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Abstract: In an observational study, a difference between the treatment
and control group’s outcome might reflect the bias in treatment assign-
ment rather than a true treatment effect. A sensitivity analysis determines
the magnitude of this bias that would be needed to explain away as non-
causal a significant treatment effect from a naive analysis that assumed
no bias. Effect modification is the interaction between a treatment and a
pretreatment covariate. In an observational study, there are often many
possible effect modifiers and it is desirable to be able to look at the data to
identify the effect modifiers that will be tested. For observational studies,
we address simultaneously the problem of accounting for the multiplicity
involved in choosing effect modifiers to test among many possible effect
modifiers by looking at the data and conducting a proper sensitivity analy-
sis. We develop an approach that provides finite sample false discovery rate
control for a collection of adaptive hypotheses identified from the data on
matched-pairs design. Along with simulation studies, an empirical study is
presented on the effect of cigarette smoking on lead level in the blood us-
ing data from the U.S. National Health and Nutrition Examination Survey.
Other applications of the suggested method are briefly discussed.
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1. Introduction

In a randomized study, we know the distribution of treatment assignment, but
in an observational study, the distribution of treatment assignment is unknown.
Consequently in an observational study, assuming that distribution of treatment
assignment is random could introduce bias in inferences about the treatment
effect. If there are no unmeasured confounders then it is possible to remove
such bias by matching on observed covariates and conducting inference that
assumes treatment is randomly assigned within matched sets (see e.g., Aakvik,
2001; Gemenisa and Rosemab, 2014; Pimentel, Yoon and Keele, 2016). On the
other hand, if there do exist unmeasured confounders, then this analysis would
be biased. In such a scenario a sensitivity analysis tries to answer the question
of how much bias due to unmeasured confounders has to be present in the data
to alter the inference based on the assumption of no unmeasured confounders
(see e.g., Keele and Minozzi, 2013; Zubizarreta et al., 2012).

An effect modifier is defined as a pretreatment covariate for which the treat-
ment effect differs according to the levels of the covariate. Effect modifiers are
of inherent interest for personalizing treatment. In addition, although we can
test for no treatment effect on any subject, i.e., Fisher’s sharp null hypothe-
sis (Fisher, 1935; Neyman, 1923), without having to consider effect modifiers,
consideration of possible effect modification can increase power and reduce sen-
sitivity to bias. Larger treatment effects are less sensitive to bias due to un-
measured confounders, than small treatment effects. Taking advantage of this
fact Hsu, Small and Rosenbaum (2013) suggested forming a collection of sub-
groups of subjects in which subjects in a subgroup are expected to have the
same level of treatment effect and then pool evidence from the subgroups to
infer about Fisher’s sharp null and effects within subgroups. There is though an
operational difficulty in such analysis. Which variables are effect modifiers and
at what levels of the variables the effect modification occurs are uncertain. It
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is not always possible to have a priori knowledge of effect modifiers in a study.
Many studies use the data to form the subgroups and then carry out analysis
based on the learned groups. So, in such analysis the data is used twice, the
first time to identify the subgroups and the second time to make inferences. To
avoid always finding something if we look at enough data, it is important to
control the error rate for having looked at the data to identify the subgroups
of interest. Hsu et al. (2015) provided an algorithm that guarantees family wise
error rate (FWER) control when the subgroups are built from the data.

The false discovery rate (FDR) is another choice for error control in multiple
testing that is less conservative and has more power. Both FWER and FDR
control the probability of falsely rejecting at least one null when all nulls are
true. They differ when at least one null is false, for example, if we reject 20 nulls,
19 of which are false, FWER regards this as a failure while FDR regards this
as a success for controlling the FDR at level 0.05 (= 1/20). Glickman, Rao and
Schultz (2014) has strongly advocated FDR control in epidemiological studies on
philosophical grounds. Many scientific communities have widely adopted FDR
control as the norm for controlling for multiple testing. Our principal goal is to
extend the work of Hsu et al. (2015) to propose a procedure that provides false
discovery rate control. We show that in the same set-up of Hsu et al. (2015)
we can use the Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg,
1995) on groups defined from the data, to provide FDR control on the group
hypotheses.

The rest of the paper is organized as follows. In the following subsection
we motivate our work by a real data example. Section 2.1 introduces required
notation for technical purposes. Section 2.2 is dedicated to a short review of
sensitivity analysis in an observational study. In Section 3 we derive the main
technical results of our study. A detailed simulation study is presented in Section
4 and in Section 5 we revisit our motivating example.

1.1. Motivating example: lead level in the blood of smokers

Does smoking cause an increase in lead level in the blood? We consider data
from the U.S. National Health and Nutrition Survey (NHANES) for the years
2009–2014. Hsu and Small (2013) studied similar data to elaborate on a different
aspect of sensitivity analysis. We consider the data on the 9,103 adults 20 years
or older who can be classified as smokers or non-smokers. A smoker is an individ-
ual who has reported smoking more than 100 cigarettes in his/her lifetime, has
smoked every day for the last 30 days and has smoked one or more packs per days
in the last 30 days. A non-smoker is someone who reported smoking less than
100 cigarettes in his/her lifetime and has not smoked any cigarettes in the last
30 days. There are 1,485 smokers and 7,618 non-smokers. Following previous ob-
servational studies of the effect of smoking (Rosenbaum, 2007a; Hsu and Small,
2013; Rosenbaum, 2017), we compare heavy smokers (as defined above) to non-
smokers because making the two groups sharply differ in exposure dose increases
the insensitivity of the study to unobserved biases when there is an exposure
effect and no bias (i.e., it increases the design sensitivity, Rosenbaum, 2004).
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We control for the following pretreatment covariates: age, gender, education
(encoded in five indicator variables for categories of education level: less than 9th
grade, between 9th and 11th grade, high school graduate/GED or equivalent,
Some college or AA degree and College graduate or above), race (categorized as
Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black,
Non-Hispanic Asian and Other Race), income-to-poverty ratio, and an indicator
variable for income information missing or not. We control for these pretreat-
ment covariates by pair matching. In a pair matching each treated individual,
i.e., a smoker, is matched to a control individual, i.e., a non-smoker, based on
their observed covariates. In our study we use rank based Mahalanobis dis-
tance with a propensity score caliper (see Rosenbaum, 2010, Ch 8 for details)
to form the matched pairs. This matching algorithm is implemented using the
pairmatch function of the optmatch package in R (Hansen, 2007).

When considering change in lead level in the blood as an effect of smoking,
genetic and environmental factors are potential confounding variables that we
do not have any information on. A genetic factor can be associated with level
of lead in the blood and might also affect the smoking habit of an individual.
Also an individual in a certain industrial locality might be prone to a higher
lead level and smoking behavior could be associated with locality. Consequently,
in absence of information on locality and genetic aspects, a sensitivity analysis
becomes important for properly evaluating the exposure effect.

We test Fisher’s sharp null of no treatment effect with Huber-Maritz M-
statistics using the senmv function (with parameters inner = 0.1, trim =

1.5) of the sensitivitymv package in R (Rosenbaum, 2015). An M-statistic,
proposed by Maritz (1979), is the quantity equated to zero in defining Huber’s
M-estimates (Huber, 1981). We consider the one-sided alternative of smoking
increasing lead level in the blood. The p-value, assuming there is no unmeasured
confounding is less than 4.55× 10−15. Using the sensitivity analysis method of
Rosenbaum (2007b), we can compute a minimum Γ(≥ 1) at which the conclusion
that smoking causes an increase in lead level is sensitive to bias from unmea-
sured confounding, where Γ is the maximum odds ratio for being a smoker vs. a
non-smoker among two subjects matched on the measured confounders. If there
are no unmeasured confounders, then Γ = 1; the more unmeasured confounding
there is, the larger Γ is. In this study, we find that the effect is insensitive to
hidden bias until Γ = 2.6, i.e., if the influence of unmeasured confounding is less
than Γ = 2.6, we would still have strong evidence that smoking causes higher
lead levels.

Individuals with different measured covariate values may have different mag-
nitudes of treatment effect, i.e., different magnitude of increase in lead level due
to smoking. Thus these covariates may work as effect modifiers. Genetic and
environmental factors, which are unmeasured, can also be correlated with the
magnitude of treatment effect. It is not known a priori how these covariates
form relevant subgroups that show similar level of treatment effect. We use our
data to form such potential subgroups. Figure 1 shows five subgroups which are
created based on a regression tree (Breiman et al., 1984) model of the rank of
the absolute difference of lead level in the blood in smokers and non-smokers
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Fig 1. Fitted regression tree of the rank of the absolute response difference |Yi| on the observed
covariates. The nodes of the tree are the groups of individuals with n representing the number
of such individuals and y the average rank of the absolute response differences of that group.

within each pair on the observed matched covariates. This is implemented us-
ing the ctree function of the R package party. Covariates not matched exactly
within pairs are averaged. We shall elaborate more on our choice of this method
to build the subgroups in Section 3. We have five non overlapping subgroups,
which are the leaf nodes of the tree in Figure 1. The key methodological question
we will address is, how can we make valid inferences and perform valid sensi-
tivity analyses that account for the fact that we have chosen the subgroups to
examine based on the data? In Section 5 we shall report results of our analysis
which compares our results in contrast to closed testing method of suggested
by of (Marcus, Peritz and Gabriel, 1976) suggested by Hsu et al. This analysis
will show evidence of smoking causing increase in lead level in the blood which
is much less sensitive to bias compared to an analysis not incorporating effect
modification.

2. Notation and reviews

2.1. Notation

In a matched pair study we denote I as the number of matched pairs. The
matched pairs are formed based on observed covariates. For the ith matched
pair there are two subjects denoted by j = 1 and 2. In shorthand we write ij
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to denote jth subject for the ith matched pair. The treatment assignment for
subject ij is denoted by Zij taking value 1 for treated or 0 for control. Let xij

be the vector of observed covariates and uij be the summary of all unobserved
covariates scaled between 0 and 1 for subject ij. By the architecture of the
matching algorithm we have the constraints Zi1 + Zi2 = 1 and we seek to
have xi1 = xi2 = xi. It is possible though that ui1 �= ui2 since ui1 and ui2 are
unobserved. In our motivating example of studying the effect of smoking on lead
level in the blood, we have I = 1, 485 pairs, i.e., 1, 485× 2 = 2, 970 individuals.

For each subject ij, there is a pair of potential outcomes (rTij , rCij) corre-
sponding to whether the subject is treated or not, i.e., Zij = 1 or 0 (Neyman,
1923; Rubin, 1974). To analyze the treatment effect we are interested in the dif-
ference rTij−rCij . For each individual we only observe one of these two responses
based on the observed treatment assignment. We write the observed response
for subject ij as Rij = ZijrTij + (1−Zij)rCij . We collect the characteristics of
the subjects that are fixed regardless of treatment assignment and denote them
by F = {(rTij , rCij ,xij , uij), i = 1, 2, · · · , I; j = 1, 2}. The only variable that
is assumed to be random is the treatment assignment Zij , in other words the
inference is conditional on F . The difference in response between treated and
control for the ith matched pair is given by Yi = (Zi1 − Zi2)(Ri1 −Ri2).

Consider a subset G of the indices {1, 2, . . . , I}. We denote by ZG the vector
of length 2× |G| that collects the treatment assignments of matched pairs with
indices in G. In the same spirit we can introduce notation rTG , rCG ,xG ,uG ,RG
and YG . As a final piece of notation let ZG denote the collection of all possible
treatment assignments. That is, ZG is the collection of 2|G| many ZG satisfying
the constraint Zi1 + Zi2 = 1 for i ∈ G. When G is the full set of indices we will
simply drop the term G from the above set of notation.

Consider Fisher’s sharp null hypothesis of no treatment effect restricted to
subgroup G. Let us denote this by H0,G . Suppose there are no unmeasured
confounders, then we know that the treatment assignment in each pair is exactly
randomized, i.e., Pr(Zij = 1 | FG ,ZG) = 1/2 for each subject ij in the i-th
pair (i ∈ G). Since under the null hypothesis of no treatment effect among the
subjects in G, rCG = RG , we can calculate the null distribution of a test statistic
T (ZG ,RG) as

Pr(T (ZG ,RG) ≥ k | F ,Z) =
|{zG ∈ ZG | T (zG ,RG) ≥ k}|

2|G|
.

There are various competing candidates for the choice of the test statistic T (·, ·).
For our simulation we choose to use Wilcoxon’s signed rank statistic due to its
familiarity. Theory and computation of our work holds as is for other choices of
test statistic suggested in the literature, e.g., Huber’s M-statistics (Rosenbaum,
2007b) and U statistics (Rosenbaum, 2011).

2.2. Sensitivity to hidden bias

The sensitivity analysis approach we study here is based on two principal as-
sumptions (see Rosenbaum, 1987, 2002, for more details). First, subjects are
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assigned to treatment and control independently of each other. The propensity
of treatment assignment is denoted by πij = Pr(Zij = 1|F). When πij , even
though unknown, is only a function of the observed covariates xij , we can pro-
duce correct inference based on a paired randomized experiment as discussed at
the end of the last section. When this may not be the case, we assume that two
subjects with the same observed covariates may differ in their odds of treatment
assignment by at most a factor of Γ ≥ 1. That is, if for two subjects ij and i′j′

if xij = xi′j′ then

1

Γ
≤ πij/(1− πij)

πi′j′/(1− πi′j′)
≤ Γ.

The factor Γ is termed as the level of hidden bias due to unmeasured con-
founders. If Γ = 1 then this model would correspond to paired randomized
assignment. Let γ = log(Γ). Rosenbaum (2002) shows that this assumption is
equivalent to writing the following treatment assignment distribution

Pr(Z = z|F ,Z) =

I∏
i=1

zi1exp(γui1) + zi2exp(γui2)

exp(γui1) + exp(γui2)
, (2.1)

for some u ∈ [0, 1]2I .

For various approaches to sensitivity analysis in observational studies, see
Cornfield et al. (2009), Gastwirth (1992), Handorf et al. (2013), Hosman, Hansen
and Holland (2010), Imbens (2003), McCandless, Gustafson and Levy (2007),
Liu, Kuramoto and Stuart (2013), Wang and Krieger (2006), Yanagawa (1984)
and Yu and Gastwirth (2005).

Based on the above setting a sensitivity analysis provides bounds for the
quantities which are unknown because of unobserved u’s. For example, suppose
TG is the statistic to be used for testing the null H0,G . Because the πij are un-
known we do not know the null distribution of TG . But under model assumption
(2.1) we can produce two statistic TΓ,G and TΓ,G whose distribution under the
null are known and they sharply bound TG (using first order stochastic domi-
nance) from below and above respectively. Thus we can produce lower and upper
bounds on the p-value as p

Γ
and p̄Γ. When Γ = 1, these two bounds are the

same. At significance level α we would reject the null hypothesis if p̄Γ=1 is less
than α. An inference is sensitive to hidden bias Γ at level α if p̄Γ ≥ α.

In the context of testing the null hypothesis for a subgroup G, we can relax
our model (2.1) to be valid for pairs in G only to write

Pr(ZG = zG |FG ,ZG) =
∏
i∈G

zi1exp(γui1) + zi2exp(γui2)

exp(γui1) + exp(γui2)
, (2.2)

for some uG ∈ [0, 1]2|G|. The corresponding lower and upper bounds for the
p-value are p

Γ(G) and p̄Γ(G).



Adaptive inference on effect modifiers 3239

2.3. Effect modification

In the presence of effect modification, our strategy is to divide the set of indi-
viduals into subgroups. These subgroups can be constructed based on a priori
information. But in most situations when there is not sufficient a priori infor-
mation, we would like to be able to derive these groups from observed data. We
denote the subgroups by {G1,G2, . . . ,GG}. The subgroups are non-overlapping.
An ideal grouping, that explores the effect modifiers perfectly, would aim for
subgroups such that asymptotically, in the number of pairs, every matched pair
in a single subgroup Gg has the same treatment effect and treatment effects of
different groups differ. In finite samples there is a bias-variance trade-off in con-
structing the partition in terms of the size of the subgroups G. To be practically
useful, we would like to have the grouping such that we have a moderate number
of subgroups and two matched pairs which have similar treatment effects are in
the same subgroup.

In our motivating example subjects were divided into G = 5 groups based on
the data (cf. Figure 1). The procedure that identifies these 5 partitions of the
data first calculates the absolute difference in lead level in the blood in each pair,
ranks these absolute response differences and the ranks are used as outcome in
a regression tree fitting on the observed covariates. The use of a regression tree
model allows us to identify these groups in terms of the observed covariates.

G1 = {female of age less than 41 years},
G2 = {female of age between 41 and 47 years},
G3 = {male of age less than or equal to 47 years},
G4 = {female of age more than 47 years},
G5 = {male of age more than 47 years}.

Each subgroup Gg corresponds to a null hypothesis H0,Gg of no exposure effect in
all pairs in the group. Then we want to test the collection of G many hypotheses
{H0,G | G ∈ {G1,G2, . . . ,GG}}. When the groups are derived from the data, the
grouping is a random quantity and this collection of hypotheses is also random.

Hsu, Small and Rosenbaum (2013) tested the global (intersection) null hy-
pothesis H0 by first computing p-values for each of the hypotheses and then
combining those G p-values. Their suggestion was to use the product of trun-

cated p-values (Zaykin et al., 2002) P̄Γ∧ =
∏G

g=1

(
p̄ΓGg

)χ(p̄ΓGg≤α̃)
, where α̃ is a

parameter taking value in (0, 1]. Here and later in this paper we use χ(E) to
denote the indicator function of an event E. For α̃ = 1 this would be equivalent
to Fisher’s method of combining p-values. When the groups are formed a priori,
Hsu, Small and Rosenbaum provided upper bounds on the null distribution of
P̄Γ∧ which can be used to carry out a sensitivity analysis.

As we advocated earlier, in presence of effect modifier we would like to provide
inference on the collection of hypotheses considered. Hsu et al. (2015) suggested
using a closed testing approach (Marcus, Peritz and Gabriel, 1976), that provides
the FWER guarantee that the probability of at least one false rejection is at
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most α. We will develop a method to control the FDR when choosing effect
modifier hypotheses based on the data.

In our simulation in Section 4 and the analysis of data set studying smoking
effect on the lead level in the blood in Section 5, we see considerable gain in
considering effect modifiers in the sense that the evidence from such an analysis
is much less sensitive to bias over an analysis that ignores effect modification.
Through extensive simulation, Hsu et al. showed that, in the presence of effect
modification, the closed testing procedure is less sensitive to unmeasured con-
founders than the global test of no effect. In our simulation and data analysis we
observe that the proposed procedure is more robust to unmeasured confounding
than the closed testing procedure.

2.4. False discovery rate

For simultaneous hypotheses, the false discovery rate introduced by Benjamini
and Hochberg (1995) is defined as the expected value of the proportion of falsely
rejected hypotheses out of all rejected hypotheses. Let Dg be the decision func-
tion receiving the values 1 or 0 for whether H0,Gg is rejected or not rejected,
respectively. Let G0 be the collection of pairs with no treatment effect. Then

FDR = E

(∑G
g=1 χ(Gg ⊆ G0, Dg = 1)

max(
∑G

g=1 χ(Dg = 1), 1)

)
.

3. Adaptive inference under effect modification

The selection of the subgroups from the data must only use information about
a pair that would be unchanged if there is no treatment effect in the pair and
the treatment assignment were reversed. In our motivating example we used
a regression tree of the rank of the absolute difference of responses in a pair
(Yi) on the observed covariates (xi). This approach is motivated by the fact
that when the difference of responses Yi is related to observed covariates via a
non-negative function with additive noise, then the absolute response regressed
on the covariates would group the similar effects (Jogdeo, 1977; Hsu et al.,
2015). For our theoretical result we assume the algorithm of building the groups
satisfies the condition below,

Condition A. The groups of pairs are mutually exclusive and are formed only
as a function of |Yi| and the matched covariates xi.

The condition says that explicitly we are not allowed to use raw information
of the treatment assignment. Let G0 be the collection of pairs with no treatment
effect. Then the condition above allows us to use the information I that is the
union of {(rCi1, rCi2,xi) | i ∈ G0} and {(Ri1, Ri2, Zi1, Zi2,xi) | i ∈ Gc

0}. To
see this, note that for i ∈ G0 we have |Yi| = |rCi1 − rCi2| and for i ∈ Gc

0 we
would have |Yi| = |Ri1 − Ri2| with Rij = ZijrTij + (1 − Zij)rCij . Our main
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result is that the Benjamini-Hochberg (BH) procedure with level q applied on
{p̄Γ,G | G ∈ {G1,G2, . . . ,GG}} provides the following guarantee

E

(∑G
g=1 χ(Gg ⊆ G0, Dg = 1)

max(
∑G

g=1 χ(Dg = 1), 1)

∣∣∣∣ F ,Z, I
)

≤ q. (3.1)

Following are the two lemmas that are key to establishing (3.1).

Lemma 1. Suppose the subgroups are built based on Condition A. Conditional
on (F ,Z, I) the treatment assignments on groups {ZGg | g = 1, 2, . . . , G} are
independently distributed.

Proof. Recall, the assumption of our sensitivity model that the subjects are
assigned to treatment and control independently of each other. Consequently,
after conditioning on I the treatment assignments ZG0 would be independent
and the others are fixed.

Lemma 2. Suppose the subgroups are built based on Condition A. Conditional
on (F ,Z, I) for any Gg with no treatment effect the sensitivity model of (2.2)
holds with G = Gg.

Proof. If Gg has no treatment effect then Gg ⊆ G0. Thus for each i ∈ Gg the
information about i in I is already contained in (FGg ,ZGg ). Therefore finding
the propensity score of treatment assignment conditioning on (F ,Z, I) is the
same as conditioning on (FGg ,ZGg ). Thus we get

Pr(ZGg = zGg |F ,Z, I) = Pr(ZGg = zGg |FGg ,ZGg )

=
∏
i∈Gg

zi1exp(γui1) + zi2exp(γui2)

exp(γui1) + exp(γui2)
.

As a consequence of Lemma 2, following the argument of Rosenbaum (2002)
we can bound the p-values for testing the random null H0,Gg by p

ΓGg
and p̄ΓGg

from below and above respectively.

Theorem 1. If the subgroups are built based on Condition A and the bias is
no more than Γ, then the BH procedure applied to the collection {p̄Γ,G | G ∈
{G1,G2, . . . ,GG}} at level q satisfies (3.1).

The proof of the theorem is given in the Appendix.
Condition A guarantees that the grouping is determined by the information

set I. Different grouping strategies (that satisfy Condition A) may result in dif-
ferent groups, and hence have different power to reject non-null groups. The BH
procedure on the p-value upper bounds guarantees that the FDR is controlled
given the grouping, for any configuration of null and non-null groups. Moreover,
the FDR control is guaranteed for any treatment assignment distribution of the
nonnull pairs. Since the grouping is unchanged for any possible treatment as-
signments for the nonnull pairs when the absolute difference in response is used
for group construction, by marginalizing over the information set I, the FDR
is unchanged. This is formalized in the following corollary.
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Corollary 1.1. Under the structure of Theorem 1

E

(∑G
g=1 χ(Gg ⊆ G0, Dg = 1)

max(
∑G

g=1 χ(Dg = 1), 1)

∣∣∣∣ F ,Z
)

≤ q.

Proof. Given the knowledge of F and Z, for a treatment assignment Z, the
information set I is determined from the treatment assignments on the non-
null pairs, i.e., ZGc

0
. Let I(zGc

0
) be the information set of the grouping strategy

when the treatment assignment on the pairs in Gc
0 is zGc

0
. Then

E

(∑G
g=1 χ(Gg ⊆ G0, Dg = 1)

max(
∑G

g=1 χ(Dg = 1), 1)

∣∣∣∣ F ,Z
)

=
∑

zGc
0
∈ZGc

0

E

(∑G
g=1 χ(Gg ⊆ G0, Dg = 1)

max(
∑G

g=1 χ(Dg = 1), 1)

∣∣∣∣ F ,Z, zGc
0

)
Pr(ZGc

0
= zGc

0
| F ,Z)

=
∑

zGc
0
∈ZGc

0

E

(∑G
g=1 χ(Gg ⊆ G0, Dg = 1)

max(
∑G

g=1 χ(Dg = 1), 1)

∣∣∣∣ F ,Z, I(zGc
0
)

)
Pr(ZGc

0
= zGc

0
| F ,Z).

The rest of the proof now follows from Theorem 1 which proves (3.1) for any
information set I ≡ I(zGc

0
).

A motivation for considering effect modification in the sensitivity analysis of
treatment effects is that a larger treatment effect tends to be less sensitive to
hidden bias than a smaller treatment effect. The next theorem proves that our
procedure provides FDR control for such a sensitivity analysis.

Theorem 2. Suppose the subgroups are built based on stated Condition A. For
hidden bias level Γ1,Γ2, . . . ,ΓG, if the bias is at most Γg in g ∈ G then the BH
procedure applied at level q on the collection {p̄Γg,Gg | g = 1, 2, . . . , G} then FDR
is controlled at level q.

The proof of Theorem 2 is very similar to that of Theorem 1, and therefore
omitted.

A simple three step procedure for our sensitivity analysis is as follows.

Procedure 3.1. The sensitivity analysis procedure for FDR control:

• Create groups of pairs G1, . . . ,GG using an algorithm that satisfies Condi-
tion A.

• Fix Γg : g = 1, 2, . . . , G and compute p̄Γg,Gg : g = 1, 2, . . . , G.
• Apply the BH procedure at the desired level q.

For the second step of choosing the Γg values, subject matter information
about what values of Γg are of concern and information from (F ,Z, I) can be
used.
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4. Simulation

Here we examine the performance of the suggested procedure 3.1 on data built
groups in various simulation settings. On I = 1, 000 pairs, the treatment assign-
ment is assumed to be randomized so that there is no hidden bias in the study.
First, we consider a single observed covariate (x) that takes five possible values
1 through 5 independently for each pair with equal probabilities. The response
difference for the pairs is simulated from N(μx, 1). We denote the vector of treat-
ment effects on covariate x as μ = (μ1, μ2, . . . , μ5). When μj , j = 1, 2, . . . , 5 are
not all the same, there is effect modification. Based on this simulated data we
fit a regression tree on the rank of absolute response on the covariate x to build
the groups. A second binary covariate with no effect modification is also used
in the regression fit. Thus the groups tested (and the number of groups) are
possibly different on each simulation. Table 1 reports the summary of the simu-
lation study based on 2,000 simulations. Eight separate scenarios, starting with
no effect (A) to different levels of effect modification (B–D) and then various
scenarios of strong effect modification (E-1–E-4) are investigated.

In Table 1 the false discovery rate is controlled at the desired level q = 0.05
by both the closed testing and the BH procedure. To compare the power, we
compare the closed testing procedure (Marcus, Peritz and Gabriel, 1976) to the
BH procedure in terms of the false non-discovery rate (FNR) (Genovese and
Wasserman, 2002) defined as the expected value of the ratio of false hypotheses
not rejected out of all the hypotheses not rejected. In terms of estimated FNR,
the BH procedure is never worse than closed testing and sometimes considerably
better, e.g., in scenario E-4 the BH procedure has FNR 0.1% compared to 68%
for Γ = 3 closed testing procedure or in scenario E-1 where FNR for the BH
and the closed testing are 0% and 46%, respectively for Γ = 1.

We also consider two other type of errors, the proportion of pairs rejected
having no effect and proportion of pairs not rejected but having treatment effect.
While FDR and FNR are group level measures, these two measures compare
the methods on the pair level. In terms of both these errors BH is as good
as and often better than closed testing especially in scenarios of strong effect
modification (E-1, E-3). For example in scenario E-4 at Γ = 3 on average, 77% of
the pairs having treatment effect are not rejected in closed testing as compared
to 0% (rounded to one significant digit) for the BH procedure.

The design above does not introduce any hidden bias to our simulation study,
thus we have true Γ = 1 along with a treatment effect. The justification for
considering this favorable situation for the power computation for sensitivity
analysis is explained in (Hansen, Rosenbaum and Small, 2014, Section 3) and
we review it here. Even though in practice we cannot know if we are in the
favorable situation, by computing the power in this situation we are assessing
the ability of our analyses to discriminate between two situations where we know
unambiguously the desired result of the sensitivity analyses. In one situation,
with moderate bias and no treatment effect, we expect that any associations
between treatment and outcome can be explained by magnitude of bias at most
Γ and by construction there can be at most a risk of at most α to report



3244 B. Karmakar et al.

Table 1

Average power, FDR and FNR in a setting with effect modification in five levels of a
covariate.

Scenario μ
(effect mod-
ification)

#
Nodes

Γ # Rejected
Nodes

FDR (%) FNR (%) % of pairs
rejected with
no effect

% of pairs not
rejected with
effect

Closed
Test-
ing

BH Closed
Test-
ing

BH Closed
Test-
ing

BH Closed
Test-
ing

BH Closed
Test-
ing

BH

(0,0,0,0,0) 1.05 1 0.05 0.05 4.2 5.2 0 0 5 5 n/a n/a
A: Null Case (1,1) 1.1 0.005 0.006 0.5 0.6 0 0 0.5 0.6 n/a n/a

1.3 0 0 0 0 0 0 0 0 n/a n/a

(0.5, 0.5, 0.5, 1.05 1 1.05 1.05 0 0 0 0 n/a n/a 0 0
0.5,0.5) (1,1) 2 1.035 1.035 0 0 1.4 1.4 n/a n/a 0.6 0.6
B: Constant 3 0.22 0.22 0 0 79 79 n/a n/a 78 78
effect 5 0 0 0 0 100 100 n/a n/a 100 100

(0.6, 0.6, 0.6, 1.17 1 1.17 1.17 0 0 0 0 n/a n/a 0 0
0.4, 0.4) (1,2) 2 1.06 1.06 0 0 8.6 8.6 n/a n/a 4.6 4.7
C: Mild 3 0.1 0.15 0 0 91 91 n/a n/a 90 88
modification 5 0 0 0 0 100 100 n/a n/a 100 100

(1.5, 0, 0, 2.52 1 1.78 1.8 0.6 1.2 0 0 0.6 1 0 0
1.5, 0) (1,4) 3 0.07 1.13 0 0 78 61 0 0 95 67
D: Complex 15 0 0.07 0 0 81 81 0 0 100 97
modification 20 0 0 0 0 78 78 0 0 100 100

(2, 0, 0, 0, 0) 2.05 1 1.05 1.05 2.4 2.6 0 0 3.8 3.9 0 0
E-1: Strong (2,2) 2 0.06 1 0 0 46 0 0 0 93 0
effect 20 0 0.25 0 0 49.3 36.6 0 0 100 73
modification 25 0 0 0 0 49 49 0 0 100 100

(1.5,0.5,0.1,0,0) 2.17 1 1.9 1.9 0.1 0.1 17.5 17.3 0.1 0.1 13 12
E-2: Strong (2,3) 2 0.4 1.06 0 0 96.9 96.1 0 0 89 76
effect 10 0 0.74 0 0 98 97 0 0 98 83
modification 15 0 0 0 0 100 100 0 0 100 100

(0, 1.2, 0, 1.31 1 1.12 1.12 0.5 0.5 0.3 0 0.2 0.2 0.3 0.1
0.8, 0) (1,3) 2 0.38 0.47 0 0 59.6 57.5 0 0 64 61
E-3: Strong 3 0 0.1 0 0 93 91 0 0 99 97
effect 5 0 0.09 0 0 93 92 0 0 100 98
modification 10 0 0 0 0 93 93 0 0 100 100

(1, 2, 0, 0, 3) 4.05 1 3.04 3.04 1.2 1.2 0 0 1.8 1.9 0 0
E-4: Strong (4,4) 3 0.66 3 0 0 68 0.1 0 0 77 0
effect 20 0 0.6 0 0 74 67 0 0 100 78
modification 25 0 0 0 0 75 75 0 0 100 100

Average of the number of terminal nodes (numbers in the parenthesis give the interquartile
range), number of rejections, FDR, FNR, and power of closed testing and the BH procedure.
There are two covariates, only one of these covariates is associated with treatment effect.

This covariate is distributed as multinomial on 5 levels. Summary is based on 2,000
simulations of random treatment assignment and for the covariate value of x the response

difference is simulated from N(μ(x), 1). μ is the vector of length 5 of μx values.

otherwise. In the second situation, when there is no bias and there is a treatment
effect, then we hope to reject the null hypothesis. On the other hand, if we were
considering a situation where there was large bias in treatment assignment and
a small treatment effect, so that rejection of the null is nearly assured for all
small or moderate Γ then we would not have been pleased to reject the null for
small or moderate Γ because we know we would also have rejected the null in
this situation had it been true.

As seen in Table 1, when there is no or very mild effect modification, e.g., in
the first three scenarios A, B and C, two methods have similar level of sensitivity
to hidden bias. Here we say that the test is insensitive to level Γ (≥ 1) if it rejects
any of the terminal node hypotheses at that level of Γ. But when there is strong
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Table 2

Average power, FDR and FNR in a setting with effect modification at 10 levels of a
covariate.

Scenario μ
(effect mod-
ification)

#
Nodes

Γ # Rejected
Nodes

FDR (%) FNR (%) % of pairs
rejected
with no
effect

% of pairs
not rejected
with effect

Closed
Test-
ing

BH Closed
Test-
ing

BH Closed
Test-
ing

BH Closed
Test-
ing

BH Closed
Test-
ing

BH

μ(x) = 0 3.6 1 0.02 0.04 2 5 0 0 1 1.3 n/a n/a
No effect (1,7.05) 1.1 0 0.01 0 1 0 0 0 0.001 n/a n/a

1.2 0 0 0 0 0 0 0 0 n/a n/a
3 0 0 0 0 0 0 0 0 n/a n/a

μ(x) = 0 if 3.7 1 2.94 3.22 1.1 1.6 23 16 0.3 0.4 8 5
x odd (1,8) 2 0 0.14 0 0 85 85 0 0 97 97
μ(x) = 0.5 if 3 0 0.005 0 0 87 87 0 0 100 100
x even 5 0 0 0 0 86 86 0 0 100 100

μ(x) = 0 if 5.6 1 3.84 4.02 0.4 0.7 2 0 0.1 0.2 1.3 0
x odd (2,13) 2 1.38 2.92 0 0 37 18 0 0 34 15
μ(x) = 1 if
even

10 0 0 0 0 73 73 0 0 100 100

μ(x) = 0 if 8.5 1 5.6 6.2 0 1.4 7 0.6 0 0 6 0
x odd (2,16.6) 5 0.34 3.74 0 0 79 64 0 0 94 70
μ(x) =
x (mod 6)

10 0 0.01 0 0 72 72 0 0 100 100

if x even 15 0 0 0 0 72 72 0 0 100 100

μ(x) = 0 if 8.8 1 4.84 4.96 0 1.7 0.2 0 0.1 0.6 0 0
x odd (2,16.6) 5 0.68 4.34 0 0 45 11 0 0 62 11
μ(x) = 3 if 10 0 2.52 0 0 65 53 0 0 99 79
x even 15 0 0.45 0 0 65 64 0 0 100 89

18 0 0 0 0 65 65 0 0 100 100

Average of the number of terminal nodes (numbers in the parenthesis give the interquartile
range), number of rejections, FDR, FNR, and power of closed testing and the BH procedure.
There are two covariates, only one of these covariates is associated with treatment effect.
This covariate is distributed as multinomial on 10 levels. Summary is based on 2,000

simulations of random treatment assignment and for the covariate value of x the response
difference is simulated from N(μ(x), 1). μ is the vector of length 10 of μx values.

effect modification of the covariate the BH procedure is insensitive to a much
higher level of hidden bias compared to closed testing. For example, in scenario
E-4 the average number of rejections by closed testing and BH, at Γ = 3, are
0.66 and 3, respectively; at Γ = 20 they are 0 and 0.66, respectively.

FDR control is particularly useful when we expect large number of groups.
We carry out two sets of simulation studies to examine false discovery rate
control with 10 groups and 20 groups. The simulation design is as before with
I = 1, 000 pairs and equal randomized treatment assignment. There are two
covariates, one distributed as multinomial with 10 and 20 labels for the two
studies respectively and another one is Bernoulli. The difference in response
for paired individuals is modeled as normally distributed with unit variance
and mean equal to μ(x), where x is the label of the multinomial covariate.
Table 2 and Table 3 report results of simulation studies based on this design. The
conclusions from Table 2 and Table 3 are consistent with those of the previous
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Table 3

Average power, FDR and FNR in a setting with effect modification at 20 levels of a
covariate.

Scenario # Nodes Γ # Re-
jected
Nodes

FDR
(%)

FNR
(%)

% of pairs
rejected
with no
effect

% of
pairs not
rejected
with
effect

μ(x) ≡ 0 6 1 0.05 4.9 0 1.6 n/a
No effect (1, 18) 1.1 0.01 1 0 0.003 n/a

1.2 0.002 0.002 0 0 n/a
1.3 0 0 0 0 n/a

μ(x) = 0 if 6 1 5.526 1.14 1.8 0.2 0.3
x odd (1,18) 3 0.03 0 77 0 99
μ(x) = 0.5
if x even

5 0 0 78.4 0 100

μ(x) = 0 if 8 1 6.15 1.6 0 0.3 0
x odd (1, 30) 3 4.4 0 44 0 82
μ(x) = 1 if 5 2.9 0 54.2 0 91
x even 12 0 0 66.2 0 100
μ(x) = 0 if 17 1 10 2.04 0 0.6 0
x odd (3,37) 10 8.4 0 26.2 0 68
μ(x) = 3 if 30 0.7 0 55.7 0 95
x even 40 0 0 58 0 100
μ(x) = 0 if 24 1 13 1.76 0 0.8 0
x odd (2, 38) 5 11.5 0 17.7 0 27
μ(x) =
x(mod 6)

20 8.8 0 43 0 67

if x even 40 0 0 66 0 100

Average of the number of terminal nodes (numbers in the parenthesis give the interquartile
range), number of rejections, FDR, FNR, and power of the BH procedure. There are two

covariates, only one of these covariates is associated with treatment effect. This covariate is
distributed as multinomial on 20 levels. Summary is based on 2,000 simulations of random
treatment assignment and for the covariate value of x the response difference is simulated

from N(μ(x), 1). μ is the vector of length 20 of μx values.

simulation. FDR is controlled throughout and when there are no effects (first
row of Table 2 and Table 3) FDR reaches its nominal level by the BH procedure
while closed testing is conservative. The power gain from the BH procedure over
closed testing can be seen in estimated FNR values in Table 2. As an example, in
the last scenario for Γ = 5 the FNR level is at 45% for closed testing compared
to 11% for the BH procedure and in the same scenario on average closed testing
fails to reject 62% of the pairs with treatment effect as compared to 11% for
the BH procedure. Finally, the BH procedure is much less sensitive to hidden
bias than closed testing. For example, in the last scenario of Table 2 closed
testing is insensitive until hidden bias level of Γ = 5 whereas the BH procedure
is insensitive until Γ = 15. The setting of Table 3 does not contain the closed
testing results as closed testing procedure for 20 groups does 220 comparisons
which requires unmanageable amount of computing resources. The number of
rejected nodes, FNR and % of pairs rejected with effect in Table 3 shows the
considerable power of the proposed procedure.
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We summarize our simulation results here. We have considered various sce-
narios of effect modifications along with different number of subgroups in our
simulations. While both closed testing and our procedure controls for FDR at
the nominal level, our sensitivity analysis BH procedure is much less sensitive to
hidden bias compared to closed testing. In terms of power, the BH procedure al-
ways had higher simulated power compared to closed testing in all the measures
we have considered in our comparisons. With large number of subgroups closed
testing becomes computationally infeasible as the complexity is exponential in
the number of subgroups, but the BH procedure has computational complexity
which is at most quadratic in the number of subgroups.

5. Results for study of the effect of smoking on lead in the blood

We go back to our motivating example and analyze the data on 1,485 matched
pairs of individuals for effect of smoking on lead level in the blood. As described
in Section 1.1, we used a data based method consistent with Condition A to de-
rive five mutually exclusive and exhaustive subgroups of the pairs as described
in Section 2.3. These subgroups contain 281, 90, 441, 283 and 390 pairs of sub-
jects respectively. Figure 1 shows average of the ranks of the absolute response
differences in the terminal nodes.

We aim to assess whether smoking increases the level of lead in the blood.
We use a Huber-Maritz M-statistics with specifications as given in Section 1.1.
In the notation of Section 2.1, for an odd function ψ(·) with ψ(0) = 0, a Huber-
Maritz M-statistics for group G is of the form

∑
i∈G ψ(yi/sG), where yi is the

difference in response between treatment and control for matched pair i and
sG is the median of the absolute difference in response for the matched pairs
in G. In our analysis we consider ψ(y) = sign(y) (min(|y|, 1.5) − 0.1)+, where
(a)+ := max(a, 0). For more discussion on M-statistics and related sensitivity
analysis procedures see Rosenbaum (2007b, 2014).

We first consider the global Fisher’s null hypothesis of no treatment effect for
any subject. In Section 1.1 we noted that the test that combines all the pairs
without consideration of effect modification allows for the rejection decision to
be sensitive to hidden bias of Γ = 2.6. Using the group information Table 4 in the
second to last column reports truncated product, with α̃ = 0.20, p-values p̄Γ∧
for the global null for different levels of hidden bias. These are computed using
the truncatedP function of the sensitivitymv package in R. The decision to
reject the global null based on truncated product p-values is sensitive to hidden
bias of 2.8.

Simes test (Simes, 1986) can also be used to test the global null hypothesis
of no treatment effect. It rejects the global null if and only if the BH pro-
cedure rejects at least one of the group-hypotheses. To simplify the notation
suppose the group numbers are ordered by their p-values, p̄Γg,Gg ≤ p̄Γg′ ,Gg′

for 1 ≤ g < g′ ≤ G. Simes’ p-value is ming≥1 G × p̄Γg,Gg/g. Simes’ p-value
is a valid p-value if it combines individual p-values that are independent or
have PRDS dependence (Benjamini and Yekutieli, 2001). To see this note that
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Table 4

Maximum of p-values for varied hidden bias levels.

Γ p̄Γ,G1 p̄Γ,G2 p̄Γ,G3 p̄Γ,G4 p̄Γ,G5 p̄Γ∧
(α̃ = 0.2)

Simes’
p-value

1 1.2 · 10−13 5.5 · 10−10 0 6.3 · 10−11 2.2 · 10−16 0 0

1.5 3.0 · 10−6 2.2 · 10−6 4.4 · 10−8 1.1 · 10−4 5.3 · 10−7 0 2.2·10−7

2 0.004 1.4 · 10−4 0.001 0.032 0.004 1.7 · 10−9 0.001

2.2 0.02 4.1 · 10−4 0.01 0.105 0.024 1.4 · 10−6 0.002

2.5 0.105 0.002 0.092 0.325 0.151 0.002 0.008

2.6 0.157 0.002 0.153 0.417 0.228 0.012 0.011

2.8 0.293 0.004 0.324 0.6 0.421 0.136 0.021

3 0.455 0.008 0.53 0.753 0.622 0.176 0.038

3.5 0.802 0.023 0.896 0.951 0.926 0.287 0.114

4 0.954 0.051 0.989 0.994 0.993 0.368 0.256

At bias level Γ, p̄Γ,Gg is the maximum p-value for group Gg . p̄Γ∧ is the maximum p-value for
the global test using the truncated product method of combining maximum p-values of the
individual groups and Simes’ p-value is the p-value for the global hypothesis using Simes’
method. Values less than 9 · 10−17 are rounded down to 0. In each column, largest p-value

less than 0.05 is in bold.

{p̄Γg,Gg : g = 1, 2, . . . , G} conditional on (F ,Z, I) is an independent collection
by Lemma 1 and by Lemma 2 each of p̄Γg,Gg is stochastically larger than the uni-
form distribution on [0, 1]. Then conditional on (F ,Z, I), the validity of Simes’
p-value follows from Simes (1986).

The last column of Table 4 reports the Simes’ p-values. When Γg = 2 for all
groups Simes’ p-value is 1.0× 10−3. Using Simes’ p-values the decision to reject
the global hypothesis is sensitive for hidden bias levels of Γg = 3.5 for each
group. Thus, consideration of effect modification has provided evidence that is
much less sensitive to bias than not considering effect modification, Γ = 3.5
compared to Γ = 2.6 (from Section 1.1).

Now we consider testing the null hypothesis of no treatment effect for each
group. Table 4 shows the maximum possible values of the p-values at different
levels of hidden bias. Under the assumption of no hidden bias for each of the
groups we have p-values 1.2 × 10−13, 5.5 × 10−10, < 9.99 × 10−16 (reported as
0), 6.3× 10−11 and 2.2× 10−16 supporting the hypothesis that smoking causes
increase in lead level in the blood. These inferences individually are sensitive at
different levels of hidden biases 2.5, 4, 2.5, 2.2 and 2.5 for the five groups. This
sensitivity analysis is not multiplicity corrected.

Table 5 present results of two multiplicity corrected analyses – the BH pro-
cedure that controls for the FDR and the closed testing procedure that controls
for the FWER (Hsu et al., 2015). The BH procedure is less sensitive to bias
than the closed testing procedure. For example, if the hidden bias of treatment
assignment throughout the data is at most Γ = 2.8, then the BH procedure
still finds effect of smoking causing increase in lead level in the blood for female
between age 41 and 47 years (G2) while the closed testing procedure fails to
reject the null hypotheses for all the groups. In closed testing, the smallest Γ
for which all five of the hypotheses are sensitive to bias is Γ = 2.6 compared to
Γ = 3.5 for the BH procedure.
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Table 5

Adjusted p-values for closed testing procedure and adjusted p-values for the BH procedure
for different level of hidden biases. Adjusted p-values are compared to the nominal level

0.05. In each column for each comparison, largest p-value less than 0.05 is in bold.

Γ p̄Γ,G1 p̄Γ,G2 p̄Γ,G3 p̄Γ,G4 p̄Γ,G5

BH adjusted p-values

1 1.93 · 10−13 5.48 · 10−10 0 7.88 · 10−11 5.55 · 10−16

1.5 3.72 · 10−6 3.67 · 10−6 2.22 · 10−7 1.09 · 10−4 1.32 · 10−6

2 0.005 0.001 0.003 0.032 0.005

2.2 0.03 0.002 0.026 0.105 0.03

2.5 0.175 0.008 0.175 0.325 0.188

2.6 0.262 0.011 0.262 0.417 0.285

2.8 0.527 0.021 0.527 0.6 0.527

3 0.753 0.038 0.753 0.753 0.753

3.5 0.951 0.114 0.951 0.951 0.951

4 0.994 0.256 0.994 0.994 0.994

Adjusted p-values for closed testing procedure

1 1.16 · 10−13 5.48 · 10−10 0 6.30 · 10−11 2.22 · 10−16

1.5 2.97 · 10−6 2.20 · 10−6 4.44 · 10−8 1.09 · 10−4 5.28 · 10−7

2 0.004 0.001 0.001 0.032 0.004

2.2 0.028 0.005 0.01 0.105 0.024

2.5 0.224 0.048 0.094 0.325 0.178

2.6 0.343 0.105 0.177 0.417 0.295

2.8 0.623 0.359 0.501 0.623 0.623

3 0.867 0.68 0.832 0.867 0.867

3.5 0.999 0.996 0.999 0.999 0.999

4 1 1 1 1 1

6. Discussion

In this paper we investigated a sensitivity analysis with false discovery rate con-
trol for testing the hypothesis of no treatment effect under possible effect mod-
ification. Effect modification is the correlation of magnitude of treatment effect
with pre-treatment covariates. Consideration of effect modification in practice
leads us to make stronger conclusions about treatment effect. In the absence
of prior knowledge about what covariates to consider as potential effect modi-
fiers, we learn about what potential effect modifiers to test from the data. Our
main theoretical result says that under appropriate restriction on the group-
ing method we can guarantee FDR control. In our simulation studies and data
analysis, we have used the CART algorithm to construct groups from matched
treatment-control pairs from the data. The interpretability of the regression tree
makes it a promising choice. There have been new suggestions for interpretable
classifiers (see e.g., Letham et al. (2015)). Such algorithms can also be used in
practice. In the presence of effect modification one can consider different levels
of hidden biases for different groups. In our simulations the FDR controlling
method shows more power compared to closed testing. This is to be expected,
since typically FDR controlling procedures have greater power than FWER con-
trolling procedures. When there are many different levels of effect modification
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leading to a large number of groups, FDR controlling procedures can have a
large power advantage compared to FWER controlling procedures.

The method discussed in this article can potentially be applied to various
situations involving historical controls. For example, the method can assist in
planning a phase III clinical trial, based on single-arm phase II trial results.
After a preliminary safety assessment of a new treatment in phase II, data is
collected to understand the effectiveness of the treatment before conducting a
full scale Phase III trial. Often phase II trials are single-arm studies with no
control group and patients receiving the treatment are compared to historical
controls. A subgroup analysis with sensitivity analysis in phase II can be a step
towards planning a phase III trial. The sensitivity analysis discussed in this
article would point to signals for the groups of patients for which treatment
has possibly different levels of effects or no beneficial effect at all. These signals
can be used to introduce blocking variables or develop enrichment strategies in
designing a Phase III trial (Freidlin and Korn, 2014). In another application, the
method can enhance various comparison studies to historical data. For example,
Sammarco et al. (2016) used historical control data from NHANES database to
assess the harmful effect of exposure to crude oil on petroleum hydrocarbon
concentrations in the blood. The treatment group consisted of people who came
in contact with crude oil in 2010 BP/Deepwater Horizon oil spill. The poor
power of the study, particularly for long-chain hydrocarbons, can be improved by
considering a subgroup based sensitivity analysis as person-to-person variability
in the effects of exposure to crude oil may be high and may be affected by age,
background and smoking pattern.

Appendix: Proof of Theorem 1

Proof. Let C
(−Gg)
r be the event that r groups are rejected along with Gg. The

proof follows that of Benjamini and Yekutieli (2001). The FDR is

E

(∑G
g=1 χ(Gg ⊆ G0, Dg = 1)

max(
∑G

g=1 χ(Dg = 1), 1)

∣∣∣∣F ,Z, I
)

=

G∑
g=1

G∑
r=1

1

r
χ(Gg ⊆ G0)Pr

(
Dg = 1,

G∑
k=1

χ(Dk = 1) = r
∣∣∣F ,Z, I

)
.

We can write the right hand side of the identity above as,

=

G∑
g=1

χ(Gg ⊆ G0)

G∑
r=1

1

r
Pr

(
p̄Γ,Gg ≤ rq/G;C(−Gg)

r

∣∣∣F ,Z, I
)

=
G∑

g=1

χ(Gg ⊆ G0)
G∑

r=1

1

r
Pr

(
p̄Γ,Gg ≤ rq

G

∣∣∣F ,Z, I
)
Pr

(
C(−Gg)

r

∣∣∣F ,Z, I
)

≤ q/G

G∑
g=1

χ(Gg ⊆ G0)

G∑
r=1

Pr
(
C(−Gg)

r

∣∣∣F ,Z, I
)
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= q/G

G∑
g=1

χ(Gg ⊆ G0)× 1 ≤ q.

The second identity follows from Lemma 1. The first inequality follows from
Lemma 2 and the fact that p̄ΓGg being a upper bound on the true p-value is
stochastically larger than uniform distribution on [0,1], i.e., Pr(p̄ΓGg ≤ a) ≤
Pr(pΓGg ≤ a) ≤ a. The final identity follows since C

(−Gg)
r for r = 1, 2, . . . , G

are disjoint event, thus we have
∑G

r=1 Pr(C
(−Gg)
r |F ,Z, I) = Pr(∪G

r=1C
(−Gg)
r |F ,

Z, I) = 1. Thus the theorem is proved.
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