’s Theorem,
limn→∞ E[|Cs̃|] = E[|Cs|] = 0.
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Proof of Lemma 2

We first prove a consistency result for a notationally simpler model, and then
discuss how the result applies to the marginal model (9). The simpler model
is y ∼ Nn(0,Λτ

2 + Iσ2) where Λ is a known diagonal matrix with positive
entries. Let θ0 = (τ20 , σ

2
0) be the true value of θ = (τ2, σ2), and let qi(θ) =

y2i /(λiτ
2 + σ2)− log

λiτ
2
0+σ2

0

λiτ2+σ2 , which is -2 times the contribution of yi to the log

likelihood plus a constant. The MLE is therefore given by θ̂ = argminQn(θ),
where Qn(θ) =

∑n
i=1 qi(θ)/n.

Lemma 4. Assume θ0 ∈ Θ, a compact subset of [0,∞)× (0,∞), and let θ̂n =
argminΘ Qn(θ). For each n assume that Fn, the empirical distribution of the
diagonal entries of Λ, has support on [0, λ̄], where λ̄ is fixed for all n. If Fn

converges weakly to a nondegenerate distribution F0 as n → ∞ then θ̂
p→ θ0 as

n → ∞.

We prove consistency of θ̂ in three steps: First, we show that Qn(θ)−E[Qn(θ)]
converges uniformly to zero as n → ∞. Second, we show that this implies that
as a function of θ ∈ Θ, Qn converges uniformly to a function Q0. Third, we show
that Q0 is uniquely minimized at θ0. Consistency of θ̂ follows from these latter
two results (see, for example, Theorem 2.1 of Newey and McFadden (1994)).

For each n the expectation of Qn(θ) − E[Qn(θ)] is zero and the variance is
given by

Var[Qn(θ)] =
2

n

(
1

n

n∑
i=1

(
λiτ

2
0 + σ2

0

λiτ2 + σ2
)2

)
=

2

n

(∫
(
λτ20 + σ2

0

λτ2 + σ2
)2 dFn(λ)

)
.

The integrand is a bounded function of λ on any bounded set [0, λ̄] as long as
σ2 > 0. Therefore, if Fn converges weakly to a distribution F0 with such bounded
support, then for all θ = (τ2, σ2) ∈ [0,∞)×(0,∞) the integral in the parentheses
converges to a finite limit and the variance of Qn(θ)−E[Qn(θ)] converges to zero.

Thus Qn(θ)−E[Qn(θ)]
p→ 0 as n → ∞. To show that this convergence is uniform

we use Theorem 3 of Andrews (1992). Using basic calculus, it can be shown that
the functions qi(θ) satisfy the Lipschitz condition |qi(θ) − qi(θ

′)| < g(yi, λi) ×
||θ − θ′|| where g(yi, λi) = (1 + y2i /ε)(λi + 1)/ε and ε = minΘ σ2. Andrews’

Theorem 5 says that if (i) Θ is compact, (ii) Qn
p→ 0 for each θ ∈ Θ, and (iii)

supn≥1

∑
E[g(yi, λi)]/n < ∞, then supΘ |Qn(θ)|

p→ 0. This last condition holds
in this case because E[g(yi, λi)] is quadratic in λi, the values of which are all
bounded by assumption. Therefore, Qn(θ) converges uniformly in probability to
zero as n → ∞.

Now consider the limiting value of E[Qn(θ)]. We have

lim
n→∞

E[Qn(θ)] = lim
n→∞

∫ (
λτ20 + σ2

0

λτ2 + σ2
− log

λτ20 + σ2
0

λτ2 + σ2

)
dFn(λ)

=

∫ (
λτ20 + σ2

0

λτ2 + σ2
− log

λτ20 + σ2
0

λτ2 + σ2

)
dF0(λ) ≡ Q0(θ),
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for all values of θ for which the integrand is a bounded function of λ. On λ ∈
[0, λ̄], the ratio (λτ20 + σ2

0)/(λτ
2 + σ2) is bounded between min{ λ̄τ2

0+σ2
0

λ̄τ2+σ2 ,
σ2
0

σ2 }
and max{ λ̄τ2

0+σ2
0

λ̄τ2+σ2 ,
σ2
0

σ2 }, and so the integrand is bounded in λ ∈ [0, λ̄] for all

(τ2, σ2) ∈ [0,∞) × (0,∞). Furthermore, the convergence of E[Qn(θ)] to Q0(θ)
is uniform, since the integrand is bounded as a function of θ on the compact set
Θ (Ranga Rao (1962)). Together with the uniform convergence in probability
of Qn(θ)− E[Qn(θ)] to zero, this implies uniform convergence in probability of
Qn to Q0.

Finally we show that Q0(θ) has a unique minimizing value at θ0. After com-
puting the gradient of Q0(θ), it is easily shown that a critical point (τ2, σ2)
must satisfy ∫

λk λτ2 + σ2

(λτ2 + σ2)2
dF0(λ) =

∫
λk λτ20 + σ2

0

(λτ2 + σ2)2
dF0(λ)

for k ∈ {0, 1}. Rearranging, it can be shown that a critical point satisfies(
m1 1
m2 m1

)(
τ2

σ2

)
=

(
m1 1
m2 m1

)(
τ20
σ2
0

)
(13)

where mk(τ
2, σ2), k ∈ {1, 2} is given by

mk(τ
2, σ2) =

∫
λk(λτ2 + σ2)−2 dF0(λ)∫
(λτ2 + σ2)−2 dF0(λ)

.

For each (τ2, σ2) ∈ [0, 1)× (0,∞), m1 and m2 are the first and second moments
of λ under a probability measure having density with respect to F0 proportional
to (λτ2+σ2)−2. If F0 is not degenerate, then m2 > m2

1, and so the determinant
of the matrix in (13) is non-zero. Therefore, the matrix is invertible and (τ20 , σ

2
0)

is the only solution to (13). The matrix of second derivatives of Q0 is given by

∂2Q0

∂θ∂θ�
=

∫ (
λ2 λ
λ 1

)
2(λτ20 + σ2

0)− (λτ2 + σ2)

λτ2 + σ2
× (λτ2 + σ2)−2 dF0(λ).

At the critical point (τ20 , σ
2
0) this simplifies to the expectation of the matrix in

the integrand with respect to the probability measure with density proportional
to (λτ2 + σ2)−2 with respect to F0. Again, if F0 is not degenerate then the
expectation of this matrix, and hence the Hessian of Q0, is strictly positive
definite. The critical point is a local minimum, and since it is the only critical
point of the continuous function Q0, it is the unique minimizer. This completes
the proof of Lemma 4.

To see how this applies to the properties of the empirical Bayes estimates
(τ̃2, σ̃2) of (τ2, σ2) based on the marginal model (9), let U be the (p−1)×(p−1)
matrix of left singular vectors of X2, and let nΛ2 be the diagonal matrix of the
squared singular values. Then U�

2 z2/
√
n ∼ Np−1(0,Λ2τ

2 + Iσ2
∞), and so the

properties of the MLE of (τ2, σ2
∞) based on z2 will be the same as those of

(τ2, σ2) in Lemma 4 if Λ2 satisfies the assumption of the Lemma. To see that it
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does, recall that the assumption of Lemma 2 was that the empirical distribution
of the eigenvalues of X�X/n is uniformly bounded and converges weakly to a
non-degenerate distribution with finite support. For a given n, let γ1, . . . , γp be
the eigenvalues of X�X/n. Since X�

2 X2/n is a compression of X�X/n, by the
Cauchy interlacing theorem we have γ1 ≤ λ1 ≤ γ2 ≤ · · · ≤ γp−1 ≤ λp−1 ≤ γp.
Therefore, if the values of {γ1, . . . , γp} are bounded uniformly in p and have an
empirical distribution that converges to a nondegenerate limit, then the same
properties hold for the values of {λ1, . . . , λp−1}.
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Bühlmann, P. (2013). Statistical significance in high-dimensional linear models.
Bernoulli 19 (4), 1212–1242. MR3102549

Carlin, B. P. and A. E. Gelfand (1990). Approaches for empirical Bayes confi-
dence intervals. J. Amer. Statist. Assoc. 85 (409), 105–114. MR1137356

Conlon, E. M., X. S. Liu, J. D. Lieb, and J. S. Liu (2003). Integrating regula-
tory motif discovery and genome-wide expression analysis. Proceedings of the
National Academy of Sciences 100 (6), 3339–3344.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). Least angle regres-
sion. Ann. Statist. 32 (2), 407–499. With discussion, and a rejoinder by the
authors. MR2060166

Farchione, D. and P. Kabaila (2008). Confidence intervals for the normal
mean utilizing prior information. Statist. Probab. Lett. 78 (9), 1094–1100.
MR2422965

Kabaila, P. and K. Giri (2009). Confidence intervals in regression utilizing prior
information. J. Statist. Plann. Inference 139 (10), 3419–3429. MR2549091

Kabaila, P. and D. Tissera (2014). Confidence intervals in regression that uti-
lize uncertain prior information about a vector parameter. Australian & New
Zealand Journal of Statistics 56 (4), 371–383. MR3300167

LeCam, L. (1953). On some asymptotic properties of maximum likelihood esti-
mates and related Bayes’ estimates. Univ. California Publ. Statist. 1 , 277–329.
MR0054913

Lee, J. D., D. L. Sun, Y. Sun, and J. E. Taylor (2016). Exact post-selection infer-
ence, with application to the lasso. Ann. Statist. 44 (3), 907–927. MR3485948

Leeb, H. and B. M. Pötscher (2008). Sparse estimators and the oracle prop-
erty, or the return of Hodges’ estimator. J. Econometrics 142 (1), 201–211.
MR2394290

Meinshausen, N., L. Meier, and P. Bühlmann (2009). p-values for high-
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