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Abstract: We present a new methodology, called FLAME, which simul-
taneously selects important predictors and produces smooth estimates in
a function-on-scalar linear model with a large number of scalar predictors.
Our framework applies quite generally by viewing the functional outcomes
as elements of an arbitrary real separable Hilbert space. To select important
predictors while also producing smooth parameter estimates, we utilize op-
erators to define subspaces that are imbued with certain desirable properties
as determined by the practitioner and the setting, such as smoothness or
periodicity. In special cases one can show that these subspaces correspond
to Reproducing Kernel Hilbert Spaces, however our methodology applies
more broadly. We provide a very fast algorithm for computing the estima-
tors, which is based on a functional coordinate descent, and an R package,
flm, whose backend is written in C++. Asymptotic properties of the estima-
tors are developed and simulations are provided to illustrate the advantages
of FLAME over existing methods, both in terms of statistical performance
and computational efficiency. We conclude with an application to childhood
asthma, where we find a potentially important genetic mutation that was
not selected by previous functional data based methods.
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1. Introduction

High-dimensional regression and functional data analysis are currently central
research areas in statistics and machine learning. The rising interest in both ar-
eas reflects the difficult realities of “big data” that many scientists are now facing
in their work. Increasingly complex studies and data gathering technologies re-
quire sophisticated methods that are mathematically sound, computationally
efficient, and practically interpretable. This work concerns a new approach for
function-on-scalar regression:

Yn =

I∑
i=1

Xn,iβ
�
i + εn n = 1, . . . , N,

where the parameters, β�
i , and errors, εn, lie in a real separable Hilbert space

(most commonly L2[0, 1]), but the predictors are real-valued scalars. However,
we are interested in the case when the number of predictors, I, is much larger
than than number of statistical units, N . Such data is especially common in
genetic studies where one encounters large numbers of scalar predictors. These
studies are also now increasingly likely to contain sophisticated phenotypic mea-
surements that are suitable for functional data analysis. For example, in Section
4 we discuss an application concerning lung growth in children as they age. There
the goal is to determine which genetic mutations are impacting this growth; it
is assumed that this impact varies smoothly with age. Our methodology si-
multaneously exploits the smoothness of the underlying data and functional
parameters, as well as the sparsity of the genetic effects. For short, we call
this framework FLAME, for functional linear adaptive mixed estimation. The
“mixed” here refers to the mixing of functional norms to simultaneously select
significant predictors and smooth their corresponding effect on the functional
outcome.

Currently, very little work has been done in this area, but there are several
key recent papers which have made substantial in-roads into this problem. For
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scalar-on-function regression, there are a few recent works [25, 24, 14, 12], but
this is the opposite of the problem we consider here as it is our outcomes that are
functional, not the predictors. Concerning function-on-scalar regression, Chen
et al. [8] proposed combining functional least squares with a sparsity inducing
penalty. There they took the penalty to be the group minimax concave penalty,
MCP [38]. In addition, the authors used a pre-whitening technique to more
fully exploit the within curve dependence. Unfortunately, the method is com-
putationally expensive and cannot be applied when the number of predictors,
I, is greater than the sample size, N , meaning that it cannot be applied to our
intended high-dimensional applications. As we shall see in Section 4.2.2, the pre-
whitening can also be counter productive when working with densely sampled
functional data. Barber et al. [1] proposed the function-on-scalar lasso, FSL,
which uses penalized functional least squares. In their approach they assumed
the data and parameters were from an arbitrary Hilbert space, but to induce
sparsity, the penalty was taken to be a type of induced �1 norm on the product
space of Hilbert spaces where the parameters and data lie. Their approach is
computationally efficient since it is a convex optimization problem, and achieves
optimal rates of convergence for the parameter estimates even when the number
of predictors, I, is much larger than the sample size N (I � N). However, the
method, like traditional lasso, does not achieve the functional oracle property
due to a non-negligible asymptotic bias. To that end, in a follow up paper Fan
and Reimherr [13] developed an adaptive version, AFSL, and showed it achieves,
what we call here, the strong functional oracle property, which we will discuss
in further detail in Section 5. Furthermore, this method can be implemented
at nearly the same computational cost as FSL. However, in all of these cases,
the methods only shrink the estimates, there is no ability to include additional
structure, such as smoothness or periodicity.

A related area of research we should mention concerns variable selection in
time varying effect models (or varying coefficient models), TVEMs. There is
a great deal of overlap when the TVEMs incorporate repeated measures on
the same unit/subject, i.e. longitudinal data. These models have traditionally
been designed for univariate functions that are observed very sparsely and with
predictors that also vary over time (also called a concurrent model in functional
data analysis). Wang et al. [35] considered variable selection in TVEMs using
a B-splines expansion combined with a group SCAD penalty, but their focus
was the low-dimensional setting, i.e. a fixed number of predictors. [26] extended
this work for a more general basis and provide a more efficient computational
technique for finding the minimizer. Wei et al. [36] then considered the high-
dimensional case, where one has a large number of time-varying predictors. They
also used an arbitrary basis alongside a group lasso penalty. Xue and Qu [37] also
considered the low-dimensional setting using splines, but with a TLP penalty.
In a fairly different direction [34] considered having both scalar predictors and
time varying predictors that are observed with measurement error, but did not
consider repeated measures or having a large number of predictors. Each of these
works provides asymptotic theory in the form of Oracle properties. However,
these works also focus on the case where the curves are sampled fairly sparsely,
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while we focus on the functional case. In addition, we control the smoothness
of the estimates via the RKHS norm, while these works control the smoothness
by choosing the number of basis functions.

The major contributions of this work are as follows. We develop a new high-
dimensional functional regression methodology that simultaneously selects im-
portant predictors and provides smooth estimates of their effects; previous ap-
proaches focused on selection only. Using convex analysis over Hilbert spaces, we
provide a coordinate descent algorithm for model fitting and a very fast R pack-
age, flm, whose backend is written C++; previous methods “piggybacked” off of
existing multivariate tools while ours is customized for functional data, resulting
in substantial gains in computational efficiency. As part of this computational
efficiency, we also avoid the use of the “Representer Theorem” of RKHSs for ex-
pressing parameter estimates, which, while theoretically convenient, is often not
computationally efficient [31]. Instead we utilize the eigenfunctions of the kernel
to expand the parameters, which can dramatically improve computational ef-
ficiency. We also provide asymptotic theory, which demonstrates that FLAME
achieves a functional version of the oracle property. This theory requires sub-
stantial advances over the theory for FSL as we are mixing Hilbert space and
RKHS norms, which are not equivalent (in a mathematical sense). Lastly, our
framework allows one to build in a variety of structures into the parameters,
including smoothness and periodicity. As can be seen in Section 4 this can result
in dramatic gains in statistical efficiency.

The remainder of the paper is organized as follows. In Section 2 we outline
several important concepts from FDA as well as the modeling assumptions of
the data. In Section 3 we detail our approach, presenting a coordinate descent
algorithm which allows FLAME to be computed very efficiently. In Sections
4 we present numerical illustrations including simulations and an application
to a longitudinal genetic association study. We conclude with Section 5 which
presents an asymptotic justification for our approach in the form of an oracle
property.

2. Background and methodology

For a detailed introduction to FDA we refer the interested reader to Ramsay and
Silverman [28], Graves et al. [15], Horváth and Kokoszka [18], Hsing and Eubank
[19], Kokoszka and Reimherr [22]. For an introduction on machine learning and
high dimensional regression we refer the reader to [16, 6, 21, 17]. Let H be
a real separable Hilbert space, with norm ‖ · ‖H; our theory will hold quite
generally for data from an arbitrary real separable Hilbert space. In this way,
our methodology is quite broad covering typical spaces such as L2[0, 1], as well
as product spaces, Sobolev spaces, etc.

To produce a framework for selecting important predictors and producing
smooth estimates which applies as broadly as possible, we introduce a linear
operator, K : H → H. We assume that it is positive definite and self-adjoint,
i.e., 〈Kx, x〉 ≥ 0 and 〈Kx, y〉 = 〈x,Ky〉. We also assume that the operator has
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a spectral decomposition

K =

∞∑
i=1

θivi ⊗ vi,

where ∞ > θ1 ≥ θ2 ≥ · · · > 0 are the ordered eigenvalues and vi ∈ H are the
corresponding eigenfunctions, which are orthonormal since K is self-adjoint.
This expansion would hold, for example, if K were compact [11], however the
expansion can exist for noncompact operators, as well, for example the identity
operator. The eigenfunctions {vi} form an orthonormal basis in H. The tensor
product x⊗ y is used to denote the operator (x⊗ y)(h) := 〈y, h〉x. We define a
subspace of H, denoted K, as follows:

K :=

{
h ∈ H :

∞∑
i=1

〈h, vi〉2
θi

:= ‖h‖2
K
< ∞

}
.

If we equip K with the norm ‖h‖K then this space also a Hilbert space. When H

is L2[0, 1] and K is an integral operator with a bivariate kernel function, k(t, s):

(Kf)(t) =

∫ 1

0

k(t, s)f(s) ds,

then K is also a reproducing kernel Hilbert space with reproducing kernel k(t, s)
[4]. In this way, our setting is quite broad.

We now make the following modeling assumption about the response func-
tions, Yn ∈ H, and the predictors Xn,i ∈ R. In Section 5 additional assumptions
will be presented when providing our asymptotic theory.

Assumption 1. Let Y1, . . . , YN be elements of H, satisfying the functional lin-
ear model

Yn =

I∑
i=1

Xn,iβ
�
i + εn,

where X = {Xn,i} ∈ R
N×I is the deterministic design matrix with standardized

columns, and εn are i.i.d. Gaussian random elements of H with mean function
0 and covariance operator C. We assume that there exists 0 ≤ I0 ≤ I such that
only β�

1 , . . . , β
�
I0

are nonzero. This means that, for notational simplicity, the
first I0 of the predictors are significant in the model. We will use the notation
X = (X1 X2) to partition the predictors into the significant predictors, X1, and
the null predictors X2.

Note that any Gaussian process in H will necessarily have a mean function
in H and a covariance operator C which is compact, symmetric, and positive
definite [23]. In our theory, the normality is only used to derive functional con-
centration inequalities. These inequalities determine the rate at which I can
grow with N . When the errors are Gaussian, one has that I can grow exponen-
tially fast relative to N , and the assumptions (as given in Assumption 2) are
easier to interpret. Our arguments can be readily generalized to the non-normal
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case, but the rates will change and the assumptions will be more complicated,
we thus do not pursue that direction presently.

Once one has the operator K, the FLAME target function is defined using a
penalized least squares, a common approach in functional regression:

L(β) =
1

2N

N∑
n=1

||Yn−X�
n β||2

H
+λ

I∑
i=1

ω̃i||βi||K =
1

2N
||Y −Xβ||2

H
+λ

I∑
i=1

ω̃i||βi||K,

with Y ∈ H
N , X ∈ R

N×I and Xn = X(n,·) ∈ R
I , β ∈ K

I . Throughout, we use
notation such as H

N to denote product spaces. For the sake of simplicity, we
abuse notation a bit by letting ‖·‖H also denote the induced Hilbert space norm
on product spaces such as HN . There are at least a few data driven ways one can
choose the weights ω̃i. One option is to use marginal regressions to get initial
parameter estimates, then the weights would be one over the norms of those
estimates [20]. Another option is to run FSL first and then use its corresponding
estimates. This has the advantage of also dramatically reducing the dimension of
the problem, and is the approach we take for developing our asymptotic theory
in Section 5. Lastly, one could first run the nonadaptive version of FLAME
(i.e. with ω̃ ≡ 1) to obtain preliminary estimates, β̃i, and then compute the

weights as ω̃i = ‖β̂i,N‖−1
K

. This is the approach we take for our empirical work
in Section 4. Our reasoning is that we wanted a more pure comparison between
the different methods to compare their performances. Since all of the methods,
except FSL, utilize a preliminary run to different degrees, opening the door to
mixing and matching would create a huge number of potential options, and is
beyond the scope of this paper.

In our approach we use the norm ‖ · ‖K to both induce sparsity and smooth
the parameter estimates. Previous approaches have focused only on one or the
other. Furthermore, by allowing for a general K, we provide a framework which
is very flexible and can accommodate a variety of underlying assumptions about
the parameters, such as periodicity and boundary conditions. The purpose of
the data driven weights is to penalize “smaller” parameters more, and thus not
shrink the larger ones as much. This allows the estimator to be asymptotically
unbiased and achieve an oracle property. We now discuss several examples of
popular kernels. In general, we recommend using the Sobolev kernels with either
one or two derivatives as the default, however, for those settings with additional
structure other choices are viable as well. In particular, for periodic data we
would recommend the periodic kernel, or for very smooth data we would rec-
ommend the Gaussian kernel.

Example 1 (Sobelev Space). Consider H = L2(D), where D is a compact
subset of Rd. Define K to be the subset of functions in L2(D) that have up to
and including mth order derivatives that are also in L2(D). A family of norms
can be defined on K as

‖x‖2
K
=

∑
|α|≤m

1

σ2
α

∫
D
|x(α)(s)|2 ds.
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Here α is a d-dimensional vector of nonnegative integers whose sum is less than
or equal to m, while the σα are nonzero weights. Equipped with this norm, K is
an RKHS if and only if m > d/2. In the case where D = [0, 1] and m = 1, we
have that

k(t, s) =

{
σ

sinh(σ) cosh(σ(1− s)) cosh(σt) t ≤ s
σ

sinh(σ) cosh(σ(1− t)) cosh(σs) t > s
.

One can then numerically solve for the eigenfunctions and eigenvalues of K.
These details can be found on Page 281 of Berlinet and Thomas-Agnan [4].

Example 2 (Gaussian Kernel). Let H = L2(D), then the Gaussian kernel is
given by

k(s, s′) = exp
{
−σ|s− s′|2

}
.

While the Sobelev spaces contain functions which are differentiable up to a given
order, the space K here contains functions which are infinitely differentiable.
When used in FLAME, such a kernel will produce very smooth estimates.

Example 3 (Exponential Kernel). The exponential kernel is on the other end
of the “smoothness” spectrum compared to the Gaussian kernel, producing func-
tions with only one derivative. In this case we have

k(s, s′) = exp {−σ|s− s′|} .

This seemingly minor adjustment to the power in the exponent produces a space
consisting of continuous functions with only one derivative. Using this kernel
will typically produce “rougher” looking FLAME estimates than the Gaussian
kernel. In practice, they are usually quite similar to the Sobolev kernel when
D = [0, 1] and m = 1, as the two produce equivalent norms (in a mathematical
sense).

Example 4 (Periodic Kernel). A very useful feature of working with an RKHS
is that one can incorporate structures such as periodicity and boundary condi-
tions into the parameter estimates. This may be useful, for example, when the
domain represents time over the course of a year. In that case, one might expect
the parameters to be periodic. In this case one may use the periodic kernel with
period p = 1 for yearly periodicity, p = 1/2 for semestral periodicity, or p = 1/4
for seasonal. The periodic kernel with period p is defined as

k(s, s′) = σ2 exp

{
−2/σ sin2

(
π|s− s′|

p

)}
.

More general boundary conditions can be worked into Sobelev spaces and norms,
but we refrain from printing the details here, since we will not explore them in
our simulations. An interested reader is referred to, for example, Section 4 of
Chapter 7 in Berlinet and Thomas-Agnan [4] who list many examples of kernels
that can work in different structures.
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3. Implementation and computational details

In this section we develop a coordinate descent algorithm for quickly finding the
FLAME estimator. Previous methods relied on rephrasing the problem so that
group lasso for scalars could be used, and avoided developing a computational
framework specifically for functional data. Those approaches work, however, one
can obtain a more efficient algorithm which applies quite broadly by utilizing
the functional structure of the problem. These methods are implemented in an
accompanying R package flm. The computationally intensive functions in this
package are coded in C++, so that the methodology can be implemented very
quickly even for very large datasets.

The algorithm is based on utilizing functional subgradients so that, at each
step, individual parameter estimates can be updated very quickly in a nearly
closed form. An interested reader is referred to Boyd and Vandenberghe [5],
Bauschke and Combettes [3], Barbu and Precupanu [2], Shor [30] for more de-
tails on subgradients and subdifferentials. Subgradients generalize derivatives
(in this case Fréchet derivatives) to convex functionals (mappings from H to R)
which are not necessarily differentiable. At any point where the functional is dif-
ferentiable, the two notions coincide, but subgradients are defined more broadly
to convex functionals that need not be differentiable, and have become a staple
of convex analysis. Let f : H → R be a convex functional. We say that h ∈ H is
a subgradient of f at x ∈ H if for all y ∈ H we have f(x + y) − f(x) ≥ 〈h, y〉.
We denote by ∂f(x) the collection of all subgradients of f at x, called the sub-
differential. Trivially, x is a minimizer of f if and only if 0 ∈ ∂f(x). We show in
the appendix that the subgradient for FLAME is given by

∂

∂βi
Lλ(β) = − 1

N

N∑
n=1

Xn,iK(Yn −X�
n β) + λω̃i

{
||βi||−1

K
βi, βi = 0

{h ∈ K : ||h||K ≤ 1}, βi = 0
.

(1)
At each step of the coordinate descent we can use (1) to update our estimates. In

particular, suppose that β̂ is our current estimate and we aim to update the ith

coordinate, β̂i, treating all other coordinates as fixed. Since the Xi are assumed
to be standardized, the least squares (in terms of the H norm) estimator would
be

β̌i =
1

N

N∑
n=1

Xn,iEn where En = Yn −
∑
j �=i

Xn,j β̂j .

We can then express the subgradient as

∂

∂βi
L(β) = −K(β̌i) +K(βi) + λω̃i

{
||βi||−1

K
βi, βi = 0

{h ∈ K : ||h||K ≤ 1}, βi = 0
.

Recall that a point β̂i minimizes L(βi) (in the ith coordinate) if 0 is in the

subdifferential at β̂i. We can thus use this expression to determine if β̂i = 0,
which would mean that 0 is in the subdifferential when evaluated at βi = 0.
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Every subgradient at βi = 0 is of the form K(β̌i)+λwih, where h is any function
that satisfies ‖h‖K ≤ 1. Setting this equal to zero, we get h = −(λwi)

−1K(β̌i),
which means 0 is in the subdifferential as long as

||K(β̌i)||K ≤ λω̃i =⇒ β̂i = 0. (2)

Note this also indicates a useful starting value of λ for the algorithm; if we take

λ = max
i=1,...,I

{ω̃−1
i ‖N−1

∑
XniK(Yn)‖K}, (3)

then the solution will always be β̂i = 0 when updating any coordinate. Since
all quantities in (3) are known, we can compute this quantity to determine a
starting value for λ, and then compute a sequence of solutions as we decrease λ.
This is an interesting contrast with nonparametric smoothing, where it is often
challenging to specify a range of tuning parameters that works in every setting.
When β̂i = 0, we can solve for it in a nearly closed form. In particular, we have

−K(β̌i) +K(β̂i) +
λω̃i

||β̂i||K
β̂i = 0 =⇒ β̂i =

(
K +

λω̃i

‖β̂i‖K
I

)−1

K(β̌i). (4)

The only unknown quantity at this point is ‖β̂i‖K. Unfortunately, its expression
does not have a closed form solution (unlike FLS or AFSL). However, if we take
the K-norm of the expression in (4) we arrive at the following scalar equation
that can be solved numerically

1 =

∞∑
j=1

θj〈β̌i, vj〉2

(θj ||β̂i||K + λωi)2
.

Our coordinate descent algorithm therefore proceeds iteratively, defining a se-
quence of β(t) for t = 1, . . . , T which converges to the desired approximation β̂.
We set the maximum number of iterations T and a stopping criteria based on
the improvement in the estimation of the β coefficients (i.e. the K-norm of the
increment should be higher than a fixed tolerance).

Regarding the weights, ω̃i, we run the algorithm twice. The first one (the non-
adaptive step) is run with weights set to 1, and the second time (adaptive step)

we take ω̃j = ‖β̂j,N‖−1
K

with ‖β̂j,N‖K the norm of the β estimated in the non-
adaptive step. In particular the adaptive step is run to improve the statistical
performance of the estimates for the significant predictors by reducing their
bias; without the adaptive step one does not have the oracle property (Section
5). The algorithm is then run only on the non-zero predictors isolated in the
non-adaptive step. These steps must be run for a sequence of λ and we have to
identify a proper λ which maximizes some selection criterion; we choose λ to
minimize the cross validation error, once we have isolated a training and a test
set (randomly sampled as the 25% of the entire data set).

We mention two features we have built into the code which help increase its
computational efficiency. The first is a warm start, which means when moving to
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the next λ value, we use the previous β̂ as the initial value for β. Since λ usually
changes very little with each step, this means that the new β̂ can be computed
very quickly (usually with just a few iterations). In this way, one can obtain the
solutions for an entire sequence of λ with only marginally more computation
time than with a single λ, and is a commonly used device in optimization. The
second feature is what we call a kill switch, which will stop the algorithm from
considering subsequent λ values if the number of active predictors moves past a
certain threshold. This allows the user to set the maximum size for the number of
predictors selected by the model. When the algorithm moves past this threshold,
no further λ are considered after calculating its next parameter estimate (so the
final estimate might have a few more predictors than specified by the kill switch).
In certain applications, one can make a good guess as to the maximum number
of predictors that could conceivably be selected by the model. In these settings,
this bound can be used for the kill switch. For example, most genetic studies
involving complex traits, even with hundreds of thousands of predictors, result
in only a handful of significant and reproducible associations. If one takes the
kill switch too small, then the number of predictors chosen in the final solution
will be very close to number indicated in the kill switch, and thus the user should
increase the kill switch and then rerun the algorithm. However, in practice this
switch need not be used if there is no previous knowledge about the expected
sparsity of the solution. The algorithm slows down as more predictors enter
the model, thus this has the potential to provide a substantial computational
savings.

Lastly, all functional data methods of this type require some preprocessing of
the raw data into functional units. This is now a fairly well developed step and a
more detailed discussion can be found in [18]. For implementing FSL and AFSL
we utilize a penalized cubic B-splines expansion, where the penalty is chosen
by generalized cross validation. The number of B-splines in our simulations and
application is taken to be 100 so that the smoothing is determined entirely by the
penalty. We then rotate to the FPCA basis so that less that 100 basis functions
can be used, thus gaining computational efficiency. However, for FLAME, we
take a slightly different approach and instead only use the eigenfunctions of the
kernel K, which we compute numerically on a fine grid. This allows us to quickly
compute both H norms and K norms. We choose the number of basis functions,
J , so that

∑J
j=1 θj ≥ 0.99

∑∞
j=1 θj , where θj are the eigenvalues of the kernel

K. This formulation is similar to explaining 99% of the variability in FPCA.
We use such a high mark because dimension reduction is not our goal; we aim
to approximate the data nearly exactly.

4. Empirical study

In this section we introduce several simulation schemes to analyze the per-
formance of FLAME with different RKHS (Section 4.1) and to compare this
method with AFSL and MCP (Section 4.2). We conclude (Section 4.3) with an
application to a large genetic dataset. For all simulations we assume the data is
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in L2[0, 1]. The kernels we consider are three popular kernels, the Exponential,
the Sobolev, and the Gaussian. In Section C of the appendix we show additional
results using a periodic kernel. In Figure 7 of the appendix, the first four eigen-
functions associated to the Exponential, the Sobolev, and the Gaussian kernel
are plotted and the explained variance is shown. These three kernels show dif-
ferent structure and complexity; in Section 4.1 the consequences of the different
smoothness levels required to functions embedded in these kernels are presented.

All simulations used 100 runs on a Intel quad-core i7 desktop with 8GB of
ram with the vecLib linear algebra library of R and measured in terms of:

• computational time: median of the computational time (sec.) of the runs.
• number of true positive predictors: average number of correctly non-zero

predictors identified (i.e. #{i : β�
i = 0 ∧ β̂i = 0}).

• number of false positive predictors: average number of wrongly identified
non-zero predictors (i.e. #{i : β�

i = 0 ∧ β̂i = 0}).
• prediction error : average of the prediction error, both for data and deriva-

tives,∑N
n=1 ‖ Xnβ

� − Xnβ̂ ‖L2 and
∑N

n=1 ‖ Xnβ
�′ − Xnβ̂

′ ‖L2 .

Lastly, we implement FLAME by first running its non-adaptive version (ω̃i ≡ 1)
and then use the resulting estimates in a second adaptive step. In Appendix D
we provide two additional sets of simulations. The first set repeats one of our
settings using FSL to compute the weights, but using FLAME for the adaptive
step (Figure 5). The results end up being nearly the same, indicating that the
procedure is not too sensitive to how the adaptive weights are chosen. The
second set of additional simulations avoids using the kill switch and runs the
algorithim for all of the specified λ values (Figure 6 and Table 2). The result is
almost identical in terms of statistical performance, but the computation time
increases by a factor of 5-20 depending on the setting.

4.1. Comparison between different kernels

In this section we compare the performance of FLAME using different ker-
nels. We show how the variation of the kernel can influence the identification
of the number of correctly identified predictors and the prediction error. Two
high-dimensional simulation settings are introduced: with rough and smooth β�

coefficients.
The simulations consist of the random generation of a sample of size N =

500 and I = 1000 predictors, with I0 = 10 significant ones. The predictor
matrix X is the standardized version of a matrix randomly sampled from a N
dimension Gaussian distribution with 0 mean and identity covariance matrix.
For the rough case, the true coefficients β�(t) are sampled from a Matérn process
with 0 average and parameters (ν = 2.5, range = 1/4, σ2 = 1), while for the
smooth setting the range parameter of the Matérn process is set to 1 and ν is
set to 3.5. In Figure 8 of the appendix an example of the true coefficients in
the two settings is shown. The outcomes, Yn(t), are obtained as the sum of the
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Fig 1. Summary of the simulations varying kernel for the rough (top) and smooth (bottom)
cases. From the left, the prediction error, the prediction error on derivatives, and the number
of true and false positive predictors.

contribution of all the predictors and a random noise, a 0-mean Matérn process
with parameters (ν = 1.5, range = 1/4, σ2 = 1). Functions are sampled on an
evenly spaced grid between 0 and 1 with m = 50 points.

For these simulations the kill switch parameter is set to 2I0 = 20 and λ
is chosen via cross-validation from a 100-point gird of values that are equally
spaced on the logarithmic scale. The range of this grid is from λmax, as given in
(3), to rλλmax with rλ = 0.01 for the rough case and rλ = 0.001 for the smooth
setting. A summary of the results is shown in Figure 1 for both the rough and
smooth cases.

Focusing on the rough setting we notice that the Gaussian kernel always
performs worse than other kernels in terms of prediction error both for data and
derivatives: it imposes on the functions a structure (infinitely differentiable) they
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don’t possess. Moreover, increasing the σ parameter of the kernels, which results
in a rougher estimates, reduces the prediction error and more true non zeros
predictors are identified. In fact, with a too strong smoothness level, imposed
by the Gaussian kernel or by a small value for the σ parameter, some true
predictors are forced to be zero throughout the domain and this reduces the
number of true positives and increases the prediction error. The rough structure
of the parameters allows all methods considered to avoid the identification of
non significant predictors as the number of false positives is always zero.

A slightly different behavior can be observed in the smooth case. The perfor-
mance of the Gaussian kernel, while still worse, is now much closer in perfor-
mance to the other two kernels. The strange behavior of the prediction error of
derivatives for the gaussian and the exponential kernel is due to an instability
in the estimation of the derivatives of the eigenfunctions of these kernels at the
boundaries of the time domain (not shown here). The number of false positives
in this setting is different from zero (but it remains on average smaller than one
per simulation).

A final remark regarding the high dimensional setting is the computational
cost of the estimation and variable selection procedure. As presented in Table
1 in appendix, the computational time is almost invariant with respect to the
kernel and parameter, while increasing the smoothness level of the predictors in-
creases the computational time. In the next section we present how competitive
FLAME is compared to different methods.

4.2. Comparison with previous methods

4.2.1. The high dimensional setting

In this section we apply AFLS to the simulation setting we’ve introduced in
Section 4.1 and in Table 4 of the appendix we present the results of AFSL esti-
mation in terms of prediction error, computation time and number of predictors
identified (true positives and false positives).

An advantage of FLAME is the reduction of the computation time: FLAME
takes much less than AFSL to run and it also achieves better statistical perfor-
mance. Mainly in the rough case, the Exponential and the Sobolev kernel (with
σ > 1) perform better in terms of prediction error on data, derivatives and in
the number of true positive and false positive predictors.

4.2.2. The small dimensional setting

In this section we reduce the simulation size to make the application of MCP
possible; this method is suitable just for N > I schemes. We present the results
of FLAME, MCP, and AFSL with the same rough and smooth settings intro-
duced in Section 4.1, but with N = 50, I = 20 and I0 = 5. Moreover we focus
on the number of points per curve m to detect whether these three methods are
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Fig 2. Summary of the simulations varying the method for the rough (top) and smooth (bot-
tom) cases. From the left, the prediction error, the prediction error on derivatives, and the
number of true and false positive predictors.

affected by m. For FLAME we focus on the Sobolev kernel with σ = 8, since,
from Section 4.1, it is shown to be a suitable kernel for both these two settings.

In Figure 2 the results for the three methods varying m are shown. We notice
that both FLAME and AFSL estimations are almost invariant with respect to
m, while MCP is strongly affected by variations of m, becoming very unreliable
when the number of points per curve is large. However, if the number of points
is small, MCP performs better than FLAME and AFSL in terms of prediction
error and selecting true predictors, mainly in the smooth setting, but still often
has trouble in terms of false positives. Focusing on the computational efficiency,
presented in Table 3 of the appendix we notice that FLAME and AFSL are
comparable, with the well known higher efficiency of FLAME in the rough case
with respect to the smooth, and they both are almost invariant with the change
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Fig 3. FEV1 curves of 100 randomly selected children measured on 4 years of follow up. The
contribution of age, gender and treatment have already been removed.

Fig 4. Coefficients of the influent SNPs detected and estimated by FLAME.

of m. They globally perform significantly better than MCP, which in addition
becomes slower and slower with the increase ofm. The difference in the efficiency
of FLAME and AFSL is due to the method used to solve the problem: the
coordinate descent method of FLAME is faster than ADMM of AFSL in the
high dimensional setting since it is not based on matrix algebra operations, while
in the small setting both coordinate descent and ADMM are efficient.

4.3. Childhood asthma management program

In this section we present the application of FLAME to a large genetic dataset
collected from [33]. The Childhood Asthma Management Project, CAMP, is a
longitudinal trial to analyze the longterm impacts of several daily treatments
on children with asthma. It includes 439 Caucasian children, ages 5-12, affected
by asthma and monitored for 4 years. These data are freely available from the
dbGaP, Study Accession phs000166.v2.p1 ([10]).

Genotypic informations consists of approximately 670, 000 SNPs with minor
allele frequency larger than 5%. We first apply a screening tool from [9] to
isolate a subset of I = 10, 000 SNPs, on which we apply FLAME. The focus of
our analysis is, then, the detection of the significant SNPs among these 10, 000.
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Each child is given one of three treatments: Budesonide, Nedocromil, or a
placebo. We account for age at the beginning of the study and gender. To quan-
tify the lung strength of children we consider 16 longitudinal measurements of
the Forced Expiratory Volume in one second (FEV1), a common proxy for lung
strength. The lung capacity is the response function of our linear model and we
convert it into a functional data object with a cubic B-spline basis projection
with penalty on the second derivative and smoothing parameter chosen via gen-
eralized cross-validation. As a first preprocessing step we remove the influence of
gender, age, and treatment from FEV1 and then we apply FLAME to evaluate
the impact of the SNPs to the residual functions shown in Figure 3. In Figure 4
the FLAME estimation is presented; for this analysis we use the Sobolev kernel
with σ = 8, a 200 points grid for λ with the ratio rλ = 0.01. We identify the
presence of 12 significant SNPs, 9 with a positive effect in the lung develop-
ment and 3 (rs2206980, rs2041420 and rs953044) with a negative contribution.
Table 6 of the appendix lists the identified SNPs with the comparison with the
ones identified by AFSL: we notice that FLAME identifies two more SNPs, one
with positive effect (rs722490) and one with negative effect (rs2041420). While
the additional positive effect is fairly small, the negative effect is actually quite
sizable, making it a bit surprising that AFSL missed it.

To add a further comparison with AFSL we identify a test (80% of data) and

a training set (20%) to compute the prediction error of data as
∑N

n=1 ‖ Yn −
Xnβ̂ ‖L2 . We replicate this analysis 10 times, to mimic a 10-fold cross-validation,
to present a robust conclusion. The average prediction error for FLAME is 0.200,
while for AFSL is slightly higher at 0.205. Moreover measuring the computa-
tional time we have for FLAME a median of 172.01 sec. and for AFSL 365.07
sec. showing the advantage of FLAME in terms of computational time, with
also a slight improvement in term of prediction error.

As a last point, the SNP selected by FLAME but not by AFSL, rs2041420, is
located on the gene MACROD2. This gene has been associated with a number of
negative health outcomes including Autism, Celiac disease, Crohn’s disease, and
Parkinson’s disease (http://www.gwascentral.org). It has also been linked to
FEV1 and lung development [32, 29]. However, neither of these previous studies
were based on CAMP, and therefore helps validate this finding.

5. Theoretical properties

In this section we provide several theoretical guarantees for FLAME. While this
theory provides a strong justification for using FLAME, there are still several
interesting theoretical questions which remain open and will be discussed below.
We begin by making the following assumption concerning the various terms in
the model. Very similar assumptions can also be found in Fan and Reimherr
[13].

Assumption 2. The regression problem satisfies the following.

http://www.gwascentral.org
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1. Minimum Signal: Let bN = mini∈S ‖K(β�
i )‖K, then we assume that

b2N � I20 log(I)N
−1.

2. Tuning Parameter: The tuning parameter λ satisfies the following lower

and upper bounds I
1/2
0 log(I)N−1 � λ � bNI

−1/2
0 N−1/2.

3. Design Matrix: Let Σ̂11 = N−1X�
1 X1, be the design matrix for only

the true predictors. We assume the minimum eigenvalue σmin(Σ̂11) and
maximum eigenvalue σmax(Σ̂11) satisfy: ν−1

1 ≤ σmin(Σ̂11) ≤ σmax(Σ̂11) ≤
ν1.

4. Irrepresentable Condition Let Σ̂21 = N−1X�
2 X1, be the cross covari-

ance between the null and true predictors. We assume that ‖Σ̂21Σ̂
−1
11 ‖op ≤

φ < 1, where φ is a fixed scalar and ‖ · ‖op the operator norm.

The first assumption is called a minimum signal condition and indicates the
minimum magnitude (of the signals) required for detecting the relevant predic-
tors. Notice that this condition is placed on β� relative to K, which means that
if K wipes out a signal, the algorithm will not be able to detect it. The second
condition concerns the rate for λ, and takes a fairly familiar form [1, 13]. Since
our FLAME formulation normalizes the sum of squares by N , the λ needs to
tend to zero. The lower bound, indicates that it cannot go to zero too quickly,
otherwise one cannot guarantee that all of the null predictors are dropped. Con-
versely, the upper bound actually indicates two things, first if λ goes to zero too
slowly then some of the significant predictors may also be dropped. Second, the
upper bound on λ also ensures the bias is asymptotically negligible for estab-
lishing an oracle property. The third condition on the design matrix simply says
that the design matrix for the true predictors, must be well behaved. This en-
sures that the oracle estimate as well as the FLAME estimate are well behaved
when restricted to the set of true predictors. The last condition is interpreted as
requiring that the true predictors and the null predictors are not too correlated.
This condition is essentially necessary to obtain an oracle property [39].

Under these conditions, we can now state our primary theorem, which states
that FLAME recovers the true support with probability tending to 1, and that
its projections are asymptotically normal.

Theorem 1. If the regression problem satisfies Assumptions 1 and 2, the solu-
tion of the FLAME problem, β̂, asymptotically

1. has the same support of the true solution of the regression problem

P (β̂
s
= β�) → 1,

2. and is equivalent to the Oracle estimator in the sense that, for any sequence
hn = {hi,n} ∈ K

I that satisfies ‖hn‖K ≤ M1 and
∑

‖C1/2hi,n‖2H ≥ M2 >
0 we have
√
N〈β̂ − β�, hn〉

σn

D→ N (0, 1) where σ2
n =

∑
i∈S

∑
j∈S

Σ̂−1
11;ij〈C1/2hi, C

1/2hj〉,

and S denotes support of β�.
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The first part of the theorem is a fairly standard result; we are showing that
our method is variable selection consistent. The second result shows that the
estimators are consistent and are asymptotically normal, but there is a serious
caveat to this, namely the projections are normal only when projected onto an
element of K, not H. If the Yn were finite dimensional, then the two would be
equivalent, but not in the functional setting.

In the context of functional data, we call Theorem 1 a weak oracle property
because the normality occurs in the weak topology (i.e. on projections). Such
results are not uncommon in functional data analysis [7]. Our next result shows
that one can actually obtain a stronger result, namely, that the FLAME and
oracle estimates are asymptotically equivalent in the strong topology. For this
reason, we say that the following theorem is a strong oracle property. First let
us define the oracle estimate, namely

β̂O = {(X�
1 X1)

−1X�
1 Y, 0},

where 0 a vector of zero functions of length I − I0.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied, but that I0 is fixed.
Furthermore, assume there exists a δ > 0 and a constant 0 < B < ∞ such that
for all i ∈ S

∞∑
j=1

〈β�
i , vj〉2

θ1+δ
j

≤ B < ∞.

If λ is such that

λ � bN
N1/2[1+1/(1+δ)]

,

then one also has that √
N‖β̂ − β̂O‖H = oP (1).

Notice that we have introduced slightly stronger assumptions to achieve a
strong oracle property. In particular, we needed a more explicit assumption on
the rate at which the coordinates of β� decrease. If δ = 0 this simply implies
that β� is in K. Lastly, we require a tighter control of the λ which depends on
how quickly the coordinates of β� decrease. If the coordinates actually terminate
(i.e. are zero) at a certain point or if they decrease exponentially fast, then our
assumption on λ is the same as before. The assumption that I0 is fixed allows
us to simplify the results. Using our techniques it is possible to allow I0 to grow,
but we would need additional assumptions on the behavior of the trace of the
covariance operator of the errors with respect to the {vi} basis, and so do not
pursue it here.

6. Conclusions and future work

In this work we have provided a new tool for simultaneous variable selection, pa-
rameter estimation, and parameter smoothing for function-on-scalar regression.
We have provided theoretical guarantees as well as an efficient computational
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algorithm for carrying out our procedure. While other methods are available for
selection and estimation, none of them incorporate smoothing as well. While
our work is fairly complete, there are still many opportunities for improvement.

The first area from improvement concerns the penalty. Our approach is conve-
nient in that we have a fairly simple penalty that has only one tuning parameter.
The downside is that we have to use this parameter to both select parameters
and smooth their estimates. However, there is no reason to think that the same
parameter is optimal for accomplishing both, and in fact, the tendency for the
algorithm to want to choose larger σ values in the kernels seems to indicate this,
namely, the choice of λ is driven more by selection than smoothing. We believe
that altering the penalty can alleviate much of this, especially if one allows for
a second tuning parameter (one for selection and one for smoothing).

The second area for improvement involves the coordinate descent algorithm
we employed. This approach works fairly well, especially when combined with
RCPP, however, there are at least two reasons to consider other approaches.
The first is that the coordinate descent does not have closed form updates
(they are almost closed form). We believe that by using something like ADMM,
this problem could be avoided since one can “decouple” the least squares term
and penalty. The second reason is that the optimization community is actively
researching tools for solving very large sparse problems, which could potentially
allow one to handle millions of predictors.

The last key area we see for improvement concerns our statistical theory. We
believe that our results can be tightened, especially the additional assumptions
needed to achieve Theorem 2. Maybe the major obstacle is obtaining a good
control of ‖β̂‖K. This quantity shows up when updating via coordinate descent
and when trying to control the bias of the FLAME estimate. However, unlike
FSL, we do not have a closed form expression for this quantity in terms of the
least squares estimator. If one can obtain a tighter control of this quantity, it
should be easier to relax the assumptions of Theorem 2. Lastly, it might be
interesting to study the asymptotic properties of β̂ under the K norm, instead
of the H norm. For example, it might be of interest to study the estimated
derivatives of the parameters. However, since this is a much stronger norm,
clearly additional assumptions will be needed. Furthermore, the oracle estimate
would not be the least squares estimator as this need not even live in the space
K. We thus believe there are many open and exciting questions concerning the
behaviors of such functional estimators and their necessary assumptions.

Appendix A: Subgradient equations for FLAME

Before deriving (1) we state the following Lemma which can found in any of the
discussed references on convex analysis.

Lemma 1. Let f1 : H → R be f2 : H → R be two convex functionals over a real
separable Hilbert space H. Then we have the following.

1. If the Fréchet derivative of f1 exists at a point x ∈ H, then the subdiffer-
ential of f1 at x consists of single point which is the derivative of f1 at x.
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2. The subdifferential of f1+f2 is the sum of their respective subdifferentials:
∂(f1 + f2) = ∂f1 + ∂f2. Where the sum is understood as the Minkowski
sum between two sets.

We now state a lemma concerning the subdifferential of the norm and the
norm squared which follows from standard arguments, see for example Section
A.1 of Fan and Reimherr [13].

Lemma 2. 1. Consider the functional f(x) = ‖x‖2
H
. Then f is convex and

everywhere differentiable with

∂f(x) = 2x.

2. Consider the functional f(x) = ‖x‖H. Then f is convex and differentiable
when x = 0 in which case

∂f(x) = ‖x‖−1
H

x x = 0.

When x = 0 we have

∂f(0) = {x ∈ H : ‖x‖ ≤ 1}.

Proof. The proof of the second claim can be found in Section A.1 of [13]. To see
the first part consider

f(x+ h) = ‖x+ h‖2
H
= ‖x‖2 + 2〈x, h〉H + ‖h‖2

H
≥ f(x) + 〈2x, h〉H.

Thus, by the definition of the subgradient, it follows that 2x is the subgradient
of f(x) = ‖x‖2

H
.

We now derive the FLAME subgradient equations. First, we rewrite them
using a common norm:

L(β) =
1

2N
‖K1/2(Y −Xβ)‖2

K
+ λ

I∑
i=1

ω̃i‖βi‖K.

So L is a convex function from K
I → R. Here it is also understood that K1/2(Y )

is applied coordinate wise to each function. Since K is a real separable Hilbert
space we have by Lemma 2.1 and the chain rule that

∂

∂βi

1

2N
‖K1/2(Y −Xβ)‖2

K
= − 1

N

N∑
n=1

Xn,i(K
1/2(Y −Xβ)).

By Lemma 2.2 we have that

∂

∂βi
λ
∑
j=1

ω̃j‖βj‖K = λω̃j

{
‖βj‖−1

K
βj βj = 0

{h ∈ H : ‖h‖K ≤ 1} βj = 0
.

Applying Lemma 1 we can combine the two subdifferentials to obtain (1).
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Appendix B: Proofs

The following two lemmas follow from Theorem 4 and Lemma 9 (respectively)
of Barber et al. [1].

Lemma 3. If Assumption 2 holds, the FSL estimate β̃, computed with all the
weights set to 1, satisfies

supı∈S‖β�
i − β̃i‖H = OP (r

1/2
N ) where rN =

log(I)I0
N

.

Lemma 4. Let X be an H valued Gaussian process with mean zero and covari-
ance operator C. Then we have the bound

P
{
‖X‖2

H
≥ ‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t

}
≤ exp(−t)

where ‖C‖1 the sum of the eigenvalues of C, ‖C‖22 the sum of the squared eigen-
values and ‖C‖∞ the largest one.

Corollary 1. Given the Gaussian process X, with zero mean and covariance
operator C, and given the kernel operator K (represented by the eigenvalues θj:
θ1 ≥ θ2 ≥ . . . ≥ 0, and the eigenvectors vj which define an orthogonal basis for
H and K), we have that

P
{
‖K(X)‖2

K
≥ θ1(‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t)

}
≤ exp(−t)

Proof From the definition of the K norm and recalling that vj is an eigen-
function of K with eigenvalue θj , we obtain that

‖K(X)‖2
K
=

∞∑
j=1

〈θjX, vj〉2
θj

=

∞∑
j=1

θj〈X, vj〉2 ≤ θ1

∞∑
j=1

〈X, vj〉2 = θ1‖X‖2
H
.

We then apply Lemma 4 to obtain

P
{
‖K(X)‖2

K
≥ θ1(‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t)

}
≤

P
{
‖X‖2

H
≥ ‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t

}
≤ exp(−t),

as desired. �

Proof of Theorem 1.1

We begin by partitioning the set of the estimated parameters into Ŝ and ŜC

where
Ŝ =

{
i ∈ {1, . . . , I} : β̂i = 0

}
.

Our aim for this section is then to prove that, with high probability, S = Ŝ,
that is β̂ has S as support.
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Suppose, for the moment, that Ŝ = S, then from the subgradient equation
(1) we have that

X�
1 K

(
Y −X1β̂1

)
= λs̃1 where s̃1 =

{
Nω̃iβ̂i‖β̂i‖−1

K
: i ∈ S

}
, (5)

and β̂1 = {β̂i : i ∈ S} is the estimate of the non-zero predictors. This then
implies that

K(β̂1) =
(
X�

1 X1

)−1 (
X�

1 K(Y )− λs̃1
)
= K(β�

1)+
(
X�

1 X1

)−1 (
X�

1 K(ε)− λs̃1
)
.

To prove that β� and β̂ have the same support (S = Ŝ) we have to verify the
following.

• If i ∈ S, β̂1
s
= β�

1 , i.e. the true non-zero predictors are correctly identified.
This condition can be also written as

‖K(β�
i )−K(β̂i)‖K < ‖K(β�

i )‖K. (6)

• If i /∈ S, β̂i is set to zero, so that the zero predictors are correctly detected.
That means ∥∥∥∥ 1

N
X�

i K
(
Y −X1β̂1

)∥∥∥∥
K

< λω̃i (7)

To achieve a better definition of (6) and (7) we introduce the definition of Y
and find, for all i ∈ S

‖K(β�
i )−K(β̂i)‖K < ‖K(β�

i )‖K
=⇒

∥∥∥e�i [
N−1Σ̂−1

11 (X
�
1 K(ε)− λs̃1)

]∥∥∥
K

< ‖K(β�
i )‖K

with ei a I-size vector with all zero coefficient but the ith which is 1 and Σ̂11

the estimated covariance matrix of X1: Σ̂11 = N−1X�
1 X1. While, for all i /∈ S∥∥∥∥ 1

N
X�

i K
(
Y −X1β̂1

)∥∥∥∥
K

< λω̃i

=⇒
∥∥X�

i N
−1

[
HK(ε) + λX1(X

�
1 X1)

−1s̃1
]∥∥

K
< λω̃i

with H = (I −X1(X
�
1 X1)

−1X�
1 ).

Considering the event
{
S = Ŝ

}
, we observe that

{
S = Ŝ

}
⊂ B1 ∪B1 ∪B3 ∪B4

with

B1 =

{
1

N
‖e�i Σ̂−1

11 X
�
1 K(ε)‖K ≥ ‖K(β�

i )‖K
2

: for some i ∈ S
}

B2 =

{
λ

N
‖e�i Σ̂−1

11 s̃1‖K ≥ ‖K(β�
i )‖K
2

: for some i ∈ S
}
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B3 =

{
1

N
‖X�

i HK(ε)‖K ≥ λω̃i

2
: for some i /∈ S

}

B4 =

{
1

N2
‖X�

i X1Σ̂
−1
11 s̃1‖K ≥ ω̃i

2
: for some i /∈ S

}
.

We will show that with N increasing P (Bl) → 0 for l = 1, . . . 4 and then
P (Ŝ = S) → 0.

Step 1: P (B1) → 0

Recall that

B1 =

{
1

N
‖e�i Σ̂−1

11 X
�
1 K(ε)‖K ≥ ‖K(β�

i )‖K
2

: for some i ∈ S
}
.

We can express B1 = ∪i∈SAi where

Ai =

{
1

N
‖e�i Σ̂−1

11 X
�
1 K(ε)‖K ≥ ‖K(β�

i )‖K
2

}

=

{
1

N2
‖e�i Σ̂−1

11 X
�
1 K(ε)‖2

K
≥ ‖K(β�

i )‖2K
4

}
.

This then implies that that P (B1) ≤
∑

i∈S P (Ai). Thus if we can find a suitable
bound for P (Ai) we can show that P (B1) → 0. For each i we have that

1

N2
‖e�i Σ̂−1

11 X
�
1 K(ε)‖2

K
= ‖K(Ti)‖2K

where Ti = N−1e�i Σ̂
−1
11 X

�
1 ε is a Gaussian process (in H) with zero mean and

covariance operator CT

CT = N−1e�i Σ̂
−1
11 X

�
1 X1

(
Σ̂−1

11

)�
eiN

−1C

= N−1e�i Σ̂
−1
11 N Σ̂11Σ̂

−1
11 eiN

−1C = N−1e�i Σ̂
−1
11 eiC.

Recall that C is the covariance operator of the errors, εi. Now that we have the
form of the CT , we can apply Corollary 1 to obtain

P
{
‖K(Ti)‖2K ≥ θ1N

−1e�i Σ̂
−1
11 ei(‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t)

}
≤ exp(−t).

As long as t ≥ 1, we can find a constant c > 0 (which depends only on C) such
that

θ1N
−1e�i Σ̂

−1
11 ei(‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t) ≤ θ1v1c

N
t.

As t was arbitrary, we now choose a specific value, t̃. In particular, we will take

t̃ =
Nb2N
4θ1v1c

=⇒ θ1v1c

N
t̃ =

b2N
4
.
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By Assumption 2, t̃ tends to ∞, so for N large, it will trivially be larger than
1. This then implies that

P (Ai) = P

(
‖K(Ti)‖K ≥ ‖K(β�

i )‖K
2

)

≤ P

(
‖K(Ti)‖2K ≥ b2N

4

)
≤ exp

(
−t̃

)
= exp

{
− Nb2N
4θ1v1c

}
.

Coming back to B1, we can apply Assumption 2.1 to conclude that

P (B1) ≤
∑
i∈S

P (Ai) ≤ I0 exp

(
− Nb2N
4ν1θ1c

)
= exp

(
− Nb2N
4θ1ν1c

+ log(I0)

)
→ 0.

Step 2: P (B2) → 0

Recall that

B2 =

{
λ

N
‖e�i Σ̂−1

11 s̃1‖K ≥ ‖K(β�
i )‖K
2

: for some i ∈ S
}

with s̃1 =
{
Nω̃iβ̂i‖β̂i‖−1

K
i ∈ S

}
. The K norm of s̃1 is given by

‖s̃1‖2K =
∑
i∈S

N2ω̃i
2 ‖β̂i‖2K
‖β̂i‖2K

= N2
∑
i∈S

ω̃2
i = N2

(∑
i∈S

ω2
i +

∑
i∈S

(ω̃2
i − ω2

i )

)
,

where w̃i = ‖β̃i‖−1
H

is computed using FSL and wi = ‖β�
i ‖−1

H
. We have that

ω̃2
i − ω2

i = ‖β̃i‖−2
H

− ‖β�
i ‖−2

H

=
‖β�

i ‖2H − ‖β̃i‖2H
‖β�

i ‖2H‖β̃i‖2H

=
(‖β�

i ‖H − ‖β̃i‖H)(‖β�
i ‖H + ‖β̃i‖H)

‖β�
i ‖2H‖β̃i‖2H

.

From the definition of the rate rN of Lemma (3), uniformly in i

‖β�
i − β̃i‖H ≤ supi∈S‖β�

i − β̃i‖H = OP (r
1/2
N ),

and from Assumption 2 we have that r
1/2
N /bN → 0. Using these facts we have

that
‖β̃i‖H ≤ ‖β�

i ‖H + ‖β̃i − β�
i ‖H = ‖β�

i ‖H(1 + oP (1)),

uniformly in i. Using the reverse triangle inequality we get that

‖β̃i‖H ≥ ‖β�
i ‖H − ‖β̃i − β�

i ‖H = ‖β�
i ‖H(1 + oP (1)).



4626 A. Parodi and M. Reimherr

One last application of the reverse triangle inequality implies |‖β�
i ‖H−‖β̃i‖H| ≤

‖β�
i − β̃i‖H and we thus obtain that

|ω̃2
i − ω2

i | =
‖β�

i − β̃i‖H
‖β�

i ‖3H
(2 + oP (1)),

uniformly in i. We replace one of the terms in the denominator by noticing that
for all i ∈ S

bN ≤ ‖K(β�
i )‖K ≤ θ

1/2
1 ‖β�

i ‖H.

Then, uniformly in i ∈ S

|ω̃2
i − ω2

i | ≤
OP (1)

‖β�
i ‖2H

θ
1/2
1

bN
‖β�

i − β̃i‖H ≤ θ
1/2
1

bN
OP (r

1/2
N )ω2

i .

Again by Assumption 2, r
1/2
N /bN → 0, and so we conclude

‖s̃1‖2K ≤ N2

(∑
i∈S

ω2
i

)
(1 + op(1)) = N2

(∑
i∈S

1

‖β�
i ‖2H

)
(1 + op(1))

≤ N2 I0θ
2
1

b2N
(1 + op(1)). (8)

Then for the original object we have for each i ∈ S

λ

N

‖e�i Σ̂−1
11 s̃1‖K

‖K(β�
i )‖K

≤ λ

N

‖e�i Σ̂−1
11 ‖ ‖s̃1‖K

‖K(β�
i )‖K

with ‖e�i Σ̂−1
11 ‖ ≤ ‖ei‖‖Σ̂−1

11 ‖op ≤ ν1 from Assumption 2, and in the end

λ

N

‖e�i Σ̂−1
11 ‖ ‖s̃1‖K

‖K(β�
i )‖K

≤ λν1
√
I0N

NbNbN
(1 + op(1)) → 0,

as desired.

Step 3

From the previous definition of B3:

B3 =

{
1

N
‖X�

i HK(ε)‖K ≥ λω̃i

2
: for some i /∈ S

}

we define Ai s.t. for i /∈ S

Ai =

{
1

N
‖X�

i HK(ε)‖K ≥ λω̃i

2

}
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and B3 = ∪i/∈SAi. We can define the gaussian process XiHε, which has zero
mean and as covariance operator X�

i HH�XiC = X�
i HXiC, since H is sym-

metric and idempotent, with C the covariance operator of the zero mean gaus-

sian process ε. Moreover, since we have that supi/∈S ‖β̃i‖H = OP

(
r
1/2
N

)
we can

notice that ω̃i ≤ 1/ supi/∈S(‖β̃i‖H) and then

Ai ⊆
{
OP

(
r
1/2
N

)
‖X�

i HK(ε)‖K ≥ Nλ

2

}
.

Then for any ε > 0 we can find a T = T (ε) > 0 s.t.

P (Ai) ≤
ε

2(I − I0)
+ P

(
‖X�

i HK(ε)‖K ≥ Nλ

2Tr
1/2
N

)
.

As we discussed before, to apply Corollary 1, we need to choose t̃ such that

X�
i HXi(‖C‖1 + 2‖C‖2

√
t̃+ 2‖C‖∞t̃) ≤

(
Nλ

2Tr
1/2
N

)2

. (9)

Focusing on the left side of the inequality we know that

X�
i HXi(‖C‖1 + 2‖C‖2

√
t̃+ 2‖C‖∞t̃) ≤ Nt̃c.

Since H is a projection matrix we have

XiHXi =

N∑
t=1

(
N∑

n=1

Xi,nHn,t

)2

=

N∑
t=1

1 = N,

and again there exists a constant c such that ∀t, ct ≥ (‖C‖1 + 2‖C‖2
√
t +

2‖C‖∞t), so we define t̃:

t̃cN ≤
(

Nλ

2Tr
1/2
N

)2

⇒ t̃ =
λ2N

4T 2crN
.

Applying corollary 1 we have

P

(
‖X�

i HK(ε)‖K ≥ Nλ

2Tr
1/2
N

)
≤ exp

(
− λ2N

4T 2crN

)
≤ exp

(
− I0 log

2(I)

N4T 2crN

)

and then we can compute the probability of B3

P (B3) ≤
∑
i/∈S

P (Ai) ≤ (I − I0) exp

(
− I0 log

2(I)

4NT 2crN

)
+

ε

2

≤ exp

(
− I0 log

2(I)

4NT 2crN
+ log(I − I0)

)
+

ε

2
.

Since rN << (I0 log
2(I))/N , we can take N large enough to make the first term

smaller then ε/2 and have the convergence of the probability to 0.



4628 A. Parodi and M. Reimherr

Step 4

Recall that B4 is defined as

B4 =

{
1

N2
‖X�

i X1Σ̂
−1
11 s̃1‖K ≥ ω̃i

2
: for some i /∈ S

}
.

Recall from (8)

‖s̃1‖2K ≤ N2θ21
I0
b2N

(1 + op(1)),

as well as
sup
i/∈S

ω̃i
−1 = OP (r

1/2
N ).

The irrepresentable condition (Assumption 2.4) implies

∀i /∈ S, ‖X�
i X1Σ̂

−1
11 ‖op ≤ ‖Σ̂21Σ̂

−1
11 ‖op ≤ φ < 1.

Then we consider the inequality of B4 for a fixed i /∈ S

2‖X�
i X1Σ̂

−1
11 s̃1‖K

N2ω̃i
≤ 2‖X�

i X1Σ̂
−1
11 ‖op‖s̃1‖K

N2ω̃i
≤ 2φr

1/2
N I

1/2
0 θ1

NbN
OP (1) → 0,

which finishes Step 4 and completes the proof.

Proof of Theorem 1.2

The strategy of this proof is to show that the (projected) FLAME estimate is
equal to the oracle estimator (least squares when the true predictors are known)
plus a bias term. We then show how the adaptive step allows for the bias to
be asymptotically negligible. Let hn = {hi,n} ∈ K

I be a bounded sequence:
‖hn‖K < M1. We will show that

√
N〈hn, β̂ − β�〉H

σn

D→ N (0, 1) where σ2
n =

I0∑
i=1

I0∑
i=1

Σ̂−1
11;ij〈hi,n, Chj,n〉,

assuming that the hi,n are chosen such that
∑

i∈S〈C1/2hi, C
1/2hi〉 ≥ M2 > 0

for some fixed M2. Recall that the oracle estimator is

β̂S
O = (X�

1 X1)
−1X�

1 Y and β̂O = {β̂S
O, 0},

where 0 here is the zero function in K
I−I0 . Since we assume that the Y are

Gaussian, we have that

√
N〈hn, β̂O − β�

1〉H ∼ N (0, σ2
n).

By Assumption 2.3 we have that
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σ2
n ≥ ν−1

1

∑
i∈S

〈C1/2hi, C
1/2hi〉 ≥ ν1M2,

and so is bounded from below, so we need only to show that

√
N〈hn, β̂O − β̂1〉H = oP (1).

From equation 5, when Ŝ = S we have that

X�
1 K(Y −X1β̂1) = λs̃1 =⇒ β̂1 = (X�

1 X1)
−1X�

1 Y − λ(X�
1 X1)

−1K−1(s̃1)

= β̂O − λ(X�
1 X1)

−1K−1(s̃1).

Let hS
n = {hi,n : i ∈ S}. We then have that the difference, projected onto h is

given by

√
N〈h, β̂O − β̂〉H =

√
Nλ〈(X�

1 X1)
−1K−1(s̃1), h

S
n〉H

=
λ√
N

〈Σ̂−1
11 K

−1/2(s̃1),K
−1/2hS

n〉

≤ λ√
N

‖Σ̂−1
11 K

−1/2(s̃1)‖H‖hn‖K,

where the last step follows from the Cauchy-Schwarz inequality. Applying As-
sumption 2.3 along with an operator inequality we have that

λ√
N

‖Σ̂−1
11 K

−1/2(s̃1)‖H‖hn‖K ≤ λ√
Nν1

‖s̃1‖K‖hn‖K.

From the equation (8) we have

‖s̃1‖K ≤
√
I0Nθ1
bN

(1 + op(1))

and then

|
√
N〈h, β̂O − β̂1〉H| ≤

λθ1
√
I0
√
N‖hn‖K

ν1bN
(1 + oP (1)) = oP (1),

by Assumption 2. Since P
(
Ŝ = S

)
→ 1 the proof is complete.

Proof of Theorem 2

We begin by partitioning the problem into two pieces. Let ei ⊗ vj denote the
tensor product between ei, a vector of zeros except in the ith coordinate which
is 1, and vj , the jth eigenfunction of K. In other words, ei ⊗ vj ∈ K

I , and is
the zero function in all coordinates except the ith where it is equal to vj . Now
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fix a positive integar J and apply Parseval’s identity to obtain

N‖β̂ − β̂O‖2 = N

I∑
i=1

‖β̂i − β̂O;i‖2

= N
I∑

i=1

∞∑
j=1

〈β̂i − β̂O;i, vj〉2

= N

I∑
i=1

J∑
i=1

〈β̂ − β̂O, ei ⊗ vj〉2 (10)

+N

I∑
i=1

∞∑
i=J+1

〈β̂ − β̂O, ei ⊗ vj〉2. (11)

Bounding (10) follows the similar arguments as in the proof of Theoerem 1.2,
namely, when Ŝ = S, the summands are zero unless i ∈ S. For i ∈ S we then
have

〈β̂ − β̂O, ei ⊗ vj〉2 =
λ2

N2θj
〈Σ̂−1

11 K
−1/2(s̃1), ei ⊗ vj〉2

≤ λ2

N2θjν21
〈K−1/2(s̃1), ei ⊗ vj〉2.

This gives the bound

N

I∑
i=1

J∑
j=1

〈β̂ − β̂O, ei ⊗ vj〉2 = N
∑
i∈S

J∑
j=1

〈β̂ − β̂O, ei ⊗ vj〉2 ≤ λ2

θJν21N
‖s̃1‖2K

≤ λ2NI0
θJν21b

2
N

(1 + oP (1)).

Turning to the second term, we express β̂ using a different form. Notice that we
can write

s̃1 = Λβ̂1,

where Λ is a diagonal matrix of the terms {Nw̃i‖β̂i‖−1
K }. We therefore have that

X�
1 K(Y )− (X�

1 X1)K(β̂)− λΛβ̂1 = 0.

We can re-express this equation as

β̂O − β̂1 + λ(X�
1 X1)

−1ΛK−1(β̂1) = 0 =⇒ β̂1 = (I + λ(X�
1 X1)

−1ΛK−1)−1β̂O.

The above shrinks (all operators above are positive definite) every coordinate

of β̂O to obtain β̂1 and thus we have that
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N
∑
i∈S

∞∑
j=J+1

〈β̂ − β̂O, ei ⊗ vj〉2 ≤ 4N
∑
i∈S

∞∑
j=J+1

〈β̂O, ei ⊗ vj〉2.

To bound the above in probability, notice that it is positive, thus we can use
Markov’s inequality. Computing the expected value (recall thatX is not random,
only the error terms are) of the projected oracle estimate we obtain

E〈β̂O, ei ⊗ vj〉2 = 〈β�, ei ⊗ vj〉2 + (X�
1 X1)

−1
i,i 〈Cvj , vj〉.

This implies that

4N
∑
i∈S

∞∑
j=J+1

〈β̂O, ei ⊗ vj〉2

= OP (1)N

⎡
⎣∑

i∈S

∞∑
j=J+1

〈β�, ei ⊗ vj〉2 + trace((X�
1 X1)

−1)

∞∑
j=J+1

〈Cvj , vj〉

⎤
⎦ .

By Assumption 2.3 we have trace((X�
1 X1)

−1) ≤ I0ν1/N and since C is trace
class, it follows that

∑∞
j=J+1〈Cvj , vj〉 → 0 as J → ∞. Lastly, by the additional

assumptions of Theorem 2 we have

∑
i∈S

∞∑
j=J+1

〈β�, ei ⊗ vj〉2 =
∑
i∈S

∞∑
j=J+1

θ1+δ
j

〈β�, ei ⊗ vj〉2

θ1+δ
j

≤ θ1+δ
J I0B.

Putting everything together, we get the bound

4N
∑
i∈S

∞∑
j=J+1

〈β̂O, ei ⊗ vj〉2 = OP (1)
[
NI0θ

1+δ
J B2 + I0ν1o(1)

]
.

In this case, I0 is fixed, so the second term is just o(1).
To ensure both (10) and (11) go to zero, we require that J is such that

Nθ1+δ
J → 0 and

λ2N

θJb2N
→ 0.

So we need to be able to choose J such that

θJ � N−1/(1+δ) and θJ � λ2N

b2N
.

This is possible if

λ2N

b2N
� N−1/(1+δ) ⇐⇒ λ � bN

N1/2[1+1/(1+δ)]
,

as desired.
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Appendix C: The periodic setting

In this section we focus on a distinctive feature of FLAME: the possibility of
adapting the choice of the kernel to the prior knowledge on the data. For example
in Figure 9 we plot several periodic coefficients β�. When using FLAME with a
periodic kernel, the resulting estimates will also be periodic. In Figure 10 of the
Appendix, for example, the eigenfunctions of the periodic kernel with period
1/2 are shown. This kernel is general enough to be used for the estimations in
a simulation setting where β� functions are sampled as periodic functions with
period varying in {1/2, 1/4, 1/8}. AFSL and MCP, on the contrary, don’t allow
this characterizations of the coefficients.

The design matrix X is the standardized realization of a multivariate normal
distribution with 0 average and identity covariance structure and the errors are
sampled from a Matérn process with parameter (ν = 1.5, range = 1/4, σ2 = 1).
The aim is to compare the results of FLAME, MCP, and AFSL. In this particular
case, a kernel with period {1/2} allows FLAME to estimate all the predictors
identifying also their periodicity. MCP and AFSL, in contrast, are estimated
in the general L2 space, without any further specifications. In Table 5 of the
appendix we present a summary of the average results across 100 replications
for the three methods; where we see a fairly dramatic increase in statistical
performance for FLAME. An example of the estimates produced by the different
methods, based on β� from Figure 9, is given in Figure 11 of the appendix, where
we see a again a fairly dramatic advantage when using FLAME.

Appendix D: Additional simulation settings

In this section we provide some additional simulations to complement the ones
found in the main body of the paper. In Figure 5 we repeat the simulations from
Section 4.1 with the rougher β coefficient functions (ν = 2.5). This plot should
be compared to Figure 1 as the only difference is in how the adaptive weights are
computed. We see that the results are nearly the same, with the only noticeable
difference being the performance of the exponential kernel. When using FSL to
compute the weights, results for the exponential kernel level off a bit earlier (as a
function of the kernel parameter). Otherwise the results are the same, suggesting
that FLAME is fairly robust against method used in the non-adaptive step for
finding the weights, though our asymptotic theory currently requires that these
weights be based on consistent estimates.

In Figure 6 and Table 2 one can find results using the exponential kernel, the
rougher β, but without using the kill switch. We can see that while the statistical
performance is nearly the same, the computation time increases dramatically.
In essense, the kill switch has saved us from computing solutions that had no
chance of being selected in the cross validation. In practice, if a solution is chosen
near the kill switch, it is a signal that one might want to increase it and rerun
the procedure to make sure the best solution wasn’t missed.
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Appendix E: Additional figures and tables

Fig 5. A recreation of Figure 1, but using FSL to compute the weights ω̃i.

Table 1

Median time for the simulations varying kernel for the rough (left panel) and smooth case
(right panel).

FLAME

Kernel
σ Gaus. Sob. Exp.
0.5 29.30 30.75 41.14

1 21.64 36.62 48.17

2 28.87 43.92 58.67

4 32.34 39.14 61.48

8 32.61 42.99 47.29

16 33.67 42.59 39.95

32 35.47 33.47 40.83

FLAME

Kernel
σ Gaus. Sob. Exp.
0.5 80.38 85.81 95.00

1 77.67 81.33 94.66

2 72.23 87.59 97.95

4 66.69 76.18 91.18

8 58.46 79.12 99.08

16 61.14 80.36 92.98

32 63.23 70.22 69.97

Table 2

Median time for simulations in the rough case using the exponential kernel and no kill
switch. Compare to Table 1.

σ 0.5 1 2 4 8 16 32
time 607.78 650.23 555.42 167.40 148.68 172.29 312.86

Table 3

Median time (sec.) for the simulations varying method for the rough (left panel) and smooth
case (right panel) in the small dimensional setting.

m MCP FLAME AFSL

15 36.00 12.90 7.34

20 32.20 12.56 7.20

50 92.35 13.00 7.28

100 126.58 12.08 7.15

200 377.36 13.95 6.54

m MCP FLAME AFSL

15 12.84 76.85 7.75

20 13.89 60.39 6.92

50 66.30 45.106 8.11

100 139.86 92.57 7.00

200 221.36 85.45 6.14
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Fig 6. A recreation of Figure 1, but without using a kill switch.

Fig 7. Representation of the first four eigenfunctions for each kernel with different σ. From
the left: the Exponential, the Sobolev and the Gaussian kernel. The legend at the top of each
panel denotes proportion of the explained variability for each eigenfunction.
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Table 4

AFSL results for the rough and smooth high-dimensional simulation setting. Prediction
error, computation time and number of correctly and wrongly identified predictors are
presented. This results have to be compared with Figure 1 for estimation error and with

Table 1 of the appendix for the computational efficiency.

prediction error prediction error der. True Positives False Positives Time (sec.)

rough setting 352.51 4664.2 9.92 0.08 1031.01
smooth setting 95.43 382.17 9.64 0.41 812.24

Table 5

Comparison of the results of the three methods on simulations in the periodic setting.
Average prediction error on data, derivatives, average number of true positive, false positive

and the median computational time are shown.

prediction error prediction error der. True Positives False Positives Time
FLAME 24.99 666.15 4.93 0.03 25.99
MCP 162.24 4055.37 5 5 924.98
AFSL 54.54 2081.90 4.87 0.53 8.04

Fig 8. Example of 10 β� coefficients for the smooth (left panel) and rough (right panel)
simulation setting.

Table 6

List of the identified SNPs with AFSL and FLAME. + identifies the SNPs with positive
effect and - the SNPs with negative effect, empty cells identify non detected SNPs.

Informations on the chromosome location of SNPs and further details can be found in the
ALFRED database ([27]).

SNP
chr name

AFSL FLAME

1 rs1875650 + +
2 rs953044 - -
5 rs1368183 + +
6 rs7751381 + +
6 rs2206980 - -
7 rs17372029 + +
8 rs1540897 + +
8 rs4734250 + +
10 rs4752250 + +
11 rs722490 +
15 rs2019435 + +
20 rs2041420 -
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Fig 9. Example of 5 β� periodic coefficients, two have period 0.5, two 0.25 and one 0.125.

Fig 10. First four eigenfunctions of the periodic kernel with period 0.5. Correspondent ex-
plained variability is shown in the top legend

Fig 11. Example of the estimation of the functions of Figure 9 with, from the left, FLAME,
MCP and AFSL.
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