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Abstract: In this paper, we propose a generalization of the subsampling
procedure for non-stationary time series. The proposed generalization is
simply related to the usual subsampling procedure. We formulate the suffi-
cient conditions for the consistency of such a generalization. These sufficient
conditions are a generalization of those presented for the usual subsampling
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1. Introduction

The subsampling procedure for non-stationary time series is very well investi-
gated (see Politis et al. (1999)). The sufficient conditions for the consistency
of subsampling in the non-stationary (and stationary) case were formulated in
the general case. However, in recent years, there have been a growing number
of new resampling methods for non-stationary time series. Almost all of them
are based on the Moving Block Bootstrap (MBB for short) method introduced
first by Kunsch (1989) and Liu and Singh (1992). The MBB procedure is an
extension of Efron’s i.i.d. bootstrap method to the time series case. Based on
MBB, several alternative methods dedicated to the stationary case have been
investigated (see Lahiri (2003)).

In the case of non-stationary time series, the examples of consistency of
resampling methods often concerns time series with periodic or almost peri-
odic structure in mean or autocovariance functions. Recall that the time series
{Xt : t ∈ Z} is called Periodically Correlated (PC for short) if a mean function
μ(t) = E(Xt) and autocovariance function cov(Xt, Xt+τ ) = B(t, τ) exist and are
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periodic functions with the same period T > 1, where the period T is taken as
the smallest integer such that conditions: μ(t) = μ(t+ T ), B(t, τ) = B(t+ T, τ)
hold for any t, τ ∈ Z (see Gladyshev (1961) and Hurd and Miamee (2007)). To
recall from literature the next class of time series we start from the definition of
the almost periodic function. A real-valued function f(t) : Z −→ R of an integer
variable is called almost periodic if for any ε > 0 there exists an integer Lε > 0
such that among any Lε consecutive integers there is an integer pε with the prop-
erty supt∈Z

|f(t+pε)−f(t)| < ε (see to Corduneanu (1989) for more details). The
time series is called Almost Periodically Correlated (APC for short) if a mean
function and autocovariance function exist and are almost periodic in variable
t. The class of APC time series is used in many fields including telecommuni-
cations, econometrics (recently in Mazur and Pipień (2012)) and many others
(see the review in Serpedin et al. (2005) and Gardner et al. (2006)).

The subsampling consistency was proved in many cases for time series with
PC and APC structures without any modification of the subsampling scheme. In
the paper of Lenart et al. (2008), the subsampling consistency for the magnitude
of Fourier coefficients for autocovariance functions in the PC case was proved.
The consistency of subsampling for a spectral density function in the APC case
was examined in Lenart (2011), while in Lenart (2013) and Lenart and Pipień
(2017), the consistency of subsampling for the Fourier coefficient in a Fourier
representation of the expectation function of an APC time series was proved in
univariate and multivariate case, respectively. In Dehay et al. (2014), the prob-
lem of consistency of the subsampling procedure for estimators in continuous
time non-stationary stochastic processes with periodic or almost periodic covari-
ance structures was investigated. The application of the subsampling method
for time series with PC and APC structures can be found in Lenart and Pipień
(2013a), Lenart and Pipień (2013b), and Lenart (2017).

There are several resampling methods based on the MBB procedure dedi-
cated to the PC and APC cases (see Dudek et al. (2014a), Dudek et al. (2014b),
Dudek (2015), Dehay and Dudek (2015), Dudek (2016), Dudek et al. (2016),
Dehay and Dudek (2017), and Dudek (2018)). The main motivation for inves-
tigating in the mentioned above literature a new resampling scheme based on
the MBB procedure for time series with a PC or APC structure is to adjust the
Moving Block Bootstrap procedure to the periodic or almost periodic structure
of the time series. This modification is desirable since the MBB procedure and
numerous modifications use the common idea of generating a new pseudo time
series. For example, in Dudek et al. (2014a), the so-called Generalized Seasonal
Block Bootstrap (GSBB) was motivated in the following manner: “When time-
series data contain a periodic/seasonal component, the usual block bootstrap
procedures are not directly applicable.” Unfortunately, in each case, the consis-
tency of resampling methods based on the Moving Block Bootstrap method are
proved individually because the general sufficient conditions for the consistency
has not been formulated.

Recently, Tewes et al. (2017) use the idea of self-convolution to define the new
resampling procedure called convolved subsampling. They proved the consistency
of this procedure for sampling distributions with normal limits. In particular,
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they proved the consistency of convolved subsampling for the mean of gener-
ally α-mixing sequence. Moreover, Tewes et al. (2017) shown the connection
of convolved subsampling to block bootstrap procedure in the case of sample
mean. They shown that by applying the convolved subsampling technique, some
results concerning block bootstrap consistency can be extend by substantially
weakening the assumptions.

Note that the subsampling procedure and methods based on the Moving
Block Bootstrap procedure are considered rather separately in the literature.
The main reason is that the idea of Moving Block Bootstrap is based on gener-
ation of a new pseudo time series, while in subsampling, each individual block
(or subsample) is taken under consideration to evaluate the estimator based
on that subsample separately. In the Moving Block Bootstrap procedure (or
modification), we calculate the estimator for a resampled pseudo time series.

The sufficient conditions for subsampling consistency presented for stationary
or non-stationary time series seams to be relatively weak in relation to the
conditions for consistency of methods based on block bootstrap and also for
convolved subsampling. Note that the consistency of convolved subsampling
implies the consistency of subsampling, but not necessary inversely. It is not easy
to find an example where the procedure based on block bootstrap is consistent
but the well defined subsampling procedure is not consistent. This is probably
due to the fact that subsampling does not require specific forms of statistics (for
example mean-like statistics) or asymptotic distribution (for example Gaussian).
This is one of the motivations for us to generalize subsampling procedure.

In this work, we generalize the subsampling procedure proposed by Politis
et al. (1999) (Section 2) and formulate the sufficient conditions for the consis-
tency of such a generalization (Section 3). We show that the generalized sub-
sampling is valid under weak assumptions which generalize these presented by
Politis et al. (1999) for subsampling (i.e., α-mixing assumption and assumption
requiring the existence of a non-degenerate limiting distribution for the sampling
distribution being approximated). Our generalization of subsampling procedure
brings the subsampling and usual Moving Block Bootstrap procedures together.
Finally, we demonstrate the consistency of this procedure for Fourier coefficients
in mean expansion for the APC case (Section 4) and show a short simulation
study (Section 5). Some preliminary results related to the presented results can
be found in Lenart (2016).

2. Generalized subsampling procedure

Let X1,X2, . . . ,Xn be a sample from a general non-stationary R
r - valued time

series {Xt : t ∈ Z}. θ̂n ∈ R
s denotes the estimator (based on the sample

X1,X2, . . . ,Xn) of the parameter of interest, θ ∈ R
s. Assume that we are

interested in approximating an unknown cumulative distribution function Jn(·)
of

τn(θ̂n − θ̂), (2.1)
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where τn is a normalizing sequence. The limiting cumulative distribution func-
tion of (2.1) is denoted by J(·). In the standard subsampling procedure, for a
non-stationary time series, the distribution of (2.1) is approximated on the basis
of the empirical distribution based on the following sample {θ̂n,b,1, θ̂n,b,2, . . . ,

θ̂n,b,n−b+1}, where θ̂n,b,t is the estimator θ̂n based on the subsample starting
at t (1 ≤ t ≤ n − b + 1) and with length b = b(n) → ∞. Let Jb,t(·) be the

distribution function of τb(θ̂n,b,t − θ). One of the sufficient conditions for the
consistency of the subsampling distribution is that for any Borel set A ∈ R

s

whose boundary has zero mass, we have the following convergence:

1

n− b+ 1

n−b+1∑
t=1

Jb,t(A) → J(A),

as n → ∞. The stronger condition assumes that

Jb,tb(A) → J(A), (2.2)

as n → ∞, for any sequence tn of positive integers (1 ≤ tn ≤ n − b + 1)
and any Borel set A whose boundary has mass zero. Note that (2.2) means
that, uniformly at t, the cumulative distribution function of τb(θ̂n,b,t−θ) trends
to the limiting cumulative distribution function of (2.1). This condition plays
a central role in proving subsampling consistency. In this paper, we formulate
more general assumptions by taking into consideration more general subsamples
than in the usual subsampling.

We start from the definition of a so-called generalized subsample. To simplify,
consider the set of integers Sn,b = {1, 2, . . . , qn,b}, where qn,b = n − b + 1. By
B = {Bi = (Xi, Xi+1, . . . , Xi+b−1) : i = 1, 2, . . . , qn,b}, we denote the set of
all overlapping blocks. Take any sequence k = k(n) of positive integers and
the related vector Tk = (t1, t2, . . . , tk) ∈ Sk

n,b = Sn,b × Sn,b × . . . × Sn,b with
length k (the so-called vector of starting points). Define the so-called generalized
subsample with the vector of starting points Tk ∈ Sk

n,b and total length kb via

Bb,Tk
=(Xt1 , Xt1+1, . . . , Xt1+b−1︸ ︷︷ ︸

Bt1

, Xt2 , Xt2+1, . . . , Xt2+b−1︸ ︷︷ ︸
Bt2

, . . . ,

Xtk , Xtk+1, . . . , Xtk+b−1︸ ︷︷ ︸
Btk

).
(2.3)

Remark 2.1. Note that the above definition of a generalized subsample cannot
be identified with a generated pseudo time series in the Moving Block Bootstrap
procedure or with a generated pseudo time series by MBB modifications dedi-
cated to the PC or APC case. Note that, if k = 1, Bb,T1 is a typical subsample
used in the classical subsampling approach. If k ≈ n/b, then the length of the
generalized subsample is comparable with the length of a pseudo time series in
the classical MBB procedure. However, in numerous modifications of the clas-
sical MBB procedure, the generating scheme restricts the possible shape of a



Generalized subsampling procedure 3879

pseudo time series to retain the structure of the time series (see, for example,
the generating scheme in GSBB introduced by Dudek et al. (2014a)). Summing
up, not all possible generalized subsamples Bb,Tk

are allowed by the MBB pro-
cedure, because in such a case we are restricted to the case k ≈ n/b. In the
case of existing sophisticated modifications of block bootstrap we additionally
try to retain the structure of the time series. For example in GSBB procedure
the structure of subsample (or sample bootstrap pseudo-observations) is strictly
related to the length of the period for considered PC time series (see Step 1-3.
in Dudek et al. (2014a)).

Finally, θ̂n,b,Tk
denotes the estimator of θ ∈ R

s based on such a general-
ized subsample. In our generalization, the construction of such an estimator (in
particular cases) plays a central role. The expected property of the estimator
θ̂n,b,Tk

is the ability to estimate θ (with the appropriate meaning) for any b, k
and vector of starting points Tk. For the APC time series case, the appropri-
ate estimators for the usual subsampling methodology were proposed in Lenart
(2013) (for Fourier coefficient estimator) and in Lenart (2011) and Lenart (2016)
for the case of spectral characteristics. In particular, for the estimator θ̂n,b,Tk

based on a generalized subsample, the following form can be proposed:

θ̂n,b,(t1,t2,...,tk) =
1

k

k∑
j=1

θ̂n,b,(tj). (2.4)

To explain how the estimator θ̂n,b,Tk
can be constructed, we present some illus-

trative examples, A-D, below. Example A corresponds to the stationary case,
while in the next examples, non-stationarity is assumed. To simplify, we assume
that r = s = 1 in the below examples.

A. Mean for the stationary case is θ = E(Xt). The estimator based on a
generalized subsample is

θ̂n,b,(t1,t2,...,tk) =
1

k

k∑
j=1

θ̂n,b,(tj) =
1

kb

k∑
j=1

tj+b−1∑
t=tj

Xt.

As an estimator of |θ|, we take |θ̂n,b,(t1,t2,...,tk)|.
B. Fourier coefficients for the mean function in the APC case: E(Xt) =∑

ψ∈Ψ

m(ψ)eiψt - an almost periodic function, where Ψ = {ψ ∈ [0, 2π) :

lim
n→∞

n∑
j=1

1
nE(Xj)e

−iψj �= 0} and m(ψ) are complex numbers. For ψ ∈

[0, 2π), we define the estimator of θ(ψ) = m(ψ) based on a generalized
subsample via

θ̂n,b,(t1,t2,...,tk)(ψ) =
1

k

k∑
j=1

θ̂n,b,(tj) =
1

kb

k∑
j=1

tj+b−1∑
t=tj

Xte
itψ.

In the same manner, for parameter |θ(ψ)|, we define |θ̂n,b,(t1,t2,...,tk)(ψ)|.
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C. Fourier coefficients for the autocovariance function in the APC case:
E(Xt) = 0, cov(Xt, Xt+τ ) = E(XtXt+τ ) =

∑
λ∈Λτ

a(λ, τ)eiλt - an almost

periodic function, where Λτ = {λ ∈ [0, 2π) : lim
n→∞

n∑
j=1

1
nE(XjXj+τ )e

−iλj �=

0}, a(λ, τ) are complex numbers and τ ∈ Z. We define the estimator of
θ(λ, τ) = a(λ, τ) based on a generalized subsample via (λ ∈ [0, 2π), τ ∈ Z)

θ̂n,b,(t1,t2,...,tk)(λ, τ) =
1

k

k∑
j=1

θ̂n,b,(tj)

=
1

kb

k∑
j=1

tj+b−1∑
t=tj

XtXt+τ1{1≤t+τ≤n}e
iλt.

(2.5)

In the same manner, for parameter |θ(λ, τ)|, we define |θ̂n,b,(t1,t2,...,tk)(λ, τ)|.
D. Spectral density matrix estimator in the APC case (see Lenart (2016)).

Note that, in the resampling world the normalizing sequence τ(·) that corre-

sponds to θ̂n,b,Tk
may depend on both b and Tk. To explain this let us consider

the example A with k = 2 and assume additionally that
√
dn(

1
dn

cn+dn∑
t=cn+1

Xt − θ)

has non-generate normal limit N(0, σ2), where dn is any sequence of positive
integers tending to infinity, as n → ∞, and cn is any sequence of nonnegative
integers (see for example Theorem 2.1 in Lenart (2013) in a more general case).

If t1 = t2 = 1, then Bt1 = Bt2 and hence
√
b(θ̂n,b,(t1,t2) − θ) =

√
b( 1b

b∑
t=1

Xt − θ)

has the same normal limit N(0, σ2), as b → ∞. But if we consider t1 = 1 and
t2 = n− b+ 1 then the normalizing sequence should be

√
2b to provide conver-

gence of
√
2b(θ̂n,b,(t1,t2) − θ) to the same normal limit N(0, σ2), as n, b → ∞,

b/n → 0. Therefore, we introduce the notation τb,Tk
(rather than τb, as in the

usual subsampling approach).
In the definition of generalized subsample, three parameters play a crucial

role: the number of blocks k, the length of each block b, and finally the vector of
starting points for blocks, i.e., Tk = (t1, t2, . . . , tk). To introduce the generalized
subsampling (GS for short), we need to define the probability space in the
resampling world. In this section, we formulate the general assumptions for
the probability space in the resampling world, while in the next section, we
restrict our attention to some particular cases. In brief, we assume below that
the number of blocks k, the length of the blocks b, and finally the vector of
starting points can be random. Let b1 = b1(n) and b2 = b2(n) be two sequences
of the length of the blocks such that b1 → ∞, b2 → ∞ as n → ∞ and such
that b1 ≤ b2. Let k1 = k1(n) and k2 = k2(n) be two sequences of the number
of blocks in a generalized subsample such that k1 ≤ k2. Finally, (b

∗, k∗) denotes
the random vector with the support

B×K = {b1, b1 + 1, b1 + 2, . . . , b2} × {k1, k1 + 1, k1 + 2, . . . , k2} (2.6)



Generalized subsampling procedure 3881

and with probability mass function denoted by p(b,k) = P ∗((b∗, k∗) = (b, k)
)

for (b, k) ∈ B × K. Next, conditionally at (b∗, k∗) = (b, k) ∈ B × K, let
T∗

k = (t∗1, t
∗
2, . . . , t

∗
k) be a random vector with the support Sk

n,b and condi-

tional probabilities denoted by p(t1,t2,...,tk)|(b,k) = pTk|(b,k) = P ∗
(
T∗

k = Tk ∈

Sk
n,b

∣∣∣(b∗, k∗) = (b, k) ∈ B × K
)
. Note that the vector (b∗, k∗,T∗

k∗) has a ran-

dom length equal to k∗ +2. For such a random element (b∗, k∗,T∗
k∗), we denote

p(b,k,Tk) = P ∗((b∗, k∗,T∗
k∗) = (b, k,Tk)

)
.

In our generalization, we propose to approximate the distribution function
Jn(A) of (2.1) for any Borel set A ∈ R

s by the distribution function of the form

Ln,B,K,p(A) = P ∗(τb∗,T∗
k∗ (θ̂n,b∗,T∗

k∗ − θ̂n) ∈ A)

= E∗
(
1
{
τb∗,T∗

k∗ (θ̂n,b∗,T∗
k∗ − θ̂n) ∈ A

}
|(X1, X2, . . . , Xn)

)
,

(2.7)

which is equivalent to

Ln,B,K,p(A) =
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
Tk∈Sk

n,b

p(b,k,Tk)1
{
τb,Tk

(θ̂n,b,Tk
− θ̂n) ∈ A

}
.

(2.8)

Remark 2.2. Note that

Ln,B,K,p(A) =
∑

b1≤b≤b2

∑
k1≤k≤k2

p(b,k)P
∗(τb,T∗

k
(θ̂n,b,T∗

k
− θ̂n) ∈ A|(b∗, k∗) = (b, k))

=
∑

b1≤b≤b2

∑
k1≤k≤k2

p(b,k)

⎛
⎝ ∑

Tk∈Sk
n,b

pTk|(b,k)1
{
τb,Tk

(θ̂n,b,Tk
− θ̂n) ∈ A

}⎞⎠ .

This means that Ln,B,K,p(A) can be interpreted as a mixture of (b2−b1+1)(k2−
k1+1) generalized subsampling distributions with fixed (b, k) and weights p(b,k).

Assume that for any b ∈ B, k, k′ ∈ K and for any vectors of starting points

Tk = (t1, t2, . . . , tk) ∈ Sk
n,b, T

′
k′ = (t′1, t

′
2, . . . , t

′
k′) ∈ Sk′

n,b such that
k⋃

j=1

{tj} =

k′⋃
j=1

{t′j} we have τb,Tk
= τb,T′

k′ and θ̂n,b,Tk
= θ̂n,b,T′

k′ . In such a case, the GS

cumulative distribution function can be written as the following:

Ln,B,K,p(A) =
∑

b1≤b≤b2

∑
Tk2

∈S
k2
n,b

p′(b,Tk2
)1
{
τb,Tk2

(θ̂n,b,Tk2
− θ̂n) ∈ A

}
, (2.9)

with appropriate p′(b,Tk2
) depending on the probabilities p(b,k,Tk). The equality

k⋃
j=1

{tj} =
k′⋃
j=1

{t′j} means that vectors (t1, t2, . . . , tk) and (t′1, t
′
2, . . . , t

′
k′) conation
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the same elements but not necessarily in the same order and with the same
multiplicity.

As a simple example, let’s consider constant sequences k1 ≡ 1 and k2 ≡ 2
with the estimator θ̂n,b,Tk

from above example A. In such a case for any fixed

b (b1 ≤ b ≤ b2) and any l ∈ Sn,b we have θ̂n,b,(l) = θ̂n,b,(l,l) = 1
b

l+b−1∑
t=l

Xt and

hence τb,(l) = τb,(l,l). Then

Ln,B,K,p(A) =
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
Tk∈Sk

n,b

p(b,k,Tk)1
{
τb,Tk

(θ̂n,b,Tk
− θ̂n) ∈ A

}
.

=
∑

b1≤b≤b2

∑
l∈Sn,b

p(b,1,(l))1
{
τb,(l)(θ̂n,b,(l) − θ̂n) ∈ A

}

+
∑

b1≤b≤b2

∑
(l,w)∈S2

n,b

p(b,2,(l,w))1
{
τb,(l,w)(θ̂n,b,(l,w) − θ̂n) ∈ A

}

=
∑

b1≤b≤b2

∑
(l,w)∈S2

n,b

p′(b,2,(l,w))1
{
τb,(l,w)(θ̂n,b,(l,w) − θ̂n) ∈ A

}
,

where p′(b,2,(l,w)) = p(b,2,(l,w)) + 1 {l = w} p(b,1,(l)).

Example 2.1. Take k1 = k2 = 1 and b1 = b2 = b and a uniform distribution
for t∗1 on Sn,b. Assume that τb,(t) does not depend on t and that τb,(t) = τb.
In such a case, GS simplifies to the usual subsampling procedure examined in
Politis et al. (1999),

Ln,B,K,p(A) = E∗
(
1
{
τb,T1(θ̂n,b,(t∗1)

− θ̂n) ∈ A
}
|(X1, X2, . . . , Xn)

)
=

1

n− b+ 1

n−b+1∑
t1=1

1
{
τb(θ̂n,b,(t1) − θ̂n) ∈ A

}
.

(2.10)

As was mentioned in the example above, if b2 = b1 = b, k1 = k2 = 1 and under
uniform distribution for t∗1 on Sn,b the GS reduces to the usual subsampling
procedure. We refer to that case as subsampling of order one (S(1) for short).
Generally, for any constant k ∈ N and with k1 = k2 = k and b1 = b2 = b
and under uniform distribution for T∗

k on Sk
n,b, we denote the GS procedure via

S(k) and call it subsampling of order k (with block length b). The distribution
function of S(k) procedure will be denoted by Ln,b,k(·), i.e.,

Ln,b,k(A) =
1

qkn,b

∑
Tk∈Sk

n,b

1
{
τb,Tk

(θ̂n,b,Tk
− θ̂n) ∈ A

}
. (2.11)

Example 2.2. Take k1 = k2 = 1 and a uniform distribution for t∗1 (conditionally
on b∗). Assume that τb,(t) does not depend on t and that τb,(t) = τb. To simplify
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we write pb in place of p(b,1). In such a case,

Ln,B,K,p(A) =
∑

b1≤b≤b2

pb
n− b+ 1

∑
t∈Sn,b

1
{
τb(θ̂n,b,(t) − θ̂n) ∈ A

}
(2.12)

is a mixture of b2 − b1 + 1 subsampling distributions of order one (each with
different b) with weights pb.

Example 2.3. (Non-overlapping generalized subsample) Take k1 = k2 = 2,
b1 = b2 = b. In such a case, by a non-overlapping generalized subsample, we
mean that |t1−t2| > b for any (t1, t2) ∈ S2

n,b. Elementary calculations show that


{(t1, t2) ∈ S2
n,b : |t1 − t2| ≤ b} = n + b(2n − 1) − b2. Note that in many cases

(for considered non-overlapping generalized subsample) it is natural to take
τb,T2 = τ2b, where τ2b is given by (2.1). Under a uniform discrete distribution
for T∗

2 = (t∗1, t
∗
2) on the set {(t1, t2) ∈ S2

n,b : |t1 − t2| > b} we have p(b,2,T2) =
1

n2−n−b(2n−1)+b2 and

Ln,B,K,p(A) =
1

n2 − n− b(2n− 1) + b2∑
T2∈S2

n,b:|t1−t2|>b

1
{
τ2b(θ̂n,b,T2 − θ̂n) ∈ A

}
.

(2.13)

Assume that, for each pair of sets {t1, t2}, {t′1, t′2}, such that {t1, t2} �= {t′1, t′2},
the estimator θ̂n,b,(·) has a different value. Then, the number of point masses
in such a case equals (n2 − n − b(2n − 1) + b2)/2!. Recall that, in the usual
subsampling methodology, there are n− b+ 1 possible different point masses.

Remark 2.3. Tewes et al. (2017) introduced an excellent idea of convolved
subsampling. To compare this idea with generalized subsampling we unify the
notation. We identify k in our work with kn from Tewes et al. (2017) and qn
with Nn. The convolved subsampling estimator Cn,kn(x) of distribution function
proposed by Tewes et al. (2017) can be expressed as

Cn,kn(x) = P ∗(Z∗ ≤ x)

= P ∗(
1√
kn

kn∑
j=1

(Y ∗
n,j −mn,SUB) ≤ x), x ∈ R.

(2.14)

Note that the term Y ∗
n,j (for j = 1, 2, . . . , k) in convolved subsampling is equiv-

alent to τb(θ̂n,b,(t∗j )− θ̂n) in generalized subsampling notation, where t∗j are i.i.d.
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from uniform distribution on the set {1, 2, . . . , n− b+ 1}. Hence

Cn,kn(x) = P ∗

⎛
⎝ 1√

kn

kn∑
j=1

[τb(θ̂n,b,(t∗j ) − θ̂n)−mn,SUB] ≤ x

⎞
⎠

= P ∗

⎛
⎝ τb√

kn

kn∑
j=1

[
(θ̂n,b,(t∗j ) − θ̂n)−N−1

n

Nn∑
i=1

(θ̂n,b,(ti) − θ̂n)

]
≤ x

⎞
⎠

= P ∗

⎛
⎝ τb√

kn

kn∑
j=1

[
θ̂n,b,(t∗j ) − E∗(θ̂n,b,(t∗j ))

]
≤ x

⎞
⎠

= P ∗

⎛
⎝τb√kn

⎛
⎝ 1

kn

kn∑
j=1

θ̂n,b,(t∗j ) − E∗

⎛
⎝ 1

kn

kn∑
j=1

θ̂n,b,(t∗j )

⎞
⎠
⎞
⎠ ≤ x

⎞
⎠ .

The last equality shows the direct relation between generalized subsampling and
convolved subsampling. Assuming that (2.4) holds and that t∗j are i.i.d. from

uniform distribution on the set {1, 2, . . . , n− b+ 1} and that τb,Tk
= τb

√
k, we

conclude that the shape of generalized subsampling distribution is the same as
the shape of convolved subsampling distribution. The difference is only in the
location. In the case of generalized subsampling, the primary issue is to construct
an estimator θ̂n,b,Tk

based on generalized subsample with parameters b, k and
tk. Second important issue is to construct normalizing sequence τb,Tk

, to be
able to prove the sufficient conditions for consistency. Finally, the generalized
subsampling distribution is built on the basis of θ̂n,b∗,T∗

k∗ , where (b
∗, k∗) andT∗

k∗

(conditionally on (b∗, k∗) = (b, k) ∈ B×K) has some given discrete distribution.
In relation to generalized subsampling the distribution of convolved subsampling
is based on θ̂n,b∗,T∗

k∗ = 1
k

∑k
j=1 θ̂n,b,(t∗j ), with one-point distribution for b∗ (we

have b∗ = b) and one-point distribution for k∗ (we have k∗ = k), and with
t∗j as i.i.d. from uniform distribution on the set {1, 2, . . . , n − b + 1} for j =
1, 2, . . . , k. The consistency of convolved subsampling was proved in Tewes et al.
(2017) for many cases, when the limiting distribution of τn(θ̂n − θ) is Gaussian.
Hence, the problem may arise for convolved subsampling when the asymptotic
distribution is not Gaussian. As a problematic example, let us consider the
problem of statistical inference for parameter |θ(ψ)| from point B above. In
such a case the subsampling is consistent (see Theorem 2.3 in Lenart (2013))
but the assumption (2.3) from Tewes et al. (2017) do not hold for θ(ψ) = 0 (see
Theorem 2.2 in Lenart (2013)).

Example 2.4. (Illustrative example) Analogously to example B, for a time
series {Xt : t ∈ Z}, we assume that the expectation function exists and that
μ(t) = E(Xt) =

∑
ψ∈Ψ

m(ψ)eiψt is an almost periodic function with Ψ = {ψ ∈

[0, 2π) : |m(ψ)| �= 0}, where m(ψ) = limn→∞
∑n

t=1 μ(t)e
−iψt. Note that ψ ∈

[0, 2π) ⇔ |m(ψ)| �= 0. Take ψ ∈ [0, 2π) and assume that we are interested in
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approximating the unknown distribution function of
√
n(|m̂n(ψ)| − |m(ψ)|), (2.15)

where m̂n(ψ) is the estimator (based on the entire sample) of the Fourier coef-
ficient m(ψ).

Note that the fundamental step in the GS is the appropriate definition of the
estimator of the parameter of interest. As in example B, we define the estimator
(based on the generalized subsample) of the magnitude of the Fourier coefficient
(for any ψ ∈ [0, 2π)) in natural way:

|θ̂n,b,(t1,t2,...,tk)(ψ)| =

∣∣∣∣∣∣1k
k∑

j=1

θ̂n,b,(tj)

∣∣∣∣∣∣ =
∣∣∣∣∣∣ 1kb

k∑
j=1

tj+b−1∑
t=tj

Xte
itψ

∣∣∣∣∣∣ .
In section 4, we show that generalized subsampling is consistent in a case such
as the approximating distribution function of (2.15). Here, we construct only an
illustrative example. Let us consider a simple case: Xt = 2 sin(0.15t)+ εt, where
εt is a Gaussian white noise with variance of one, b2 = b1 = b, and k2 = k1 = k.
For any k = 1, 2, 3, 4, the cumulative distribution function for subsampling of
order k (with block length b) was evaluated (see Figure 1). In each case, we
arbitrarily fix b = [3.5

√
n]. We consider two sample sizes n ∈ {80, 150} and two

frequencies ψ ∈ {0.15, 0.5}.
The cumulative distribution function of S(k) for k > 1 is ’smoother’ than

for the usual subsampling (k = 1). This is a consequence of the higher number
of different point masses for k > 1 compared to the usual subsampling proce-
dure. The second reason is the relatively small sample sizes. The shape of the
cumulative distribution function for k = 1 diverges from subsampling of higher
orders. Hence, the above illustrative example shows that the order of subsam-
pling may have serious implications on the obtained results, i.e., the results of
testing procedures, quantiles, etc.

Remark 2.4. In some cases, the distribution Ln,B,K,p(A) cannot be efficiently
calculated due to long computational time. This situation may appear when,
for example, k is large. In such a situation, we can approximate the resampling
distribution using Monte Carlo (MC) approximation of the expectation value.
This can be done by noticing that Ln,B,K,p(A) can be interpreted as expectation

of 1
{
τb∗,T∗

k∗ (θ̂n,b∗,T∗
k∗ − θ̂n) ∈ A

}
in the resampling world (see (2.7)).

In the next section, we formulate the sufficient conditions for the consistency
of the generalized subsampling procedure.

3. Sufficient conditions for consistency of the generalized
subsampling procedure

In this section, the sufficient conditions for the consistency of GS are formulated
in similar manner to the formulation in Politis et al. (1999). To simplify our con-
sideration, we restrict our attention to the univariate case (s = 1) from now on.
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Fig 1. Cumulative distribution functions Ln,b,k(x) of S(1) (subsampling), S(2), S(3), and
S(4) for different n ∈ {80, 150}, b = [3.5

√
n], and ψ ∈ {0.15, 0.5}.

The generalization to the multivariate case is natural. Furthermore, in this sec-
tion, we formulate a special assumption concerning probabilities p(b,k,Tk), which
simplifies the proofs of sufficient conditions for consistency of the generalized
subsampling procedure. More precisely, we assume that (b∗, k∗) has a discrete
uniform distribution and (t∗1, t

∗
2, . . . , t

∗
k) conditionally on (b∗, k∗) = (b, k) has

also a discrete uniform distribution (see the assumption below).

Assumption 3.1. Assume that (b∗, k∗) has a discrete uniform distribution on
B×K = {b1, b1 + 1, b1 + 2, . . . , b2} × {k1, k1 + 1, k1 + 2, . . . , k2} (see (2.6)) and
conditionally on (b∗, k∗) = (b, k) the random vector (t∗1, t

∗
2, . . . , t

∗
k) has also a
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discrete uniform distribution on Sk
n,b = {1, 2, . . . , n− b+ 1}k, which means that

p(b,k) =
1

(b2 − b1 + 1)(k2 − k1 + 1)
,

p(b,k,(t1,t2,...,tk)) =
1

(b2 − b1 + 1)(k2 − k1 + 1)qkn,b
.

Remark 3.1. Note that under Assumption 3.1 the generalized subsampling
distribution is a mixture of (b2 − b1 +1)(k2 − k1 +1) subsampling distributions
of order k (with block length b) with equal weights. Hence (in multivariate case)

Ln,B,K,p(A) =
1

(b2 − b1 + 1)(k2 − k1 + 1)

∑
b∈B

∑
k∈K

Ln,b,k(A). (3.1)

Following Assumptions 4.2.1 and 4.2.2 (and 4.3.1 and 4.3.2, respectively, in
the multivariate case) in Politis et al. (1999), we formulate sufficient conditions
for the consistency of generalized subsampling. Using the same notations as in
Politis et al. (1999), we denote the limiting distribution function (as n → ∞)

of τn(θ̂n − θ) by J(·, P ) and the law of this distribution by J(P ). For any
(b, k) ∈ B×K and (t1, t2, . . . , tk) ∈ Sk

n,b, we define

Jb,k,(t1,t2,...,tk)(x, P ) = P (τb,Tk
(θ̂n,b,(t1,t2,...,tk) − θ̂n) ≤ x).

We reformulate Assumptions 4.2.1 and 4.2.2 from Politis et al. (1999) with
appropriate adjustment to GS. Assumption 3.2 corresponds to Assumption 4.2.1
in Politis et al. (1999), and Assumption 3.3 corresponds to Assumption 4.2.2.
Additionally, in the case where k > 1, we formulate new sufficient conditions
(Assumptions 3.4 and 3.5) under which generalized subsampling is consistent.

Assumption 3.2. Assumption 3.1 holds and there exists a limiting low J(P )
such that

(i) Jn(P ) converges weakly to J(P ) as n → ∞
(ii) for every continuity point x of J(P ), we have∑

b1≤b≤b2

∑
k1≤k≤k2

∑
Tk∈Sk

n,b

p(b,k,Tk)Jb,k,Tk
(x, P ) → J(x, P ) (3.2)

The next assumption is stronger than 3.2 and is related to Assumption 4.2.2
of Politis et al. (1999).

Assumption 3.3. Assumption 3.1 holds and there exists a limiting low J(P )
such that

(i) Jn(P ) converges weakly to J(P ) as n → ∞
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(ii) for every continuity point x of J(P ), for any integer sequences b̃ and k̃,
such that b1 ≤ b̃ ≤ b2 and k1 ≤ k̃ ≤ k2, and for any vector of integer se-
quence (tn,1, tn,2, . . . , tn,k̃) such that 1 ≤ tn,i ≤ n− b̃+1 for i = 1, 2, . . . , k̃,
we have

Jb̃,k̃,(tn,1,tn,2,...,tn,k̃)
(x, P ) → J(x, P ) (3.3)

Note that, for k > 1, it is possible to get a vector of starting points Tk =
(t1, t2, . . . , tk) ∈ Sk

n,b such that the blocks Bt1 ,Bt2 , . . . ,Btk of which the subsam-
ple Bb,Tk

is composed are not mutually disjoint. For example, if ti = tj , for some
i �= j, then Bti = Btj . This example is a special case of overlapping blocks in the
generalized subsample Bb,Tk

(see also Example 2.1 in the case S(2)). Formally,
for k > 1 by overlapping blocks in the generalized subsample, we mean that

|ti − tj | ≤ b for some i �= j, where i, j ∈ {1, 2, . . . , k}. (3.4)

which is equivalent that there exist i, j ∈ {1, 2, . . . , k}, i �= j, such that Bti

and Btj are not disjoint. To clarify the problem of overlapping blocks in the
generalized subsample, let us define in the natural manner the following set of
vectors of starting points Rn,b,k ⊂ Sk

n,b:

Rn,b,k = {(t1, t2, . . . , tk) ∈ Sk
n,b : min

i,j∈{1,2,...,n−b+1}, i �=j
|ti − tj | ≤ b}. (3.5)

By the above definition, the set Rn,b,k contains all generalized subsamples where
overlapping blocks appear in the sense of (3.4). Elementary combinatorics show
that the number of elements in the set Rn,b,k has the following bound:


Rn,b,k ≤ k(k − 1)(n+ b(2n− 1)− b2)qk−2
n,b .

This means that, under Assumption 3.1∑
b1≤b≤b2

∑
k1≤k≤k2

∑
Tk∈Rn,b,k

p(b,k,Tk)Jb,k,Tk
(x, P ) = O(k22b2/n), (3.6)

since Jb,k,(t1,t2,...,tk)(x, P ) is nonnegative and bounded by one uniformly at
(b, k,Tk). Hence, under the assumption that k22b2/n → 0 as n → ∞, Assumption
3.2 is equivalent to the following assumption:

Assumption 3.4. Assumption 3.1 holds and there exist a limiting low J(P )
such that

(i) Jn(P ) converges weakly to J(P ) as n → ∞
(ii) for every continuity point x of J(P ), we have∑

b1≤b≤b2

∑
k1≤k≤k2

∑
Tk∈Sk

n,b\Rn,b,k

p(b,k,Tk)Jb,k,Tk
(x, P ) → J(x, P ) (3.7)

The next assumption is stronger than 3.4 and is related to Assumption 4.2.2
of Politis et al. (1999).
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Assumption 3.5. Assume Assumption 3.1 and there exists a limiting low J(P )
such that

(i) Jn(P ) converges weakly to J(P ) as n → ∞
(ii) for every continuity point x of J(P ), any integer sequences b̃ and k̃ such

that b1 ≤ b̃ ≤ b2 and k1 ≤ k̃ ≤ k2, and any vector of integer sequences
(tn,1, tn,2, . . . , tn,k̃) such that:

A) 1 ≤ tn,i ≤ n− b̃+ 1, for i = 1, 2, . . . , k̃

B) min
i,j∈{1,2,...,k̃}, i �=j

|tn,i − tn,j | > b̃, for k̃ > 1,

we have

Jb̃,k̃,(tn,1,tn,2,...,tn,k̃)
(x, P ) → J(x, P ). (3.8)

Notice that Assumption 3.2 is implied by Assumption 3.3. If we assume that
k22b2/n → 0, Assumption 3.2 is also implied by Assumption 3.5. In the main
theorem of this section (see the theorem below), we assume that the conver-
gence of k22b2/n → 0 holds. Analogically to the original Theorem 4.2.1 in Politis
et al. (1999), the following theorem concerning the consistency of GS holds.
This theorem differs from the original in assumptions concerning the α-mixing
sequence and additional sequence k (with relations to n and b). We formulate
this theorem with adequate adjustment.

Theorem 3.1. Assume Assumption 3.2 holds and that

max
b,k,Tk

{τb,Tk
: b1 ≤ b ≤ b2, k1 ≤ k ≤ k2,Tk ∈ Sk

n,b}/τn → 0,

k22b2/n → 0, b1 → ∞, n → ∞. Additionally, assume that the considered time

series is α-mixing with mixing sequence α(·) such that
k2
2

n

n∑
s=1

α(s) → 0. Then,

we have that

(i) If x is a continuity point of J(·, P ), then Ln,B,K,p(x) → J(x, P ) in proba-
bility

(ii) If J(·, P ) is continuous, then

sup
x∈R

|Ln,B,K,p(x)− J(x, P )| → 0

in probability
(iii) For α ∈ (0, 1), let cn,B,K,p(1 − α) = inf{x : Ln,B,K,p(x) � 1 − α}. Corre-

spondingly, c(1−α, P ) = inf{x : J(x, P ) � 1−α}. If J(·, P ) is continuous
at point c(1− α, P ), then

P (τn(θ̂n − θ) � cn,B,K,p(1− α)) → 1− α.

Proof. The proof can be found in the Appendix.
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Remark 3.2. Note that, if k1 = k2 ≡ 1 and b1 = b2 = b, then above the-
orem is equivalent to the original Theorem 4.2.1 presented in Politis et al.
(1999). The only difference is that we assume in such a case that the assump-

tion
k2
2

n

n∑
s=1

α(s) → 0 holds. This assumption simplifies to 1
n

n∑
s=1

α(s) → 0, if

k1 = k2 ≡ 1. However, the last convergence is a simple consequence of α-mixing
properties.

Remark 3.3. Note that, in the usual subsampling methodology, the problem
of overlapping blocks (in the above sense) does not exist since k = 1. Note
that, if k2 is a bounded sequence or constant, then Assumption 3.2 is equiv-
alent to Assumption 3.4 under the condition b2/n → 0. If we take sequences
k1 = k2 = k and b1 = b2 = b such that kb ≈ n, then our procedure is equivalent
to the usual MBB procedure. However, the formulated sufficient conditions for
the consistency of generalized subsampling excludes the case kb ≈ n, by noting
that k2b/n → 0. The condition k2b/n → 0 can be probably weaken. However,
the sufficient conditions for the consistency of the generalized subsampling pro-
cedure in the case that kb ≈ n can be much more sophisticated (if they exist)
because many examples of bootstrap inconsistency are known in the literature.

4. Consistency for Fourier coefficients in the APC case

In this section, we consider an Almost Periodically Correlated univariate time
series {Xt : t ∈ Z} with an almost periodic mean function μ(t) = E(Xt), with
representation:

μ(t) ∼
∑
ψ∈Ψ

m(ψ)eiψt, (4.1)

and almost periodic autocovariance function B(t, τ) = cov(Xt, Xt+τ ), with rep-
resentation:

B(t, τ) ∼
∑
λ∈Λτ

a(λ, τ)eiλt, (4.2)

for any τ ∈ Z. The Fourier coefficients m(ψ) and a(λ, τ) equal to (see Hurd
(1989, 1991); Dehay and Hurd (1994))

m(ψ) = lim
n→∞

1

n

n∑
j=1

μ(j)e−iψj , a(λ, τ) = lim
n→∞

1

n

n∑
j=1

B(j, τ)e−iλj .

The sets Ψ = {ψ ∈ [0, 2π) : m(ψ) �= 0} and Λτ = {λ ∈ [0, 2π) : a(λ, τ) �= 0} are
countable (see Corduneanu (1989)). To simplify this section, we assume that
the sets Ψ and Λ =

⋃
τ∈Z

are finite. In such a case, the representations (4.1)
and (4.2) become equalities, and the spectral density function exists (see Lenart
(2013)). By P (ν, ω) we denote the extension of the spectral density function to
the bifrequency square (0, 2π]2,

P (ν, ω) =
1

2π

∞∑
τ=−∞

a(ν − ω, τ)e−i ντ , (4.3)
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for any (ν, ω) ∈ (0, 2π]2.
Take any ψ ∈ [0, 2π) and let θ = |m(ψ)| be the parameter of interest. Note

that ψ ∈ Ψ ⇔ |m(ψ)| �= 0, which means that identification of the frequencies
in the set Ψ can be based on identification of the non-zero Fourier coefficients
m(ψ).

At the beginning, we formulate general assumptions concerning the block size
b, their number k and starting points. Let k = kn and b = bn be any sequences
of positive integers such that b → ∞ and let tn,i, for any i = 1, 2, . . . , k, be a
sequence of positive integers such that tn,i < n − b + 1. For k > 1, we addi-
tionally assume thet we consider only non-overlapping blocks in the generalized
subsample, i.e.,

min
i,j∈{1,2,...,k}, i �=j

|tn,i − tn,j | > b. (4.4)

Finally, under the above assumptions we define the estimator θ̂n,b,(tn,1,tn,2,...,tn,k) =
|m̂n,b,(tn,1,tn,2,...,tn,k)| of the parameter θ based on the subsample (with a variable
vector of starting points)

(Xtn,1 , Xtn,1+1, . . . , Xtn,1+b−1, Xtn,2 , Xtn,2+1, . . . , Xtn,2+b−1, . . . ,

Xtn,k
, Xtn,k+1, . . . , Xtn,k+b−1)

(4.5)

via

θ̂n,b,(tn,1,tn,2,...,tn,k) =

∣∣∣∣∣∣ 1kb
k∑

i=1

tn,i+b−1∑
j=tn,i

Xje
−iψj

∣∣∣∣∣∣ . (4.6)

For k = 1 (usual subsampling), the above estimator was proposed in Lenart
(2013). The following theorem is a natural adjustment of Theorem 2.1 presented
in Lenart (2013) to the generalized subsample.

Theorem 4.1. Let {Xt : t ∈ Z} be an APC time series with finite sets Ψ and
Λ. Assume that there exist constants δ > 0, and Δ,K ∈ R such that

(i) sup
t∈Z

‖Xt‖2+δ < Δ,

(ii)
∞∑
j=1

jα
δ

2+δ (j) < K.

Take any ψ ∈ [0, 2π). Assume that k/b → 0 and b → ∞ as n → ∞. Let
T̃n,k = (tn,1, tn,2, . . . , tn,k) be any vector of sequences of positive integers such
that, for any sequence {tn,i}n∈Z, i = 1, 2, . . . , k, we have the inequality tn,i <
n − b + 1 for n ∈ Z. Additionally, for k > 1, we assume that (4.4) holds (i.e.,

min
i,j∈{1,2,...,k}, i �=j

|tn,i − tn,j | > b). Then we have the convergence

√
bk

([
Re(m̂n,b,T̃n,k

(ψ))

Im(m̂n,b,T̃n,k
(ψ))

]
−
[

Re(m(ψ))
Im(m(ψ))

])
d−→ N2(0,Ω(ψ)),

where

Ω(ψ) = πg0(ψ)

(
1 0
0 1

)
+ π

(
Re[P (ψ, 2π − ψ)] Im[P (ψ, 2π − ψ)]
Im[P (ψ, 2π − ψ)] −Re[P (ψ, 2π − ψ)]

)
.
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Note that through assumption (4.4) it is possible to consider one normaliz-
ing sequence τb,T̃n,k

=
√
bk in the theorem above. The above theorem means

that the estimator (4.6) is well defined in the sense, that after appropriate
normalizing, is asymptotically normally distributed. Hence, as a consequence

of the above theorem, we conclude that m̂n,b,T̃n,k
(ψ)

p→ m(ψ) as n → ∞. The

next theorem concerns the asymptotic distribution for the normalized estimator
|m̂n,b,T̃n,k

(ψ)|, while the last concerns the consistency of generalized subsam-

pling for |m(ψ)|. These two theorems are generalizations of Theorems 4.2 and
4.3 in Lenart (2013). We formulate these theorems with appropriate adjustment.

Theorem 4.2. Assume that all assumptions of Theorem 4.1 hold. Then, for
any ψ ∈ [0, 2π), we have the convergence

√
bk(|m̂n,b,T̃n,k

(ψ)|−|m(ψ)|) d−→ J{ψ} :=

{
L(Z), for m(ψ) = 0,

N1(0,D0Ω(ψ)D
T
0 ), for m(ψ) �= 0,

where

DT
0 =

[
Re(m(ψ))
Im(m(ψ))

]
/|m(ψ)|,

Z =
√
B2

1 +B2
2 , and the random vector (B1, B2)

T has a two-dimensional nor-
mal distribution with zero mean and variance-covariance matrix equals Ω(ψ). If
we assume additionally that g0(ξ) > 0 for any ξ ∈ [0, 2π) and that det(Ω(ψ)) > 0
for any m(ψ) �= 0 and ψ ∈ (0, π), then the law J{ψ} is continuous.

Theorem 4.3. Let {Xt : t ∈ Z} be an APC time series with finite sets Ψ and
Λ. Assume that there exist constants δ > 0, Δ, and K ∈ R such that

(i) sup
t∈Z

‖Xt‖2+δ < Δ

(ii)
∞∑
j=1

jα
δ

2+δ (j) < K.

Additionally, assume that k22b2/n → 0, b1 → ∞, and k2/b1 → 0 for n → ∞.
Take any ψ ∈ [0, 2π). Then, generalized subsampling is consistent for θ = |m(ψ)|
with θ̂n,b,(t1,t2,...,tk) given by (4.6) and τb,Tk

=
√
bk, i.e., Theorem 3.1, holds.

At the end of this section we construct an easy example of APC time series
for which Moving Block Bootstrap fails and the above Theorem 4.3 holds, i.e.,
generalized subsampling is consistent.

Example 4.1. We consider now the problem of consistency of generalized sub-
sampling, convolved subsampling and MBB procedure for the examined in this
section parameter θ = |m(ψ)|, where ψ ∈ [0, 2π). We start from the simple
construction of the APC time series {Xt : t ∈ Z} for which the parameter
θ = |m(ψ)| will be considered.

Firstly, let us assume that the zero-mean Gaussian time series {ηt : t ∈ Z} is
stationary and that the law of the iterated logarithm:

lim sup
n→∞

η1 + η2 + . . .+ ηn√
2n ln(lnn)

= ς w.p. 1 (4.7)
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holds for some 0 < ς < ∞. Additionally, we assume that assumption ii) in
Theorem 4.3 (concerning α-mixing) holds. To construct such a time series we
can use Corollary 6 in Zhao and Woodroofe (2008), where condition with ρ-
mixing was formulated. A very simple example of such time series {ηt : t ∈ Z}
is Gaussian white noise or zero-mean stationary Gaussian m−dependent time
series. Now, define the APC time series {Xt : t ∈ Z} as

Xt = a cos(λt) + ηt, t ∈ Z,

with almost periodic mean function μ(t) = E(Xt) = a cos(λt), where a ∈ R and
λ ∈ (0, π) are unknown parameters. Note that for the time series {Xt : t ∈ Z}
the above law of the iterated logarithm also holds, i.e.:

lim sup
n→∞

X1 +X2 + . . .+Xn√
2n ln(lnn)

= ς w.p. 1. (4.8)

To justify this, let’s note that
∑n

j=1 cos(jλ) = csc
(
λ
2

)
sin
(
λn
2

)
cos
(
1
2λ(n+ 1)

)
and lim

n→∞

[
csc
(
λ
2

)
sin
(
λn
2

)
cos
(
1
2λ(n+ 1)

)
/
√
2n log(log(n))

]
= 0, for λ ∈ (0, π).

The consistency of convolved subsampling can not be justified on the basis of
results formulated in Tewes et al. (2017), because the asymptotic distribution
from Theorem 4.2 is not Gaussian for |m(ψ)| = 0.

Note that under assumptions formulated in Theorem 4.3 the generalized sub-
sampling is consistent for θ = |m(ψ)|, for any ψ ∈ [0, 2π). But the assumption
b2k

2
2/n → 0 (from this theorem) excludes the case of Moving Block Bootstrap

procedure (see Remark 3.3).
To show the inconsistency of MBB procedure we use the similar arguments as

in the Example 1 of Babu (1984). We take ψ = 0, which means that |m(ψ)| = 0.

In such a case the statistics
√
n|θ̂n| =

∣∣∣ 1√
n

∑n
t=1 Xt

∣∣∣ has asymptotic half-normal

distribution with cumulative distribution function F (x) = erf
(

σx√
π

)
, where σ2 >

0 is the limiting variance of
√
nθ̂n. To consider the MBB procedure we use

generalized subsampling notation (with b1 = b2 = b, k1 = k2 = k) based on
(4.6), where t∗j are i.i.d from uniform distribution on the set {1, 2, . . . , n− b+1}
for j = 1, 2, . . . , k. Then, by additional assumption bk = n, the generalized
subsampling reduce to MBB procedure. To show the inconsistency of MBB in
such a case, notice that for any positive real number x we have (using the same
argument as in Example 1 of Babu (1984)):

P ∗(
√
bk(|θ̂n,b,(t∗1 ,t∗2 ,...,t∗k)| − |θ̂n|) ≤ x)

≥ P ∗(0 ≥
√
bk(θ̂n,b,(t∗1 ,t∗2 ,...,t∗k) − θ̂n) ≥ −2

√
bkθ̂n)

= P ∗(
√
n(θ̂n − E∗(θ̂∗n)) ≥

√
n(θ̂∗n − E∗(θ̂∗n)) ≥

√
n(θ̂n − E∗(θ̂∗n))− 2

√
nθ̂n),

where θ̂∗n = θ̂n,b,(t∗1 ,t∗2 ,...,t∗k). Note that

√
n(θ̂n − E∗(θ̂∗n)) = 0 w.p. 1, (4.9)
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which follows from sufficiently fast convergence to zero with probability for the
Gaussian term

√
n(θ̂n − E∗(θ̂∗n)) (we omit the details). Additionally from the

law of the iterated logarithm (for considered time series {Xt : t ∈ Z}) we have

lim sup
n→∞

√
nθ̂n = ∞ w.p. 1. (4.10)

Hence by consistency of moving block bootstrap procedure for mean μ = 0
(i.e., μ = lim

n→∞
1
n

∑n
t=1 E(Xt) = lim

n→∞
1
n

∑n
t=1 a cos(λt) = 0) for APC time series

under moment and α-mixing conditions (see Corollary 3.2 in Synowiecki (2007)
or Corollary 3 in Tewes et al. (2017) with weakened assumptions) and by (4.9)
and (4.10) we obtain that

lim sup
n→∞

P ∗(
√
bk(|θ̂n,b,(t∗1 ,t∗2 ,...,t∗k)| − |θ̂n|) ≤ x)

≥ lim sup
n→∞

P ∗(
√
n(θ̂n−E∗(θ̂∗n)) ≥

√
n(θ̂∗n−E∗(θ̂∗n)) ≥

√
n(θ̂n−E∗(θ̂∗n))−2

√
nθ̂n)

=
1

2
w.p. 1.

But F (x) < 1
2 for x ∈ (0,

√
πerf−1( 1

2 )
σ ), which means that MBB procedure is not

consistent.

5. Choice of generalized subsample size in S(k) procedure - a short
simulation study

The fundamental problem in applying any resampling method is how to choose
the block size. This problem was considered in relation to the classical subsam-
pling procedure in Politis et al. (1999), where it was shown that the results
may be strongly influenced by the choice of the block length (subsample size)
b. In this section, by simple simulation experiment we also try to analyze the
influence of the parameters b and k on the estimation results in the case of
subsampling procedure of order k, i.e., S(k) with block length b. Recall, that in
S(k) procedure the generalized subsample size is the product of k and b.

Let us consider the following autoregressive model with almost periodic mean
function μ(t) = a cos(λt):

Xt − μ(t) = ψ(Xt−1 − μ(t− 1)) + εt, (5.1)

where |ψ| < 1 and the innovations {εt : t ∈ Z} are independent and identically
distributed (i.i.d.) such that var(Xt) = 1. Note that the time series {Xt : t ∈ Z}
satisfies all the assumptions of Theorem 4.3 since it is α-mixing with geometri-
cally decaying mixing series (see Andrews (1983)).

Under the notations from previous sections we consider the following testing
problem (for {Xt : t ∈ Z}):

H0 : |m(λ0)| = 0, (5.2)
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Fig 2. Probability of H0 rejection under H0. In columns (respectively): λ = 0.0654, λ =
0.1496, λ = 0.2618. Read line – b = [

√
n]; green line – b = 2[

√
n]; blue line – b = 3[

√
n]. εt -

i.i.d. form Gaussian distribution, α = 5%.

H1 : |m(λ0)| �= 0,

for λ0 ∈ [0, π], with test statistics Πn(λ0) =
√
n|m̂n(λ0)| and critical values

calculated by subsampling of order k, i.e., procedure S(k). We will consider the
problem of probability of type I error for the above testing problem (5.2) with
k ∈ {1, 2, 3} and ψ = 0.7. This characteristic of the test have been investigated
by Monte Carlo simulations. We take a = 0 (which is equivalent to μ(t) = 0)
and we obtain 50 000 random samples from model (5.1), then we calculate the
percentage of rejected hypotheses H0 for assumed nominal level α.

In the first part of our simulation study we consider b ∈ {[√n], [2
√
n], [3

√
n]}

and λ0 ∈ { 2π
8×12 ,

2π
3.5×12 ,

2π
2×12} ≈ {0.0654, 0.1496, 0.2618}. With regard to the

monthly data, such a set of frequencies corresponds to the pseudo-period of fluc-
tuations (respectively): eight years, three and a half years and two years. The
sample length rises from 100 to 500 (n ∈ {100+(j−1)50 : j = 1, 2, 3, ..., 9}). Fig-
ures 2-5 presents the estimated nominal level for α = 5%. On each figure we con-
sider different type of innovation distribution (respectively): Gaussian distribu-
tion, uniform distribution, Student’s t-distribution (with 5 degrees of freedom)
and centralized exponential distribution. We can see that our subsampling-based
test is very sensitive to b and k. The higher k or b the estimated significance level
is more underestimated. Recall, that the problem of the block size in usual sub-
sampling procedure is a delicate issue (see section 9 in Politis et al. (1999)). In
generalized subsampling procedure the problem seams to be more complicated
since we are dealing with an additional parameter k. Moreover, the estimated
significance level depends on the frequency λ0 ∈ { 2π

8×12 ,
2π

3.5×12 ,
2π

2×12}. This is
probably a consequence of the asymptotic distribution (see Theorem 4.1). More
precisely, the variance-covariance matrix Ω(λ) of this distribution depends on

the frequency λ and is proportional to σ2

ψ2−2ψ cos(λ)+1I2, where I2 is 2× 2 iden-
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Fig 3. Probability of H0 rejection under H0. In columns (respectively): λ = 0.0654, λ =
0.1496, λ = 0.2618. Read line – b = [

√
n]; green line – b = 2[

√
n]; blue line – b = 3[

√
n]. εt -

i.i.d. form uniform distribution, α = 5%.

Fig 4. Probability of H0 rejection under H0. In columns (respectively): λ = 0.0654, λ =
0.1496, λ = 0.2618. Read line – b = [

√
n]; green line – b = 2[

√
n]; blue line – b = 3[

√
n]. εt -

i.i.d. form Student’s t-distribution with 5 degrees of freedom, α = 5%.

tity matrix, ψ = 0.7 and σ meets the condition var(Xt) = 1. Note that the
estimated significance level seems to be robust to the distribution of innovations
{εt : t ∈ Z}. The results are very comparable between different distributions of
innovations. Hence, in the next part we restrict our attention only to the Gaus-
sian case. Moreover, for b ∈ {[√n], [2

√
n], [3

√
n]} and for k = 2 and k = 3 the

significance level is underestimated (below 5%). This suggests considering lower
values of parameter b. Therefore, on the next figure (see Figure 6) we consider
b ∈ {[0.4√n], [0.6

√
n], [0.8

√
n]} with the same set λ0 ∈ { 2π

8×12 ,
2π

3.5×12 ,
2π

2×12} as
before. Note that in this case, the estimated significance level is much higher (for
k = 2 and k = 3) than on Figures 2-5, but still clearly depends on parameters
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Fig 5. Probability of H0 rejection under H0. In columns (respectively): λ = 0.0654, λ =
0.1496, λ = 0.2618. Read line – b = [

√
n]; green line – b = 2[

√
n]; blue line – b = 3[

√
n]. εt -

i.i.d. from centralized exponential distribution, α = 5%.

Fig 6. Probability of H0 rejection under H0. In columns (respectively): λ = 0.0654, λ =
0.1496, λ = 0.2618. Read line – b = [0.4

√
n]; green line – b = [0.6

√
n]; blue line – b = [0.8

√
n].

εt - i.i.d. form Gaussian distribution, α = 5%.

b, k and frequency λ0. Higher parameter b (or k) give lower estimates of the
significance level.

At the end of our simulation study we consider the case where n ≤ 100. This
case seams to be important from practical point of view. In such a case, the low
number of different mass atoms of the subsampling distribution of order one
(S(1)) may leads to practical problems when determining quantiles from this
distribution. Figures (7-8) shows the estimated significance level for sample size
n ≤ 100, where n ∈ {60+ (j − 1)5 : j = 1, 2, 3, ..., 9} with α = 5% (on Figure 7)
and α = 2% (on Figure 8). Note that in the case of subsampling of order one,
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Fig 7. Probability of H0 rejection under H0. In columns (respectively): λ = 0.0654, λ =
0.1496, λ = 0.2618. Read line – b = [0.4

√
n]; green line – b = [0.6

√
n]; blue line – b = [0.8

√
n].

εt - i.i.d. form Gaussian distribution, α = 5%.

Fig 8. Probability of H0 rejection under H0. In columns (respectively): λ = 0.0654, λ =
0.1496, λ = 0.2618. Read line – b = [0.4

√
n]; green line – b = [0.6

√
n]; blue line – b = [0.8

√
n].

εt - i.i.d. form Gaussian distribution, α = 2%.

the estimated significance level is overestimated in each case for α = 2%, which
is probably related to the low number of different mass atoms.

6. Conclusions

In this paper, the generalized subsampling procedure was investigated. Based
on the conditions for the usual subsampling procedure for non-stationary time
series, the sufficient conditions for the consistency of the generalized subsampling
procedure have been formulated. As was shown, the generalized subsampling is
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consistent under weak assumptions being a generalization of those formulated for
subsampling of order one in Politis et al. (1999). As an example, the consistency
was proved for the magnitude of Fourier coefficients in Fourier expansion of the
mean function of an APC time series. The simulation experiment was shown,
where the influence of the block length to the estimation results was investigated.
There are many open problems and future research problems concerning this
new procedure. First, the case with constant k may be examined in detail. The
condition k2b/n → 0 probably can be weakened. Optimal sequences for b and
k are not known. The next problem is attempting to show the advantage (with
appropriate meaning) of generalized subsampling over the usual subsampling
procedure.

Appendix A: Proofs

Proof of Theorem 3.1. In this proof, we use the same technique as in the
proof of Theorem 4.2.1 in Politis et al. (1999), and therefore we concentrate
only on steps with significant differences. Using the analogical steps as in the
proof of Theorem 4.2.1 in Politis et al. (1999), we define

Un(x) =
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
Tk∈Sk

n,b

p(b,k,Tk)1
{
τb,Tk

(θ̂n,b,Tk
− θ) ≤ x

}
. (A.1)

In the first step, we show that, for any ε > 0, we have

Un(x− ε)1{En} ≤ Ln,b,k(x)1{En} ≤ Un(x+ ε), (A.2)

where a 1{En} is the indicator of the event En = {max
b,k,Tk

{τb,Tk
: b1 ≤ b ≤

b2, k1 ≤ k ≤ k2,Tk ∈ Sk
n,b}|θ̂n − θ| ≤ ε}. To prove this, consider the following

two cases:

1o If 1{En} = 0, then (A.2) holds

2o If 1{En} = 1, then −ε ≤ τb,Tk
(θ − θ̂n) ≤ ε uniformly at b1 ≤ b ≤ b2, k1 ≤

k ≤ k2, Tk ∈ Sk
n,b. This means that, for any Tk = (t1, t2, . . . , tk) ∈ Sk

n,b

and b and k such that b1 ≤ b ≤ b2 and k1 ≤ k ≤ k2, we have that

1
{
τb,Tk

(θ̂n,b,Tk
− θ) ≤ x− ε

}
≤ 1
{
τb,Tk

(θ̂n,b,Tk
− θ) + τbk(θ − θ̂n) ≤ x

}
and

1
{
τb,Tk

(θ̂n,b,Tk
− θ) + τbk(θ − θ̂n) ≤ x

}
≤ 1
{
τb,Tk

(θ̂n,b,Tk
− θ) ≤ x+ ε

}
.

Summing over b, k and (t1, t2, . . . , tk) ∈ Sk
n,b (with probabilities p(b,k,Tk)) for

last two inequalities, we get (A.2). Hence, using the same arguments as in Politis
et al. (1999), it is sufficient to show that E(Un(x)) → J(x, P ) and var(Un(x)) →
0, where J(·, P ) is continuous at x. Under Assumption 3.2, we get E(Un(x)) →
J(x, P ). Hence, we concentrate on the variance of Un(x).
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Take (b, k) ∈ B × K, (b′, k′) ∈ B × K and Tk = (t1, t2, . . . , tk) ∈ Sk
n,b,

T′
k′ = (t′1, t

′
2, . . . , t

′
k′) ∈ Sk′

n,b′ . Denote by Wn,b,Tk
the set of all time indices

occurring in the generalized subsample Bb,Tk
(see (2.3)), i.e.,

Wn,b,Tk
=

k⋃
i=1

{ti, ti + 1, . . . , ti + b− 1}.

Define the distance dist(·, ·) between sets Wn,b,Tk
and Wn,b′,T′

k′ via

dist(Wn,b,Tk
,Wn,b′,T′

k′ ) = min{|l − w| : (l, w) ∈ Wn,b,Tk
×Wn,b′,T′

k′ }. (A.3)

Finally, define the sequence of sets Ls for s = 0, 1, 2, . . . , n− b− b′ + 1 via

Ls = {(Tk,T
′
k′) ∈ Sk

n,b × Sk′

n,b′ : dist(Wn,b,Tk
,Wn,b′,T′

k′ ) = s}. (A.4)

Elementary combinatorics show that

card(Ls) ≤
{

kk′(b+ b′ − 1)qkn,bq
k′−1
n,b′ for s = 0

2kk′qkn,bq
k′−1
n,b′ for s = 1, 2, . . . , n− b− b′ + 1.

(A.5)
Then, under the notation

In,b,(t1,t2,...,tk) = 1
{
τb,Tk

(θ̂n,b,(t1,t2,...,tk) − θ) ≤ x
}
,

p = p(b,k,(t1,t2,...,tk)) =
1

(b2 − b1 + 1)(k2 − k1 + 1)qkn,b
,

p′ = p(b′,k′,(t′1,t
′
2,...,t

′
k′ )) =

1

(b2 − b1 + 1)(k2 − k1 + 1)qk
′

n,b′

we have that

var(Un(x))

=
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
b1≤b′≤b2

∑
k1≤k′≤k2∑

(t1,t2,...,tk)∈Sk
n,b

∑
(t′1,t

′
2,...,t

′
k)∈Sk′

n,b′

pp′cov(In,b,(t1,t2,...,tk), In,b′,(t′1,t′2,...,t′k′ ))

≤
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
b1≤b′≤b2

∑
k1≤k′≤k2

n−b−b′∑
s=0∑

(t1,t2,...,tk,t′1,t
′
2,...,t

′
k′ )∈Ls

pp′|cov(In,b,(t1,t2,...,tk), In,b′,(t′1,t′2,...,t′k′ ))| (A.6)

=
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
b1≤b′≤b2

∑
k1≤k′≤k2

pp′



Generalized subsampling procedure 3901∑
(t1,t2,...,tk,t′1,t

′
2,...,t

′
k′ )∈L0

|cov(In,b,(t1,t2,...,tk), In,b′,(t′1,t′2,...,t′k′ ))|

+
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
b1≤b′≤b2

∑
k1≤k′≤k2

pp′
n−b−b′∑
s=1∑

(t1,t2,...,tk,t′1,t
′
2,...,t

′
k′ )∈Ls

|cov(In,b,(t1,t2,...,tk), In,b′,(t′1,t′2,...,t′k′ ))|

Hence, by (A.5), we have that

var(Un(x))

≤
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
b1≤b′≤b2

∑
k1≤k′≤k2

pp′kk′(b+ b′ − 1)qkn,bq
k′−1
n,b′

+
∑

b1≤b≤b2

∑
k1≤k≤k2

∑
b1≤b′≤b2

∑
k1≤k′≤k2

pp′
n−b−b′∑
s=1

2kk′qkn,bq
k′−1
n,b′ α(s)

≤ O(1)

n

1

(b2 − b1 + 1)2(k2 − k1 + 1)2∑
b1≤b≤b2

∑
k1≤k≤k2

∑
b1≤b′≤b2

∑
k1≤k′≤k2

kk′(b+ b′ − 1)

+
O(1)

n

1

(b2 − b1 + 1)2(k2 − k1 + 1)2∑
b1≤b≤b2

∑
k1≤k≤k2

∑
b1≤b′≤b2

∑
k1≤k′≤k2

2kk′
n∑

s=1

α(s)

=
O(1)

n

1

(b2 − b1 + 1)2(k2 − k1 + 1)2

(b2 − b1 + 1)(b22 − b21 + 2b1 − 1)(k2 − k1 + 1)2(k1 + k2)
2

+
O(1)

n

1

(b2 − b1 + 1)2(k2 − k1 + 1)2

(b2 − b1 + 1)2(k2 − k1 + 1)2(k1 + k2)
2

n∑
s=1

α(s)

= O(k22b2/n) +O(k22/n)

n∑
s=1

α(s) → 0.

(A.7)

This finishes the proof of (i). The proofs of (ii) and (iii) are analogical, as in
Theorem 4.2.1 of Politis et al. (1999). This finishes the proof.

Proof of Theorem 4.1. We start from the auxiliary lemma.

Lemma A.1. For any (ν, ω) ∈ (0, 2π]2, we have
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lim
n→∞

E

⎛
⎝ 1

2πkb

k∑
i1=1

k∑
i2=1

tn,i1+b−1∑
s=tn,i1

tn,i2+b−1∑
t=tn,i2

(Xs − μ(s))(Xt − μ(t))e−i(νs−ωt)

⎞
⎠

= P (ν, ω),

where P (·, ·) is given by (4.3).

Proof of Lemma. The main steps of this proof are analogical to the steps in the
proof of Lemma A.5 in Lenart (2011). Take any (ν, ω) ∈ (0, 2π]2 and notice that
by substitution j = t and τ = s− t we have

E

⎛
⎝ 1

2πkb

k∑
i1=1

k∑
i2=1

tn,i1+b−1∑
s=tn,i1

tn,i2+b−1∑
t=tn,i2

(Xs − μ(s))(Xt − μ(t))e−i(νs−ωt)

⎞
⎠

=
1

2πkb

k∑
i1=1

k∑
i2=1

tn,i2+b−1∑
j=tn,i2

tn,i1+b−1−j∑
τ=tn,i1−j

E((Xj − μ(j))(Xτ+j − μ(τ + j)))

e−i(ν−ω)je−iντ

=
1

2πkb

k∑
i1=1

k∑
i2=1

tn,i2+b−1∑
j=tn,i2

tn,i1+b−1−j∑
τ=tn,i1−j

B(j, τ)e−i(ν−ω)je−iντ

=
1

2πkb

k∑
i=1

tn,i+b−1∑
j=tn,i

tn,i+b−1−j∑
τ=tn,i−j

B(j, τ)e−i(ν−ω)je−iντ

︸ ︷︷ ︸
wn

+
1

2πkb

∑
i1 �=i2

tn,i2+b−1∑
j=tn,i2

tn,i1+b−1−j∑
τ=tn,i1−j

B(j, τ)e−i(ν−ω)je−iντ

︸ ︷︷ ︸
rn

.

To finish the proof, it is sufficient to show that

wn → P (ν, ω) (A.8)

rn → 0. (A.9)

To show (A.8), notice that

wn =
1

2πkb

k∑
i=1

tn,i+b−1∑
j=tn,i

tn,i+b−1−j∑
τ=tn,i−j

∑
λ∈Λτ

a(λ, τ)ei(λ−(ν−ω))je−iντ

=
1

2πkb

k∑
i=1

tn,i+b−1∑
j=tn,i

tn,i+b−1−j∑
τ=tn,i−j

a(ν − ω, τ)e−iντ

+
1

2πkb

k∑
i=1

tn,i+b−1∑
j=tn,i

tn,i+b−1−j∑
τ=tn,i−j

∑
λ∈Λτ\{ν−ω}

a(λ, τ)ei(λ−(ν−ω))je−iντ
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=
1

2π

∑
|τ |<b

(
1− |τ |

b

)
a(ν − ω, τ)e−iντ

+
1

2πkb

k∑
i=1

tn,i+b−1∑
j=tn,i

tn,i+b−1−j∑
τ=tn,i−j

∑
λ∈Λτ\{ν−ω}

a(λ, τ)ei(λ−(ν−ω))je−iντ .

Analogically as in the proof of Lemma A.5 in Lenart (2011), denote the first
and second terms of the last equality by ε1,n and ε2,n, respectively. Using the
same arguments as in the proof of Lemma A.5 in Lenart (2011), ε1,n goes to
P (ν, ω). Following the same steps for the term ε2,n, as in proof of Lemma A.5
in Lenart (2011), we have

|ε2,n| ≤
k∑

i=1

1

2πbk

∣∣∣∣∣∣
⎛
⎝ 0∑

τ=−b+1

tn,i+b−1∑
j=tn,i−τ

+

b−1∑
τ=1

tn,i+b−1−τ∑
j=tn,i

⎞
⎠

∑
λ∈Λτ\{ν−ω}

a(λ, τ)ei(λ−(ν−ω))je−iντ

∣∣∣∣∣∣
≤ 1

2πb

b−1∑
τ=−b+1

|a(λ, τ)|
∑

λ∈Λτ\{ν−ω}
| csc((λ− (ν − ω))/2)|

≤ O(1)

2πb

b−1∑
τ=−b+1

|a(λ, τ)|,

which means that ε2,n → 0 (by (ii) and Lemma A.1. in Lenart (2011)). This
completes the convergence of (A.8).

Notice that, by the inequality |B(j, τ)| ≤ 8Δ2α
δ

2+δ (|τ |), j, τ ∈ Z (see Lemma
A.1. in Lenart (2011)) and condition (4.4), we have

|rn| ≤
1

2πkb

∑
i1 �=i2

tn,i2+b−1∑
j=tn,i2

tn,i1+b−1−j∑
τ=tn,i1−j

|B(j, τ)|

≤ 1

2πkb

∑
i1 �=i2

tn,i2+b−1∑
j=tn,i2

tn,i1+b−1−j∑
τ=tn,i1−j

8Δ2α
δ

2+δ (|τ |)

≤ O(1)

2πkb

n∑
τ=−n

|τ |k2α δ
2+δ (|τ |) = O(1)k

b
→ 0.

(A.10)

This completes the proof of the lemma.

Consider the same decomposition as in the proof of Theorem 2.1 in Lenart
(2013)
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√
kb(m̂n,b,T̃n,k

(ψ)−m(ψ)) =
√
kb(m̂n,b,T̃n,k

(ψ)− E(m̂n,b,T̃n,k
(ψ))︸ ︷︷ ︸

k1(n)

+
√
kb(E(m̂n,b,T̃n,k

(ψ))−m(ψ))︸ ︷︷ ︸
k2(n)

.

Using the same arguments, it is enough to show that[
Re (k1(n))
Im (k1(n))

]
d−→ N2(0,Ω(ψ)) (A.11)

and

k2(n) → 0. (A.12)

To show (A.11), we use Cramér-Wold device and Lemma A.1 in the same man-
ner. Therefore, we omit this step. In proving (A.12), notice that

|k2(n)| =
√
kb
∣∣E(m̂n,b,T̃n,k

(ψ))−m(ψ)
∣∣

=
√
kb

∣∣∣∣∣∣ 1kb
k∑

i=1

tn,i+b−1∑
j=tn,i

μ(j)e−iψj −m(ψ)

∣∣∣∣∣∣
=

√
kb

∣∣∣∣∣∣ 1kb
k∑

i=1

tn,i+b−1∑
j=tn,i

∑
φ∈Ψ

m(φ)eiφje−iψj −m(ψ)

∣∣∣∣∣∣
=

1√
kb

∣∣∣∣∣∣
k∑

i=1

tn,i+b−1∑
j=tn,i

∑
φ∈Ψ\{ψ}

m(φ)e−i(ψ−φ)j

∣∣∣∣∣∣
≤ O(1)k√

kb

∑
φ∈Ψ\{ψ}

∣∣∣∣m(φ) csc

(
φ− ψ

2

)∣∣∣∣ ≤
√

k

b
O(1) → 0.

Above, the inequality

∣∣∣∣∣
tn,i+b−1∑
j=tn,i

e−i(ψ−φ)j

∣∣∣∣∣ =
∣∣∣ eibφ−eibψ

eiψ−eiφ

∣∣∣ ≤ 2√
2
csc(φ−ψ

2 ) was used.

This completes the proof.

Proof of Theorem 4.2. This proof is analogical to the proof of Theorem 2.2
in Lenart (2013). Therefore, it is omitted.

Proof of Theorem 4.3. By noting that k22b2/n → 0, it is sufficient to show
that Assumption 3.5 is fulfilled. Note that, condition (i) in Assumption 3.5 is
fulfilled by the same reasons as in the proof of Theorem 2.3 in Lenart (2013).
To show that condition (ii) in Assumption 3.5 is fulfilled, take any b̃, k̃ and
(tn,1, tn,2, . . . , tn,k̃) such that A) and B) in Assumption 3.5 (ii) are fulfilled.

Then, k̃/b̃ → 0 by noting that k2/b1 → 0, and b̃ → ∞ by noting that b1 → ∞.
Hence, for such b̃, k̃ and (tn,1, tn,2, . . . , tn,k̃), the asymptotic convergence in
Theorem 4.2 holds. The next steps are analogical to the proof of Theorem 2.3
in Lenart (2013) and therefore are omitted.
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