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Abstract: In a statistical or physical model, it is often the case that a
set of design inputs must be selected in order to perform an experiment to
collect data with which to update beliefs about a set of model parameters;
frequently, the model also depends on a set of external variables which
are unknown before the experiment is carried out, but which cannot be
controlled. Sequential optimal design problems are concerned with select-
ing these design inputs in stages (at different points in time), such that
the chosen design is optimal with respect to the set of possible outcomes
of all future experiments which might be carried out. Such problems are
computationally expensive.

We consider the calculations which must be performed in order to solve
a sequential design problem, and we propose a framework using Bayes lin-
ear emulators to approximate all difficult calculations which arise; these
emulators are designed so that we can easily approximate expectations of
the risk by integrating the emulator directly, and so that we can efficiently
search the design input space for settings which may be optimal. We also
consider how the structure of the design calculation can be exploited to im-
prove the quality of the fitted emulators. Our framework is demonstrated
through application to a simple linear modelling problem, and to a more
complex airborne sensing problem, in which a sequence of aircraft flight
paths must be designed so as to collect data which are informative for the
locations of ground-based gas sources.
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1. Introduction

Scientific research increasingly relies on the specification and analysis of models
which are intended to recreate the properties of a particular natural or man-
made system. These models can vary greatly in complexity: in some instances,
model predictions for a system are simple and easy to evaluate (for exam-
ple, the atmospheric dispersion model discussed in Pasquill (1971)), whereas
in others, simply evaluating the model to generate a single prediction may be a
time-consuming, non-trivial task (for example, the climate model considered in
Williamson et al. (2013)). Despite the diversity of fields in which modelling is
undertaken and the range of different complexity levels, modellers often share
a number of common goals.

Frequently, one of these goals is to infer certain parameters of a model using
data collected from the system that the model is designed to represent (see,
for example, Kennedy and O’Hagan (2001)); these parameters may be of direct
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interest themselves, or they may be of interest simply because we wish to cal-
ibrate the model so that it makes better predictions for unobserved states of
the system. Generally, the modeller may also control some of the model inputs
governing the observation process (for example, spatial locations at which ob-
servations of the real climate are made). Additionally, there may be inputs to
the model which cannot be controlled when making observations on the real
system (for example, the wind conditions at the point at which observations
on the real climate are made), but which must be accounted for when making
inferences from the data.

Once data has been collected from the system, decisions about the system
must be made using the information provided by the model specification and
the observed data; subsequently, under particular outcomes, these decisions will
have known consequences. The general framework for a Bayesian decision anal-
ysis is presented in detail by, for example, Smith (2010) and Lindley (1972);
Randell et al. (2010) perform such an analysis for a model describing a large
offshore structure, where maintenance decisions must be made about individual
components whose characteristics have a complex covariance structure. Some-
times, the experiments can be performed sequentially; that is, there is the op-
portunity to perform a sequence of experiments to learn about the system, and
the benefit that could be obtained by continuing to experiment must be weighed
against the cost of doing so. DeGroot (1970) provides an introduction to sequen-
tial decision-making, and Williamson and Goldstein (2012) provide an example
in which a climate model must be used to choose a sensible CO2 abatement
policy at the present time and at fixed points in the future.

Combining model and decision problem specifications, the question of design
arises naturally: given that some of the model inputs governing the measurement
process may be controlled, how should these be selected so as to maximise
the expected benefit of the observations? For non-sequential decision problems,
optimal experimental design choices for common, simple scenarios are reviewed
in Chaloner and Verdinelli (1995), and more complex, non-linear problems are
considered in Ford et al. (1989). If a more complex model or loss function is
specified, or for sequential problems, there is usually no analytic solution to the
design calculations, and the resulting problem usually presents a computational
challenge; Muller et al. (2007) provide a simulation procedure for sequential
design problems with simple forward models, which works by discretizing the
design space and sampling the possible experimental outcomes from the model.

In this article, we develop an approximation framework which provides de-
cision support for the sequential design problem; our procedure is designed to
be able to cope with problems that have large numbers of stages, as well as
problems in which the system model is an expensive function that may only
be evaluated at a handful of parameter settings. Any approximation to the se-
quential design calculations will introduce numerical uncertainty; the procedure
that we present is designed to track this uncertainty throughout the calculation,
allowing the user to make an informed decision about whether to select an ex-
periment subject to these uncertainties, or to carry out further analysis which
may reveal more about the risks involved. Jones et al. (2016) proposed a similar
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framework to handle non-sequential design problems for expensive models.
The remainder of this article is laid out as follows: in Section 2, we introduce

a notation for the sequential design problem, and present the standard backward
induction algorithm for its solution. Then, in Section 3, we propose a framework
which approximates the backward induction calculation using Bayes linear em-
ulators. In Section 4, we consider an application to a simple linear model, and
in Section 5, we consider a more complex application in atmospheric disper-
sion modelling. In Section 6, we discuss our results and propose avenues for
future research. Additional details regarding the framework and the examples
are provided in the supplementary material Jones et al. (2018); sections in the
supplement are labelled S1, S2 etc.

2. Sequential optimal design

In this section, we introduce a notation for the general problem, and set out the
Bayesian optimal experimental design framework in full.

2.1. Problem definition and notation

The general problem is this: we hold prior beliefs about a system we are studying
in the form of a model which is a function of a number of input parameters. For
each setting of its inputs (within some allowed range), the model can be run to
generate a prediction for a set of system attributes (which we will refer to as the
model outputs). We wish to use data from the system to update beliefs about
some model parameters, before using these updated beliefs to make decisions;
sets of observations may be taken sequentially, and after each has been observed,
we have the option of either measuring the next set, or using current beliefs to
make an immediate decision.

In what follows, ‘stage j’ refers to the point in time at which (j − 1) sets of
observations have been made, and where we must consider whether to take the
jth set. We assume that a maximum of n experiments can be performed, and
denote the jth set of available observations by zj = {zj1, . . . , zjnzj}, j = 1 . . . , n.
We denote the collection of observations collected up to and including stage j
by z[j] = {z1, . . . , zj}. We assume that the model inputs can be divided into
three classes:

• Model parameters: these are the parameters about which we wish to
learn. They are denoted by q = {q1, . . . , qnq}.

• Design inputs: we may select these, and they control the behaviour of
the experiment which is performed. We denote the set of design inputs
affecting the jth set of observations by dj = {dj1, . . . , djndj

} (for dj ∈
Dj), and we denote the collection up to and including stage j by d[j] =
{d1, . . . , dj}.

• External inputs: we cannot control these, but they affect predictions for
the system, though we are not interested in using the data zj to learn about
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them. We denote the set of external inputs affecting the jth observation
by wj = {wj1, . . . , wjnwj} (for wj ∈ Wj), and we denote the collection up
to and including stage j by w[j] = {w1, . . . , wj}.

At each stage j, we proceed as follows: first, the design inputs dj must be se-
lected; then, the external inputs wj become known; finally, the experimental
data zj are observed. After collecting the experimental data, we must either
make an immediate decision, with no possibility of further sampling, or select
a design dj+1 for the next experiment before collecting these observations us-
ing this configuration. Note that the numbers of observations, design inputs
and external inputs (nzj , ndj and nwj) need not be the same, either within a
particular stage or between stages; for example, in the atmospheric dispersion
example presented in Section 5, a set of 5 design inputs and 2 external inputs
affects the characteristics of a set of 100 observations to be collected at each
stage.

2.1.1. Decision problem

To determine the value of any set of observations, and therefore to choose be-
tween making an immediate decision and paying for another set of observations,
we must specify the decision problem that we will solve using our beliefs about
model parameters q after j sets of observations have been made. Within a prob-
abilistic Bayesian framework, our beliefs about q after the jth experiment are
summarised through the posterior distribution

p
(
q|z[j], w[j], d[j]

)
=

p
(
z[j]|q, w[j], d[j]

)
p
(
q|w[j], d[j]

)
p
(
z[j]|w[j], d[j]

)
=

p
(
z[j]|q, w[j], d[j]

)
p (q)

p
(
z[j]|w[j], d[j]

) (1)

where we specify the conditional distribution p
(
z[j]|q, w[j], d[j]

)
for the observa-

tions z[j] given the model parameters, and p (q) specifies our prior beliefs about
q, which we assume do not depend on {w[j], d[j]}.

For the decision problem, we specify the following components:

• a space Aj of possible actions aj = {aj1, . . . , ajnaj} which might be taken
at stage j.

• a loss function Lj (aj , q) which describes (in utility units) the cost of
taking action aj at stage j (having terminated sampling) and then realising
model parameters q.

• a function cj (dj) which describes the cost (in utility units) of selecting
design dj for the experiment at stage j.

Based on this specification, we can evaluate our risk (expected loss) from making
an immediate decision at stage j which is optimal against our current beliefs,
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Fig 1: Graphical representation of the design procedure, showing quantities in the order
that we choose, observe or compute them. Square nodes represent design parameters
which we select, circular nodes represent random quantities which we observe when
experimenting, and non-bordered nodes are risks which we compute.

as described by (1)

ρtrmj

[
z[j], w[j], d[j]

]
= min

aj∈Aj

∫
Lj (aj , q) p

(
q|z[j], w[j], d[j]

)
dq (2)

where ρtrmj is referred to as the ‘terminal risk’ or the ‘risk from an optimal
terminal decision’ at stage j. We denote the optimal decision at stage j, which
minimises (2), by a∗j .

We would now like to know: given our prior beliefs about the system, the costs
of the observations which might be made, and the consequences of the decisions
which might be taken, how many sets of observations should be collected, and at
what settings of the design parameters? This is a problem in Bayesian sequential
optimal experimental design, which can be solved using backward induction.

2.2. Extensive form – backward induction

The backward induction algorithm is a well-known technique for solving decision
and design problems; for an introduction to the algorithm, see, for example,
DeGroot (1970). The algorithm begins at the final stage of the problem, where
it is not possible to collect further observations, and then works back through
the stages, deciding for each setting of the model inputs whether it is optimal
to continue experimenting or to stop and make an immediate decision.

We iterate the following steps for j = n, (n− 1), . . . 1:

• We compute the overall risk, denoted by ρj , assuming that we act opti-
mally at all future stages. At the final stage (j = n), no further observa-
tions are possible, and so the overall risk is equal to the terminal risk

ρn
[
z[n], w[n], d[n]

]
= ρtrmn

[
z[n], w[n], d[n]

]
(3)

For all other stages (1 ≤ j < n), we compare the risk from an immediate
decision with that from future experimentation

ρj
[
z[j], w[j], d[j]

]
= min

[
ρtrmj

[
z[j], w[j], d[j]

]
, ρ∗j+1

[
z[j], w[j], d[j]

] ]
(4)
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The risk ρ∗j+1 from optimal future experimentation is the output from the

(j + 1)th iteration of this procedure, defined in (6)
• At the point when we must choose between an immediate decision and fur-

ther experimentation, the experimental outcomes {zj , wj} are unknown,
and so we compute the expectation ρ̄j of the risk ρj with respect to our
current beliefs

ρ̄j
[
z[j−1], w[j−1], d[j]

]
=

∫∫
ρj

[
z[j], w[j], d[j]

]
× p

(
zj , wj |z[j−1], w[j−1], d[j]

)
dzjdwj

=

∫∫
ρj

[
z[j], w[j], d[j]

]
× p

(
zj |z[j−1], w[j], d[j]

)
p
(
wj |w[j−1], d[j]

)
dzjdwj

(5)

where in the second line, we have relied upon the assumption that we do
not use the zj to learn about the wj .

• We find the optimal design d∗j for the jth experiment, as a function of the
risk inputs {z[j−1], w[j−1], d[j−1]} at the previous stages, by minimising ρ̄j
over dj , taking account of the cost cj (dj) of experimentation

d∗j = argmin
dj∈Dj

[
ρ̄j

[
z[j−1], w[j−1], d[j]

]
+ cj (dj)

]

The minimum risk ρ∗j is then

ρ∗j
[
z[j−1], w[j−1], d[j−1]

]
= ρ̄j

[
z[j−1], w[j−1], {d[j−1], d

∗
j}
]
+ cj

(
d∗j
)

(6)

Note that when j = 1, we define d[0] = w[0] = z[0] = ∅. A graphical representa-
tion of the relationship between the designs, observables and risks is provided
in Figure 1; the backward induction procedure is written in pseudo-code in
Algorithm 1.

If we can perform these calculations, then the output from this algorithm is
the optimal design d∗1 for the experiment at the first stage, and the correspond-
ing optimal risk ρ∗1. To decide how to proceed, we compare this risk (from an
optimal future procedure) with the risk ρtrm0 from making an optimal decision
under our prior beliefs (before experimentation). If ρ∗1 < ρtrm0 , then it is optimal
to perform the first experiment (at d∗1), and then to assess the benefit of the sec-
ond experiment against an immediate decision under our beliefs after the first
experiment; otherwise, it is optimal to make an immediate decision and to cease
sampling. More generally, if we have collected data up to the kth experiment,
then we assess the optimal course of action by comparing ρ∗k+1 with ρtrmk .

While the calculations (2), (4), (5) and (6) are simple to express, they gen-
erally represent a large computational challenge. It is not uncommon to find a
problem in which the terminal risk (2) cannot be computed without recourse
to numerical integration and optimisation methods; the intractability of this
calculation in turn rules out a closed-form expression at any of the other steps
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of the procedure. Even in the situation where this calculation can be performed
directly, numerical methods will generally be required by the time we must per-
form either (5) or (6). For previous discussions of the computational challenges
involved in sequential decision and design problems, see, for example, Muller
et al. (2007) or Williamson and Goldstein (2012); simple, discrete examples in
which the backward induction can be performed exactly are discussed in Smith
(2010) and Berger (1980).

If there is a computationally feasible way to approximate these calculations,
however, the potential gains are large: designing observations that we make
now to take into account their effect on data that we might collect in the fu-
ture improves the overall quality of the information that we can collect, and the
backward induction framework introduces the possibility of stopping once we
have enough information to perform the task at hand, thus potentially saving
the cost of unnecessary observations. A sequential procedure is guaranteed to
have a risk which is no greater than that of the procedure in which we simply
collect all of the observations before making a decision (DeGroot, 1970), and the
potential benefits from such a procedure may be large. As discussed by Huan
and Marzouk (2016), common strategies for approximating the full sequential
design calculation where this is computationally infeasible include ‘batch’ de-
sign, in which designs for the experiments are all selected upfront, and ‘greedy’
or ‘myopic’ design, in which the optimal design at each stage is selected with-
out considering the possibility of further experiments. Both strategies may lead
to the selection of sub-optimal designs, as they do not account for information
which may be available from data collected in the future.

Previous work on approximating sequential design problems is presented by
Huan and Marzouk (2016), who formulate the problem as a general dynamic
programming procedure, and then use an iterative procedure based on linear
regression models to approximate the design calculations. Their approximation
uses a ‘one-step lookahead’ approximation to the full procedure, in which, at
stage j, only the results of the jth and (j + 1)th experiments are considered.
Drovandi et al. (2013) use the ‘myopic’ approximation in conjunction with a se-
quential Monte-Carlo algorithm to find approximate solutions to the sequential
design problem. Drovandi et al. (2014) adopt a similar approach which addi-
tionally incorporates model uncertainty.

Section 4.2 of the article by Huan and Marzouk considers an example which
illustrates the drawbacks of using a myopic approximation in a sequential design
problem. A vehicle is to be used to measure concentrations of a contaminant
at a sequence of locations; the observation times are fixed, and so the vehicle is
constrained in how far it can travel before it needs to make the next observation.
A myopic design strategy chases after the next available measurement at the
cost of potentially reducing the quality of the information available from future
experiments. A fully sequential strategy, however, balances the expected quality
of the immediately available measurement with the expected quality of future
measurements, and so prevents the vehicle from moving to regions too far away
from those where good-quality measurements might be made in forthcoming
experiments.
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The procedure that we present in Section 3 is based on the backward induc-
tion Algorithm 1, which provides the basis for a more natural approximation,
since the information from all future experiments n, (n − 1), . . . , (j + 1) is ac-
counted for in the risk function ρj at stage j. In addition, we use a more flexible
class of models to approximate the risk functions at each stage, and outline
a strategy for choosing basis and covariance functions which approximate the
risks well, while retaining tractability.

Algorithm 1 Backward induction algorithm for sequential design problems

1: for k = 0, . . . , (n− 1) do
2: for j = n, (n− 1), . . . , (k + 1) do
3: Compute the risk
4: if j = n then

ρn
[
z[n], w[n], d[n]

]
= ρtrmn

[
z[n], w[n], d[n]

]
5: else

ρj
[
z[j], w[j], d[j]

]
= min

[
ρtrmj

[
z[j], w[j], d[j]

]
, ρ∗j+1

[
z[j], w[j], d[j]

] ]
6: end if
7: Compute the expected risk

ρ̄j
[
z[j−1], w[j−1], d[j]

]
=

∫∫
ρjp

(
zj |z[j−1], w[j], d[j]

)
p
(
wj |w[j−1], d[j]

)
dzjdwj

8: Compute the optimal design, and corresponding risk

ρ∗j
[
z[j−1], w[j−1], d[j−1]

]
= min

dj∈D

[
ρ̄j
[
z[j−1], w[j−1], d[j]

]
+ cj (dj)

]
9: end for
10: if ρtrmk ≤ ρ∗k+1 then
11: Cease sampling, and take decision a∗k.
12: Break
13: else
14: Observe {zk+1, wk+1} at d∗k+1.
15: end if
16: end for

3. Approximation of the design calculation

In this section, we detail the procedure that we will use to approximate the
general algorithm described in section 2.2. It is designed to follow the back-
ward induction procedure as closely as possible, using Bayes linear emulators to
approximate calculations which cannot be performed analytically. The analysis
proceeds in waves, in a similar way to the history matching procedure of Vernon
et al. (2010) and the non-sequential design procedure of Jones et al. (2016): at
the first wave, we model the backward induction calculations over the whole
design space, and we search the model input space to rule out designs which are
unlikely to be optimal; then, in subsequent waves, we re-fit our risk models in
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those parts of the design space which have not yet been ruled out, allowing us to
build up a more accurate picture of the behaviour of the risk and the structure
of the design space in these regions.

In Section 3.1, we provide an overview of our approximation procedure; each
step is explained more fully in Sections 3.2 to 3.6. Further detail is provided in
Section S2 of the supplementary material.

3.1. Overview of the procedure

Throughout the remainder of the article, we use a superscript (i), i = 1, 2, . . .
to index the current wave of the algorithm. The steps that we perform for each
wave are the same, but the approximating emulators are re-focused on those
parts of the design space which we believe may contain the optimal design; this
point is discussed further in section S2.1. At each wave i = 1, 2, . . . , we iterate
the following steps for j = n, (n− 1), . . . , 1:

Emulate the risk We fit a model which approximates the risk surface at stage

j. Our model for the risk ρj (defined in (4)) is denoted by r
(i)
j , and consists of

a regression surface and a residual component

r
(i)
j

[
z[j], w[j], d[j]

]
=

∑
p

β
(i)
jp g

(i)
jp

(
z[j], w[j], d[j]

)
+ u

(i)
j

(
z[j], w[j], d[j]

)
(7)

where g
(i)
j = {g(i)j1 , . . . , g

(i)
jn

g(i)
} is a known set of basis functions, the β

(i)
jp are cor-

responding unknown weights, and u
(i)
j is a zero-mean correlated residual process.

We specify our prior beliefs about the uncertain components of the model, and
combine these prior beliefs with a set of evaluations of the risk to create a second-
order emulator. The details of this procedure are discussed further in Section
3.2; an introduction to Bayes linear methods and to second-order emulation is
provided in Section S1. For an illustration of the risk emulation procedure, see
Section 4.2 and Section S3.1.1 of the supplementary material.

Compute the expected risk We derive a model for the expected risk surface

at stage j by integrating our model for the risk. Our model r̄
(i)
j for the expected

risk ρ̄j (defined in (5)) is

r̄
(i)
j

[
z[j−1], w[j−1], d[j]

]
=

∫∫
r
(i)
j p

(
zj |z[j−1], w[j], d[j]

)
p
(
wj |w[j−1], d[j]

)
dzjdwj

(8)

The characterisation of beliefs about r̄
(i)
j is discussed in Section 3.3. The com-

putation of the expected risk for a simple example is considered in Section 4.2
and in Section S3.1.2 of the supplementary material.

Characterise the candidate design space We eliminate parts of the design
space which we deem unlikely to be optimal. Our approximation to the optimal
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risk ρ∗j (defined in (6)) is denoted by s
(i)
j , with

s
(i)
j

[
z[j−1], w[j−1], d[j−1]

]
= r̄

(i)
j

[
z[j−1], w[j−1], {d[j−1], d

∗
j}
]
+ cj

(
d∗j
)

(9)

The value of d∗j is unknown; we represent our uncertainty about the optimal

design setting by sampling candidate designs d̃j from within a candidate design

space D(i)
j which could plausibly contain the optimal design. Our strategy for

characterising this space and for characterising our uncertainty about s
(i)
j is

discussed in Section 3.4. This procedure is applied to a simple example in Sec-
tion 4.2, with further details provided in Section S3.1.3 of the supplementary
material.

Algorithm 2 Approximation to the backward induction procedure.

1: for i = 1, 2, . . . do
2: for j = n, (n− 1), . . . , 1 do
3: Specify risk model

r
(i)
j

[
z[j], w[j], d[j]

]
=
∑
p

β
(i)
jp g

(i)
jp

(
z[j], w[j], d[j]

)
+ u

(i)
j

(
z[j], w[j], d[j]

)
4: Approximate the expected risk

r̄
(i)
j

[
z[j−1], w[j−1], d[j]

]
=

∫∫
r
(i)
j p

(
zj |z[j−1], w[j], d[j]

)
p
(
wj |w[j−1], d[j]

)
dzjdwj

5: Characterise the minimum risk

s
(i)
j

[
z[j−1], w[j−1], d[j−1]

]
= r̄

(i)
j

[
z[j−1], w[j−1], {d[j−1], d

∗
j}
]
+ cj

(
d∗j
)

6: end for
7: end for

3.2. Modelling the risk

When stage j of the algorithm is reached, the risk ρj (equation (4)) is unknown,
so our first task is to fit a model as an approximation. We choose to use a second-
order emulator, as this is a flexible model which will simplify the calculations
that we need to perform in sections 3.3 and 3.4. An introduction to second-order
emulation is provided in Section S1.2.

The general form of the model that we use is given in equation (7). To fit the

emulator, we begin by selecting the regression basis functions g
(i)
jp , and by making

a prior specification for the β
(i)
jp and u

(i)
j ; we specify expectations E

[
β
(i)
jp

]
for

each of the regression coefficients, covariances Cov
[
β
(i)
jp , β

(i)
kq

]
between pairs

of coefficients, and covariances Cov
[
u
(i)
j (.) , u

(i)
j (.′)

]
between pairs of residual

function evaluations. Strategies for selecting the basis functions and making an
appropriate prior specification are discussed in section S2.1.
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In order to fit the emulator, we generate evaluations of the risk function. At

wave i, we denote the set of N
(i)
j risk values that we use to fit the model by

R
(i)
j = {R(i)

j1 , R
(i)
j2 , . . . , R

(i)

jN
(i)
j

}; R(i)
jk is the kth evaluation of the risk obtained at

input setting {z[j]k, w[j]k, d[j]k}. At the final stage (j = n), R
(i)
jk is an evaluation

of the terminal risk ρtrmn (corresponding to the definition (3))

R
(i)
nk = ρtrmn

[
z[n]k, w[n]k, d[n]k

]
(10)

For all other stages (j < n), R
(i)
jk is generated by comparing the terminal risk

ρtrmj with s
(i)
j+1, our approximation to the risk from an optimal decision at stage

(j + 1) (corresponding to the definition (4))

R
(i)
jk = min

[
ρtrmj

[
z[j]k, w[j]k, d[j]k

]
, s

(i)
j+1

[
z[j]k, w[j]k, d[j]k

] ]
(11)

where the characterisation of s
(i)
j+1 is discussed in section 3.4.

Due to uncertainty introduced through approximations to the risk, we are

generally not able to evaluate the R
(i)
jk exactly; instead, we assess E

[
R

(i)
jk

]
and

Cov
[
R

(i)
jk , R

(i)
jl

]
by sampling, and we fit the emulator to the mean values, using

the covariances to characterise the measurement error structure. This issue is
discussed further in Section S2.1. Once the characteristics of the risk evaluations
have been assessed, we can compute adjusted expectations E

R
(i)
j

[
r
(i)
j

[
z[j], w[j],

d[j]
]]

and covariances Cov
R

(i)
j

[
r
(i)
j

[
z[j], w[j], d[j]

]
, r

(i)
j

[
z′[j], w

′
[j], d

′
[j]

] ]
for any

new input settings, as detailed in Section S1.2.1.

3.3. Approximating the expected risk

We use our model r
(i)
j to compute an approximation r̄

(i)
j to the expected risk

ρ̄j (defined in equation (8)). As outlined in, for example, O’Hagan (1991) and
Rasmussen and Ghahramani (2002), the characteristics of the expectation of a
stochastic process can be derived by integrating the characteristics of the process

directly; in this instance, the expectation of r̄
(i)
j is

E
R

(i)
j

[
r̄
(i)
j

[
z[j−1], w[j−1], d[j]

] ]
=∫

E
R

(i)
j

[
r
(i)
j [.]

]
p
(
zj |z[j−1], w[j], d[j]

)
p
(
wj |w[j−1], d[j]

)
dzjdwj

where E
R

(i)
j

[
r
(i)
j

]
is our adjusted expectation for r

(i)
j (computed in Section 3.2),

and the covariance between r̄
(i)
j values at any new pair of input settings is
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Cov
R

(i)
j

[
r̄
(i)
j

[
z[j−1], w[j−1], d[j]

]
, r̄

(i)
j

[
z′[j−1], w

′
[j−1], d

′
[j]

] ]
=∫

Cov
R

(i)
j

[
r
(i)
j [.] , r

(i)
j [.′]

]
p
(
zj , wj |z[j−1], w[j−1], d[j]

)
× p

(
z′j , w

′
j |z′[j−1], w

′
[j−1], d

′
[j]

)
dzjdwjdz

′
jdw

′
j

where Cov
R

(i)
j

[
r
(i)
j [.] , r

(i)
j [.′]

]
is our adjusted covariance for the risk r

(i)
j . These

calculations are performed for a general emulator in Section S1.2. In order to
evaluate the above expressions, we must be able to compute expectations of both
the basis and covariance functions with respect to the distributions p (zj | . . . )
and p (wj | . . . ) ; in practice, this either means that we must choose particular
types of covariance functions and probability distributions in order to ensure
integrability of the product, or that we must numerically compute the required
integrals. This point is discussed further in section S2.2.

3.4. Characterising the candidate design space

We now characterise our approximation s
(i)
j (equation (9)) to the risk ρ∗j from

an optimal design at stage j, which will then be used as an input to the (j −
1)th stage of the algorithm (equation (7), Section 3.2), or to select a design
for the jth experiment (Section 3.5). We do this using a sampling procedure,
which interrogates our fitted emulator at a space-filling set of trial design inputs,
and then selects the design which minimises the risk over this trial design set.
Designs which are selected in this manner are referred to as ‘candidate designs’
and denoted by d̃j , and the subset of the full design space identified through
this procedure is referred to as the ‘candidate design space’ and is denoted by

D(i)
j (where D(0)

j = Dj , the full design space). The sampling procedure used to
identify candidate designs is outlined in algorithm 3.

Using this sampling procedure, our uncertainty about s
(i)
j is characterised

by evaluating the moments of r̄
(i)
j at sampled values of d̃j ; the computation of

E
[
s
(i)
j [.]

]
and Cov

[
s
(i)
j [.] , s

(i)
j [.′]

]
is discussed in Section S2.3. As discussed

in e.g. Hennig and Schuler (2012), Adler (1981) and Jones et al. (1998), ex-
actly characterising the extrema of stochastic processes is a challenging and
open problem. The approach adopted here efficiently generates a conservative
estimate of our uncertainty about the minimum.

3.5. Stopping

Assume that, at wave i, the procedure has been run back to stage j = k,
and that we have already selected d[k−1] and observed {z[k−1], w[k−1]}; based
on our beliefs r̄

(i)
k about the risk at this point, we must choose between an

immediate decision based on our current beliefs p
(
q|z[k−1], w[k−1], d[k−1]

)
about

the model parameters, and an experiment at stage k using a design which we
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Algorithm 3 Sample a candidate design d̃j at stage j, wave i.

1: Generate M
(i)
j space-filling trial designs {dj1, dj2, . . . , d

jM
(i)
j

} within the candidate space

D(i−1)
j

2: Jointly sample r̄
(i)
j

[
z[j−1], w[j−1], {d[j−1], djk}

]
over the set of all trial designs djk from

a Gaussian distribution
3: Set

d̃j = argmin
djk

[
r̄
(i)
j

[
z[j−1], w[j−1], {d[j−1], djk}

]
+ cj

(
djk

) ]

believe may be optimal. If we knew the risk function exactly, this choice would
be simple: we would choose to experiment if ρ∗k < ρtrmk−1, and otherwise make
an immediate decision a∗k−1 (see Section 2.2 and Algorithm 1). However, since
the true risks are unknown, we must instead make a choice which takes account
of our uncertainties about them. First, we discuss the selection of a design at
which we would perform the experiment; then we consider what we should do
given this choice of design; lastly, we consider the benefit that we may obtain
from running further waves of the procedure.

Choosing a design First, we must choose a design for the kth experiment.
We denote the chosen design by d̂k, and select d̂k to minimise our expected risk

d̂k = argmin
dk

[
E
R

(i)

k

[
r̄
(i)
k [dk]

]
+ ck (dk)

]

This minimum is identified either through use of a suitable numerical opti-
misation procedure, or through interrogation of the mean surface at a large,
space-filling set of design inputs.

Choosing a course of action Having fixed d̂k, we must now determine
whether we believe that this experiment should be carried out; we do this based
on a comparison of our expectation for the risk from this experiment with the
risk from an immediate decision. If

E
R

(i)

k

[
r̄
(i)
k

[
d̂k

] ]
+ ck

(
d̂k

)
< ρtrmk−1

then we choose to carry out the kth experiment at this design setting; otherwise,
we opt for an immediate decision based on our beliefs p

(
q|z[k−1], w[k−1], d[k−1]

)
.

Assessing the value of further waves Having fully determined our course
of action based upon our current beliefs about the risk function, we also wish to
make a judgement about the value of running further waves of the approximation
procedure (Algorithm 2) to learn more about the risk. To help us make this
judgement, we can compute the expected value of perfect information (EVPI)

about the risk. If we knew the risk function r̄
(i)
k exactly, and we also knew the
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optimal design setting d∗k, then the risk from an optimal course of action would
be

min
[
ρtrmk−1, r̄

(i)
k [d∗k] + ck (d

∗
k)

]
Suppose that, after having chosen some d̂k as the design setting for the next
experiment, we discover that d∗k is in fact the true optimal design for the kth

experiment; in this situation, our expectation for the loss incurred by choosing
to experiment at d̂k rather than at d∗k is

v
(i)
k−1 = min

[
ρtrmk−1,E

[
r̄
(i)
k

[
d̂k

] ]
+ ck

(
d̂k

) ]
− E

[
min

[
ρtrmk−1, r̄

(i)
k [d∗k] + ck (d

∗
k)

]]
The expectation of the second term is approximated by sampling candidate
designs d̃k as outlined in Section 3.4 and Algorithm 3.

The EVPI v
(i)
k−1 constitutes an upper bound on the amount that we should

be willing to pay to learn about the risk from the kth experiment; we therefore

decide whether to carry out a further wave of analysis by comparing v
(i)
k−1 with

the resource cost (set-up, computer time etc.) that would be incurred by per-
forming another wave of the procedure 2. This comparison requires a judgement

on the part of the user. We should certainly not pay more than v
(i)
k−1 for further

analysis, since we are sure that we will not gain this much; however, paying
cwvi+1 for wave (i+ 1) will not necessarily result in a correspondingly valuable
reduction in our uncertainty about the risk. The actual reduction in the risk
will depend on the characteristics of the problem under study, and the quality
of the emulators that we can fit. It may be possible, for some problems, to make
simple judgements about the reduction in uncertainty that we might achieve
(in the style of Goldstein and Seheult (2008)) and then compare the resulting
EVPI with the current value; this is beyond the scope of the current work.

3.6. Input selection for the next wave

If we decide using EVPI (Section 3.5) that we expect to gain from further
analysis, then we may choose to run another wave of the algorithm (indexed
by (i+ 1)). At this wave, we re-emulate the risk functions inside the candidate
design spaces identified by the emulators for the previous wave. At the first
wave, we fit our emulators over the whole of the design space, allowing us to
build up a picture of risk behaviour over the whole of the design space, and to
make an initial identification of designs which can be ruled out as unlikely to
minimise the risk. At later waves, we can then focus our modelling efforts on
those regions of the space which we have not yet ruled out, building up a more
accurate picture of risk behaviour in these regions and potentially allowing us
to rule out more parts of the design space. This approach is similar to history
matching: see, for example, Vernon et al. (2010).
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When generating the risk data for these new emulators, we should be careful
to focus only on those parts of the design space which are still interesting. This
issue is discussed further in Section S2.4.

4. Example: Linear model

We first illustrate the method described in section 3 through application to a
simple Bayesian linear model. In Section 4.1, we specify our model linking the
model parameters and design inputs to the data, and specify the decision prob-
lem which we will solve; then, in Section 4.2, we run the approximate backward
induction algorithm, and interpret the results.

4.1. Model and decision problem

We assume that a scalar observation zj is available at each stage j, and that
these observations are related to the model parameters and design inputs as

zj =

nhj∑
k=1

hjk (dj) qk + εj

where dj is a scalar design input, hj (dj) = (hj1 (dj) , . . . , hjnhj
(dj) )

T is a vector

of nhj basis functions, and we assume that there are no external parameters wj

affecting the outcome at any stage. We assume that q = (q1, . . . , qnhj
)T has a

multivariate Gaussian prior distribution (q ∼ N (μq , Vq) ), and that the errors εj
are independent, with zero-mean Gaussian distributions (εj ∼ N

(
0, vεj

)
). We

specify that our losses at all stages depend on the value of a new observation

ẑ (q) = h
(
d̂
)

Tq + ε̂ at a known location d̂ as

Lj (q, aj) = l (ẑ) (ẑ − aj)
2 (12)

where l (ẑ) is a known weight function. Using this loss function, the risk from
an optimal terminal decision at stage j is

ρtrmj

[
z[j], d[j]

]
= min

aj∈Aj

∫
l (ẑ) (ẑ − aj)

2p
(
ẑ|z[j], d[j]

)
dẑ (13)

Due to the Gaussian specifications for the prior and the error structure, the dis-
tribution p

(
ẑ|z[j], d[j]

)
is also a Gaussian distribution; we find that ẑ|z[j], d[j] ∼

N
(
μẑ

(
z[j], d[j]

)
, Vẑ

(
d[j]

) )
where

Vẑ

(
d[j]

)
= h

(
d̂
)

TV̂q

(
d[j]

)
h
(
d̂
)
+ vε̂

μẑ

(
z[j], d[j]

)
= h

(
d̂
)

Tμ̂q

(
z[j], d[j]

)
V̂q

(
d[j]

)
=

[
V −1
q +

1

vε
H

(
d[j]

)
TH

(
d[j]

) ]
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μ̂q

(
z[j], d[j]

)
= V̂q

(
d[j]

) [
V −1
q μq +

1

vε
H

(
d[j]

)
Tz[j]

]

where H
(
d[j]

)
is the design matrix created by stacking the vectors hj (dj)

as rows, and μ̂q

(
z[j], d[j]

)
and V̂q

(
d[j]

)
are the parameters of the posterior

Gaussian distribution p
(
q|z[j], d[j]

)
.

If we differentiate the integral from (13) with respect to aj and set to zero, we
find that the optimal decision is

a∗j =
1

E [l (ẑ) ]
E [l (ẑ) ẑ]

for E [l (ẑ) ] > 0, where expectations are taken with respect to p
(
ẑ|z[j], d[j]

)
,

and that

ρtrmj

[
z[j], d[j]

]
= E

[
l (ẑ) ẑ2

]
− 1

E [l (ẑ) ]
E [l (ẑ) ẑ] 2

If we choose a polynomial expression as the weighting function, the Gaussian
form of the predictive distribution means that the risk can be computed in closed
form using expressions for the non-central moments of a univariate Gaussian;
due to the simplicity of this specification, then, we can compute the terminal risk
at any stage in closed-form, without having to resort to numerical integration
or sampling schemes.

4.2. Running the algorithm

We now run Algorithm 2 for a two-stage version of the problem outlined in
Section 4.1. For this example, we specify that dj ∈ [−1, 1] for both stages, and
we fix the basis function vector for both stages to be

hj (dj) =
(
1, (1 + dj)(1− dj)

)
T

The prior parameters of p (q) are fixed to μq = (0, 0)T and Vq = diag
(
0.52, 0.52

)
,

and the measurement error variance is chosen to be different at each stage, with
vε1 = (0.5)2 and vε2 = (0.1)2, so that we have the option of a more accurate
measurement at the second stage. The weighting function for the loss (12) is
chosen to be l (ẑ) = 1+ ẑ2, so that l (ẑ) > 0 everywhere. The observation costs
are set to be constant, with c1 (d1) = 0.05 and c2 (d2) = 0.2, so that the second
measurement is also more expensive.

4.2.1. First wave

At the first wave of the algorithm (i = 1), we fit emulators to the risk over
the whole of the design space. Because of the simplicity of this problem, the
terminal risks ρtrmj are simple to evaluate at both stages; we therefore use these

as the basis functions for our emulators r
(1)
j , with the data zj substituted for
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Fig 2: Emulator r
(1)
2 fitted to the risk at stage 2. Figure 2(a) shows the adjusted

expectation E
R

(1)
2

[
r
(1)
2

]
for a grid of d1 and d2 values, and Figure 2(b) shows the

corresponding standard deviation values Var
R

(1)
2

[
r
(1)
2

]
1/2. Figure 2(c) shows the true

value of the risk ρ2 for the same grid of design inputs, and 2(d) shows the absolute
standardised distance between the true risk and the mean surface of the emulator.
For all plots, z1 and z2 are fixed to the same quantiles of their respective conditional
distributions.

its conditional expectation. We use separable squared exponential covariance

functions, which ensure that it is easy for us to compute moments of r̄
(1)
j . Further

details of the model, and the fitting procedure, are provided in Section S3.1 of
the supplementary material.

Figure 2 displays aspects of the model r
(1)
2 ; Figures 2(a) and 2(b) show

the mean E
R

(1)
2

[
r
(1)
2

]
and standard deviation Var

R
(1)
2

[
r
(1)
2

]
1/2 surfaces of the

emulator respectively, Figure 2(c) shows the true risk ρ2 which the model is
designed to represent, and Figure 2(d) shows the standardised discrepancy

(ρ2−E
R

(1)
2

[
r
(1)
2

]
)/Var

R
(1)
2

[
r
(1)
2

]
1/2 between the true risk and the mean predic-

tion under the model. These plots show that the true risk lies within three stan-
dard deviation error bars of the mean prediction at all points, and that the model
captures important aspects of the variation in the risk across the design space.
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Fig 3: Emulator r̄
(1)
1 , with E

R
(1)
1

[
r̄
(1)
1

]
shown in solid blue and E

R
(1)
1

[
r̄
(1)
1

]
±

3Var
R

(1)
1

[
r̄
(1)
1

]
1/2 shown in dashed red. Also shown (as black markers) are 200 candi-

date design-risk sample pairs (d̃1, r̄
(1)
1

[
d̃1
]
) from the space D(1)

1 (generated using the
procedure 3).

Stopping Based on this first wave of analysis, we assess the optimal course of
action under our current beliefs (Section 3.5). First, we interrogate the expected

risk at a Latin hypercube of 2000 points, and find that d̂1 = −0.018, with

E
R

(1)
1

[
r̄
(1)
1

]
+ c1

(
d̂1

)
= 0.2520 and Var

R
(1)
1

[
r̄
(1)
1

]
= (0.0006)2 at this point.

The risk from an immediate prior decision is ρtrm0 = 0.6345, and so it is clear
that it is optimal under current beliefs about the risk to carry out at least the
first experiment. The EVPI for the risk is 0.0011; this should be compared to
the cost of another wave in order to determine whether further analysis should
be performed. In any case, we perform another wave to further illustrate the
procedure from Section 3.

4.2.2. Second wave

At the second wave, we re-fit the emulators within the candidate design space
from the first wave. In order to cut down on computation time, we characterise
the candidate design space at both stages using simple limits (see Section S2.3).

The candidate design space D(1)
1 is illustrated in Figure 3; a set of 200 candidate

design samples are shown alongside the emulator r̄
(1)
1 that they are drawn from.

For our emulators, we use the same basis and covariance functions as at the first
wave. Further details of the fit at this wave are provided in Section S3.2.

Stopping We repeat the assessment from Section 3.5 using the emulators
from the second wave. First, we interrogate the mean surface at a Latin hy-

percube of 2000 points, fixing d̂1 = 0.103, where E
[
r̄
(2)
1

]
+ c1

(
d̂1

)
= 0.2524
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Fig 4: Emulators r̄
(i)
1 for both waves i = 1, 2 within the candidate design space D(1)

1 ;

E
R

(i)
1

[
r̄
(i)
1

]
is shown as a solid line, and E

R
(i)
1

[
r̄
(i)
1

]
± 3Var

R
(i)
1

[
r̄
(i)
1

]
1/2 is dashed

(blue/red for wave 1 and green/magenta for wave 2). Also shown (as cyan markers)

are are 200 candidate design-risk sample pairs (d̃1, r̄
(1)
1

[
d̃1
]
) from the space D(2)

1 (gen-
erated using the procedure 3).

and Var
[
r̄
(2)
1

]
= (0.0002)2. After this wave, the EVPI for the risk is 0.0001;

a set of 200 samples from the candidate design space are shown in Figure 4,

alongside the emulators r̄
(i)
1 for waves i = 1, 2. Using this plot and the reduced

EVPI value, we see that we have reduced our uncertainty about the risk at the
second wave; it is becoming clear that the risk is rather flat in this region, so

the candidate design space D(2)
1 is not much smaller than the space D(1)

1 from
the first wave.

5. Example: Airborne sensing problem

We now apply the procedure outlined in Section 3 to a more complex problem.
We consider an atmospheric dispersion problem, in which our goal is to infer
the emission rates of a set of ground-based gas sources using concentration
measurements collected along a sequence of flight paths. We would like to plan
the sequence of flights in such a way that we obtain the ‘best information’ about
possible sources of gas (according to some loss function).

In Section 5.1, we outline the model that we use for this problem, and in
Section 5.2, we specify the components of the design problem that we will solve.
Then, in Section 5.3, we outline the application of the procedure 2 to this prob-
lem, and discuss the results produced.

5.1. Model specification

A commonly-used model for an atmospheric dispersion problem is the station-
ary Gaussian plume (see, for example, Hirst et al. (2012), Stockie (2011) or
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Jones et al. (2016)); this is a simple solution to the advection-diffusion equation
(which gives a more general description of atmospheric dispersion), obtained
under a number of simplifying assumptions, which describes the steady-state
concentration downwind of a source under a wind direction which is constant
over a suitable time-scale.

We denote the location of an individual measurement by x = (xx, xy, xh)
T

and the location of a single source by c = (cx, cy, ch)
T; we project the source-

observation vector onto the wind direction vector w = (wx, wy) as follows

ω (x, c, w) =

⎛
⎝ωx

ωy

ωz

⎞
⎠ =

1

‖w‖

⎛
⎝ wx wy 0
−wy wx 0
0 0 1

⎞
⎠

⎛
⎝xx − cx
xy − cy

xh

⎞
⎠

In terms of this wind-projected distance, the contribution made by a source
located at c with emission rate ψ to the measurement made at x is given by
a (ω, σ)ψ, where a is the Gaussian plume coupling coefficient computed as

a (ω, γ) =
1

2π‖w‖σyσh
exp

[
−

ω2
y

2σ2
y

][
exp

[
− (ωh − ch)

2

2σ2
h

]
+exp

[
− (ωh + ch)

2

2σ2
h

]]

σ = (σy, σh)
T are horizontal and vertical plume standard deviations, which de-

pend on the downwind distance from source to measurement as σy = ωy tan (γy)
and σh = ωh tan (γh), where γ = (γy, γh)

T are horizontal and vertical plume
opening angles (measured in degrees), which can be estimated from atmospheric
data, and are treated as known for the purposes of this analysis.

In this example, we design for a multi-source problem; the concentration
contribution from a set of ns sources located at {ck}ns

k=1 with emission rates
{ψk}ns

k=1 to a measurement at x under wind field w is simply the sum of the
individual source contributions

y (x,w) =

ns∑
k=1

a (ck)ψk (14)

where y is measured in parts per volume (ppv). In Section 5.2, we combine
this model with a function describing the flight path to obtain the full model
specification.

5.2. Design problem

Flight parametrisation We are interested in inferring the emission rates of
a grid of ground-based sources within a rectangular survey area. The sensor
which we will use to collect concentration measurements is to be mounted on an
aircraft, which will be flown at some altitude over the survey area. We assume
that the sensor will make observations at a fixed rate during the course of a flight,
and that flight paths will be pre-planned according to some low-dimensional
parametrisation. We specify that each flight will consist of nfl regularly-spaced,
parallel transects of a given length. Each flight path is completely determined
by five parameters:
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• a central point (dx, dy) ∈ [0, 5000]× [0, 5000] (metres);
• an altitude dh ∈ [100, 300] (metres, assumed constant over the whole

flight);
• a transect length dw ∈ [500, 1000] (metres);
• a transect spacing dd ∈ [100, 500] (metres, determining the perpendicular

distance between each of the transects).

We specify that nob measurements will be made on each transect, and that
all transects are perpendicular to the wind direction. We specify a determinis-
tic map between the five design parameters and the vector of locations of the
individual concentration measurements, which we denote by xp = tp (d) . Com-
bining this mapping with the concentration model (14), our model for the data
zj observed at stage j of the problem is

zjp = y (tp (dj) , wj) + εjp (15)

where dj = {djx, djy, djh, djw, djd} is the five-dimensional design input setting
at the jth stage, wj = {wjx, wjy} is the two dimensional wind field input (the
external parameter set) at stage j, and εj is a (nfl × nob) dimensional vector
of uncorrelated measurement errors. In general, if there were further system-
atic effects in the concentration profile not related to the source contributions
(e.g. a smoothly-varying background concentration), we would include addi-
tional terms in equation (15). We assume that the wind parameters are inde-
pendently uniformly distributed at each stage, over the following ranges (all
units are metres/second):

• w1x ∼ U ([−3,−2]) , w1y ∼ U ([2, 3])
• w2x ∼ U ([2, 3]) , w2y ∼ U ([−3,−2])
• w3x ∼ U ([−3,−2]) , w3y ∼ U ([−3,−2])

These prior distributions are chosen to give an example in which the prevailing
wind direction is different at all stages. When designing for data collection over
a real region, suitable prior distributions could be constructed from historic
measurements of the wind field, or from wind data collected immediately prior
to the measurement campaign.

Model and decision problem We specify the following loss function for all
stages of the problem

Lj (q, aj) = C + l
∑
k

(
qk − ajk

)2

where q = {ψ1, . . . , ψns} is the set of emission rates for the grid of sources. C is
a baseline cost, and l is a scalar multiplier for the quadratic component. Under
this loss function specification, the risk from an optimal terminal decision is

ρtrmj

[
z[j], w[j], d[j]

]
= C + l

ns∑
k

Var
[
qk|z[j], w[j], d[j]

]
(16)
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In this example, we choose to make a prior second-order specification for all of
the components of the model (15), and we characterise the posterior distribution
(1) in terms of our adjusted moments at each stage; under this assumption, the
conditional variances in equation (16) are simply equivalent to the adjusted
variances Varz[j]

[
qk|w[j], d[j]

]
. For further discussion of this point, see Section

S4.1 of the supplementary material.
The cost of the flight path is also assumed to be constant across stages, and

consists of a constant setup cost for each flight, and a cost per unit distance
flown

cj (dj) = cset + cdst

[
2
(
(djx − x0x)

2 + (djy − x0y)
2
)1/2

+ (nfl − 1)djd + nfldjw

]
where cset is the constant setup cost, cdst is the cost per unit distance, and
x0 = (x0x, x0y, 0)

T is the location of the airport from which the aircraft takes
off. Figure 5 illustrates an inference carried out using flights parametrised in
this way; Figures 5(a) to 5(c) show the expected concentration fields for three
different sets of wind conditions, and Figures 5(d) and 5(e) show the adjusted
moments {Ez[3] [qk] } and {Varz[3] [qk] 1/2} computed using a set of observations
collected on the flight paths shown.

5.3. Running the algorithm

In this section, we outline the application of the approximate sequential design
Algorithm 2 to this problem, and discuss its results. Further details related to
this section are provided in Section S4 of the supplementary material.

5.3.1. First wave

At the first wave of the algorithm, we fit our emulators over the whole of the
design space. At each stage, the emulator is fitted to the risk using the procedure
outlined in Section 3.2 and Section S2.1. In all models, the regression basis
consists of an intercept term and an approximation to the risk based on a
comparison between the current terminal risk and the risk from a good design
at the next stage, and the correlation function is chosen to have a squared
exponential form. Further details of the modelling choices made in this example
are given in Section S4.2.

Figure 6 shows a set of 100 samples from the candidate design space at stage
j = 1 after wave i = 1 of the algorithm. We see that our modelling of the
risk function has restricted the ranges of settings of all components of d1 which
appear in our candidate design space; this restriction is perhaps greatest in the
(d1x, d1y) plane.

Stopping After the first wave, we assess the optimal course of action under our
current beliefs (Section 3.5). First, we interrogate the expected risk (including

the design cost) at a Latin hypercube of 2000 points and fix d̂1 as the design
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Fig 5: An example inference using the model from Sections 5.1 and 5.2. Figures 5(a)
to 5(c) show the expected concentration measurements for a grid of points in (x, y)
space, for an emission rate of ψk = 1 at both sources (locations indicated by magenta
markers), under the wind conditions indicated by the black arrows. Observations of
this concentration field are made at the black markers. Figures 5(d) and 5(e) show the
adjusted beliefs Ez[3] [q] and Varz[3] [q] computed by updating the prior specification
from Section 5.1 using this observed data.

which minimises the risk over these points. Our expected risk at this point is

E
R

(1)
1

[
r̄
(1)
1

[
d̂1

] ]
+c1

(
d̂1

)
= 32.36, with variance Var

R
(1)
1

[
r̄
(1)
1

[
d̂1

] ]
= (1.19)2;

this is compared to the risk from an optimal decision under the prior, which is
ρtrm0 = 196.34. From this, it is clear that, based on this analysis, we should
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Fig 6: Scatter plot of candidate design points d̃1 sampled from emulator r̄
(1)
1 using

the procedure 3. The colour scale indicates the expected risk E
R

(1)
1

[
r̄
(1)
1

]
+ c1

(
d̃1
)
at

each point.

conduct at least the first experiment.
Based on a set of 100 samples from the candidate design space, we asses that

the EVPI for the risk is 0.62; in practice, whether we choose to perform further
analysis on this basis will depend on the cost of our computational resources
relative to the risk from the experiment. In any case, we perform another wave
to further illustrate aspects of the procedure from Section 3.

5.3.2. Second wave

At the second wave of the algorithm, we re-fit another sequence of emulators in
the candidate design spaces at each stage (see Section 3.4). Figure 7 shows a set
of candidate designs for each of the 3 stages of the problem sampled according to
the procedure in Algorithm 3. From this, we see that the candidate design spaces
are strongly restricted in (dx, dy) space at all stages; on this basis, we decide
to generate designs for the second wave of the procedure by approximating the
candidate design space in (dx, dy) using simple limits. For further discussion of
this point, see Section S2.4. Our emulator fitting procedure at this wave is the
same as that at the first wave. Further information specific to the procedure at
this wave is provided in Section S4.2.

Figure 8 shows the expectation of the risk E
R

(2)
1

[
r̄
(2)
1

]
+ c1

(
d̃1

)
at a set of

100 candidate designs d̃1, sampled as in Algorithm 3; this should be compared
with the equivalent set of samples from the candidate design space at the first
wave shown in Figure 6. We see that after this wave, the candidate design space
has roughly the same shape in the (d1x, d1y) plane, and that we have started to
see greater restrictions placed on the settings of d1h, d1w and d1d that appear
in our candidate design space.
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Fig 7: Density contour plots of the candidate design spaces D(1)
j at each stage

j = 1, 2, 3; designing within the candidate design space at each stage restricts the
candidate design space at each subsequent wave. Red contours enclose regions with
higher densities of sampled points, and blue contours enclose regions with lower den-
sities.
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Fig 8: Scatter plot of d̃1 sampled from r̄
(2)
1 using the procedure 3. Colours indicate

E
R

(2)
1

[
r̄
(2)
1

]
+ c1

(
d̃1
)

at each point.

Stopping At the end of this wave, we again search the mean risk using a Latin

hypercube of 2000 points, and find that E
R

(2)
1

[
r̄
(2)
1

[
d̂1

] ]
+ c1

(
d̂1

)
= 29.21,

with Var
R

(2)
1

[
r̄
(2)
1

[
d̂1

] ]
1/2 = (0.35)2. The EVPI after this wave is 0.04, so the

second wave of analysis has resulted in a reduction of our uncertainty about the
risk.

6. Discussion

In this study, we considered the Bayesian optimal design problem in the situation
where the data is available from a series of experiments (with associated costs),
and where there is the option after each to evaluate the expected benefit from
the remaining series of experiments and to either stop and use the data to make
decisions, or to collect the next set of observations. We outlined the backward
induction procedure that is used to solve such problems, and explained the
computational issues that this algorithm presents in the general case.

An approximating framework was proposed which uses Bayes linear emulators
to perform some of the difficult calculations; these emulators capture a large
amount of the structure of the problem, and allow us to use various existing tools
to track the uncertainty in the calculation through the stages of the numerical
procedure. This approximation proves beneficial in application to both a simple
linear model example, and to a more complex atmospheric dispersion modelling
problem.

In the work reported here, we have considered problems with up to 3 po-
tential future experiments. This involved hours of computation on a reasonably
powerful laptop. In general, we might want to consider problems with many
more stages in the backward induction calculation. For problems with reason-
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ably high-dimensional collections of data, design inputs and external inputs at
each stage, computational complexity may become prohibitive. There is a trade-
off between the per-stage dimensionality of the design problem to be solved and
the number of stages that can be handled using our approximation: for prob-
lems with lower-dimensional input spaces, we can potentially consider a larger
number of future experiments; whereas for problems with higher-dimensional
input spaces, we may be restricted to a smaller number of stages.

This work suggests several interesting areas for possible future research: first,
it is often the case that the data collected on the system during the course of
a sequential sampling scheme is used not only to make inferences about the
parameters of the model, but also to motivate improvements to the model. The
experimentation plan may specify that model development is to take place after
the completion of all stages, or improvements may be planned between exper-
imental stages. Goldstein and Rougier (2009) introduced a framework which
links improved versions of a model to the current implementation and to the
system under study; if we were to replace the model specification in section
3 with this framework, then the approximate backward induction procedure
could be modified in order to generate designs which would take into account
both the availability of future observations, and the possibility of future model
development.

Assessing our uncertainty about the risk at its minimum is the most difficult
task which we must perform as part of our backward induction approximation.
The procedure presented in section 3.4 works well for low-dimensional problems
where the risk function is relatively smooth; however, in higher-dimensional
problems, or where there are multiple, disconnected regions of the design space
which could minimise the risk, it becomes more difficult to use. Additionally, the
procedure is sensitive to the size of the trial design used, and it is computation-
ally difficult to draw enough samples to assess the variability in the minimum
risk for each input setting. Characterising the distribution of the minimum of
a stochastic process is an active research area (see, for example, Hennig and
Schuler (2012) or Adler (1981)); theoretical guarantees for the behaviour of the
sampling scheme from section 3.4, or the development of an alternative tech-
nique which does have such guarantees would increase confidence in our ability
to properly track uncertainties across the stages for a greater range of sequential
design problems.

References

R.J. Adler. The Geometry of Random Fields. Wiley, 1981. MR0611857
J.O. Berger. Statistical Decision Theory. Springer, 1980. MR0580664
K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statis-

tical Science, 10: 273–304, 1995. MR1390519
M.H. DeGroot. Optimal Statistical Decisions. Wiley, 1970. MR2288194
C.C. Drovandi, J.M. McGree, and A.N. Pettitt. Sequential Monte Carlo for

Bayesian sequentially designed experiments for discrete data. Comput. Stat.
Data Anal., 57: 320–335, 2013. MR2981091

http://www.ams.org/mathscinet-getitem?mr=0611857
http://www.ams.org/mathscinet-getitem?mr=0580664
http://www.ams.org/mathscinet-getitem?mr=1390519
http://www.ams.org/mathscinet-getitem?mr=2288194
http://www.ams.org/mathscinet-getitem?mr=2981091


4030 M. Jones et al.

C.C. Drovandi, J.M. McGree, and A.N. Pettitt. A Sequential Monte Carlo Al-
gorithm to Incorporate Model Uncertainty in Bayesian Sequential Design.
Journal of Computational and Graphical Statistics, 23: 3–24, 2014. doi:
10.1080/10618600.2012.730083. MR3173758

I. Ford, D.M. Titterington, and C.P. Kitsos. Recent advances in nonlinear
experimental design. Technometrics, 31 (1): 49–60, 1989. ISSN 00401706. .
URL http://www.jstor.org/stable/1270364.

M. Goldstein and J. Rougier. Reified bayesian modelling and inference for
physical systems. Journal of Statistical Planning and Inference, 139: 1221–
1239, 2009. doi: 10.1016/j.jspi.2008.07.019. MR2479863

M. Goldstein and A. Seheult. Prior Viability Assessment for Bayesian Analysis.
Journal of Statistical Planning and Inference, 138 (5): 1271–1286, 2008. ISSN
03783758. doi: 10.1016/j.jspi.2007.04.023.

P. Hennig and C.J. Schuler. Entropy search for information-efficient global
optimization. Journal of Machine Learning Research, 13: 1809–1837, 2012.
MR2956343

B. Hirst, P. Jonathan, F. Gonzalez del Cueto, D. Randell, and O. Kosut. Lo-
cating and quantifying gas emission sources using remotely obtained concen-
tration data. Atmospheric Environment, 45: 141–158, 2012.

X. Huan and Y. Marzouk. Sequential bayesian optimal experimental de-
sign via approximate dynamic programming. Forthcoming, 2016. URL
https://arxiv.org/abs/1604.08320.

D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13: 455–492,
1998. MR1673460

M. Jones, M. Goldstein, P. Jonathan, and D. Randell. Supplementary Material:
Bayes Linear Analysis of Risks in Sequential Optimal Design Problems. doi:
10.1214/18-EJS1496SUPP.

M. Jones, M. Goldstein, D. Randell, and P. Jonathan. Bayes linear analysis for
bayesian optimal design. Journal of Statistical Planning and Inference, 171:
115–129, 2016. doi: 10.1016/j.jspi.2015.10.011. MR3458072

M.C. Kennedy and A. O’Hagan. Bayesian calibration of computer models.
Journal of the Royal Statistical Society, Series B (Statistical Methodology),
63: 425–464, 2001. MR1858398

D.V. Lindley. Bayesian Statistics, A Review. Society for Industrial and Applied
Mathematics, 1972. MR0329081

P. Muller, D.A. Berry, A.P. Grieve, M. Smith, and M. Krams. Simulation based
sequential bayesian design. Journal of Statistical Planning and Inference, 137:
3140–3150, 2007. doi: 10.1016/j.jspi.2006.05.021.

A. O’Hagan. Bayes-hermite quadrature. Journal of Statistical Planning and
Inference, 29: 245–260, 1991. MR1144171

F. Pasquill. Atmospheric dispersion of pollution. Quarterly Journal of the Royal
Meteorological Society, 97: 369–395, 1971.

D. Randell, M. Goldstein, G. Hardman, and P. Jonathan. Bayesian linear inspec-
tion planning for large-scale physical systems. Proceedings of the Institution

http://dx.doi.org/10.1016/10.1080/10618600.2012.730083
http://www.ams.org/mathscinet-getitem?mr=3173758
http://www.jstor.org/stable/1270364
http://dx.doi.org/10.1016/j.jspi.2008.07.019
http://www.ams.org/mathscinet-getitem?mr=2479863
http://dx.doi.org/10.1016/j.jspi.2007.04.023
http://www.ams.org/mathscinet-getitem?mr=2956343
https://arxiv.org/abs/1604.08320
http://www.ams.org/mathscinet-getitem?mr=1673460
http://dx.doi.org/10.1214/18-EJS1496SUPP
http://dx.doi.org/10.1016/j.jspi.2015.10.011
http://www.ams.org/mathscinet-getitem?mr=3458072
http://www.ams.org/mathscinet-getitem?mr=1858398
http://www.ams.org/mathscinet-getitem?mr=0329081
http://dx.doi.org/10.1016/j.jspi.2006.05.021
http://www.ams.org/mathscinet-getitem?mr=1144171


Bayes linear analysis of risks in sequential optimal design problems 4031

of Mechanical Engineers part O: Journal of Risk and Reliability, 224: 333–345,
2010. doi: 10.1243/1748006XJRR322.

C.E. Rasmussen and Z. Ghahramani. Bayesian monte carlo. In Advances in
Neural Information Processing Systems. MIT Press, 2002.

J.Q. Smith. Bayesian Decision Analysis: Principles and Practice. Cambridge
University Press, 2010. MR2828346

J.M. Stockie. The mathematics of atmospheric dispersion modelling. SIAM
Review, 53: 349–372, 2011. MR2806641

I. Vernon, M. Goldstein, and R.G. Bower. Galaxy formation: a bayesian uncer-
tainty analysis. Bayesian Analysis, 5: 619–669, 2010. doi: 10.1214/10-BA524.
MR2740148

D. Williamson and M. Goldstein. Bayesian policy support for adaptive strategies
using computer models for complex physical systems. Journal of the Opera-
tional Research Society, 63: 1021–1033, 2012. doi: 10.1057/jors.2011.110.

D. Williamson, M. Goldstein, L. Allison, A. Blaker, P. Challenor, L. Jackson,
and M. Yamazaki. History Matching for Exploring and Reducing Climate
Model Parameter Space Using Observations and a Large Perturbed Physics
Ensemble. Climate Dynamics, 41 (7-8): 1703–1729, 2013. ISSN 09307575.
doi: 10.1007/s00382-013-1896-4.

Supplementary Material

Supplementary Material: Bayes Linear Analysis of Risks in Sequential
Optimal Design Problems
(doi: 10.1214/18-EJS1496SUPP; .pdf).

http://dx.doi.org/10.1243/1748006XJRR322
http://www.ams.org/mathscinet-getitem?mr=2828346
http://www.ams.org/mathscinet-getitem?mr=2806641
http://dx.doi.org/10.1214/10-BA524
http://www.ams.org/mathscinet-getitem?mr=2740148
http://dx.doi.org/10.1057/jors.2011.110
http://dx.doi.org/10.1007/s00382-013-1896-4
https://doi.org/10.1214/18-EJS1496SUPP

	Introduction
	Sequential optimal design
	Problem definition and notation
	Decision problem

	Extensive form – backward induction

	Approximation of the design calculation
	Overview of the procedure
	Modelling the risk
	Approximating the expected risk
	Characterising the candidate design space
	Stopping
	Input selection for the next wave

	Example: Linear model
	Model and decision problem
	Running the algorithm
	First wave
	Second wave


	Example: Airborne sensing problem
	Model specification
	Design problem
	Running the algorithm
	First wave
	Second wave


	Discussion
	References
	Supplementary Material

