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Abstract: This paper develops robust confidence intervals in high-dimen-
sional and left-censored regression. Type-I censored regression models, where
a competing event makes the variable of interest unobservable, are ex-
tremely common in practice. In this paper, we develop smoothed estimating
equations that are adaptive to censoring level and are more robust to the
misspecification of the error distribution. We propose a unified class of ro-
bust estimators, including one-step Mallow’s, Schweppe’s, and Hill-Ryan’s
estimator that are adaptive to the left-censored observations. In the ultra-
high-dimensional setting, where the dimensionality can grow exponentially
with the sample size, we show that as long as the preliminary estimator
converges faster than n−1/4, the one-step estimators inherit asymptotic
distribution of fully iterated version. Moreover, we show that the size of the
residuals of the Bahadur representation matches those of the pure linear
models – that is, the effects of censoring disappear asymptotically. Simula-
tion studies demonstrate that our method is adaptive to the censoring level
and asymmetry in the error distribution, and does not lose efficiency when
the errors are from symmetric distributions.
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1. Introduction

Left-censored data is a characteristic of many datasets. In physical science ap-
plications, observations can be censored due to limits in the measurements.
For example, if a measurement device has a value limit on the lower end, the
observations are recorded with the minimum value, even though the actual re-
sult is below the measurement range. In fact, many of the HIV studies have
to deal with difficulties due to the lower quantification and detection limits of
viral load assays (Swenson et al., 2014). In social science studies, censoring may
be implied in the nonnegative nature or defined through human actions. Eco-
nomic policies such as minimum wage and minimum transaction fee result in
left-censored data, as quantities below the thresholds will never be observed.
At the same time, with advances in modern data collection, high-dimensional
data where the number of variables, p, exceeds the number of observations, n,
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are becoming more and more commonplace. HIV studies are usually comple-
mented with observations about genetic signature of each patient, making the
problem of finding the association between the number of viral loads and the
gene expression values extremely high dimensional.

In general, we cannot develop p-values from the high-dimensional observa-
tions without further restrictions on the data generating distribution. A stan-
dard way to make progress is to assume that the model is selected consistently
(Zhao and Yu, 2006; Fan and Li, 2001), i.e., that the regularized estimator accu-
rately selects the correct set of features. The motivation behind model selection
consistency is that, given sparsity of the model at hand, it effectively implies
that we can disregard all of the features whose coefficients are equal to zero.
An immediate consequence is that p-values are now well defined for the small
selected set of variables; see for example Bradic et al. (2011). Such results heav-
ily rely on assumptions named “irrepresentative condition” and variants thereof
including but not limited to the minimal signal strength (Van De Geer et al.,
2009). Thus, if we were to know that such conditions hold, p-value construction
would follow standard literature of what are essentially low-dimensional prob-
lems. Many early applications of regularized methods effectively impose condi-
tions similar to the irrepresentable condition and then rely solely on the results
of the regularized estimator. However, such restrictions can make it challenging
to discover strong but unexpected significant signals. In this paper, we seek to
address this challenge: we showcase that valid p-values can be well defined for
all of the features in the model through development of robust, bias-corrected
estimator that yields valid asymptotic inference regardless of whether or not
irrepresentable-type conditions are assumed.

Classical approaches to inference in left-censored models (Tobin, 1958) in-
clude maximum likelihood approaches (Amemiya, 1973), consistent estimators
of the asymptotic covariance matrix (Powell, 1984), bayesian methods (Chib,
1992), maximum entropy principles (Golan et al., 1997), etc. These methods
perform well in applications with a small number of covariates (smaller than
the sample size), but quickly break down as the number of covariates increases.
In this paper, we explore the use of ideas from the high-dimensional literature
to improve the performance of these classical methods with many covariates.

We focus on the family of de-biased estimators introduced by (Zhang and
Zhang, 2014), which allow for optimal inference in high dimensions by building
an estimator that corrects for the regularization bias. Bias-corrected estimators
are related to one-step M-estimators (Bickel, 1975) in that they improve on an
initial estimator by following a Newton-Raphson updating rule; however, they
differ from the classical one-step M-estimators in that their initial step is not
consistent and direct estimator of the asymptotic variance does not exist.

One-step M-estimators even in low-dimensions, however, have not been de-
fined for censored regression models, where measurements are censored by fixed
constants. Moreover, knowledge of the underlying data generating mechanism
is seldom available, and thus models with fixed-censoring are more prone to
the distributional misspecification. To overcome that, we aim at developing a
semi-parametric one-step estimator that makes no distributional assumptions.
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Despite their widespread success in estimation problems, there are important
hurdles that need to be cleared before one-step M-estimators are directly use-
ful. Ideally, an estimator should be consistent with a well-understood asymptotic
sampling distribution regardless of the error distribution, so that a researcher
can use it to test hypotheses and establish confidence intervals. Yet, the asymp-
totics of censored one-step estimators have been largely left open, even in the
standard regression contexts. This paper addresses these limitations, developing
a regularization-based method for the high-dimensional Tobit model that allows
for a tractable asymptotic theory and valid statistical inference.

We begin our theoretical analysis by developing the consistency and asymp-
totic normality results in the context of least absolute deviation regression. We
prove these results for a carefully developed estimator that uses one-step cor-
rections to remove regularization bias, while relying on a new technique, named
smoothing estimating equations, which allows for efficient semi-parametric in-
ference.

We also show that the generalized M-estimators that are robust to the outliers
in the feature distribution can be effectively constructed for the Tobit model.
Our methodology builds upon classical ideas from Hampel (1974), as well as
Huber (1973). Given these general constructions, we show that our consistency
and asymptotic normality result holds when the number of features is larger
than the sample size.

1.1. Related work

From a technical point of view, the main contribution of this paper is an asymp-
totic normality theory enabling statistical inference in high-dimensional Tobit
I models. Results by Powell (1986a), Powell (1986b) and Newey and Powell
(1990) have established asymptotic properties in low-dimensional setting where
the number of features is fixed, while Song (2011) and Zhao et al. (2014b) de-
veloped distribution free and rank-based tests. Müller and van de Geer (2016)
offered a penalized version of Powell’s estimator (penalized CLAD). Robustness
properties of sample-selection models in low-dimensions were recently studied in
Zhelonkin et al. (2016). To the best of our knowledge, however, we provide the
first set of conditions under which semi-parametric estimators are both asymp-
totically unbiased and Gaussian in high-dimensional settings, thus allowing for
classical statistical inference. The extension to the robust high-dimensional es-
timates robust to both feature and model outliers in this paper is also new.

A growing literature, including Van de Geer et al. (2014), Zhang and Zhang
(2014), Ren et al. (2015) and Rinaldo et al. (2016), has considered the use of
regularized algorithms for performing inference in high-dimensional regression
models. These papers use the bias correction method, and report confidence
intervals and p-values for testing feature significance. Meanwhile, Belloni et al.
(2014, 2013), Zhao et al. (2014a) and Javanmard and Montanari (2014) use
robust approaches to estimate the asymptotic variance, and then use related
bias correction step to remove the effect of regularization. A limitation of this
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line of work is that, until now, it has lacked formal statistical inference results
in the presence of measurements with fixed censoring.

We view our contribution as complementary to this literature, by showing
that bias correction methods may be applied to partially observed data. We
believe that the new methodological tools developed here will be useful beyond
the specific class of models studied in the paper. In particular, tools of utilizing
unknown error distribution as a kernel smoother allow for direct analysis of
many estimators with non-smooth loss functions.

Several papers use one-step methods for eliminating the bias of regularized
estimates. In removing the bias of the regularized estimates, we follow most
closely the approach of Van de Geer et al. (2014), which proposes bias cor-
rection estimator for least squares losses and obtain valid confidence intervals.
Other related approaches include those of Javanmard and Montanari (2014)
and Ning and Liu (2017), which build different variance estimates to determine
a more robust bias correction step; however, these papers only focus on least
squares losses (more importantly they do not extend naively to non-smooth or
non-differentiable loss functions). Belloni et al. (2014) and Zhao et al. (2014a)
discuss one-step approaches for quantile inference; however, the tools and tech-
niques heavily depend on the convexity of the quantile loss (observe that our
loss is non-convex due to the fixed or constant left-censoring mechanism; random
censoring typically does not suffer from this problem). It is worth mentioning
that the double-robust approach of Belloni et al. (2017), which proposes a pow-
erful inference method for quantile regression, is based on leveraging principles
of doubly-robust scores and their estimating equations. Intriguingly, even in
low dimensions, doubly robust methods are not necessary for achieving semi-
parametric efficiency. We showcase that the newly proposed method achieves
efficiency on its own.

1.2. Organization of the paper

In Section 2, we propose the smoothed estimating equations (SEE) for left-
censored linear models. In Section 3, we present our main result on confidence
regions. In Section 4, we develop robust and left-censored Mallow’s, Schweppe’s
and Hill-Ryan’s estimators, and present their theoretical analysis. Section 5 pro-
vides numerical results on simulated data sets. In Section 6, we include discus-
sions and conclusions for our work. We defer more general results for confidence
regions, as well as the Bahadur representation of the SEE estimator, to Section
7 in the Appendix Section. Section 8 and 9 in the Appendix consist of technical
details and proofs.

2. Inference in left-censored regression

We begin by introducing a general modeling framework followed by highlight-
ing the difficulty for directly applying existing inferential methods (such as de-
biasing, score, Wald, and etc.) to the models with left-censored observations.
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Finally, we propose a new mechanism, named smoothed estimating equations,
to construct semi-parametric confidence regions in high-dimensions.

2.1. Left-censored linear model

We consider the problem of confidence interval construction where we observe
a vector of responses Y = (y1, . . . , yn) and their censoring level c = (c1, . . . , cn)
together with covariates X1, . . . Xp. The type of statistical inference under con-
sideration is regular in the sense that it does not require model selection consis-
tency. A characterization of such inference is that it does not require a uniform
signal strength in the model. Since ultra-high dimensional data often display
heterogeneity, we advocate a robust confidence interval framework. We begin
with the following latent regression model:

yi = max {ci, xiβ
∗ + εi} ,

where the response Y and the censoring level c are observed, and the vector
β∗ ∈ Rp is unknown. Observe that the censoring mechanism considered here is
fixed and non-random. This model is often called the semi-parametric censored
regression model, whenever the distribution of the error ε is not specified. We
assume that {εi}ni=1 are independent across i, and are independent of xi. Matrix
X = [X1, · · · , Xp] is the n× p design matrix. We also denote Sβ := {j|βj �= 0}
as the active set of variables in β and its cardinality by sβ := |Sβ|. We restrict
our study to constant-censored model, also called Type-I Tobit model, where
entries of the censoring vector c are the same. Without loss of generality, we
focus on the zero-censored model,

yi = max {0, xiβ
∗ + εi} . (2.1)

2.2. Smoothed estimating equations (SEE)

In this paper, we take a general approach to the problem of designing robust and
semi-parametric inference for left-censored linear models. Our estimator is moti-
vated by the principles of estimating equations. Although estimating equations
have been studied in many previous works, the smoothed estimating equations
(SEE) framework presented in the following tailors to the high-dimensional and
censored scenario. In addition, the method is simple enough to apply more
generally to non-smooth loss functions. We begin by observing that the true
parameter vector β∗ satisfies the population system of equations

E

[
Ψ(β∗)

]
= 0. (2.2)

for some function Ψ(β) often taking the form of Ψ(β) = n−1
∑n

i=1 ψi(β) for a
class of suitable functions ψi. Observe that for left-censored models ε rarely, if
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ever, follows a specific distribution. A particular example of our interest, that
allows error misspecifications, is

ψi(β) = sign (yi −max{0, xiβ})w�
i (β) (2.3)

where wi(β) = xi 1I{xiβ > 0}. The motivation comes from famous least absolute
deviation l1 loss. The advantage of the function ψi above is then that it naturally
bounds the effects of outliers; large values of the residuals yi − max{0, xiβ}
are down-weighted using l1 distance. In fact, we work with Ψ resulting from
this specific choice of ψi function later in the analysis. Nevertheless, our SEE
framework has a much broader spectrum, see Remark 1 below. Other functions
Ψ can be applied as well. Another example of a function Ψ that has semi-
parametric advantage is a variant of a trimmed least squares loss, where the
vanilla quadratic loss is multiplied by an indicator function as follows 1I{yi −
xiβ > 0, xiβ > 0}.

However, with the appropriate choice of Ψ, solving estimating equations
Ψ(β) = 0, although practically desirable, still has several drawbacks, even
in low-dimensional setting. In particular, for semi-parametric estimation and
inference in model (2.1), the function Ψ is non-monotone as the loss is non-
differentiable and non-convex. Hence, the system above has multiple roots re-
sulting in an estimator that is ill-posed, and additionally presents significant
theoretical challenges. Instead of solving the system (2.2) directly, we augment
it by observing that, for a suitable choice of the matrix Υ ∈ Rp×p, β∗ also
satisfies the system of equations

E[Ψ(β∗)] +Υ[β∗ − β] = 0. (2.4)

For certain choices of the matrix Υ we aim to avoid both non-convexity and
huge dimensionality of the system of equations (2.2). To avoid difficulties with
non-smooth functions Ψ, we propose to consider a matrix Υ = Υ(β∗), where
the matrix Υ(β∗) is defined as

Υ(β) = EX [∇βS(β)] ,

for a smoothed vector S(β) defined as

S(β) =

∫ ∞

−∞
Φ(β, x)fε(x)dx.

The unknown error distribution smooths the function Ψ and acts as a kernel
smoother function. In the above display Ψ(β∗) = Φ(β∗, ε), for a suitable func-
tion Φ = n−1

∑n
i=1 φi and φi : R

p × R → R, whereas fε denotes the density of
the model error (2.1). Additionally, EX denotes expectation with respect to the
random measure generated by the vectors X1, . . . , Xn.

Following Ψ as in (2.3), the respective smoothed score function that we will
be working with is

S(β∗) = n−1
n∑

i=1

[1− 2Pε (yi − xiβ
∗ ≤ 0)] (wi(β

∗))� , (2.5)
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where Pε denotes the probability measure generated by the errors ε (2.1).
Smoothed score will typically depend on the unknown density of the error terms
and the unknown parameter of interest. For practical purposes, we will propose
a suitable estimate of the function (2.5) – for homoscedastic errors εi, the un-
known cdf above can easily be estimated using empirical distribution function.
With this choice of the smoothed loss, we obtain an information matrix as fol-
lows ∇β∗S(β∗) = 2fε(0)n

−1
∑n

i=1 wi(β
∗)�wi(β

∗). We then proceed to define
the matrix Υ as

Υ(β∗) = 2fε(0)EX

[
n−1

n∑
i=1

wi(β
∗)�wi(β

∗)

]
:= 2fε(0)Σ(β∗). (2.6)

We note that the matrix above is inspired by the linearization of non-differ-
entiable losses, and is in particular very different from the Hessian or the Jaco-
bian matrix typically employed for inference. Throughout the text, we denote
the inverse of Σ(β∗) as Σ−1(β∗), which is assumed to exist. In addition, we

have Σ̂(β) := n−1
∑n

i=1 wi(β)
�wi(β). To infer the parameter β∗, we need to

efficiently solve the SEE equation (2.4). We can observe that solving SEE equa-
tions (2.4) requires inverting the matrix Υ(β∗), as we are looking for a solution
β that satisfies

Υ(β∗)β = Υ(β∗)β∗ + EΨ(β∗).

For low-dimensional problems, with p � n, this can be done efficiently by
considering an initial estimate β̂ and a sample plug-in estimate Υ(β̂) of Υ(β∗),

Υ(β̂) = 2n−1f̂ε(0)

n∑
i=1

wi(β̂)
�wi(β̂) (2.7)

and a sample estimate of EΨ(β∗), denoted with Ψ(β̂) and a suitable density

estimate f̂ε(0). However, when p � n, this is highly inefficient. Instead, it is

more efficient to directly estimate Υ−1(β∗) = Σ−1(β∗)/2fε(0). Let Ω(β̂) be an
estimate of Σ−1(β∗) (see Section 2.3 for discussion). Then, we proceed to solve
SEE equations approximately, by defining the SEE estimator as

β̃ = β̂ +Ω(β̂)Ψ(β̂)/f̂ε(0).

Remark 1. The proposed SEE can be viewed as a high-dimensional extension
of inference from estimating equations. Although we consider a left-censored
linear model, the proposed SEE methodology applies more broadly. For exam-
ple, our framework includes loss functions based on ranks or non-convex loss
functions for the fully observed data. For instance, the method in Van de Geer
et al. (2014) is based on inverting KKT conditions might not directly apply for
the non-convex loss functions (e.g., Cauchy loss) or rank loss functions (e.g.,
log-rank loss). Recent methods of Neykov et al. (2015) do not apply to non-
differentiable estimating equations (see Section 2.1 where a twice-differentiable
assumption is imposed).
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2.3. Estimation of the scale in left-censored models

We will introduce the methodology for estimating each row of the matrix
Σ−1(β∗). For further analysis, it is useful to define W (β) as a matrix composed
of row vectors wi(β); W (β) = A(β)X, where A(β) = diag (1I (Xβ > 0)) ∈
Rn × Rn. The methodology is motivated by the following observation:

τ−2
j Γ(j)(β

∗)�Σ(β∗) = ej ,

where Γ(j)(β
∗) = [−γ∗

(j)(β
∗)1, · · · , −γ∗

(j)(β
∗)j−1, 1, −γ∗

(j)(β
∗)j+1, · · · ,

−γ∗
(j)(β

∗)p] and

γ∗
(j)(β) := argmin

γ∈Rp−1

E ‖Wj(β)−W−j(β)γ‖22 /n

as well as τ2j := n−1E
∥∥∥Wj(β

∗)−W−j(β
∗)γ∗

(j)(β
∗)
∥∥∥2
2
. This motivates us to

consider the following as an estimator for the inverse Σ−1(β∗). Let γ̂(j)(β̂)
and τ̂2j denote the estimators of γ∗

(j)(β
∗) and τ2j respectively. We will show

that a simple plug-in Lasso type estimator is sufficiently good for construction
of confidence intervals. We propose to estimate γ∗

(j)(β
∗), with the following l1

penalized plug-in least squares regression,

γ̂(j)(β̂) = argmin
γ∈Rp−1

{
n−1

∥∥∥Wj(β̂)−W−j(β̂)γ
∥∥∥2
2
+ 2λj‖γ‖1

}
. (2.8)

Notice that this regression does not trivially share all the nice properties of
the penalized least squares, as in this case the rows of the design matrix are
not independent and identically distributed. An estimate of τ2j can then be
defined through the estimate of the residuals ζ∗

j := Wj(β
∗)−W−j(β

∗)γ∗
(j)(β

∗).
Throughout this paper we assume that ζ∗

j has sub-exponential distribution and
we denote ‖Γ(j)(β

∗)‖0 = sj for j = 1, · · · , p, where ‖ · ‖0 denotes the number
of nonzero entries in the vector. We propose the plug-in estimate for ζ∗

j as

ζ̂j = Wj(β̂)−W−j(β̂)γ̂(j)(β̂), and a bias corrected estimate of τ2j defined as

τ̂2j (λj) = n−1ζ̂�
j ζ̂j + λj

∥∥∥γ̂(j)(β̂)
∥∥∥
1
. (2.9)

Observe that the naive estimate n−1ζ̂�
j ζ̂j does not suffice due to the bias carried

over by the penalized estimate γ̂(j)(β̂). Lastly, the matrix estimate of Σ−1(β∗),
much in the same spirit as Zhang and Zhang (2014) is defined with

Ωjj(β̂) = τ̂−2
j , Ωj,−j(β̂) = −τ̂−2

j γ̂(j)(β̂), j = 1, . . . , p. (2.10)

The proposed scale estimate can be considered as the censoring adaptive
extension of the graphical lasso estimate of Van de Geer et al. (2014).



590 J. Bradic and J. Guo

2.4. Density estimation

Whenever the model considered is homoscedastic, i.e., εi are identically dis-
tributed with a density function fε (denoted whenever possible with f), we
propose a novel density estimator designed to be adaptive to the left-censoring
in the observations. For a positive bandwidth sequence ĥn, we define the density
estimator of f(0) as

f̂(0) = ĥ−1
n

n∑
i=1

1I(xiβ̂ > 0) 1I(0 ≤ yi − xiβ̂ ≤ ĥn)∑n
i=1 1I(xiβ̂ > 0)

. (2.11)

Of course, more elaborate smoothing schemes for the estimation of f(0) could
be devised for this problem, but there seems to be no a priori reason to prefer
an alternate estimator.

Remark 2. We will show that a choice of the bandwidth sequence satisfying
h−1
n = O(

√
n/(s log p)) suffices. However, we also propose an adaptive choice of

the bandwidth sequence and consider ĥn = o(1) such that let ui := yi − xiβ̂,

ĥn = c
{
sβ̂ log p/n

}−1/3

median
{
ui : ui >

√
log p/n, xiβ̂ > 0

}
,

for a constant c > 0. Here, sβ̂ denotes the size of the estimated set of the

non-zero elements of the initial estimator β̂, i.e., sβ̂ = ‖β̂‖0.

2.5. Confidence intervals

Following the SEE principles, the solution to the equations is defined as an
estimator,

β̃ = β̂ +Ω(β̂)Ψ(β̂)/2f̂(0). (2.12)

For the presentation of our coverage rates of the confidence interval (2.15) and
(2.16), we start with the Bahadur representation. Lemmas 1–6 (presented in the
Appendix) enable us to establish the following decomposition for the introduced
one-step estimator β̃,

√
n
(
β̃ − β∗

)
=

1

2f(0)
Σ−1(β∗)

1√
n

n∑
i=1

ψi(β
∗) + Δ, (2.13)

where the vector Δ represents the residual component. We show that the resid-
ual vector’s size is small uniformly and that the leading term is asymptotically
normal. The theoretical guarantees required from an initial estimator β̂ is pre-
sented below.

Condition (I). An initial estimate β̂ is such that the following three properties
hold. There exists a sequence of positive numbers rn such that rn → 0 when
n → ∞ and ‖β̂ − β∗‖2 = OP (rn) together with ‖β̂‖0 = t = OP (sβ∗).
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One particular choice of such estimator can be l1 penalized CLAD estimator
studied in Müller and van de Geer (2016)

β̂ := argmin
β∈B

{
1

n
‖Y −max{0, Xβ}‖1 + λ‖β‖1

}
, (2.14)

which satisfies the Condition (I) with r2n = sβ∗ log p/n and ‖β̂‖0 = OP (sβ∗ ×
λmax(X

�X)/n), under the suitable conditions. However, other choices are also
allowed. It is worth noting that the above condition does not assume model
selection consistency of the initial estimator and the methodology does not rely
on having a unique solution to the problem (2.14); any local minima suffices as
long as the prediction error is bounded accordingly.

With the normality result of the proposed estimator β̃ (as shown in Theorem
8, Section 7 in the Appendix), we are now ready to present the confidence
intervals. Fix α to be in the interval (0, 1), and let zα denote the (1 − α)th
standard normal percentile point. Let c be a fixed vector in Rp. Based on the
results of Section 7 in the Appendix, the standard studentized approach leads
to a (1− 2α)100% confidence interval for c�β∗ of the form

In =

(
c�β̃ − an, c

�β̃ + an

)
, (2.15)

where β̃ is defined in (2.12) and

an = zα

√
c�Ω(β̂)Σ̂(β̂)Ω(β̂)c

/
2
√
nf̂(0) (2.16)

with Ω(β̂) defined in (2.10), Σ̂(β̂) defined in (2.7) and f̂(0) as defined in (2.11).
In the above, for c = ej , the above confidence interval provides a coordinate-
wise confidence interval for each βj , 1 ≤ j ≤ p. Notice that the above confidence
interval is robust in a sense that it is asymptotically valid irrespective of the
distribution of the error term ε.

3. High-dimensional asymptotics

Within this section, we will present the theoretical results using a specific initial
estimator. However, our methodology has a much broader spectrum of appli-
cations. More details on the preliminary theoretical results, as well as more
general results than the ones presented below, can be found in Section 7 in the
Appendix. We begin with a set of very mild model error assumptions.

3.1. Theoretical background

There has been considerable work in understanding the theoretical properties
of high-dimensional one-step bias correction estimators. The convergence and
consistency properties of least squares based methods have been studied by,



592 J. Bradic and J. Guo

among others, Bickel et al. (2009), Meinshausen and Yu (2009) and Negah-
ban et al. (2009). Meanwhile, their sampling variability has been analyzed by
Van de Geer et al. (2014). However, to the best of our knowledge, our Theo-
rem 1 is the first result establishing conditions under which one-step estima-
tors are asymptotically unbiased and normal in high-dimensional Tobit I mod-
els.

Probably the closest existing result is that of Belloni et al. (2014) and Zhao
et al. (2014a), which showed that high-dimensional quantile models can be suc-
cessfully de-biased for the purpose of confidence intervals construction. However,
it is worth noting that their procedures do not adapt to censoring, and their
de-biased methods cannot be applied to fixed, left-censored models. Observe
that the optimal Hessian matrix we have developed depends on the level of
censoring and an initial estimate, whereas procedures in the above mentioned
work do not: the post-lasso estimation in Belloni et al. (2014) relies on the score
vector being a convex function of unknown parameters, and the Hessian matrix
in Zhao et al. (2014a) depends merely on features. However, under convexity
condition, left-censored models cannot be solved non-parametrically (without
knowing the density function of the model error). Of course a surrogate score
vector may be developed, but then it remains unclear if efficient attainment
optimal bias-variance decomposition can be achieved. Although the methods of
Belloni et al. (2014) and Zhao et al. (2014a) may appear qualitatively similar
to the current work in the common choice of LAD loss, they cannot be used for
valid inference in left-censored models.

The non-smooth losses have been studied extensively by Belloni et al. (2013)
as well as Belloni et al. (2017) who showed that rates slower than that of smooth
counterparts should be expected for many inferential problems; in particular
rates are slower than those needed for estimation alone. However, it is im-
portant to note that in all approaches the de-biasing step consists of a non-
smooth score and smooth variance estimate. In our setting however, we have
non-smooth score as well as non-smooth Hessian matrix (treated as parameters
of the unknown). We identify that such departure in structure of the problem
requires new concentration of measure as well as contracting principles regard-
ing indicator functions: a step not needed in the mentioned literature. Even
in low dimensions, such results are of independent interest, as they provide a
unique Bahadur representation for left-censored semi-parametric method. In-
stead of using projections for Hessian estimation, inference for Tobit models is
usually performed in terms of bootstrap sampling. High-dimensional inference
with bootstrap, however, have proven to be unreliable and inconsistent (unless
done after bias correction step). As observed by Karoui and Purdom (2016),
estimators resulting from direct bootstrap in high dimensions can exhibit sur-
prising properties even in simple situations.

Finally, an interesting question for further theoretical study is to understand
the optimal scaling of the sparsity for Tobit models. Size of the model sparsity
can be treated as a robustness parameter. It would be of considerable interest
to develop methods that adapt to the size of the model sparsity and achieve
uniform rates of testing.
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3.2. Main results

Condition (E). The error distribution F has median 0, and is everywhere
continuously differentiable, with density f , which is bounded above, fmax < ∞,
and below, fmin > 0. Furthermore, f(·) is also Lipschitz continuous, |f(t1) −
f(t2)| ≤ L0·|t1−t2|, for some L0 > 0. Define function Gi(z,β, r) = E[1I(|xiβ| ≤
‖xi‖2 · z)‖xi‖r2] and assume that Gi(z,β, r) ≤ K1 · z, if 0 ≤ z < ξ, r = 0, 1, 2,
for some positive K1 and ξ such that ‖β − β∗‖1 ≤ ξ.

We require the error density function to be with bounded first derivative.
This excludes densities with unbounded first moment, but includes a class of
distributions much larger than the Gaussian.

Moreover, this assumption implies that xiβ are distributed much like the
error εi, for β close to β∗ and xiβ close to the censoring level 0. Last condi-
tion in particular implies that P(|xiβ| ≤ z) = o(z) for all β close to β∗. This
condition does not exclude deterministic components of the vector xi, nor com-
ponents which have discrete distributions; only the linear combination xiβ must
have a Lipschitz continuous distribution function near zero. Therefore, imply-
ing P(|xiβ

∗| = 0) = 0. For fixed designs, this condition implies |xiβ
∗| ≥ k0, for

k0 > 0.

Apart from the condition on the error distribution, we need conditions on
the censoring level as well as the design matrix of the model (2.1) for further
analysis.

Condition (C). There exist constants C2 > 0 and φ0 > 0, such that for all β

satisfying ‖(β−β∗)SC
β∗
‖1 ≤ 3‖(β−β∗)Sβ∗ ‖1, ‖max{0, Xβ∗} −max{0, Xβ}‖22 ≥

C2‖X(β − β∗)‖22, and nφ2
0‖(β − β∗)Sβ∗ ‖21 ≤ (β − β∗)�E[X�X](β − β∗)sβ∗ .

Additionally, vn = λmin(Σ(β∗)) is also strictly positive, with 1/vn = O(1) and
assume max

j
Σjj(β

∗) = O(1). Moreover, assume that maxj ‖Xv‖∞ = O(K)

where v ∈ Rp.

The censoring level ci has a direct influence on the constant C2. In general,
higher values for ci increase the number of censored data. The bounds for the
coverage probability (see Theorem 1 and Theorem 5) do not depend on the
censoring level ci. The fact that the censoring level does not directly appear in
the results should be understood in the sense that the percentage of the censored
data is important, not the censoring level. Note that the compatibility factor
φ0 does not impose any restrictions on the censoring of the model, i.e., it is the
same as the one introduced for linear models (Bickel et al., 2009). Observe that
this condition does not impose distribution of W to be Gaussian or continuous.
However, it requires that Σ(β∗), the population covariance matrix, is at least
invertible, a condition unavoidable even in linear models.

In order to establish theoretical results on the improved one-step estimator,
we also need to control the scale estimator in the precision matrix estimation,
which requires the following condition.
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Condition (Γ). Parameters γ∗
(j)(β

∗) for all j = 1, . . . , p are such that |{k :

γ∗
(j),k(β

∗) �= 0}| ≤ sj for some sj ≤ n. Function γ∗
(j)(β) is Lipschitz continuous

for all β satisfying condition (C).

The preceding condition is not uncommon, and can also be found in Van de
Geer et al. (2014); Belloni et al. (2014).

With the conditions above, we present our main result. More generalized
results for initial estimators satisfying Condition (I) are presented in Theorem
8 and 9 in the Appendix.

Theorem 1. Let β̂ be defined as in (2.14) with a choice of the tuning parameter

λ = A2K
(√

2 log(2p)/n+
√
log p/n

)
for a constant A2 > 16 and independent of n and p. Assume that
s̄(log p)1/2/n1/4 = o(1), for s̄ = sβ∗ ∨ sΩ with sΩ = maxj sj . Suppose that

conditions (E), (C) and (Γ) hold. Moreover, let λj = C
√
log p/n for a constant

C > 1.

(i) Then, for j = 1, . . . , p∥∥∥γ̂(j)(β̂)− γ∗
(j)(β

∗)
∥∥∥
1
= OP

(
1

φ2
0C2

sj
√

log p/n

)
. (3.1)

(ii) For j = 1, . . . , p and ζ∗ and ζ̂∣∣∣ζ̂�
j ζ̂j/n− Eζ∗

j
�ζ∗

j /n
∣∣∣ = OP

(
K2sj

√
log(p ∨ n)/n

)
.

(iii) Let Ω(β̂) defined in (2.10). Then, for τ̂2j as in (2.9), we have τ̂−2
j =

OP (1). Moreover,∥∥∥Ω(β̂)j −Σ−1(β∗)j

∥∥∥
1
= OP

(
K2s

3/2
j

√
log(p ∨ n)/n

)
(iv) Let β̃ be defined as in (2.12) with Ω(β̂) defined in (2.10), Σ̂(β̂) defined

in (2.7) and f̂(0) as defined in (2.11). Then, for s̄ = sβ∗∨sΩ with sΩ = maxj sj,
the size of the residual term in (2.13) is

‖Δ‖∞ = OP

(
s̄2 log(p ∨ n)

n1/2

∨ sβ∗(log(p ∨ n))3/4

n1/4

)
.

(v) Assume that s̄(log p)3/4/n1/4 = o(1), for s̄ = sβ∗ ∨ sΩ with sΩ = maxj sj.
Let In and an be defined in (2.15) and (2.16). Then, for all vectors c = ej and
any j ∈ {1, . . . , p}, when s̄, n, p → ∞ we have

Pβ

(
c�β∗ ∈ In

)
= 1− 2α.
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A few comments are in order. Part (i) of Theorem 1 implies that the proposed
estimator and confidence intervals have distinct limiting behaviors with vary-
ing magnitude of the censoring level. In particular, (i) implies that ‖γ̂(j)(β̂) −
γ∗
(j)(β

∗)‖1 inherits the rates available for fully observed linear models whenever
C2 is bounded away from zero. Additionally, if all data is censored, i.e., whenever
C2 converges to zero at a rate faster than λj , the estimation error will explode.

These results agree with the asymptotic results on consistency in left-censored
and low-dimensional models; however, they provide additional details through
the exact rates of censoring that is allowed. For example, ‖β̂− β∗‖2 < n−1/4 is
sufficient for optimal inferential rates, and the asymptotic result above matches
those of fully observed linear models. In this sense, our results are also efficient.

Part (ii) provides easy to verify sufficient conditions for the consistency of a
class of semiparametric estimators of the precision matrix for censored regression
models. Even in low-dimensional setting, this result appears to be new and
highlights specific rate of convergence (see Theorem 1 for more details). Part
(iii) establishes properties of the graphical lasso estimate with data matrix that

depends on β̂. In comparison to linear models the established rate is slower for a
factor of

√
sj , whereas in comparison to the results of section 3 of (Van de Geer

et al., 2014) (see Theorem 3.2 therein) we avoid a strict condition of bounded
parameter spaces.

Observe that Part (iv) is a special case of general theory presented in the
Appendix. There we show that a large class of initial estimates suffices.

For the case of low-dimensional problems with s = O(1) and p = O(1), we
observe that whenever the initial estimator of rate rn, is in the order of n−ε, for
a small constant ε > 0, then

√
n
(
β̃ − β∗

)
= U +Δ. (3.2)

with

U =
1

2f(0)
Σ−1(β∗)

1√
n

n∑
i=1

ψi(β
∗)

and ‖Δ‖∞ = OP (n
−2ε). In particular, for a consistent initial estimator, i.e.

rn = O(n−1/2) we obtain that ‖Δ‖∞ = OP (n
−1/4).

For high-dimensional problems with s and p growing with n, for all initial
estimators of the order rn such that rn = O(saβ∗(log p)b/nc) and t = O(sβ∗) we
obtain that

‖Δ‖∞ = OP

(
s̄(2a+3)/4(log p)(1+b)/2/nc/2

)
whenever s̄(log p)1/4/n1/4 = O(1), where s̄ = s ∨ sΩ. Classical results on infer-
ence for left-censored data, with p � n, only imply that the error rates of the
confidence interval is OP (1); instead, we obtain a precise characterization of the
residual term size.

Remark 3. In particular, for the special case where the initial estimate is pe-
nalized CLAD estimate, we show
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Ω(β̂)Σ̂(β̂)Ω(β̂)

]− 1
2

jj
Uj

d−−−−−−→
n,p,s̄→∞

N
(
0,

1

4f(0)2

)
.

We obtain that the confidence interval In is asymptotically valid and that the cov-

erage errors are of the order O
(
s̄ (log p)

3/4
/n1/4

)
, whenever s̄(log p)1/4/n1/4 =

O(1).

Moreover, with p � n the rates above match the optimal rates of inference
for the absolute deviation loss (see e.g. Zhou and Portnoy (1996)), indicating
that our estimator is asymptotically efficient in the sense that the censoring
asymptotically disappears even for p ≥ n.

The condition s̄4 log3 p � n is also similar to the results in Belloni et al.
(2013) obtained for p � n. While it is unclear the orthogonal moments approach
therein is applicable for fixed-censored model, the rate condition required for
quantile procedure is s3 log3(p) � n, for known density and s4 log4(p) � n, for
unknown density (see Comment 3.3 and equation (ii) therein).

Lastly, observe that the result above is robust in the sense that it holds
regardless of the particular distribution of the model error (2.1), and holds in
a uniform sense. Thus, the confidence intervals are honest. In particular, the
confidence interval In does not suffer from the problems arising from the non–
uniqueness of β∗ (see Theorem 9 in the Appendix).

4. Left-Censored Mallow’s, Schweppe’s and Hill-Ryan’s one-step
estimators

Statistical models are seldom believed to be complete descriptions of how real
data are generated; rather, the model is an approximation that is useful, if it
captures essential features of the data. Good robust methods perform well, even
if the data deviates from the theoretical distributional assumptions. The best
known example of this behavior is the outlier resistance and transformation
invariance of the median. Several authors have proposed one-step and k-step
estimators to combine local and global stability, as well as a degree of efficiency
under target linear model (Bickel, 1975). There have been considerable chal-
lenges in developing good robust methods for more general problems. To the
best of our knowledge, there is no prior work that discusses robust one-step es-
timators for the case of left-censored models (for either high- or low-dimensions).

We propose here a family of robust generalized M-estimators (GM estima-
tors) that stabilize estimation in the presence of “unusual” design or model
error distributions. Observe that (2.1) rarely follows distribution with light
tail. Namely, model (2.1) can be reparametrized as yi = zi(β

∗)β∗ + ξi, where
zi(β

∗) = xi 1I{xiβ
∗ + εi ≥ 0} and ξi = εi 1I{xiβ

∗ + εi ≥ 0}. Hence ξi will often
have skewed distribution with heavier tails, and it is in this regard very impor-
tant to design estimators that are robust. We introduce Mallow’s, Schweppe’s
and Hill-Ryan’s estimators for left-censored models.
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4.1. Smoothed robust estimating equations (SREE)

In this section, we propose a robust generalized population estimating equations

E[Ψr(β)] = 0 (4.1)

with Ψr = n−1
∑n

i=1 ψ
r
i (β) and

ψr
i (β) = −n−1

n∑
i=1

qiw
�
i (β) ψ

(
vi
(
yi −max{0, xiβ}

))
, (4.2)

where ψ is an odd, nondecreasing and bounded function. Throughout we as-
sume that the function ψ either has finitely many jumps, or is differentiable
with bounded first derivative. Notice that when qi = 1 and vi = 1, with ψ being
the sign function, we have ψr

i = ψi of previous section. Moreover, observe that
for the weight functions qi = q(xi) and vi = v(xi), both functions of Rp → R+,
the true parameter vector β∗ satisfies the robust population system of equa-
tions above. Appropriate weight functions q and v are chosen for particular
efficiency considerations. Points with high leverage are considered “dangerous”,
and should be downweighted by the appropriate choice of the weights vi. Addi-
tionally, if the design has “unusual” points, the weights qi’s serve to downweight
their effects in the final estimator, hence making generalized M-estimators ro-
bust to the outliers in the model error and the model design.

We augment the system (4.1) similarly as before and consider the system of
equations

E[Ψr(β∗)] +Υr[β∗ − β] = 0, (4.3)

for a suitable choice of the robust matrix Υr ∈ Rp×p. Ideally, most efficient
estimation can be achieved when the matrix Υr is close to the matrix that
linearizes the smoothed score function of the robust equations (4.1).

To avoid difficulties with non-smoothness of ψ, we propose to work with
a matrix Υr that is smooth enough and robust simultaneously. To that end,
observe Ψr(β∗) = Φr(β∗, ε) for a suitable function Φr = n−1

∑n
i=1 φ

r
i and

φr
i : Rp × R → R. We consider a smoothed version of the Hessian matrix, and

work with Υr = Υr(β∗) for

Υr(β∗) = EX

[
∇β∗

∫ ∞

−∞
Φr(β∗, ε)fε(x)dx

]
,

where fε denotes the density of the model error (2.1). To infer the parameter
β∗, we adapt a one-step approach in solving the empirical counterpart of the
population equations above. We name the empirical equations as Smoothed Ro-
bust Estimating Equations or SREE in short. For a preliminary estimate, we
solve an approximation of the robust system of equations above, and search for
the β that solves

Ψr(β̂) +Υr(β̂)(β̂ − β) = 0.
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The particular form of the matrixΥr(β∗) depends on the choice of the weight
functions q and v and the function ψ. In particular, for the left-censored model,
(2.1)

∇β∗Eε[Ψ
r(β∗)] = n−1

n∑
i=1

qi∇β∗Eε [ψ (vi(yi −max{0, xiβ
∗}))] (4.4)

leads to the following form

Υr(β∗) = EX

[
n−1

n∑
i=1

qiviψ
′(viri(β

∗))x�
i wi(β

∗)

]
,

whenever the function ψ is differentiable. We denote ψ′ (viri(β)) :=
∂ψ (viri(β)) /∂β, where ri(β) := yi − max{0, xiβ}). In case of non-smooth ψ,
ψ′ should be interpreted as g′ = ∂g/∂β, for g(β) = Eε[ψ(viri(β))]. For exam-
ple, if ψ(·) = sign(·), then g(β) is equal to 1 − 2P (ri(β) ≤ 0) and g′(β∗) =
2fεi(0) 1I(xiβ

∗ > 0).

4.2. Left-censored Mallow’s, Hill-Ryan’s and Schweppe’s estimator

Here we provide specific definitions of new robust one-step estimates. We begin
by defining a robust estimate of the precision matrix, i.e., {Υr}−1(β∗). We
design a robust estimator that preserves the “downweight” functions q and v
as to stabilize the estimation in the presence of contaminated observations. For
further analysis, it is useful to define the matrix W̃ (β) = Q1/2W (β) and

Q = diag(q ◦ d) ∈ Rn×n,

where ◦ denotes entry-wise multiplication, also known as the Hadamard product,
with q = [q(x1), q(x2), · · · , q(xn)]

� ∈ Rn and

d =
[
ψ′(v1r1(β

∗)), ψ′(v2r2(β
∗)), · · · , ψ′(vnrn(β

∗))
]� ∈ Rn

for ri(β
∗) = yi −max{0, xiβ

∗}. When function ψ does not have first derivative,
we replace ψ′(viri(β

∗)) with n−1
∑n

i=1[Eψ(viri(β
∗))]′. With this notation, we

have

W̃j(β
∗) = Q1/2A(β∗)Xj ,

and Υr(β∗) = n−1E

[
W̃ (β∗)�W̃ (β∗)

]
takes the form of a weighted covariance

matrix. Hence, to estimate the inverse {Υr}−1(β∗), we project columns onto
the space spanned by the remaining columns. For j = 1, . . . , p, we define the
vector θ̃(j)(β) as follows,

θ̃(j)(β) = argmin
θ∈Rp−1

E

∥∥∥W̃j(β)− W̃−j(β)θ
∥∥∥2
2
/n. (4.5)
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Also, we assume the vector θ̃(j)(β
∗) is sparse with s̃j := ‖θ̃(j)(β∗)‖0 ≤ sΩ.

Thus, we propose the following as a robust estimate of the scale

Ω̃jj(β̂) = J̃−2
j , Ω̃j,−j(β̂) = −J̃−2

j θ̃(j)(β̂), (4.6)

with

θ̃(j)(β̂) = argmin
θ∈Rp−1

{
n−1

∥∥∥W̃j(β̂)− W̃−j(β̂)θ
∥∥∥2
2
+ 2λj‖θ‖1

}
,

and the normalizing factor

J̃ 2
j = n−1

∥∥∥W̃j(β̂)− W̃−j(β̂)θ̃(j)(β̂)
∥∥∥2
2
+ λj‖θ̃(j)(β̂)‖1.

Remark 4. Estimator (4.6) is a high-dimensional extension of Hampel’s ideas
of approximating the inverse of the Hessian matrix in a robust way, by allowing
data specific weights to trim down the effects of the outliers. Such weights can
be stabilizing estimation in the presence of high proportion of censoring. Hill
(1977) compared the efficiency of the Mallow’s and Schweppe’s estimators to
several others and found that they dominate in the case of linear models in
low-dimensions.

Lastly, we arrive at a class of robust one-step generalized M-estimators,

β̌ = β̂ + Ω̃(β̂)

(
n−1

n∑
i=1

qiw
�
i (β̂) ψ

(
vi
(
yi −max{0, xiβ̂}

)))
. (4.7)

We propose a one-step left-censored Mallow’s estimator for left-censored high-
dimensional regression by setting the weights to be vi = 1, and

qi = min

{
1, bα/2

((
wi,Ŝ(β̂)− w̄Ŝ(β̂)

)
ΩŜ,Ŝ(β̂)

(
wi,Ŝ(β̂)− w̄Ŝ(β̂)

)�)−α/2
}
,

for constants b > 0 and α ≥ 1, with

w̄Ŝ(β̂) = n−1
n∑

i=1

wi,Ŝ(β̂)

and Ŝ = {j : β̂j �= 0}. Extending the work of Coakley and Hettmansperger
(1993), it is easy to see that Mallow’s one-step estimator with α = 1 and b =
χ2
ŝ,0.95 quantile of chi-squared distribution with ŝ = |Ŝ| improves a breakdown

point of the initial estimator to nearly 0.5, by providing local stability of the
precision matrix estimate.

Similarly, the one-step left-censored Hill-Ryan estimator is defined with

vi = qi = 1/
∥∥∥ΩŜ,Ŝ(β̂)(wi,Ŝ(β̂)− w̄Ŝ(β̂))

∥∥∥
2
, (4.8)
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and the one-step left-censored Schweppe’s estimator with the same qi as the left
hand side of (4.8), but vi = 1/qi. Note that these are not the only choices of
Hill-Ryan and Schweppe’s type estimators.

Another family of one-step estimators defined for Tobit-I models, for which
we can use the framework above, is the class of adaptive Huber’s one-step esti-
mators, where vi = 1 and qi = 1, and the function ψ takes the form of a first
order derivative of a Huber loss function. However, it is unclear what the benefit
of such loss would be for left-censored data, as the nice convexity property of
traditional least squares is no longer available regardless.

The purpose of this paper is to explore the behavior of the different types
of one-step estimators for left-censored regression model through studying their
higher order asymptotic properties. This provides a unified synthesis of results
as well as new results and insights. We will show that the effect of the initial
estimate persists asymptotically, only if it is of least squares type. We also show
that the one-step robust estimate has fast convergence rates, and leads to a class
of robust confidence intervals and tests.

4.3. Theoretical results

Similar to the concise version of Bahadur representation presented in (2.13)
for the standard one-step estimator with qi = 1 and vi = 1, we also have the
expression for robust generalized M-estimator,

√
n
(
β̆ − β∗

)
= Ur + Δr, (4.9)

but now with the leading term of a different form

Ur =
1

2f(0)
{Σr}−1(β∗)

1√
n

n∑
i=1

qiψ

(
vi

(
yi −max{0, xiβ

∗}
))

(wi(β
∗))�.

Next, we show that the leading component has asymptotically normal distribu-
tion, and that the residual term is of smaller order. To facilitate presentation,
we present results below with an initial estimator being penalized CLAD esti-
mator (2.14) with the choice of tuning parameter as presented in Theorem 1.
We introduce the following condition.

Condition (rΓ). Parameters θ∗
(j)(β

∗) for all j = 1, . . . , p are such that |{k :

θ∗
(j),k(β

∗) �= 0}| ≤ s̃j for some sj ≤ n. Function θ∗
(j)(β) is Lipschitz continuous

for all β satisfying condition (C). In addition, let qi and vi be functions such
that maxi |qi| ≤ M1 and maxi |vi| ≤ M2 for positive constants M1 and M2 and
E[ψ(εivi)] = 0. Moreover, let ψ be such that ψ(z) < ∞ and 0 < ψ′(z) < ∞.

We will show that for the proposed set of weight functions, the above con-
dition holds. Boundedness of the function ψ′ allows for error distributions with
unbounded moments, and provides necessary robustness to the possible outliers
in the model error. For the leading term of the Bahadur representation (4.9),
we obtain the following result.
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Theorem 2. Assume that s̄ log1/2(p)/n1/4 = o(1), with s̄ = sβ∗ ∨ s̃Ω and

s̃Ω = maxj s̃j . Let Conditions (C), (rΓ) and (E) hold and let λj = C
√
log p/n

for a constant C > 1. Then,[
Ω̃(β̂)Υ̂r(β̂)Ω̃(β̂)

]− 1
2

jj
Ur
j

d−−−−−−−−→
n,p,sβ∗→∞

N (0, 1) .

For the residual term of the decomposition (4.9) we obtain the following
statement.

Theorem 3. Let Conditions (C), (rΓ) and (E) hold and let λj = C
√
log p/n

for a constant C > 1. Assume that s̄ log1/2(p)/n1/4 = o(1), for s̄ = sβ∗ ∨ s̃Ω
with s̃Ω = maxj s̃j . Then,

‖Δr‖∞ = OP

(
s̄2 log(p ∨ n)

n1/2

∨ sβ∗(log(p ∨ n))3/4

n1/4

)
.

Remark 5. The estimation procedure described above is based on the initial
estimator β̂ taken to be penalized CLAD. However, it is possible to show that
a large family of sparsity encouraging estimator suffices. In particular, suppose
that the initial estimator β̄ is such that ‖β̄ − β∗‖2 ≤ γn, and let for simplicity
sβ∗ = s. Then results of Theorem 3 extend to hold for the confidence interval

defined as Īn = (c�β̃ − an, c
�β̃ + an) with an as in (4.11). In particular, the

error rates are of the order of

(γ1/2
n t1/4 ∨ γnt

1/2)t1/2(log p)1/2 +
√
nss̃

3/2
Ω λjγ

2
n +

√
ns̃

3/2
Ω λjγn.

When s = O(1) and sj = O(1), and all
√
nλj = O(1), previous result implies

that the initial estimator needs only to converge at a rate of O(n−ε) for a small
ε > 0.

With the results above, we can now construct a (1 − 2α)100% confidence
interval for c�β of the form

Irn =

(
c�β̆ − ăn, c

�β̆ + ăn

)
, (4.10)

where β̆ is defined in (4.7), c = ej for some j ∈ {1, 2, . . . , p},

ăn = zα

√
c�Ω̃(β̂)Υ̂r(β̂)Ω̃(β̂)c

/√
n, (4.11)

with the robust covariance estimate that we define as

Υ̂r(β̂) = n−1
n∑

i=1

qiviψ
′(vi(yi − x�

i β̂))x
�
i wi(β̂).

Remark 6. ConstantsM1 andM2 change with a choice of the robust estimator.
For the Mallow’s and Hill-Ryan’s, by Lemma 5 in the Appendix,(
wi,Ŝ(β̂)− w̄Ŝ(β̂)

)�
ΩŜ,Ŝ(β̂)

(
wi,Ŝ(β̂)− w̄Ŝ(β̂)

)
>C

∥∥∥wi,Ŝ(β̂)− w̄Ŝ(β̂)
∥∥∥2
2
≥ 0.
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Thus, the coverage probability of Mallow’s and Hill-Ryan’s estimator is the same
as that of the M-estimator.

However, the coverage of the Schweppe’s estimator is slightly slower, as result
of Lemma 1 and Lemma 5 in the Appendix imply(

wi,Ŝ(β̂)− w̄Ŝ(β̂)
)�

ΩŜ,Ŝ(β̂)
(
wi,Ŝ(β̂)− w̄Ŝ(β̂)

)
≤
(
wi,Ŝ(β̂)− w̄Ŝ(β̂)

)�
Σ−1(β∗)

(
wi,Ŝ(β̂)− w̄Ŝ(β̂)

)
+ OP (1)

≤
∥∥∥xi,Ŝ

∥∥∥2
2
/λmin (Σ(β∗)) = OP (sβ∗).

Together with Theorem 5 in the Appendix, we observe now a rate that
is slower by a factor of sβ∗ , i.e., the leading term is of the order of
O
(
s̄2(log(p ∨ n))3/4n−1/4

)
.

Theorem 4. Under Conditions of Theorems 2 and 3, we have for Mallow’s and
Hill-Ryan’s estimator

‖Δr‖∞ = OP

(
sβ∗(log(p ∨ n))3/4

n1/4

∨ s̄2 log(p ∨ n)

n1/2

)
,

whereas for the Schweppe’s estimator

‖Δr‖∞ = OP

(
s2β∗(log(p ∨ n))3/4

n1/4

∨ s̄3 log(p ∨ n)

n1/2

)
.

Remark 7. This result implies that the residual term sizes depend on the type
of weight functions chosen. Due to the particular left-censoring, the ideal weights
measuring concentration in the error or design depend on the unknown censor-
ing. Hence, we approximate ideal weights with plug-in estimators, and therefore
obtain rates of convergence that are slightly slower than those of non-robust es-
timators. This implies that the robust confidence intervals require larger sample
size to achieve the nominal level.

Corollary 1. Under Conditions of Theorem 2 and 3, for all vectors c = ej
and any j ∈ {1, . . . , p}, when s̄, n, p → ∞ and all α ∈ (0, 1) we have that (i)
whenever the interval is constructed using Mallow’s or Hill-Ryan’s estimator and
s̄(log(p ∨ n))3/4/n1/4 = o(1), the respective confidence intervals have asymptotic
coverage 1 − α; (ii) whenever the interval is constructed using Schweppe’s es-
timator and s̄2(log(p ∨ n))3/4/n1/4 = o(1), the respective confidence intervals
have asymptotic coverage of 1− α.

5. Numerical results

In this section, we present a number of numerical experiments from both high-
dimensional, p � n, and low-dimensional, p � n, simulated settings.
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We implemented the proposed estimator in a number of different model set-
tings. Specifically, we vary the following parameters of the model. The number
of observations, n, is taken to be 300, while p, the number of parameters, is
taken to be 40 or 400. The error of the model, ε, is generated from a number of
distributions including: standard normal, Student’s t with 4 degrees of freedom,
Beta distribution with parameters (2, 3) and Weibull distribution with param-
eters (1/2, 1/5). In the case of the non-zero mean distributions, we center the
observations before generating the model data. The parameter sβ∗ , the sparsity
of β∗, #{j : β∗

j �= 0}, is taken to be 3, with all signal parameters taken to
be 1 and located as the first three coordinates. The n × p design matrix, X,
is generated from a multivariate Normal distribution N (μ,Σ). The mean μ is
chosen to be vector of zero, and the censoring level c is chosen to fix censoring
proportion at 25%. The covariance matrix, Σ, of the distribution that X follows,
is taken to be the identity matrix or the Toeplitz matrix such that Σij = ρ|i−j|

for ρ = 0.4. In each case, we generated 100 samples from one of the settings
described above and for each sample we calculated the 95% confidence inter-
val. The complete algorithm is described in Steps 1–4 below. We note that the
optimization problem required to obtain the penalized CLAD estimator is not
convex. Nevertheless, it is possible to write (2.14) as linear program within the
compact set B, and solve accordingly (Powell, 1984),

minimize
β∈B

u+,u−≥0
v+,v−≥0
β+,β−≥0

⎧⎨⎩n−1
n∑

i=1

(
u+
i + u−

i

)
+ λ

p∑
j=1

(
β+
j + β−

j

)⎫⎬⎭
subject to u+

i − u−
i = yi − v+

i , for 1 ≤ i ≤ n

v+
i − v−

i =

p∑
j=1

Xij

(
β+
j − β−

j

)
, for 1 ≤ i ≤ n.

In addition, as our theory indicates, we allow for any initial estimator with
desired convergence rate. Penalized CLAD is one example thereof.

1. The penalization factor λ is chosen by the one-standard deviation rule
of the cross validation, λ̂ = argminλ∈{λ1,...,λm} CV(λ). We move λ in
the direction of decreasing regularization until it ceases to be true that
CV(λ) ≤ CV(λ̂) + SE(λ̂). Standard error for the cross-validation curve,

SE(λ̂), is defined as a sample standard error of the K fold cross-validation
statistics CV1(λ), . . . ,CVK(λ). They are calibrated using the censored
LAD loss as

CVk(λ) = n−1
k

∑
i∈Fk

∣∣∣yi −max{0, xiβ̂
−k(λ)}

∣∣∣ ,
with β̂−k(λ) denoting the CLAD estimator computed on all but the k-th
fold of the data.
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2. The tuning parameter λj in each penalized l2 regression, is chosen by the
one standard deviation rule (as described above). In more details, λj is
in the direction of decreasing regularization until it ceases to be true that
CVj(λj) ≤ CVj(λ̂j) + SEj(λ̂j) for λ̂j as the cross-validation parameter
value. The cross-validation statistic is here defined as

CVj
k(λ) = n−1

k

∑
i∈Fk

(
Wij(β̂)−Wij(β̂)γ̂

−k
(j) (λj)

)2
,

with γ̂−k
j (λj) denoting estimators (2.8) computed on all but the k-th fold

of the data. This choice leads to the conservative confidence intervals
with wider than the optimal length. Theoretically guided optimal choice
is highly complicated and depends on both design distribution and censor-
ing level concurrently. Nevertheless, we show that one-standard deviation
choice is very reasonable.

3. Whenever the density of the error term is unknown, we estimate f(0),
using the proposed estimator (2.11), with a constant c = 10. We compute
the above estimator by splitting the sample into two parts: the first sam-
ple is used for computing β̂ and β̃ and the other sample is to compute
the estimate f̂(0). Optimal value of h is of special independent interest;
however, it is not the main objective of this work.

4. Obtain β̃ by plugging Ω(β̂) and f̂(0) into (2.12) with λ and λj as specified
in the steps above.

The summary of the results is presented across dimensionality of the param-
eter vector. The Low-Dimensional Regime with SEE Estimator are summarized
in Table 1 and Figures 1 and 2. The High-Dimensional Regime are summarized
in Table 2 and Figures 3 and 4. We report average coverage probability across
the signal and noise variables independently, as the signal variables are more
difficult to cover when compared to the noise variables.

We consider a number of challenging settings. Specifically, the censoring pro-
portion is kept relatively high at 25%, and our parameter space is large with
p = 400 and n = 300. In addition, we consider the case of error distribution
being Student with 4 degrees of freedom, which is notoriously difficult to deal
with in left-censored problems. For the four error distributions, the observed
coverage probabilities are approximately the same.

We also note that symmetric distributions are very difficult to handle in left-
censored models. However, when errors were symmetric (Normal), the coverage
probabilities were extremely close to the nominal ones. The simulation cases
evidently show that our method is robust to asymmetric distributions and does
not lose efficiency when the errors are symmetric.

Lastly, to investigate smoothed robust estimating equations (SREE) empiri-
cally, we preserve the previous high-dimensional settings with standard normal
and Student’s t4 error distributions respectively. However, to illustrate the ro-
bustness of the estimator, we artificially create outliers in the design matrix
X, and perform Mallow’s type SREE estimating procedures with the perturbed
X̃. Within each iteration, after generating X from N (μ,Σ) accordingly, we
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randomly select 10% of the columns, and then randomly perturb 10% of the
entries in X by adding twice the quantity of the maximum entry in X, i.e.
X̃ij = Xij + 2×maxij Xij . Such perturbations create a considerate proportion
of outliers in the design. The results are summarized in Table 3 and Figures 5
and 6. As coverages under various scenarios are close to the nominal level, the
results show that the SREE estimator is robust to high leverage points.

Table 1

Coverage Probability for Low-Dimensional Regime with SEE Estimator

Distribution of the error term Simulation Setting

Toeplitz design Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.97 0.98 0.95 0.94
Student 0.97 1 0.97 0.98
Beta 0.94 1 0.98 0.97
Weibull 0.98 0.98 0.94 0.98

Table 2

Coverage Probability for High-Dimensional Regime with SEE Estimator

Distribution of the error term Simulation Setting

Toeplitz design Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.92 0.96 0.97 0.95
Student 0.96 0.98 0.96 0.98
Beta 1 1 0.96 0.97
Weibull 0.95 1 0.87 0.97

Table 3

Coverage Probability for High-Dimensional Regime with SREE estimator

Distribution of the error term Simulation Setting

Toeplitz design Identity design

Signal
Variable

Noise
Variable

Signal
Variable

Noise
Variable

Normal 0.89 0.99 0.90 0.97
Student 0.92 0.96 0.90 0.99

6. Discussion and conclusion

In this article, we enrich regular high-dimensional inferential methods with cen-
soring and robust options. While a censoring option adds to the capacity of an
existing inferential methods extending them to non-convex problems in general,
a robust option has the potential to open a new direction. Usually, inferential
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Fig 1. Comparative boxplots of the average Interval length of Signal (left) and Noise (right)
variables. Case of SEE estimator p � n and Toeplitz Design with ρ = 0.4.

methods have been aiming to create efficient methods with asymptotically ex-
act or pivotal properties in a class of specific models. However, sometimes the
nature of the data collection process has determined that a significant noise is
inevitable for some observations, or that portions of the observations have been
corrupted by an adversary. In big and high-dimensional data setting, such cases
may occur naturally. When the cost of error is too large to bear, it may be wise
to consider an alternative that can improve upon the inferential accuracy in a
stepwise manner. With one-step robust estimators, one can often successfully
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Fig 2. Comparative boxplots of the average Interval length of Signal (left) and Noise (right)
variables. Case of SEE estimator p � n and Identity Design.

iterate the estimate, and identify misleading observations. Therefore, limiting
the effect of poor data quality.

The aim of this article is to establish a new framework for high-dimensional
robust inference. Many different loss functions and penalty functions, including
non-convex ones, may be incorporated into this framework for the purpose of
achieving correct inferential tools. We provide a novel theory, with emphasis on
diverging dimensions and left-censoring. Future work will be devoted to how to
better utilize longitudinal and heterogeneous observations.



608 J. Bradic and J. Guo

Fig 3. Comparative boxplots of the average Interval length of Signal (left) and Noise (right)
variables. Case of SEE estimator p � n and Toeplitz Design with ρ = 0.4.

There are many one-step estimators based on a suitable choice of loss func-
tion or estimating equations, some of which have proved to work well, especially
when the dimension is reasonably high. Our proposed method allows for left-
censoring, non-smooth, non-convex losses and/or non-monotone equations, and
complements the existing methods in these domains. Our method achieves rates
comparable the ones of efficient methods (with full observations), and our analy-
sis provides tight control over both Type I and Type II error rates, which makes
it a practically useful and efficient alternative.
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Fig 4. Comparative boxplots of the average Interval length of Signal (left) and Noise (right)
variables. Case of SEE estimator p � n and Identity Design.

Appendix

General results along with theoretical considerations are presented. In addition,
statements and proofs of Lemmas 1–6 and Theorems 5–9, as well as proofs of
main Theorems 1–4, are included.



610 J. Bradic and J. Guo

Fig 5. Comparative boxplots of the average Interval length of Signal (left) and Noise (right)
variables. Case of SREE estimator p � n and Identity Design.

7. General results

We begin theoretical analysis with the following decomposition of (2.12)

√
n
(
β̃ − β∗

)
=

1

2f(0)
Σ−1(β∗)

1√
n

n∑
i=1

ψi(β
∗) +

1

2f(0)

(
Ω(β̂)−Σ−1(β∗)

) 1√
n

n∑
i=1

ψi(β
∗)
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Fig 6. Comparative boxplots of the average Interval length of Signal (left) and Noise (right)
variables. Case of SREE estimator p � n and Toeplitz Design.

+
√
n
(
β̂ − β∗

)
+

1

2f(0)
Ω(β̂)

√
n

(
n−1

n∑
i=1

ψi(β̂)− n−1
n∑

i=1

ψi(β
∗)

)
.

(7.1)

We can further decompose the last factor of the last term in (7.1) as

n−1
∑n

i=1 ψi(β̂) − n−1
∑n

i=1 ψi(β
∗) = Gn(β̂) − Gn(β

∗) + n−1
∑n

i=1 E

[
ψi(β̂) −
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ψi(β
∗)
]
, where

Gn(β) = n−1
n∑

i=1

[ψi(β)− Eψi(β)] . (7.2)

To characterize the behavior of individual terms in the decomposition above,
we develop a sequence of results presented below that rely on the conditions
that we listed in Section 3.

Lemma 1. Suppose that the Conditions (E) hold. Consider the class of param-
eter spaces modeling sparse vectors with at most t non-zero elements, C(r, t) =
{w ∈ Rp | ||w||2 ≤ rn,

∑p
j=1 1I{wj �= 0} ≤ t} where rn is a sequence of positive

numbers. Then, there exists a fixed constant C (independent of p and n), such
that the process μi(δ) = 1I{xiδ ≥ xiβ

∗} − 1I{0 ≥ xiβ
∗} satisfies with probability

1− δ.

sup
δ∈C(rn,t)

n−1

∣∣∣∣∣
n∑

i=1

μi(δ)− E[μi(δ)]

∣∣∣∣∣ ≤ C

⎛⎝√rnt
√
t log(np/δ)

n

∨ t log(2np/δ)

n

⎞⎠ .

The preceding Lemma immediately implies strong approximation of the em-
pirical process with its expected process, as long as rn, the estimation error,
and t, the size of the estimated set of the initial estimator, are sufficiently small.
The power of the Lemma 1 is that it holds uniformly for a class of parameter
vectors enabling a wide range of choices for the initial estimator.

Next, we present a linearization result useful for further decomposition of the
Bahadur representation (7.1).

Lemma 2. Suppose that the conditions (E) hold. For all β, such that ‖β −
β∗‖1 < ξ, the following representation holds

n−1
n∑

i=1

Eψi(β) = 2f(0)Σ(β∗)(β∗ − β) +O(‖β − β∗‖1)(β∗ − β).

where Σ(β∗) is defined in (2.6).

Once the properties of the initial estimator are provided, such as Condition
(I), Lemma 2 can be used to linearize the population level difference of the func-

tions ψi(β̂) and ψi(β
∗). Together with Lemma 1, Lemma 2 allows us to overpass

the original highly discontinuous and non-convex loss function. Utilizing Lemma
2, Conditions (I)–(C) and representation (7.1), the Bahadur representation of
β̃ becomes

√
n
(
β̃ − β∗

)
=

1

2f(0)
Σ−1(β∗)

1√
n

n∑
i=1

ψi(β
∗) + I1 + I2 + I3 + I4 (7.3)

where

I1 =
√
n
(
I −Ω(β̂)Σ(β∗)

)(
β̂ − β∗

)
,
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I2 = − 1

2f(0)
Ω(β̂)

√
n · OP (‖β̂ − β∗‖1)(β̂ − β∗)

I3 =
1

2f(0)

(
Ω(β̂)−Σ−1(β∗)

) 1√
n

n∑
i=1

ψi(β
∗),

I4 =
1

2f(0)
Ω(β̂)

√
n
[
Gn(β̂)−Gn(β

∗)
]
.

We show that the last four terms of the right hand side above, each converges
to 0 asymptotically at a faster rate than the first term on the right hand side of
(7.3).

The following two lemmas help to establish l1 column bound of the corre-
sponding precision matrix estimator. The first one provides properties of the
estimator γ̂(j)(β̂) as defined in (2.8). Although this estimator is obtained via
Lasso-type procedure, significant challenges arise in its analysis due to depen-
dencies in the plug-in loss function. The design matrix of this problem does
not have independent and identically distributed rows. We overcome these chal-
lenges by approximating the solution to the oracle one and without imposing
any new conditioning of the design matrix.

Lemma 3. Let λj = C((log p/n)1/2
∨
(r

1/2
n
∨
t1/4(log p/n)1/2)t3/4(log p/n)1/2)

for a constant C > 1 and let Conditions (I), (E), (C) and (Γ) hold. Then,∥∥∥γ̂(j)(β̂)− γ∗
(j)(β

∗)
∥∥∥
1
= OP

(
1

φ2
0C2

sjλj

)
.

Remark 8. The choice of the tuning parameter λj depends on the l2 conver-
gence rate of the initial estimator rn, and the size of its estimated non-zero set.
However, we observe that whenever rn is such that rn ≤ t−3/4 and the sparsity
of the initial estimator is such that tsj

√
log p/n < 1, then the optimal choice

of the tuning parameter is of the order of
√

log p/n. In particular, any initial
estimator that satisfies rn < n−1/4 is sufficient for optimal rates of inference in
a model where t ≤ n1/4 and sj ≤ n1/4.

The next result gives a bound on the variance of our γ̂(j)(β̂) estimator.

Lemma 4. Let λj = C((log p/n)1/2
∨
(r

1/2
n
∨
t1/4(log p/n)1/2)t3/4(log p/n)1/2)

for a constant C > 1 and let Conditions (I), (E), (C) and (Γ) hold. Then, for

j = 1, . . . , p and ζ∗
j and ζ̂j∣∣∣ζ̂�

j ζ̂j/n− Eζ∗
j
�ζ∗

j /n
∣∣∣ = OP

(
K2sjλj

)
.

Next is the main result on the properties of the proposed matrix estimator
Ω(β̂).

Lemma 5. Let the setup of Lemma 4 hold. Let Ω(β̂) be the estimator as in
(2.10). Then, for τ̂2j as in (2.9), we have τ̂−2

j = OP (1). Moreover,∥∥∥Ω(β̂)j −Σ−1(β∗)j

∥∥∥
1
= OP

(
K2s

3/2
j λj

)
.



614 J. Bradic and J. Guo

The one-step estimator β̃ relies crucially on the bias correction step that
carefully projects the residual vector in the direction close to the most efficient
score. The next result measures the uniform distance of such projection.

Lemma 6. Let the setup of Lemma 4 hold. There exists a fixed constant C
(independent of p and n), such that the process Vn(δ) = Ω(δ + β∗)[Gn(δ +
β∗)−Gn(β

∗)] satisfies

sup
δ∈C(rn,t)

‖Vn(δ)‖∞ ≤ C

(√
(rnt1/2 ∨ r2nt)t log(np/δ)

n

∨ t log(2np/δ)

n

)
,

with probability 1− δ and a constant K1 defined in Condition (E).

Lemma 6 establishes a uniform tail probability bound for a growing supre-
mum of an empirical process Vn(δ). It is uniform in δ and it is growing as
supremum is taken over p, possibly growing (p = p(n)) coordinates of the pro-
cess. The proof of Lemma 6 is further challenged by the non-smooth components
of the process Vn(δ) itself and the multiplicative nature of the factors within it.
It proceeds in two steps. First, we show that for a fixed δ the term ||Vn(δ)||∞ is
small. In the second step, we devise a new epsilon net argument to control the
non-smooth and multiplicative terms uniformly for all δ simultaneously. This is
established by devising new representations of the process that allow for small
size of the covering numbers. In conclusion, Lemma 6 establishes a uniform

bound ‖I4‖∞ = OP

(
r
1/2
n t3/4(log p)1/2

∨
rnt(log p)

1/2
∨
t log p/n1/2

)
in (7.3).

Size of the remainder term in (2.13) is controlled by the results of Lemmas 1–6
and we provide details below.

Theorem 5. Let λj =C((log p/n)1/2
∨
(r

1/2
n
∨

t1/4(log p/n)1/2)t3/4(log p/n)1/2)
for a constant C > 1 and let Conditions (I), (E), (C) and (Γ) hold. With
sΩ = maxj sj,

‖Δ‖∞ = OP

(
(r1/2n t1/4 ∨ rnt

1/2)t1/2(log p)1/2
∨√

nts
3/2
Ω λjr

2
n

∨√
ns

3/2
Ω λjrn

)
.

We first notice that the expression above requires t = O(n1/2/ log(p ∨ n)),
a condition frequently imposed in high-dimensional inference (see Zhang and
Zhang (2014) for example). Then, in the case of low-dimensional problems with
s = O(1) and p = O(1), we observe that whenever the initial estimator of rate
rn, is in the order of n−ε, for a small constant ε > 0, then ‖Δ‖∞ = OP (n

−ε/2).
In particular, for a consistent initial estimator, i.e. rn = O(n−1/2) we obtain
that ‖Δ‖∞ = OP (n

−1/4). For high-dimensional problems with s and p growing
with n, for all initial estimators of the order rn such that rn = O(saβ∗(log p)b/nc)
and t = O(sβ∗) we obtain that

‖Δ‖∞ = OP

(
s̄(2a+3)/4(log p)(1+b)/2/nc/2

)
whenever s̄(log p)1/4/n1/4 = O(1), where s̄ = t ∨ sΩ.

Next, we present the result on the asymptotic normality of the leading term
of the Bahadur representation (2.13).
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Theorem 6. Let λj =C((log p/n)1/2
∨
(r

1/2
n
∨

t1/4(log p/n)1/2)t3/4(log p/n)1/2)
for a constant C > 1 and let Conditions (I), (E), (C) and (Γ) hold.

Define U := 1
2f(0)Σ

−1(β∗) 1√
n

∑n
i=1 ψi(β

∗) = OP (
√
n). Furthermore, assume

(r1/2n t1/4 ∨ rnt
1/2)t1/2(log p)1/2

∨√
nts

3/2
Ω λjr

2
n

∨√
ns

3/2
Ω λjrn = o(1).

Denote s̄ = t ∨ sΩ. If f(0), the density of ε at 0 is known,[
Ω(β̂)Σ̂(β̂)Ω(β̂)

]− 1
2

jj
Uj

d−−−−−−→
n,p,s̄→∞

N
(
0,

1

4f(0)2

)
.

Remark 9. A few remarks are in order. Theorem 6 implies that the effects
of censoring asymptotically disappear. Namely, the limiting distribution only
becomes degenerate when the censoring rate asymptotically explodes, implying
that no data is fully observed. However, in all other cases the limiting distribu-
tion is fixed and does not depend on the censoring level.

Density estimation is a necessary step in the semiparametric inference for
left-censored models. Below we present the result guaranteeing good qualities
of density estimator proposed in (2.11).

Theorem 7. There exists a sequence hn such that hn = O(1) and

limn→∞ ĥn/hn = 1 and h−1
n (rn∨r1/2n t3/4(log p/n)1/2∨t log p/n) = o(1). Assume

Conditions (I) and (E) hold, then∣∣∣f̂(0)− f(0)
∣∣∣ = OP (1).

Together with Theorem 6 we can provide the next result.

Corollary 2. With the choice of density estimator as in (2.11), under condi-
tions of Theorem 6 and 7, the results of Theorem 6 continue to hold unchanged,
i.e., [

Ω(β̂)Σ̂(β̂)Ω(β̂)
]− 1

2

jj
Uj · 2f̂(0) d−−−−−−→

n,p,s̄→∞
N (0, 1) .

Remark 10. Observe that the result above is robust in the sense that the result
holds regardless of the particular distribution of the model error (2.1). Condition
(E) only assumes minimal regularity conditions on the existence and smoothness
of the density of the model errors. In the presence of censoring, our result is
unique as it allows p � n, and yet it successfully estimates the variance of the
estimation error.

Combining all the results obtained in previous sections we arrive at the main
conclusions.

Theorem 8. Let λj =C((log p/n)1/2
∨
(r

1/2
n
∨

t1/4(log p/n)1/2)t3/4(log p/n)1/2)
for a constant C > 1 and let Conditions (I), (E), (C) and (Γ) hold. Furthermore,
assume

(r1/2n t1/4 ∨ rnt
1/2)t1/2(log p)1/2

∨√
nts

3/2
Ω λjr

2
n

∨√
ns

3/2
Ω λjrn = o(1),
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for sΩ = maxj sj . Denote s̄ = t ∨ sΩ. Let In and an be defined in (2.15) and
(2.16). Then, for all vectors c = ej and any j ∈ {1, . . . , p}, when n, p, s̄ → ∞
we have

Pβ

(
c�β∗ ∈ In

)
= 1− 2α

Let Pβ∗ be the distribution of the data under the model (2.1). Then the
following holds.

Theorem 9. Under the setup and assumptions of Theorem 8 when n, p, s̄ → ∞

sup
β∈B

Pβ

(
c�β∗ ∈ In

)
= 1− 2α.

8. Proofs of main theorems

Proof of Theorem 1. The proof for the result with initial estimator chosen as
the penalized CLAD estimator of Müller and van de Geer (2016) follows directly

from Lemma 1-6 and Theorem 5-8 with rn = s
1/2
β∗ (log p/n)1/2 and t = sβ∗ .

Proof of Theorems 2, 3 and 4. Due to the limit of space, we follow the line of
the proof of Theorem 6 but only give necessary details when the proof is differ-
ent. First, we observe that with a little abuse in notation

ψi(β) = w�
i (β)R

r
i , Rr

i = qiψ(−viεi)

thus it suffices to provide the asymptotic of

T r
n :=

1√
n

n∑
i=1

V r
i =

1√
n

n∑
i=1

x1 1I{xiβ > 0}Rr
i .

Moreover, observe that Rr
i are necessarily bounded random variables (see Con-

dition (rΓ). Following similar steps as in Theorem 6 we obtain

Var(T r
n) ≥ n− 2 exp{−n2/2}

where in the last step we utilized Hoeffding’s inequality for bounded random
variables.

Next, we focus on establishing an equivalent of Lemma 2 but now for the
robust generalized M-estimator. Observe that

n−1
n∑

i=1

Eε[ψ
r
i (β)] = n−1

n∑
i=1

x�
i 1I{xiβ > 0}qiEε

[
ψ
(
−vixi(β

∗ − β)− viεi

)]
.

(8.1)
Moreover, whenever ψ′ exists we have

Eε

[
ψ
(
−vixi(β

∗ − β)− viεi

)]
= −vixi(β

∗ − β)

∫ ∞

−∞
ψ′(ξ(u))f(u)du.
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for ξ(u) = α(−vixi(β
∗ − β)) + (1 − α)(−viu) for some α ∈ (0, 1). When ψ′

doesn’t exist we can decompose ψ into a finite sum of step functions and then
apply exactly the same technique on each of the step functions as in Lemma 2.
Hence, it suffices to discuss the differentiable case only. Let us denote the RHS
of (8.1) with Λr

n(β)(β
∗ − β), i.e.

Λr
n(β) = n−1

n∑
i=1

− 1I{xiβ > 0}qivix�
i xi

∫ ∞

−∞
ψ′(ξ(u))f(u)du.

Next, we observe that by Condition (rΓ),∣∣∣∣∫ ∞

−∞
ψ′(ξ(u))f(u)du− ψ′(viεi)

∣∣∣∣ ≤ sup
x

|ψ′(x)| := C1

for a constant C1 < ∞. With that the remaining steps of Lemma 2 can be
completed with Σ replaced with Σr.

Next, by observing the proofs of Lemmas 3, 4 and 5 we see that the proofs
remain to hold under Condition (rΓ), and with W replaced with W̃ . The con-
stants K appearing in the simpler case will now be KM1M2. However, the rates
remain the same up to these constant changes.

Next, we discuss Lemma 6. For the case of robust generalized M-estimator
νn(δ) of Lemma 6 takes the following form

ν̃n(δ) = n−1
n∑

i=1

Ω̃(δ + β∗)x�
i [fi(δ)g̃i(δ)− fi(0)g̃i(0)]

with g̃i(δ) = qiψ(vi(xiδ+ εi)). Moreover, Eε[fi(δ)g̃i(δ)] = fi(δ)Eε[qiψ(vi(xiδ+
εi))] := w̃i(δ). We consider the same covering sequence as in Lemma 6. Then,
we observe that a bound equivalent to T1 of Lemma 6 is also achievable here.

Term T2 can be handled similarly as in Lemma 6. We illustrate the particular
differences only in T21 as others follows similarly. Observe that

fi(δ)g̃i(δ) = 1I{xiδ ≥ −xiβ
∗}qiψ(v(εi)) + 1I{xiδ ≥ −xiβ

∗}qivixiδψ
′(ξδ)

for ξδ = viεi + (1 − α)vixiδ for some α ∈ (0, 1). Next, we consider the decom-
position

fi(δ)g̃i(δ)− E [fi(δ)g̃i(δ)] = T r
211(δ) + T r

212(δ)

where
T r
211(δ) = (1I{xiδ ≥ −xiβ

∗} − P(xiδ ≥ −xiβ
∗)) qiψ(viεi)

and

T r
212(δ) = 1I{xiδ ≥ −xiβ

∗}qivixiδψ
′(ξδ)− E [1I{xiδ ≥ −xiβ

∗}qivixiδψ
′(ξδ)]

Furthermore, we observe that the same techniques developed in Lemma 6 apply
to T r

211(δ) hence we only discuss the case of T r
212(δ). We begin by considering

the decomposition T r
212(δ) = T r

2121(δ) + T r
2122(δ) with

T r
2121(δ) = 1I{xiδ ≥ −xiβ

∗}qivixiδ (ψ
′(ξδ)− Eε(ψ

′(ξδ)))
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and

T r
2122(δ) = 1I{xiδ ≥ −xiβ

∗}qivixiδEε(ψ
′(ξδ))

− E [1I{xiδ ≥ −xiβ
∗}qivixiδEεψ

′(ξδ)]

Let us focus on the last expression as it is the most difficult one to analyze.
Observe that we are interested in the difference T r

2122(δ) − T r
2122(δ̃k). We de-

compose this difference into four terms, two related to random variables and
two related to the expectations. We handle them separately and observe that
because of symmetry and monotonicity of the indicator functions once we can
bound the difference of random variables we can repeat the arguments for the
expectations. Hence, we focus on

I1 = 1I{xiδ ≥ −xiβ
∗}qivixiδEε(ψ

′(ξδ))−1I{xiδ̃k ≥ −xiβ
∗}qivixiδ̃kEε(ψ

′(ξδ̃k
)).

First due to monotonicity of indicators and (9.16) we have

|I1| ≤ I11 + I12 + I13

with

I11 =
(
1I{xiδ̃k + L̃n ≥ −xiβ

∗} − 1I{xiδ̃k ≥ −xiβ
∗}
)
qivixiδ̃kEε(ψ

′(ξδ̃k
))

I12 = 1I{xiδ̃k + L̃n ≥ −xiβ
∗}qiviL̃nEε(ψ

′(ξδ))

I13 = 1I{xiδ̃k + L̃n ≥ −xiβ
∗}qivixiδ̃k

(
Eε(ψ

′(ξδ))− Eε(ψ
′(ξδ̃k

))
)

As supψ′ < ∞, I11 can be handled in the same manner as T21 of the proof of
Lemma 6, whereas I12 = OP (L̃n). For I13 it suffices to discuss the difference at
the end of the right hand side of its expression. It is not difficult to see that

Eε(ψ
′(ξδ))− Eε(ψ

′(ξδ̃k
)) ≤ 4CviL̃n ≤ 4CM1L̃n

with C = supx |ψ′′(x)| for the case of twice differentiable ψ, C = supy ∂/

∂y|
∫ y

−∞ ψ′(x)dx| for the case of once differentiable ψ and C = fmax for the
case of non-differentiable functions ψ. Combining all the things together we ob-
serve that the rate of Lemma 6 for the case of robust generalized M-estimators
is of the order of

C

(√
M3(rnt1/2 ∨K2M2

1M
2
2 r

2
nt)t log(2np/δ)

n

∨ t log(2np/δ)

n

)
.

with M3 = supx |ψ′(x)| for once differentiable ψ and M3 = fmax for non-
differentiable ψ.

Now, with equivalents of Lemmas 1-6 are established, we can use them to
bound successive terms in the Bahadur representation much like those of The-
orem 1. Details are ommitted due to space considerations.

For Theorem 4 in the Main Material, the same line of the proof of Theorem
9 applies, but only replace the matrix Σ with the matrix Σr. The result of the
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Theorem then follows from the arguments in Remark 2 in the Main Material.
Uniformity of the obtained results is not compromised as the weight functions
qi and vi only depend on the design matrix.

Proof of Theorem 5. The proof of the theorem follows from the bounding resid-
ual terms in the Bahadur representation (7.3) with the help of Lemma 3 - 6.

Recall in Lemma 6, we showed that

‖I4‖∞ = OP

(
(r1/2n t1/4 ∨ rnt

1/2)t1/2(log p)1/2
∨

t log p/n1/2
)
.

For the term I3, we have that∥∥∥∥∥ 1

2f(0)

(
Ω(β̂)−Σ−1(β∗)

) 1√
n

n∑
i=1

ψi(β
∗)

∥∥∥∥∥
∞

≤ OP

(
s
3/2
Ω λj

)
,

by applying Hölder’s inequality and Hoeffding’s inequality along with Lemma
5.

For the term I2, we have∥∥∥∥ 1

2f(0)
Ω(β̂)

√
n · O(‖β̂ − β∗‖1)(β̂ − β∗)

∥∥∥∥
∞

≤
√
nt

2f(0)

(∥∥∥Ω(β̂)−Σ−1(β∗)
∥∥∥
1
+
∥∥Σ−1(β∗)

∥∥
2

)
O(‖β̂ − β∗‖22)

≤ OP

(√
nts

3/2
Ω λjr

2
n

∨√
ntr2n

)
,

by Hölder’s inequality and Lemma 5, where ‖A‖∞ denotes the max row sum of
matrix A, and ‖A‖1 denotes the max column sum of matrix A.

Lastly, for the only remainder term in (7.3), I1, we apply Hölder’s inequality
and Lemma 5,

√
n
(
I −Ω(β̂)Σ(β∗)

)(
β̂ − β∗

)
=

√
n
(
Σ−1(β∗)−Ω(β̂)

)
Σ(β∗)

(
β̂ − β∗

)
≤ C

√
n
∥∥∥Σ−1(β∗)−Ω(β̂)

∥∥∥
1
‖β̂ − β∗‖2

≤ OP

(√
ns

3/2
Ω λjrn

)
.

Proof of Theorem 6. We begin the proof by noticing that

ψi(β
∗) = sign(yi −max{0, xiβ

∗})(wi(β
∗))�

= sign(max{0, xiβ
∗ + εi} −max{0, xiβ

∗})(wi(β
∗))�.

Recollect that by Condition (E), P(εi ≥ 0) = 1/2. Additionally, we observe
that in distribution, the term on the right hand side is equal to w�

i (β
∗)Ri, with

{Ri}ni=1 denoting an i.i.d. Rademarcher sequence defined as Ri = sign(−εi).
Hence, it suffices to analyze the distributional properties of w�

i (β
∗)Ri. More-
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over, Rademacher random variables are independent in distribution from wi(β
∗).

Thus, we provide asymptotics of

1

2f(0)
Σ−1(β∗)

1√
n

n∑
i=1

w�
i (β

∗)Ri.

We begin by defining

Vi :=
1√
n
Wij 1I(xiβ

∗ > 0)Ri =
1√
n
Xij 1I(xiβ

∗ > 0)Ri

and we also define Tn :=
∑n

i=1 Vi. Notice that Vi’s are independent from each
other, since we assumed that each observation is independent in our design. We
have

n∑
i=1

E|Vi|2+δ =

(
1√
n

)2+δ

E

n∑
i=1

|Xij 1I(xiβ
∗ > 0)|2+δ

≤ n−1−δ/2E

n∑
i=1

|Xij |2+δ ≤ n−δ/2K. (8.2)

Moreover, VarTn = 1
n

∑n
i=1 E (Xij 1I(xiβ

∗ > 0)Ri)
2 − (EXij 1I(xiβ

∗ > 0)Ri)
2
.

Since Ri are independent from X,

EXij 1I(xiβ
∗ > 0)Ri = EXij 1I(xiβ

∗ > 0) · ERi = 0.

In addition, also due to this fact, Vi follows a symmetric distribution about 0.
Thus,

VarTn =
1

n
E

n∑
i=1

(Xij 1I(xiβ
∗ > 0)Ri)

2

=
1

n
E

(
n∑

i=1

Xij 1I(xiβ
∗ > 0)Ri

)2

≥ 1

n

∫ n

−n

t2nf(tn)dtn,

where with a little abuse in notation we denote the density and distribution of
Tn to be f(tn) and F (tn). Observe that

1

n
E

(
n∑

i=1

Xij 1I(xiβ
∗ > 0)Ri

)2

=
1

n

∫ ∞

−∞
t2nf(tn)dtn ≥ 1

n

∫ n

−n

t2nf(tn)dtn.

Thus,

VarTn ≥ 1

n

(
t2nF (tn)

∣∣ n−n − 2

∫ n

−n

tnF (tn)dtn

)
(8.3)

≥ 1

n

(
n2F (n)− n2F (−n)− 2

∫ n

−n

tndtn

)
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=
1

n

(
2n2F (n)− n2

)
= n (2F (n)− 1)

Now combining (8.2) and (8.3), we have limn→∞
∑n

i=1 E|Vi|2+δ

(VarTn)
1+ δ

2
= 0. Thereby, we

arrive at the result

1√
n

(
n∑

i=1

w�
i (β

∗)Ri

)
j

d−→ N (0,VarTn) ,

with the fact that VarTn = 1
nE
∑n

i=1 Wij(β
∗)2 = 1

nEW
�
j (β∗)Wj(β

∗) = Σ(β∗)jj .
Also, the covariance

E

⎡⎣ 1√
n

(
n∑

i=1

w�
i (β

∗)Ri

)
j1

1√
n

(
n∑

i=1

w�
i (β

∗)Ri

)
j2

⎤⎦
= E

[
1

n

n∑
i=1

Wij1(β
∗)Wij2(β

∗)

]
= Σ(β∗)j1j2 .

Therefore, we have the following conclusion,[
1

2f(0)
Σ−1(β∗)

1√
n

n∑
i=1

ψi(β
∗)

]
j

d−→ N
(
0,

1

4f(0)2

[
Σ−1(β∗)Σ(β∗)

(
Σ−1(β∗)

)�]
jj

)
,

where j = 1, · · · , p. This gives

[
Σ−1(β∗)jj

]− 1
2

[
1

2f(0)
Σ−1(β∗)

1√
n

n∑
i=1

ψi(β
∗)

]
j

d−→ N
(
0,

1

4f(0)2

)
(8.4)

Notice that for two nonnegative real numbers a and b, it holds that

1√
a
− 1√

b
=

√
b−√

a√
ab

=
b− a√

ab(
√
b+

√
a)

.

We first make note of a result in the proof of Theorem 8, that∥∥∥Ω̂(β̂)Σ(β̂)Ω̂(β̂)−Σ−1(β∗)
∥∥∥
max

= OP (1) (8.5)

Let a =
[
Ω̂(β̂)Σ(β̂)Ω̂(β̂)

]
jj

and b = Σ−1(β∗)jj . By Condition (C), we have
√
b

is bounded away from zero. Then,
√
a is also bounded away from zero by (8.5),

and so is
√
ab(

√
b+

√
a), since we have[

Σ−1(β∗)
]
jj

−
[
Ω̂(β̂)Σ(β̂)Ω̂(β̂)

]
jj

≤
∥∥∥Ω̂(β̂)Σ(β̂)Ω̂(β̂)−Σ−1(β∗)

∥∥∥
max

= OP (1) .
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The rate above follows from (8.9) in the proof of Theorem 8. Notice the rate is
of order smaller than the rate assumption in Theorem 5.

Thus, we can deduce that[
Ω(β̂)Σ̂(β̂)Ω(β̂)

]− 1
2

jj
−
[
Σ−1(β∗)jj

]− 1
2 ≤ C

∥∥∥Ω̂(β̂)Σ(β̂)Ω̂(β̂)−Σ−1(β∗)
∥∥∥
max

.

for some finite constant C. Applying Slutsky theorem on (8.4) with the inequal-
ity above, the desired result is obtained.

Proof of Theorem 7. We can rewrite the expression f̂(0) in (2.11) as

f̂(0) = ĥ−1
n

∑n
i=1 1I(xiβ̂ > 0) 1I(0 ≤ yi − xiβ̂ ≤ ĥn)∑n

i=1 1I(xiβ̂ > 0)

= ĥ−1
n

n−1
∑n

i=1 1I(xiβ̂> 0) 1I(0≤ yi − xiβ̂≤ ĥn)

n−1
∑n

i=1 P{xiβ∗ > 0} · n
−1
∑n

i=1 P{xiβ
∗ > 0}

n−1
∑n

i=1 1I(xiβ̂ > 0)
.

Since
∣∣∣n−1

∑n
i=1

[
1I{xiβ̂ > 0} − P{xiβ

∗ > 0}
]∣∣∣ = OP (1), we have

f̂(0)
d−→ (ĥnn)

−1
∑n

i=1 1I(xiβ̂ > 0) 1I(0 ≤ yi − xiβ̂ ≤ ĥn)

n−1
∑n

i=1 P{xiβ∗ > 0} .

Using a similar argument and the fact that limn→∞ ĥn/hn = 1, we have

f̂(0)
d−→ (hnn)

−1
∑n

i=1 1I(xiβ̂ > 0) 1I(0 ≤ yi − xiβ̂ ≤ ĥn)

n−1
∑n

i=1 P{xiβ∗ > 0} .

Now we work on the numerator of right hand side. Specifically, let ηi =
yi − xiβ

∗ and η̂i = yi − xiβ̂, we look at the difference of the quantities below,

(hnn)
−1

∣∣∣∣∣
n∑

i=1

1I{xiβ̂ > 0} 1I{0 ≤ η̂i ≤ ĥn} −
n∑

i=1

1I{xiβ
∗ > 0} 1I{0 ≤ ηi ≤ hn}

∣∣∣∣∣
≤ (hnn)

−1

∣∣∣∣∣
n∑

i=1

1I{xiβ̂ > 0} 1I{0 ≤ η̂i ≤ ĥn}

−
n∑

i=1

1I{xiβ
∗ > 0} 1I{0 ≤ η̂i ≤ ĥn}

∣∣∣∣∣
+ 2(hnn)

−1

∣∣∣∣∣
n∑

i=1

1I{xiβ̂ > 0} 1I{0 ≤ ηi ≤ hn}

−
n∑

i=1

1I{xiβ
∗ > 0} 1I{0 ≤ ηi ≤ hn}

∣∣∣∣∣
+ (hnn)

−1

∣∣∣∣∣
n∑

i=1

1I{xiβ
∗ > 0} 1I{0 ≤ η̂i ≤ ĥn}
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−
n∑

i=1

1I{xiβ
∗ > 0} 1I{0 ≤ ηi ≤ hn}

∣∣∣∣∣
≤ 3(hnn)

−1
n∑

i=1

1I{xiβ
∗ ≤ xi(β̂ − β∗)}︸ ︷︷ ︸

T1

+ (hnn)
−1

∣∣∣∣∣
n∑

i=1

(
1I{0 ≤ η̂i ≤ ĥn} − 1I{0 ≤ ηi ≤ hn}

)∣∣∣∣∣︸ ︷︷ ︸
T2

.

We begin with term T1. By Condition (E), we have ET1 = O(h−1
n ‖β̂−β∗‖1).

By Corollary 1, we have

T1 − ET1 ≤ |T1 − ET1| = OP

(
h−1
n (r1/2n t3/4(log p/n)1/2 ∨ t log p/n)

)
,

which then brings us that T1 is of order OP (1). For term T2, we work out the
expression

1I{0 ≤ η̂i ≤ ĥn} − 1I{0 ≤ ηi ≤ hn}
= 1I{0 ≤ η̂i} 1I(η̂i ≤ ĥn} − 1I{0 ≤ ηi} 1I{ηi ≤ hn}

= 1I{0 ≤ η̂i}
(
1I(η̂i ≤ ĥn} − 1I(ηi ≤ hn}

)
+ (1I{0 ≤ η̂i} − 1I{0 ≤ ηi}) 1I{ηi ≤ hn}

≤ 1I{η̂i ≤ ĥn} − 1I{ηi ≤ hn}+ 1I{0 ≤ η̂i} − 1I{0 ≤ ηi}.

Next, we notice that for real numbers a and b, we have 1I(a > 0) − 1I(b > 0) ≤
1I(|b| ≤ |a− b|). Thus, we have

T2 ≤ (hnn)
−1

∣∣∣∣∣
n∑

i=1

{
1I(η̂i ≤ ĥn} − 1I{ηi ≤ hn}+ 1I{0 ≤ η̂i} − 1I{0 ≤ ηi}

)∣∣∣∣∣
≤ h−1

n n−1
n∑

i=1

1I{|hn − ηi| ≤ |ĥn − hn|+ |ηi − η̂i|}

+ h−1
n n−1

n∑
i=1

1I{|ηi| ≤ |η̂i − ηi|}

≤ h−1
n n−1

n∑
i=1

1I{|hn − ηi| ≤ |ĥn − hn|+ ‖xi‖∞‖β̂ − β∗‖1}︸ ︷︷ ︸
T21

+ h−1
n n−1

n∑
i=1

1I{|ηi| ≤ ‖xi‖∞‖β∗ − β̂‖1}︸ ︷︷ ︸
T22
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To bound T21, we use similar techniques as with T1. Notice that

ET21 = h−1
n P

(
|hn − ηi| ≤ |ĥn − hn|+ ‖xi‖∞‖β̂ − β∗‖1

)
It is easy to see that |hn−ηi| shares the nice property of the density of εi. Thus,
ET21 is bounded by OP (1). Then by Hoeffding’s inequality, we have that with
probability approaching 1 that T21 is of OP (1). T22 can be bounded in exactly
the same steps.

Finally, we are ready to put everything together that

(hnn)
−1

∣∣∣∣∣
n∑

i=1

1I{xiβ̂ > 0} 1I{0 ≤ η̂i ≤ ĥn} −
n∑

i=1

1I{xiβ
∗ > 0} 1I{0 ≤ ηi ≤ hn}

∣∣∣∣∣
= OP (1).

By applying Slutsky theorem, the result follows directly,

f̂(0)
d−→
∑n

i=1 1I{xiβ
∗ > 0} 1I{0 ≤ ηi ≤ hn}

n−1
∑n

i=1 P{xiβ∗ > 0} .

Proof of Corollary 2. By multiplying and dividing the term f(0), we can rewrite
the term on the left hand side as[

Ω(β̂)Σ̂(β̂)Ω(β̂)
] 1

2

jj
Uj · 2f̂(0) =

[
Ω(β̂)Σ̂(β̂)Ω(β̂)

] 1
2

jj
Uj · 2f(0)

f̂(0)

f(0)
.

Also, as a result of theorem 7, we have

|f̂(0)− f(0)|
f(0)

= |f̂(0)/f(0)− 1| = OP (1),

with Condition (E) guarantees that f(0) is bounded away from 0. It also indi-

cates that f̂(0)/f(0)
d−→ 1. Finally, we apply Slutsky’s Theorem and Theorem 6,

we have [
Ω(β̂)Σ̂(β̂)Ω(β̂)

] 1
2

jj
Uj · 2f̂(0) d−−−−−−−−→

n,p,sβ∗→∞
N (0, 1) .

Proof of Theorem 8. The result of Theorem 8 is a simple consequence of Wald’s
device and results of Corollary 2. The only missing link is an upper bound on∥∥∥Ω(β̂)Σ(β̂)Ω(β̂)−Σ−1(β∗)

∥∥∥
max

. (8.6)

First, observe that

Ω(β̂)Σ(β̂)Ω(β̂)−Σ−1(β∗)

=
(
Ω(β̂)−Σ−1(β∗)

)
Σ(β̂)Ω(β̂)︸ ︷︷ ︸

T1

+Σ−1(β∗)
(
Σ(β̂)Ω(β̂)− I

)
︸ ︷︷ ︸

T2

.
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Regarding term T1, observe that by Lemma 5 it is equal to OP (1) whenever

‖Σ(β̂)Ω(β̂)‖max is OP (1). This can be seen from the decomposition of

Σ(β̂)Ω(β̂)− I, which reads,∥∥∥Σ(β̂)Ω(β̂)− I

∥∥∥
max

=
∥∥∥Σ−1(β∗)

(
Σ̂(β̂)−Σ(β∗)

)∥∥∥
max︸ ︷︷ ︸

T21

+
∥∥∥(Ω(β̂)−Σ−1(β∗)

)(
Σ̂(β̂)−Σ(β∗)

)∥∥∥
max︸ ︷︷ ︸

T22

+
∥∥∥Σ(β∗)

(
Ω(β̂)−Σ−1(β∗)

)∥∥∥
max︸ ︷︷ ︸

T23

We notice that

T21 =

∥∥∥∥∥Σ−1(β∗)

(
n−1

n∑
i=1

w�
i (β̂)wi(β̂)− n−1

n∑
i=1

w�
i (β

∗)wi(β
∗)

+n−1
n∑

i=1

w�
i (β

∗)wi(β
∗)− n−1E

n∑
i=1

w�
i (β

∗)wi(β
∗)

)∥∥∥∥∥
max

≤
∥∥∥∥∥Σ−1(β∗)

(
n−1

n∑
i=1

(
wi(β̂) + wi(β

∗)
)� (

wi(β̂)− wi(β
∗)
))∥∥∥∥∥

max

(8.7)

+

∥∥∥∥∥Σ−1(β∗)

(
n−1

n∑
i=1

(
w�

i (β
∗)wi(β

∗)− Ew�
i (β

∗)wi(β
∗)
))∥∥∥∥∥

max

.

(8.8)

For (8.7), we have the following bound

(8.7) ≤
∥∥Σ−1(β∗)

∥∥
∞

∥∥∥∥∥n−1
n∑

i=1

(
wi(β̂) + wi(β

∗)
)� (

wi(β̂)− wi(β
∗)
)∥∥∥∥∥

max

≤ Cs
1/2
Ω n−1

n∑
i=1

2K2
(
1I(xiβ̂ > 0)− 1I(xiβ

∗)
)
,

for some positive constant C, where ‖A‖∞ denotes the max row sum of matrix A
and ‖A‖max denotes the maximum element in the matrix A. By Lemma 1, we can

easily bound the term above withOP

(
K2s

1/2
Ω (r

1/2
n t3/4(log p/n)1/2 ∨ t log p/n)

)
.

For (8.8), we start with the following term,

n−1
n∑

i=1

(Wij(β
∗)Wik(β

∗)− EWij(β
∗)Wik(β

∗)) .

Applying Hoeffding’s inequality on this term, we have that with probability
approaches 1, the term is bounded by OP (n

−1/2). Then we bound term (8.8)
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as following, for some constant C,

(8.8) ≤
∥∥Σ−1(β∗)

∥∥
∞

∥∥∥∥∥n−1
n∑

i=1

(
w�

i (β
∗)wi(β

∗)− Ew�
i (β

∗)wi(β
∗)
)∥∥∥∥∥

max

≤ Cs
1/2
Ω max

j,k

{
n−1

n∑
i=1

(Wij(β
∗)Wik(β

∗)− EWij(β
∗)Wik(β

∗))

}
= OP (1)

Term T22 can be bounded using Lemma 5 and the results from term T21, and

turns out to be of order OP

(
K4s

3/2
Ω λj(r

1/2
n t3/4(log p/n)1/2 ∨ t log p/n)

)
.

Lastly, by Lemma 5, term T23 is of order OP

(
K2s

3/2
Ω λj

)
.

Putting the terms together, we have
∥∥∥Σ(β̂)Ω(β̂)− I

∥∥∥
max

bounded by

OP

(
(s

1/2
Ω ∨ s

3/2
Ω λj)(r

1/2
n t3/4(log p/n)1/2 ∨ t log p/n)

∨
s
3/2
Ω λj

)
Thus, ‖Σ(β̂)Ω(β̂)‖max is OP (1), and so can T2 be shown similarly. The expres-
sion (8.6) is then bounded as,∥∥∥Ω̂(β̂)Σ(β̂)Ω̂(β̂)−Σ−1(β∗)

∥∥∥
max

(8.9)

= OP

(
(s

1/2
Ω ∨ s

3/2
Ω λj)(r

1/2
n t3/4(log p/n)1/2 ∨ t log p/n)

∨
s
3/2
Ω λj

)
which then completes the proof.

Proof of Theorem 9. The result of Theorem 9 holds by observing that Bahadur
representations (7.3) remain accurate uniformly in the sparse vectors β ∈ B;
hence, all the steps of Theorem 5 apply in this case as well.

9. Proofs of lemmas

Proof of Lemma 1. Let {δ̃k}k∈[Nδ] be the centers of the balls of radius rnξn that

cover the set C(rn, t). Such a cover can be constructed withNδ ≤
(
p
t

)
(3/ξn)

t (see,
for example Van der Vaart, 2000). Furthermore, let Dn(δ) = n−1

∑n
i=1[μi(δ)−

E[μi(δ)]] and let

B(δ̃k, r) =
{
δ ∈ Rp : ||δ̃k − δ||2 ≤ r , supp(δ) ⊆ supp(δ̃k)

}
be a ball of radius r centered at δ̃k with elements that have the same support
as δ̃k. In what follows, we will bound supδ∈C(rn,t) |Dn(δ)| using an ε-net argu-
ment. In particular, using the above introduced notation, we have the following
decomposition

sup
δ∈C(rn,t)

|Dn(δ)| = max
k∈[Nδ]

sup
δ∈B(δ̃k,rnξn)

|Dn(δ)|

≤ max
k∈[Nδ]

|Dn(δ̃k)|︸ ︷︷ ︸
T1

+ max
k∈[Nδ ]

sup
δ∈B(δ̃k,rnξn)

|Dn(δ)− Dn(δ̃k)|︸ ︷︷ ︸
T2

. (9.1)
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We first bound the term T1 in (9.1). To that end, let Zik = (μi(δ̃k) −
E[μi(δ̃k)]). With a little abuse of notation we use l to denote the density of
xiβ

∗ for all i. Observe,

E [μi(δ)] = P

(
xiβ

∗ ≤ xiδ

)
−P

(
xiβ

∗ ≤ 0

)
= wi(δ)− wi(0),

where wi(δ) := P(xiβ
∗ ≤ xiδ), as a function of δ. Then T1 =

maxk∈[Nδ ]

∣∣∣n−1
∑

i∈[n] Zik

∣∣∣ . Note that E[Zik] = 0 and

Var[Zik]

= E

[
1I

(
xiβ

∗ ≤ xiδ̃k

)
+1I

(
xiβ

∗ ≤ 0

)
−2 1I

(
xiβ

∗ ≤ xiδ̃k

)
1I

(
xiβ

∗ ≤ 0

)]
−
[
E 1I

(
xiβ

∗ ≤ xiδ̃k

)
−E 1I

(
xiβ

∗ ≤ xiδ̃k

)]2
(i)

≤ E

[
1I

(
xiβ

∗ ≤ xiδ̃k

)
+1I

(
xiβ

∗ ≤ 0

)
−2 1I

(
xiβ

∗ ≤ 0

)
1I

(
xiβ

∗ ≤ 0

)]
+ 2E

[(
1I

(
xiβ

∗ ≤ 0

)
− 1I

(
xiβ

∗ ≤ xiδ̃k

))
1I

(
xiβ

∗ ≤ 0

)]
(ii)

≤ wi(δ̃k)− wi(0) + 2
∣∣∣wi(δ̃k)− wi(0)

∣∣∣ ≤ 3
∣∣∣wi(δ̃k)− wi(0)

∣∣∣ , (9.2)

where (i) follows from dropping a negative term, and (ii) follows from taking
absolute value within the second expectation. We can apply linearization tech-
niques on the difference of wi(δ̃k)− wi(0).∣∣∣wi(δ̃k)− wi(0)

∣∣∣ (iii)≤
∣∣∣xiδ̃k

∣∣∣ l (cixiδ̃k

) (iv)

≤
∣∣∣xiδ̃k

∣∣∣K1 (ci ∈ [0, 1]) ,

where (iii) follows by the mean value theorem and (iv) from the Condition

(E). Hence, we have that almost surely, |Zik| ≤ Cmaxi

∣∣∣xiδ̃k

∣∣∣ for a constant

C < ∞. For a fixed k, Bernstein’s inequality (see, for example, Section 2.2.2 of
Van Der Vaart and Wellner, 1996) gives us∣∣∣∣∣∣n−1

∑
i∈[n]

Zik

∣∣∣∣∣∣ ≤ C

⎛⎜⎝
√√√√K1 log(2/δ)

n2

∑
i∈[n]

∣∣∣xiδ̃k

∣∣∣∨ log(2/δ)

n

⎞⎟⎠
with probability 1− δ. Observe that for

∑
i∈[n]

∣∣∣xiδ̃k

∣∣∣, we have

∑
i∈[n]

∣∣∣xiδ̃k

∣∣∣ ≤ C2n

√
δ̃�k X�X δ̃k ≤ C2nrnt

1/2 (9.3)

where the line follows using the Cauchy-Schwartz inequality.
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Hence, with probability 1− 2δ we have for all λj ≥ A
√

log p/n that∣∣∣∣∣∣n−1
∑
i∈[n]

Zik

∣∣∣∣∣∣ ≤ C

⎛⎝√rn
√
t log(2/δ)

n

∨ log(2/δ)

n

⎞⎠ .

Using the union bound over k ∈ [Nδ], with probability 1− 2δ, we have

T1 ≤ C

⎛⎝√rn
√
t log(2Nδ/δ)

n

∨ log(2Nδ/δ)

n

⎞⎠ .

Let us now focus on bounding T2 term. Let Qi(δ) = μi(δ)−Eμi(δ). For a fixed
k we have

sup
δ∈B(δ̃k,rnξn)

∣∣∣Dn(δ)− Dn(δ̃k)
∣∣∣ ≤ sup

δ∈B(δ̃k,rnξn)

∣∣∣∣∣∣n−1
∑
i∈[n]

Qi(δ)−Qi(δ̃k)

∣∣∣∣∣∣ := T21.

We further simply the expression, with a little abuse of notation,

Z ′
ik := Qi(δ)−Qi(δ̃k) =

[
1I(xiδ ≥ xiβ

∗)− 1I(xiδ̃k ≥ xiβ
∗)
]

−
[
E 1I(xiδ ≥ xiβ

∗) + E 1I(xiδ̃k ≥ xiβ
∗)
]
.

Then it is clear that EZ ′
ik = 0 and as shown earlier in Var(Zik),

Var(Z ′
ik) ≤ 3

∣∣∣wi(δ)− wi(δ̃k)
∣∣∣ ≤ 3K1

∣∣∣xi

(
δ − δ̃k

)∣∣∣
Moreover, ∣∣∣xi(δ − δ̃k)

∣∣∣ ≤ K||δ − δ̃k||2
√∣∣∣supp(δ − δ̃k)

∣∣∣
where K is a constant such that maxi,j |xij | ≤ K. Hence,

max
k∈[Nδ ]

max
i∈[n]

sup
δ∈B(δ̃k,rnξn)

∣∣∣xiδ − xiδ̃k

∣∣∣ ≤ rnξn
√
tmax

i,j
|xij | ≤ Crnξn

√
t =: L̃n,

The term T21 can be bounded in a similar way to T1 by applying Bernstein’s
inequality and hence the details are omitted. With probability 1− 2δ,

T21 ≤ C

⎛⎝√ L̃n log(2/δ)

n

∨ log(2/δ)

n

⎞⎠
A bound on T2 now follows using a union bound over k ∈ [Nδ]. We can

choose ξn = n−1, which gives us Nδ �
(
pn2
)t
. With these choices, we obtain

T ≤ C

(√
rnt

√
t log(np/δ)

n

∨ t log(2np/δ)
n

)
, which completes the proof.
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Proof of Lemma 2. We begin by rewriting the term n−1
∑n

i=1 ψi(β), and aim
to represent it through indicator functions. Observe that

n−1
n∑

i=1

ψi(β) = n−1
n∑

i=1

x�
i 1I(xiβ > 0)[1− 2 · 1I(yi − xiβ < 0)]. (9.4)

Using the fundamental theorem of calculus, we notice that if xiβ
∗ > 0,∫ 0

xi(β−β∗) f(εi)dεi = F (0) − F (xi(β − β∗)) = 1
2 − P (yi < xiβ), where F is

the univariate distribution of εi. Therefore, with expectation on ε, we can ob-
tain an expression without the yi.

n−1
n∑

i=1

Eεψi(β) =

[
n−1

n∑
i=1

x�
i 1I(xiβ > 0) · 2

∫ 0

xi(β−β∗)
f(u)du

]

=

[
n−1

n∑
i=1

x�
i 1I(xiβ > 0) · 2f(u∗)xi(β

∗ − β)

]
:= Λn(β)(β

∗ − β),

for some u∗ between 0 and xi(β
∗ − β), and where we have defined

Λn(β) =

[
n−1

n∑
i=1

1I(xiβ > 0)x�
i xi · 2f(u∗)

]
.

We then show a bound for Δ :=
∣∣∣[EXΛn(β)− 2f(0)Σ(β∗)]jk

∣∣∣, where we

recall Σ(β∗) is defined as earlier, Σ(β∗) = n−1
∑n

i=1 EX 1I(xiβ
∗ > 0)x�

i xi. By
triangular inequality,

Δ ≤
∣∣∣∣∣n−1

n∑
i=1

EX 1I(xiβ > 0)xijxik · 2(f(u∗)− f(0))

∣∣∣∣∣ (9.5)

+

∣∣∣∣∣n−1
n∑

i=1

EX 1I(xiβ > 0)xijxik · 2f(0)

− n−1
n∑

i=1

EX 1I(xiβ
∗ > 0)xijxik · 2f(0)

∣∣∣∣∣. (9.6)

Notice that 1I(xiβ > 0) − 1I(xiβ
∗ > 0) ≤ 1I(xiβ ≥ 2xiβ

∗) = 1I[xiβ
∗ ≤

xi(β − β∗)]. Moreover, the original expresion is also smaller than or equal to
1I (|xiβ

∗| ≤ |xi(β − β∗)|). The term (9.6) can be bounded by the design matrix
setup and Condition (E),∣∣∣∣∣n−1

n∑
i=1

EX 1I(xiβ > 0)xijxik · 2f(0)− n−1
n∑

i=1

EX 1I(xiβ
∗ > 0)xijxik · 2f(0)

∣∣∣∣∣
≤ 2f(0)K2n−1

n∑
i=1

EX 1I (|xiβ
∗| ≤ ‖xi‖∞‖(β − β∗)‖1) ≤ 2f(0)K2‖(β − β∗)‖1.
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With the help of Hölder’s inequality, |(9.5)| ≤n−1
∑n

i=1 EX 1I(xiβ > 0)‖xi‖2∞ ·
2 |f(u∗)− f(0)| . By triangular inequality and Condition (E) we can further
upper bound the right hand side with

2 · n−1
n∑

i=1

EX‖xi‖2∞ · L0‖xi‖∞‖β − β∗‖1.

Then we are ready to put terms together and obtain a bound for Δ. Additionally,
by the design matrix setup we have

Δ ≤ (C + 2f(0))K3‖β − β∗‖1,

for ‖β−β∗‖1 < ξ and a constant C. Essentially, this proves that Δ is not greater
than a constant multiple of the difference between β and β∗. Thus, we have as
n → ∞

n−1
n∑

i=1

Eψi(β) = n−1
n∑

i=1

EXEεψi(β) = 2f(0)Σ(β∗)(β∗ − β)

+O(‖β − β∗‖1)(β∗ − β). (9.7)

Proof of Lemma 3. For the simplicity in notation we fix j = 1 and denote
γ̂(1)(β̂) with γ̂(β̂). The proof is composed of two steps: the first establishes
a cone set and an event set of interest whereas the second proves the rate of the
estimation error by certain approximation results.

Step 1. Here we show that the estimation error γ̂ − γ∗ belongs to the
appropriate cone set with high probability. We introduce the loss function
l(β,γ) = n−1

∑n
i=1 (Wi,1(β)−Wi,−1(β)γ)

2
. The loss function above is convex

in γ hence

(γ̂ − γ∗)
[
∇γ l(β̂,γ)|γ=γ̂ −∇γ l(β̂,γ)|γ=γ∗

]
≥ 0.

Let h∗ =
∥∥∥∇γ l(β̂,γ)|γ=γ∗

∥∥∥
∞
. Let δ = γ̂ − γ∗. KKT conditions provide(

∇γ l(β̂,γ)|γ=γ∗+δ

)
j

= −λ1sgn(γ
∗
j + δj) for all j ∈ Sc

1 ∩ {γ̂j �= 0} with

S1 = {j : γ∗ �= 0}. Moreover, observe that δj = 0 for all j ∈ Sc
1 ∩ {γ̂j = 0}.

Then,

(γ̂ − γ∗)
[
∇γ l(β̂,γ)|γ=γ̂ −∇γ l(β̂,γ)|γ=γ∗

]
=
∑
j∈Sc

1

δj(∇γ l(β̂,γ)|γ=γ∗+δ)j +
∑
j∈S1

δj(∇γ l(β̂,γ)|γ=γ∗+δ)j

+ δ�(−∇γ l(β̂,γ)|γ=γ∗)

≤
∑
j∈Sc

1

δj(−λ1sgn(γ
∗
j + δj)) + λ1

∑
j∈S1

|δj |+ h∗‖δ‖1
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=
∑
j∈Sc

1

−λ1|δj |+
∑
j∈S1

λ1|δj |+ h∗‖δS1‖1 + h∗‖δSc
1
‖1

= (h∗ − λ1)‖δSc
1
‖1 + (λ1 + h∗)‖δS1‖1.

Hence on the event h∗ ≤ (a−1)/(a+1)λ1 for a constant a > 1, the estimation
error δ belongs to the cone set

C(a, S1) = {x ∈ Rp−1 : ‖xSc
1
‖1 ≤ a‖xS1‖1} (9.8)

Next, we proceed to show that the event above holds with high probability
for certain choice of the tuning parameter λ1. We begin by decomposing

h∗ ≤ ‖∇γ l(β
∗,γ)|γ=γ∗‖∞ +

∥∥∥∇γ l(β
∗,γ)|γ=γ∗ −∇γ l(β̂,γ)|γ=γ∗

∥∥∥
∞

Let H1 = ∇γ l(β
∗,γ)|γ=γ∗ and let H2 = ∇γ l(β

∗,γ)|γ=γ∗ − ∇γ l(β̂,γ)|γ=γ∗

We begin by observing that ∇γ l(β̂,γ)|γ=γ∗ = ∇γ l(β
∗,γ)|γ=γ∗ + Δ1 + Δ2 +

Δ3 +Δ4, for

Δ1 = −2n−1
(
W−1(β̂)−W−1(β

∗)
)�

W1(β̂)

Δ2 = −2n−1 (W−1(β
∗))�

(
W1(β̂)−W1(β

∗)
)

Δ3 = −2n−1
(
W−1(β̂)

)� (
W−1(β̂)−W−1(β

∗)
)
γ∗

Δ4 = 2n−1
(
W−1(β̂)−W−1(β

∗)
)�

W−1(β
∗)γ∗

Next, by Lemma 1 we observe

|Δ1,j | ≤ 2K2n−1

∣∣∣∣∣
n∑

i=1

μi(β
∗ − β̂)− μi(0)

∣∣∣∣∣
= OP

(
K2r1/2n t3/4(log p/n)1/2

∨
K2t log p/n

)
,

and similarly |Δ2,j | = OP

(
K2r

1/2
n t3/4(log p/n)1/2

∨
K2t log p/n

)
. Recall the

Assumption (Γ). Then, it is not difficult to see that such assumption provides
‖W−1(β

∗)γ∗‖∞ = OP (K). By Hölder’s inequality followed by Lemma 1

|Δ3,j | ≤ 2K2n−1

∣∣∣∣∣
n∑

i=1

[
μi(β

∗ − β̂)− μi(0)
]∣∣∣∣∣

= OP

(
K2r1/2n t3/4(log p/n)1/2

∨
K3t log p/n

)
,

and similarly |Δ4,j | = OP

(
K2r

1/2
n t3/4(log p/n)1/2

∨
K2t log p/n

)
. Putting all

the terms together we obtain

H2 = OP

(
K2r1/2n t3/4(log p/n)1/2

∨
K2t log p/n

)
.
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Next, we focus on the term H1. Simple computation shows that for all k =
2, · · · p, we have

H1,k = −2n−1
n∑

i=1

ui

for ui = Xikζ
∗
1,i 1I{xiβ

∗ > 0}. Observe that the sequence {ui} across i =
1, · · · , n, is a sequence of independent random variables. As εi and xi are inde-
pendent we have by the tower property E[ri] = EX

[
Xik 1I{xiβ

∗ > 0}Eε[ζ
∗
1,i]
]
=

0. Moreover, as ζ∗
1 is sub-exponential random vector, by Bernstein’s inequality

and union bound we have

P (‖H1‖∞ ≥ c) ≤ p exp

{
−n

2

(
c2

K̃2
∨ c

K̃

)}
where ‖ui‖ψ1 ≤ K‖ζ∗

1,i‖ψ1 := K̃ < ∞. We pick c to be (log p/n)1/2, then we
have with probability converging to 1 that

h∗ ≤ ‖H1‖∞ + ‖H2‖∞ ≤ (log p/n)1/2 + C1r
1/2
n t3/4(log p/n)1/2 + C2t log p/n

≤ (a− 1)/(a+ 1)λ1,

for some constant C1 and C2. Thus, with λ1 chosen as

λ1 = C
(
(log p/n)1/2

∨(
r1/2n

∨
t1/4(log p/n)1/2

)
t3/4(log p/n)1/2

)
,

for some constant C > 1, we have that h∗ ≤ (a− 1)/(a+ 1)λ1 with probability
converging to 1. More directly, with the condition on the penalty parameter λ1,
this implies that the event for the cone set (9.8) to be true holds with high
probability.

Step 2. We begin by a basic inequality

l(β̂, γ̂) + λ1‖γ̂‖1 ≤ l(β̂,γ∗) + λ1‖γ∗‖1
guaranteed as γ̂ minimizes the penalized loss (2.8). Here and below in the rest

of the proof we suppress the subscript 1 and β in the notation of W1(β̂) and

W−1(β̂) and use Ŵ and Ŵ− instead and similarly W ∗ := W1(β
∗) and W−∗

=
W−1(β

∗). Rewriting the inequality above we obtain

− 2n−1Ŵ�Ŵ−γ̂ + n−1γ̂�Ŵ−�
Ŵ−γ̂

≤ −2n−1Ŵ�Ŵ−γ∗ + n−1γ∗�Ŵ−�
Ŵ−γ∗ − λ1‖γ̂‖1 + λ1‖γ∗‖1

Observe that Wij(β̂) = Wij(β
∗) + Xij [μi(β

∗ − β̂) − μi(0)]. Let αij =

Xij [μi(β
∗−β̂)−μi(0)]. LetA be a matrix such thatA = {αij}1≤i≤n,1≤j≤p. From

now on we only consider A to mean A1 and A− to mean A−1. Next, note that
W ∗

i = W−
i

∗
γ∗+ζ∗i by the definition of γ∗ in the node-wise plug-in lasso problem.

Together with the above, we observe that Ŵi = W−
i

∗
γ∗+ζ∗i +Ai := W−

i

∗
γ∗+ε∗i .

Hence, the basic inequality above becomes,

− 2n−1
(
W−∗

γ∗ + ε∗
)�

(W−∗
+A−)γ̂ + n−1γ̂�(W−∗

+A−)�(W−∗
+A−)γ̂
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≤ −2n−1
(
W−∗

γ∗ + ε∗
)�

(W−∗
+A−)γ∗ + n−1γ∗�(W−∗

+A−)�(W−∗
+A−)γ∗ − λ1‖γ̂‖1 + λ1‖γ∗‖1.

With reordering the terms in the inequality above, we obtain

n−1
∥∥∥W−∗

γ̂ −W−∗
γ∗
∥∥∥2
2
≤ δ1 + δ2 + δ3 − λ1‖γ̂‖1 + λ1‖γ∗‖1,

for

δ1 = 2n−1ε∗�1

(
W−∗

+A−
)
(γ̂ − γ∗) ,

δ2 = 2n−1γ∗�W−∗�
A− (γ̂ − γ∗) ,

δ3 = n−1 (γ∗ + γ̂)
� (

A−�A− + 2W−∗�A−) (γ∗ − γ̂) .

Next, we observe that Ai are bounded, mean zero random variables and
hence n−1|

∑n
i=1 Ai| = OP (n

−1/2). Moreover ε∗i is a sum of sub-exponential
and bounded random variables, hence is sub-exponential. Thus, utilizing the
above and results of Step 1 we obtain

δ1 ≤ K2(a+ 1)‖γ̂S1 − γ∗
S1
‖1OP (n

−1/2),

δ2 ≤ K2(a+ 1)‖γ̂S1 − γ∗
S1
‖1‖γ∗

S1
‖1OP (n

−1/2),

Lastly, observe that

δ3 ≤ n−1γ∗� (A−�A− + 2W−∗�A−)γ∗ + n−1γ̂� (A−�A− + 2W−∗�A−) γ̂
(9.9)

Moreover, as γ̂ − γ∗ belongs to the cone C(a, S1) (9.8) by Step 1, by convexity
arguments it is easy to see that γ̂ belongs to the same cone. Together with
Hölder’s inequality we obtain

δ3 ≤ 3Kn−1
n∑

i=1

W−∗
i,S1

�
A−

i,S1

[
‖γ∗

S1
‖22 + ‖γ̂S1‖22

]
Utilizing Lemma 1 now provides

δ3 ≤ κ
[
‖γ∗

S1
‖22 + ‖γ̂S1‖22

]
where κ is such that κ = OP (K

2r
1/2
n t3/4(log p/n)1/2). Moreover, observe that

if λ1 is chosen to be larger than the upper bound of κ. Putting all the terms
together we obtain

n−1
n∑

i=1

(
W−

i

∗
γ̂ −W−

i

∗
γ∗
)2

≤ 2λ1‖γ̂S1 − γ∗
S1
‖1 + λ1‖γ∗

S1
‖22 + λ1‖γ̂S1‖22 − λ1‖γ̂‖1 + λ1‖γ∗‖1

≤ 3λ1‖γ̂S1 − γ∗
S1
‖1 + λ1‖γ∗

S1
‖22 + λ1‖γ̂S1‖22
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where the last inequality holds as |γ̂j − γ∗
j | ≥ |γ∗

j | − |γ̂j | for j ∈ S1, and disre-
garding the negative terms −λ1‖γ̂Sc

1
‖1.

Moreover, by Condition (C) and Step 1 we have that the left hand side is

bigger than or equal to C2n
−1
∑n

i=1

(
X−

i γ̂ −X−
i γ∗)2, allowing us to conclude

n−1C2 ‖X(γ̂ − γ∗)‖22 ≤ 3λ1‖γ̂S1 − γ∗
S1
‖1 + 2λ1‖γ∗

S1
‖22 + λ1‖γ̂S1 − γ∗

S1
‖22
(9.10)

holds with probability approaching one. Let S = Sβ∗ for short. Condition (Γ)
and (C) together imply that now we have

(φ2
0C2 − λ1)‖γ̂S1 − γ∗

S1
‖22 ≤ 3

√
s1λ1‖γ̂S1 − γ∗

S1
‖2 + 2λ1‖γ∗

S1
‖22.

Solving for ‖γ̂S1 − γ∗
S1
‖2 in the above inequality we obtain

‖γ̂S1 − γ∗
S1
‖2 ≤ 3

√
s1λ1/(φ

2
0C2 − λ1)

The result then follows from a simple norm inequality

‖γ̂ − γ∗‖1 ≤ (a+ 1)‖γ̂S1 − γ∗
S1
‖1 ≤ (a+ 1)

√
s1‖γ̂S1 − γ∗

S1
‖2

and considering an asymptotic regime with n, p, sβ∗ , s1 → ∞.

Proof of Lemma 4 . Recall the definitions of ζ̂j and ζ∗
j . Observe that we have

the following inequality,∣∣∣ζ̂�
j ζ̂j/n− Eζ∗

j
�ζ∗

j /n
∣∣∣

≤
∣∣∣n−1ζ̂�

j ζ̂j − n−1ζ∗
j
�ζ∗

j

∣∣∣+ ∣∣∣n−1ζ∗
j
�ζ∗

j − n−1Eζ∗
j
�ζ∗

j

∣∣∣
≤ n−1

∥∥∥ζ̂j + ζ∗
j

∥∥∥
∞

∥∥∥ζ̂j − ζ∗
j

∥∥∥
1
+
∣∣∣n−1ζ∗

j
�ζ∗

j − n−1Eζ∗
j
�ζ∗

j

∣∣∣ ,
using triangular inequality and Hölder’s inequality.

We proceed to upper bound all of the three terms on the right hand side of
the previous inequality. First, we observe∥∥∥ζ̂j + ζ∗

j

∥∥∥
∞

≤
∥∥∥Wj(β

∗)−W−j(β
∗)γ∗

(j)(β
∗)
∥∥∥
∞

+
∥∥∥Wj(β̂)−W−j(β̂)γ̂(j)(β̂)

∥∥∥
∞

.

(9.11)

Moreover, the conditions imply that ‖Wj(β̂)‖∞ ≤ K (by the design matrix
condition),

‖W−j γ̂(j)(β̂)‖∞ ≤ K
(
‖γ̂(j)(β̂)− γ∗

(j)(β
∗)‖1 +OP (K)

)
and by Lemma 3, for λj as defined, the right hand size is OP (Ksjλj ∨K). Thus,

we conclude
∥∥∥ζ̂j + ζ∗

j

∥∥∥
∞

= OP

(
K
∨

Ksjλj

∨
K

)
= OP (K ∨K ∨Ksjλj).
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Its multiplying term can be decomposed as following

n−1
∥∥∥ζ̂j − ζ∗

j

∥∥∥
1
≤ n−1

∥∥∥Xj ◦
(
1I(Xβ̂ > 0)− 1I(Xβ∗ > 0)

)∥∥∥
1︸ ︷︷ ︸

i

+ n−1
∥∥∥W−j(β̂)γ̂(j)(β̂)−W−j(β

∗)γ∗
(j)(β

∗)
∥∥∥
1︸ ︷︷ ︸

ii

, (9.12)

where ◦ denotes entry wise multiplication between two vectors. The reason we
have to spend such a great effort in separating the terms to bound this quantity
is that we are dealing with a 1-norm here, rather than an infinity-norm, which
is bounded easily.

We start with term i. Notice that

n−1
∥∥∥Xj ◦

(
1I(Xβ̂ > 0)− 1I(Xβ∗ > 0)

)∥∥∥
1

≤ Kn−1
n∑

i=1

∣∣∣1I(xiβ̂ > 0)− 1I(xiβ
∗ > 0)

∣∣∣ ,
by Hölder’s inequality and the design matrix condition. Moreover, by Lemma 1

we can easily bound the term above withOP (Kr
1/2
n t3/4(log p/n)1/2

∨
Kt log p/n),

with rn and t as defined in Condition (I).
For the term ii, we have

ii ≤n−1
∥∥∥X−j γ̂(j)(β̂) ◦ 1I(Xβ̂ > 0)−X−jγ

∗
(j)(β

∗) ◦ 1I(Xβ̂ > 0)
∥∥∥
1

+ n−1
∥∥∥X−jγ

∗
(j)(β

∗) ◦ 1I(Xβ̂ > 0)−X−jγ
∗
(j)(β

∗) ◦ 1I(Xβ∗ > 0)
∥∥∥
1
.

Observe, that the right hand side is upper bounded with

K
∥∥∥γ̂(j)(β̂)− γ∗

(j)(β
∗)
∥∥∥
1

∥∥∥1I(Xβ̂ > 0)
∥∥∥
∞

+
∥∥∥X−jγ

∗
(j)(β

∗)
∥∥∥
∞

∣∣∣∣∣n−1
n∑

i=1

[
1I(xiβ̂ > 0)− 1I(xiβ

∗ > 0)
]∣∣∣∣∣

by the design matrix condition. Utilizing Lemma 1, Lemma 3 and Condition
(Γ) together we obtain

ii = OP (Ksjλj) +OP

(
Kr1/2n t3/4(log p/n)1/2

∨
Kt log p/n

)
,

for the chosen λj . Combining bounds for the terms i and ii, we obtain

n−1
∥∥∥ζ̂j − ζ∗

j

∥∥∥
1
= OP

(
Ksjλj

∨
Kr1/2n t3/4(log p/n)1/2

∨
Kt log p/n

)
Next, we bound

∣∣∣n−1ζ∗
j
�ζ∗

j − n−1Eζ∗
j
�ζ∗

j

∣∣∣. If we rewrite the inner product in
summation form, we have

∣∣∣n−1ζ∗
j
�ζ∗

j − n−1Eζ∗
j
�ζ∗

j

∣∣∣ = n−1
∑n

i=1

(
ζ∗ij

2 − Eζ∗ij
2
)
.

Notice that ζ∗ij = Wij(β
∗) − Wi,−jγ

∗
(j)(β

∗) is a bounded random variable and
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such that |ζ∗ij | = OP (K + Ks
1/2
j ). We then apply Hoeffding’s inequality for

bounded random variables, to obtain
∣∣∣n−1ζ∗

j
�ζ∗

j − n−1Eζ∗
j
�ζ∗

j

∣∣∣ =

OP (K
2sjn

−1/2).

Proof of Lemma 5 . We begin by first establishing that τ̂−2
j = OP (1). In the

case when the penalty part λj

∥∥∥γ̂(j)(β̂)
∥∥∥
1

happens to be 0, which means

γ̂(j)(β̂) = 0, the worst case scenario is that the regression part, n−1
∥∥∥Wj(β̂) −

W−j(β̂)γ̂(j)(β̂)
∥∥∥2
2
, also results in 0, i.e.

0 = Wj(β̂)−W−j(β̂)γ̂(j)(β̂) (9.13)

We show that these terms cannot be equal to zero simultaneously, since this
forces Wj(β̂) = 0, which is not true. Thus, τ̂−2

j is bounded away from 0.

In order to show results about the matrices Ω(β̂) and Ω(β∗), we first provide
a bound on the τ̂ and τ . This is critical, since the magnitude of Ω(·) is deter-
mined by τ . To derive the bound on the τ ’s, we have to decompose the terms
very carefully and put a bound on each one of them.

Recall definitions of ζ̂j and ζ∗
j

ζ̂j = Wj(β̂)−W−j(β̂)γ̂(j)(β̂), ζ∗
j = Wj(β

∗)−W−j(β
∗)γ∗

(j)(β
∗).

Moreover, by the Karush-Kuhn-Tucker conditions of problem (2.8) we have

λj‖γ̂(j)(β̂)‖1 = n−1ζ̂�
j W−j(β̂)γ̂(β̂), which in turn enables a representation

τ̂2j = n−1ζ̂�
j ζ̂j + n−1ζ̂�

j W−j(β̂)γ̂(β̂).

By definition we have that τ2j = n−1Eζ∗
j
�ζ∗

j , for which we have τ̂2j as an esti-

mate. The τ2j and τ̂2j carry information about the magnitude of the values in

Σ−1(β∗) and Ω(β̂) respectively. We next break down τ2j and τ̂2j into parts re-

lated to difference between γ̂(j)(β̂) and γ∗
(j)(β

∗), which we know how to control.
Thus, we have the following decomposition,∣∣τ̂2j − τ2j

∣∣ ≤ ∣∣∣n−1ζ̂�
j ζ̂j − τ2j

∣∣∣︸ ︷︷ ︸
I

+
∣∣∣n−1ζ̂�

j W−j(β̂)γ̂(j)(β̂)
∣∣∣︸ ︷︷ ︸

II

.

The task now boils down to bounding each one of the terms I and II, inde-
pendently. Term I is now bounded by Lemma 4 and is in order of OP

(
K2sjλj

)
.

Regarding term II, we first point out one result due to the Karush-Kuhn-Tucker
conditions of (6),

λj · 1� ≥ λjsign
(
γ̂(j)(β̂)

)�
= n−1

(
Wj(β̂)−W−j(β̂)γ̂(j)(β̂)

)�
W−j(β̂)

= n−1ζ̂�
j W−j(β̂).
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For the term II, we then have∣∣∣n−1ζ̂�
j W−j(β̂)γ̂(j)(β̂)

∣∣∣ ≤ ∥∥∥n−1ζ̂�
j W−j(β̂)

∥∥∥
∞

∥∥∥γ̂(j)(β̂)
∥∥∥
1

= OP

(
s
1/2
j λj ∨ sjλ

2
j

)
,

since by Lemma 3 we have∥∥∥γ̂(j)(β̂)
∥∥∥
1
≤
∥∥∥γ∗

(j)(β
∗)
∥∥∥
1
+
∥∥∥γ̂(j)(β̂)− γ∗

(j)(β
∗)
∥∥∥
1
= OP (s

1/2
j ) +OP (sjλj).

Putting all the pieces together, we have shown that rate∣∣τ̂2j − τ2j
∣∣ = OP

(
K2sjλj ∨ s

1/2
j λj ∨ sjλ

2
j

)
As τ̂−2

j = OP (1) we have
∣∣∣ 1
τ̂2
j
− 1

τ2
j

∣∣∣ = OP

(∣∣τ2j − τ̂2j
∣∣). We then conclude

∥∥∥Ω(β̂)j −Σ−1(β∗)j

∥∥∥
1
≤ τ̂−2

j

∥∥∥γ̂(j)(β̂)− γ∗
(j)(β

∗)
∥∥∥
1
+
∥∥∥γ∗

(j)(β
∗)
∥∥∥
1

∣∣∣∣∣ 1τ̂2j − 1

τ2j

∣∣∣∣∣
= OP

(
K2s

3/2
j λj ∨ sjλj ∨ s

3/2
j λ2

j

)
Proof of Lemma 6. For the simplicity of the proof we introduce some additional
notation. Let δ = β̂ − β∗, and

νn(δ) = n−1
n∑

i=1

Ω(β̂)
[
ψi(β̂)− ψi(β

∗)
]
.

Observe that 1I
{
yi − xiβ̂ ≤ 0

}
= 1I {xiδ ≥ εi} and hence 1 − 2 1I{yi − xiβ̂ >

0} = 21I
{
yi − xiβ̂ ≤ 0

}
−1. The term we wish to bound then can be expressed

as
Vn(δ) = νn(δ)− Eνn(δ)

for νn(δ) denoting the following quantity

νn(δ) = n−1
n∑

i=1

Ω(δ + β∗)x�
i [fi(δ)gi(δ)− fi(0)gi(0)]

and
fi(δ) = 1I {xiδ ≥ −xiβ

∗} , gi(δ) = 2 1I {xiδ ≥ εi} − 1.

Let {δ̃k}k∈[Nδ] be centers of the balls of radius rnξn that cover the set C(rn, t).
Such a cover can be constructed with Nδ ≤

(
p
t

)
(3/ξn)

t (see, for example Van der
Vaart, 2000). Furthermore, let

B(δ̃k, r) =
{
δ ∈ Rp : ||δ̃k − δ||2 ≤ r , supp(δ) ⊆ supp(δ̃k)

}
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be a ball of radius r centered at δ̃k with elements that have the same support as
δ̃k. In what follows, we will bound supδ∈C(rn,t) ||Vn(δ)||∞ using an ε-net argu-
ment. In particular, using the above introduced notation, we have the following
decomposition

sup
δ∈C(rn,t)

||Vn(δ)||∞ = max
k∈[Nδ]

sup
δ∈B(δ̃k,rnξn)

||Vn(δ)||∞

≤ max
k∈[Nδ]

||Vn(δ̃k)||∞︸ ︷︷ ︸
T1

+ max
k∈[Nδ ]

sup
δ∈B(δ̃k,rnξn)

||Vn(δ)− Vn(δ̃k)||∞︸ ︷︷ ︸
T2

. (9.14)

Observe that the term T1 arises from discretization of the sets C(rn, t). To
control it, we will apply the tail bounds for each fixed l and k. The term T2

captures the deviation of the process in a small neighborhood around the fixed
center δ̃k. For those deviations we will provide covering number arguments. In
the remainder of the proof, we provide details for bounding T1 and T2.

We first bound the term T1 in (9.14). Let aij(β) = e�j Ω(β)x�
i We are going

to decouple dependence on xi and εi. To that end, let

Zijk = aij(β
∗ + δ̃k)

((
fi(δ̃k)gi(δ̃k)− E

[
fi(δ̃k)gi(δ̃k)|xi

])
− (fi(0)gi(0)− E [fi(0)gi(0)|xi])

)
and

Z̃ijk = aij(β
∗ + δ̃k)

(
E

[
fi(δ̃k)gi(δ̃k)|xi

]
− E [fi(0)gi(0)|xi]

)
− E

[
aij(β

∗ + δ̃k)
(
fi(δ̃k)gi(δ̃k)− fi(0)gi(0)

)]
.

With a little abuse of notation we use f to denote the density of εi for all i.
Observe that E [fi(δ)gi(δ)|xi] = fi(δ)P(εi ≤ xiδ). We use wi(δ) to denote the
right hand side of the previous equation. Then

T1 = max
k∈[Nδ ]

max
j∈[p]

∣∣∣∣∣∣n−1
∑
i∈[n]

(
Zijk + Z̃ijk

)∣∣∣∣∣∣
≤ max

k∈[Nδ ]
max
j∈[p]

∣∣∣∣∣∣n−1
∑
i∈[n]

Zijk

∣∣∣∣∣∣︸ ︷︷ ︸
T11

+ max
k∈[Nδ ]

max
j∈[p]

∣∣∣∣∣∣n−1
∑
i∈[n]

Z̃ijk

∣∣∣∣∣∣︸ ︷︷ ︸
T12

.

Note that E[Zijk | {xi}i∈[n]] = 0. With a little abuse of notation we use l to
denote the density of xiβ

∗ for all i.

Var[Zijk | {xi}i∈[n]]
(i)

≤ 3a2ij(β
∗ + δ̃k)

∣∣∣wi(δ̃k)− wi(0)
∣∣∣

(ii)

≤ 3a2ij(β
∗ + δ̃k)fi(δ̃k)

∣∣∣xiδ̃k

∣∣∣ l (ηixiδ̃k

)
(ηi ∈ [0, 1])
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(iii)

≤ 3a2ij(β
∗ + δ̃k)

∣∣∣xiδ̃k

∣∣∣K1

where (i) follows similarly as in equation (9.2) in proof of Lemma 1, (ii) follows
by the mean value theorem, and (iii) from the assumption that the conditional
density is bounded stated in Condition (E) and taking the indicator to be 1.

Furthermore, conditional on {xi}i∈[n] we have that almost surely,

|Zijk| ≤ 2max
ij

|aij(β∗ + δ̃k)|.

We will work on the event

A =

{
max
j∈[p]

∥∥∥Ωj(β
∗ + δ̃k)−Σ−1

j (β∗)
∥∥∥
1
≤ Cn

}
(9.15)

which holds with probability at 1 − δ using Lemma 5. For a fixed j and k
Bernstein’s inequality (see, for example, Section 2.2.2 of Van Der Vaart and
Wellner, 1996) gives us∣∣∣∣∣∣n−1

∑
i∈[n]

Zijk

∣∣∣∣∣∣ ≤ C

(√√√√K1 log(2/δ)

n2

∑
i∈[n]

a2ij(β
∗ + δ̃k)

∣∣∣xiδ̃k

∣∣∣
∨ maxi∈[n],j∈[p] |aij(β∗ + δ̃k)|

n
log(2/δ)

)

with probability 1− δ. On the event A∑
i∈[n]

a2ij(β
∗ + δ̃k)

∣∣∣xiδ̃k

∣∣∣
=
∑
i∈[n]

((
Ωj(β

∗ + δ̃k)−Σ−1(β∗)
)
x�
i +Σ−1(β∗)x�

i

)2 ∣∣∣xiδ̃k

∣∣∣
≤
∑
i∈[n]

(∥∥Σ−1(β∗)x�
i

∥∥2
2
+K2C2

n

) ∣∣∣xiδ̃k

∣∣∣
≤
∑
i∈[n]

K2
(
Λ−1
min(Σ

−1(β∗)) + C2
n

) ∣∣∣xiδ̃k

∣∣∣
≤ K2

(
Λ−1
min(Σ

−1(β∗) + C2
n

)
nrnt

1/2

where the line follows using the Cauchy-Schwartz inequality, equation (9.3) in
proof of Lemma 1, and results of Lemma 5. Combining all of the results above,
with probability 1− 2δ we have that∣∣∣∣∣∣n−1

∑
i∈[n]

Zijk

∣∣∣∣∣∣ ≤ C

⎛⎝√C2
nrn

√
t log(2/δ)

n

∨ Cn log(2/δ)

n

⎞⎠ .
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Using the union bound over j ∈ [p] and k ∈ [Nδ], with probability 1 − 2δ, we
have

T11 ≤ C

⎛⎝√Cnrn
√
t log(2Nδp/δ)

n

∨ Cn log(2Nδp/δ)

n

⎞⎠ .

We deal with the term T12 in a similar way. For a fixed k and j, conditional on
the event A we apply Bernstein’s inequality to obtain∣∣∣∣∣∣n−1

∑
i∈[n]

Z̃ijk

∣∣∣∣∣∣ ≤ C

(√
C2

nr
2
nt log(2/δ)

n

∨ Cn log(2/δ)

n

)

with probability 1 − δ, since on the event A in (9.15) we have that
∣∣∣Z̃ijk

∣∣∣ ≤
CnΛmax(Σ(β∗)) and

Var
[
Z̃ijk

]
≤ E

[
a2ij(β

∗ + δ̃k)
(
fi(δ̃k)P(εi ≤ xiδ̃k)− fi(0)P(εi ≤ 0)

)2]
≤ K2

(
Λ−1
min(Σ

−1(β∗) + C2
n

) (
3 |Gi(rn,β

∗, 0)−Gi(0,β
∗, 0)|+ f2

maxrnt
1/2
)2

≤ CC2
nr

2
nt

where in the last step we utilized Condition (E) with z = rn. The union bound
over k ∈ [Nδ], and j ∈ [p], gives us

T12 ≤ C

(√
C2

nr
2
nt log(2Nδp/δ)

n

∨ Cn log(2Nδp/δ)

n

)
with probability at least 1 − 2δ. Combining the bounds on T11 and T12, with
probability 1− 4δ, we have

T1 ≤ C

(√
C2

n(rnt
1/2 ∨ r2nt) log(2Nδp/δ)

n

∨ Cn log(2Nδp/δ)

n

)
,

since rn = OP (1). Let us now focus on bounding T2 term. Note that aij(β
∗ +

δk) = aij(β
∗) + a′ij(β̄k)δk for some β̄k between β∗ + δk and β∗. Let

Wij(δ) = a′ij(β̄k)δk (fi(δ)gi(δ)− fi(0)gi(0)) ,

and
Qij(δ) = aij(β

∗) (fi(δ)gi(δ)− fi(0)gi(0)) .

Let Q(δ) = Q(δ) − E[Q(δ)]. For a fixed j, and k we have

supδ∈B(δ̃k,rnξn)

∣∣∣e�j (Vn(δ)− Vn(δ̃k)
)∣∣∣ is upper bounded with

sup
δ∈B(δ̃k,rnξn)

∣∣∣∣∣∣n−1
∑
i∈[n]

Qij(δ)−Qij(δ̃k)

∣∣∣∣∣∣︸ ︷︷ ︸
T21
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+ sup
δ∈B(δ̃k,rnξn)

∣∣∣∣∣∣n−1
∑
i∈[n]

Wij(δ)− E [Wij(δ)]

∣∣∣∣∣∣︸ ︷︷ ︸
T22

.

We will deal with the two terms separately. Let Zi = max{εi,−xiβ
∗}

fi(δ)gi(δ) = 1I{xiδ ≥ Zi} − 1I {xiδ ≥ −xiβ
∗} .

Observe that the distribution of Zi is similar to the distribution of |εi| due to
the Condition (E). Moreover,∣∣∣xi(δ − δ̃k)

∣∣∣ ≤ K||δ − δ̃k||2
√∣∣∣supp(δ − δ̃k)

∣∣∣
where K is a constant such that maxi,j |xij | ≤ K. Hence,

max
k∈[Nδ ]

max
i∈[n]

sup
δ∈B(δ̃k,rnξn)

∣∣∣xiδ − xiδ̃k

∣∣∣ ≤ rnξn
√
tmax

i,j
|xij | ≤ Crnξn

√
t =: L̃n.

(9.16)

For T21, we will use the fact that 1I{a < x} and P{Z < x} are monotone function
in x. Therefore,

T21 ≤ n−1
∑
i∈[n]

[
|aij(β∗)|

(
1I
{
Zi ≤ xiδ̃k + L̃n

}
− 1I

{
−xiβ

∗ ≤ xiδ̃k − L̃n

}
− 1I

{
Zi ≤ xiδ̃k

}
+ 1I

{
−xiβ

∗ ≤ xiδ̃k

}
− P

[
Zi ≤ xiδ̃k − L̃n

]
+ P

[
−xiβ

∗ ≤ xiδ̃k + L̃n

]
+ P

[
Zi ≤ xiδ̃k

]
− P

[
−xiβ

∗ ≤ xiδ̃k

] )]
Furthermore, by adding and substracting appropriate terms we can decompose
the right hand side above into two terms. The first,

n−1
∑
i∈[n]

[
|aij(β∗)|

(
1I
{
Zi ≤ xiδ̃k + L̃n

}
− 1I

{
−xiβ

∗ ≤ xiδ̃k − L̃n

}
− 1I

{
Zi ≤ xiδ̃k

}
+ 1I

{
−xiβ

∗ ≤ xiδ̃k

}
− P

[
Zi ≤ xiδ̃k + L̃n

]
+ P

[
−xiβ

∗ ≤ xiδ̃k − L̃n

]
+ P

[
Zi ≤ xiδ̃k

]
− P

[
−xiβ

∗ ≤ xiδ̃k

] )]
and the second

n−1
∑
i∈[n]

[
|aij(β∗)|

(
P

[
Zi ≤ xiδ̃k + L̃n

]
− P

[
−xiβ

∗ ≤ xiδ̃k − L̃n

]
− P

[
Zi ≤ xiδ̃k − L̃n

]
+ P

[
−xiβ

∗ ≤ xiδ̃k + L̃n

] )]
.
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The first term in the display above can be bounded in a similar way to T1 by
applying Bernstein’s inequality and hence the details are omitted. For the second

term we have a bound CCnL̃n, since |aij(β∗)| ≤ K
(
Λ
−1/2
min (Σ−1(β∗) + Cn

)
by

the definition of aij and Lemma 5, and P

[
Zi ≤ xiδ̃k + L̃n

]
− P

[
Zi ≤ xiδ̃k −

L̃n

]
≤ C‖f|εi|‖∞L̃n ≤ 2CfmaxL̃n. In the last inequality we used the fact that

‖f|εi|‖∞ ≤ 2‖fεi‖∞. Therefore, with probability 1− 2δ,

T21 ≤ C

⎛⎝√fmaxC2
nL̃n log(2/δ)

n

∨ Cn log(2/δ)

n

∨
fmaxL̃n

⎞⎠ .

A bound on T22 is obtain similarly to that on T21. The only difference is that
we need to bound a′ij(β̄k)δk, for β̄k = αβ∗ + (1 − α)(β∗ + δ̃k) and α ∈ (0, 1),

instead of |aij(β∗)|. Observe that aij(β)τ̂
2
j = −γ̂(j),i. Moreover, by construction

τ̂j is a continuous, differentiable and convex function of β and is bounded away
from zero by Lemma 5. Additionally, γ̂(j) is a convex function of β as a set of
solutions of a minimization of a convex function over a convex constraint is a
convex set. Moreover, γ̂j is a bounded random variable according to Lemma 5.
Hence, |a′ij(β∗)| ≤ K ′, for a large enough constant K ′. Therefore, for a large
enough constant C we have

T22 ≤ C

(√
fmaxr2nξ

2
nL̃n log(2/δ)

n

∨ L̃n log(2/δ)

n

∨
fmaxCnL̃n

)
.

A bound on T2 now follows using a union bound over j ∈ [p] and k ∈ [Nδ].

We can choose ξn = n−1, which gives us Nδ �
(
pn2
)t
. With these choices,

the term T2 is negligible compared to T1 and we obtain

T ≤ C

(√
C2

n(rnt
1/2 ∨ r2nt)t log(np/δ)

n

∨ Cnt log(2np/δ)

n

)
,

which completes the proof.
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