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Abstract: Exponential families of discrete probability distributions when
the normalizing constant (or overall effect) is added or removed are com-
pared in this paper. The latter setup, in which the exponential family is
curved, is particularly relevant when the sample space is an incomplete
Cartesian product or when it is very large, so that the computational bur-
den is significant. The lack or presence of the overall effect has a fundamen-
tal impact on the properties of the exponential family. When the overall
effect is added, the family becomes the smallest regular exponential family
containing the curved one. The procedure is related to the homogenization
of an inhomogeneous variety discussed in algebraic geometry, of which a sta-
tistical interpretation is given as an augmentation of the sample space. The
changes in the kernel basis representation when the overall effect is included
or removed are derived. The geometry of maximum likelihood estimates,
also allowing zero observed frequencies, is described with and without the
overall effect, and various algorithms are compared. The importance of the
results is illustrated by an example from cell biology, showing that routinely
including the overall effect leads to estimates which are not in the model
intended by the researchers.
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1. Introduction

This paper deals with exponential families of probability distributions over dis-
crete sample spaces. When defining such families, usually, a normalizing con-
stant, which of course, is constant over the sample space but not over the family,
is included. From an applied perspective, the normalizing constant may be inter-
preted as a baseline or common effect, present everywhere on the sample space
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and is, therefore, also called the overall effect. The focus of the present work is
to better understand the implications of having or not having an overall effect
in such families, in particular how adding or removing the overall effect affects
the properties of discrete exponential families.

Motivated by a number of important applications, Klimova, Rudas, & Dobra
(2012), Klimova & Rudas (2012, 2016) developed the theory of relational mod-
els, which generalize discrete exponential families, also called log-linear models,
to situations when the sample space is not necessarily a full Cartesian product
of ranges of variables Yi, the statistics defining the exponential family are not
necessarily indicators of cylinder sets, that is, are not necessarily indicators of
sets containing some of the Yi full ranges, and the overall effect is not necessarily
present. Exponential families without the overall effect are particularly relevant,
sometimes necessary, when the sample space is a proper subset of a Cartesian
product. Several real examples, when certain combinations of the characteristics
were either not possible logically or were left out from the design of the experi-
ment were discussed in Klimova et al. (2012). A real problem of this structure
from cell biology is analyzed in this paper, too. When the overall effect is not
present, the standard normalization procedure to obtain probability distribu-
tions cannot be applied, because the family is curved Klimova et al. (2012).
When, in spite of this, the standard normalization procedure is applied, as was
done in this analysis, the resulting estimates do not possess the fundamental
model properties.

The standardization of the estimates in exponential families is also an is-
sue, when the size of the problem is very large and the computational burden
is significant. Some Neural probabilistic language models are relational mod-
els. Due to the high-dimensional sample space, the evaluation of the partition
function, which is needed for normalization, may be intractable. Some of the
methods of parameter estimation under such models are based on the removal
of the partition function, that is, the removal of the overall effect from the model
and performing model training using the models without the overall effect. Ap-
proximations of estimates with and without the overall effect were studied, for
example, by Mnih & Teh (2012) and Andreas & Klein (2015), among others.
A different approach to avoiding global normalization (i.e., having an overall
effect) is described in Koller & Friedman (2009). However, the implications of
the removal of the overall effect are not discussed in the existing literature.

Another area where removing or including the overall effect is relevant, is
context specific independence models, see, e.g., Høsgaard (2004) and Nyman,
Pensar, Koski, & Corander (2016). When the sample space is an incomplete
Cartesian product, removing the overall effect, as described in this paper, spec-
ifies different variants of conditional independence in the parts of the sample
space, depending on whether or not the part is or is not affected affected by the
missing cells.

While including the overall effect in the definition of the statistical model
to be investigated is seen by many researchers as “natural” or “harmless”, we
show in this paper that adding or removing the overall effect may dramatically
change the characteristics of the exponential family, up to the point of altering
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the fundamental model property intended by the researcher.
The main results of the paper include showing that allowing the overall ef-

fect expands the curved exponential family to the smallest regular exponential
family which contains it. When the overall effect is removed, the sample space
may have to be reduced (if there were cells which contained the overall effect
only), and the changes in the structure of the generalized odds ratios defining
the model are described in both cases. In the language of algebraic geometry,
the procedure of removing the overall effect is identical to the dehomogenization
of the variety defining the model (Cox, Little, & O’Shea 2015). An important
area of applications of the results presented here is the case when several binary
features are observed, but the combination that no feature is present is either
is impossible logically or is possible but was left out from the study design. The
converse of dehomogenization, that is homogenizing a variety, involves including
a new variable, and it is shown that in some cases this can be identified, from
a statistical perspective, with augmenting the sample space by a cell which is
characterized by no feature being present. For example, the Aitchison–Silvey in-
dependence (Aitchison & Silvey, 1960; Klimova & Rudas, 2015) is homogenized,
through the augmentation of the sample space, into the standard independence
model.

The paper is organized as follows. Section 2 gives a canonical definition of
relational models using homogeneous, and if there is no overall effect included,
one inhomogeneous generalized odds ratios, called dual representation and shows
that including the overall effect is identical to omitting the inhomogeneous gen-
eralized odds ratio from it.

Section 3 contains the result that including the overall effect expands the
curved exponential family into the smallest regular one containing it. For the
case of the removal of the overall effect, the dual representation of the model is
given, and the relevance of certain results in algebraic geometry to the statistical
problem is discussed. In particular, the homogenization of a variety through
including a new variable is identified with augmenting the sample space with
a cell where no feature is present, when this is meaningful. It is proved that
the homogenization of the Aitchison – Silvey (in the sequel, AS) independence
model, which is defined on sample spaces where all combinations of features,
except for the “no feature present” combination, are possible, is the usual model
of mutual independence on the full Cartesian product obtained after augmenting
the sample space with the missing cell. The relationship of these results with
context specific independence is also described.

Section 4 compares the maximum likelihood (ML) estimates in geometrical
terms for relational models with and without the overall effect and based on the
insight obtained, a modification of the algorithm proposed in Klimova & Rudas
(2015) is given. It is illustrated, that the ML estimates under two models which
differ only in the lack or presence of the overall term, may be very different,
up to the point of the existence or no existence of positive ML estimates, when
the data contain observed zeros. However, when the MLE exists in the model
containing the overall effect, it also does in the model obtained after the removal
of the overall effect.
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Finally, Section 5 discusses two examples of applications of relational models
in cell biology. The equal loss of potential model in hematopoiesis (Perié et al.
2014) is a relational model without the overall effect. The published analysis
of this model added the overall effect to it, to simplify calculations, and with
this changed the properties of the model so that the published estimates do
not fulfill the fundamental model property. In another example, the differences
between estimates with and without the overall effect are illustrated using data
from Ramos et al. (2010).

2. A canonical form of relational models

Let Y1, . . . , YL be random variables taking values in finite sets Y1, . . . ,YL, re-
spectively. Let the sample space I be a non-empty, proper or improper, subset of
Y1×· · ·×YL, written as a sequence of length I = |I| in the lexicographic order.
Assume that the population distribution is parameterized by cell probabilities
p = (p1, . . . , pI), where pi ∈ (0, 1) and

∑I
i=1 pi = 1, and denote by P the set of

all strictly positive distributions on I. For simplicity of exposition, a distribution
in P will be identified with its parameter, p, and P = {p > 0 : 1′p = 1}.

Let A be a J × I matrix of full row rank with 0–1 elements and no zero
columns. A relational model for probabilities RM(A) generated by A is the
subset of P that satisfies:

RM(A) = {p ∈ P : log p = A′θ}, (1)

where θ = (θ1, . . . , θJ)
′ is the vector of log-linear parameters of the model. A

dual representation of a relational model can be obtained using a matrix, D,
whose rows form a basis of Ker(A), and thus, DA′ = O:

RM(A) = {p ∈ P : D log p = 0}. (2)

The number of the degrees of freedom K of the model is equal to dim(Ker(A)).
In the sequel, d′1, d

′
2, . . . , d

′
K denote the rows of D. The dual representation can

also be expressed in terms of the generalized odds ratios:

pd+
1 /pd−

1 = 1, pd+
2 /pd−

2 = 1, · · · , pd+
K/pd−

K = 1, (3)

or in terms of the cross-product differences:

pd+
1 − pd−

1 = 0, pd+
2 − pd−

2 = 0, · · · , pd+
K − pd−

K = 0, (4)

where d+ and d− stand for, respectively, the positive and negative parts of a
vector d. By convention, pd = pd1

1 pd2
2 · · · pdI

I .
The dual representation of RM(A) given in (6) is invariant of the choice of

the kernel basis. Let XA denote the polynomial variety associated with A:

XA =
{
p ∈ R

|I|
≥0 : pd+

= pd−
, ∀d ∈ Ker(A)

}
. (5)
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A detailed review of the representation of exponential families, and in par-
ticular, log-linear models, in terms of polynomial ideals and varieties is given
in Section 3 of Geiger, Meek, & Sturmfels (2006), see also Fienberg & Rinaldo
(2012).

In our setting, the relational model generated by A is the following set of
distributions:

RM(A) = XA ∩ int(ΔI−1), (6)

where int(ΔI−1) is the interior of the (I − 1)-dimensional simplex.
Notice that the variety XA includes elements p with zero components as well

and can be used to extend the definition of the model to allow zero probabilities.
The extended relational model,RM(A), is the intersection of the variety XA with
the probability simplex:

RM(A) = p ∈ XA ∩ΔI−1. (7)

See Klimova & Rudas (2016) for more detail on extended relational models.
Let 1′ = (1, . . . , 1) be the row of 1’s of length I. If 1′ does not belong to the

space spanned by the rows of A, the relational model RM(A) is said to be a
model without the overall effect. Such models are specified using homogeneous
and at least one non-homogeneous generalized odds ratios, and the correspond-
ing variety XA is non-homogeneous (Klimova et al., 2012). A generalized odds
ratio in (3) is called homogeneous if the sum of the components of d+ is the
same as the sum of the components of d−, and is non-homogeneous otherwise.
If the differences of the monomials in (4) are all homogeneous, the generated
ideal is called toric.

Proposition 1. Let RM(A) be a model without the overall effect. There exists
a kernel basis matrix D whose rows satisfy:

d′11 �= 0, d′21 = 0, . . . , d′K1 = 0. (8)

Proof. As shown by Klimova et al. (2012), a relational model does not contain
the overall effect if and only if, among the generalized odds ratios defining it,
there are non-homogeneous odds ratios. Therefore, D has at least one row, say
d′1, that is not orthogonal to 1: C1 = d′11 �= 0.

Suppose there exists another row, say d′
2, that is not orthogonal to 1 and

thus C2 = d′
21 �= 0. The vectors d1 and d2 are linearly independent, so are the

vectors d1 and C2d1 − C1d2. Notice that (C2d1 − C1d2)
′1 = 0, and substitute

the row d′
2 with the row C2d

′
1 − C1d

′
2. Apply the same transformation with

appropriate C’s to the remaining rows, if needed.

It is assumed in the sequel that 1′ is not in the row space of A. Notice that,
because A is 0–1 matrix without zero columns, this is only possible when 2 ≤
J = rank(A) < I − 1. Throughout the entire paper, the kernel basis matrix D
is assumed to satisfy (8), and, without loss of generality, d1 is selected so that
d′11 = −1.

Some consequences of adding the overall effect to a relational model will be
investigated by comparing the properties of the relational model generated by
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A and the model generated by the matrix Ā obtained by augmenting the model
matrix A with the row 1′:

Ā =

(
1′

A

)
.

Let RM(Ā) be the relational model generated by Ā. Because 1′ is a row of Ā,
the corresponding polynomial variety XĀ is homogeneous (cf. Sturmfels, 1996,
Lemma 4.14).

Theorem 1. The dual representation of RM(Ā) can be obtained from the
dual representation of RM(A) by removing the constraint specified by the non-
homogeneous odds ratio from the latter.

Proof. Write the dual representation of RM(A) in terms of the generalized log
odds ratios:

d′1 log p = 0, d′2 log p = 0, . . . , d′K log p = 0, for any p ∈ RM(A). (9)

By a previous assumption, d′11 = −1, and thus, the constraint d′1 log p = 0 is
specified by a non-homogeneous odds ratio. Define D̄ as:

D̄ =

⎛
⎜⎝

d′
2
...

d′
K

⎞
⎟⎠ .

Because d2, . . . , dK ∈ Ker(A),

D̄Ā′ =

⎛
⎜⎝

d′
2
...

d′
K

⎞
⎟⎠(

1 A′ )
=

⎛
⎜⎝

d′
21 d′

2A
′

...
...

d′
K1 d′

KA′

⎞
⎟⎠ = O,

and thus, d2, . . . , dK ∈ Ker(Ā). Finally, as rank(D̄) = K − 1, d2, . . . , dK is a
basis of Ker(Ā), and therefore,

d′2 log p = 0, . . . , d′K log p = 0, for any p ∈ RM(Ā). (10)

3. The influence of the overall effect on the model structure

The consequences of adding or removing the overall effect will be studied sepa-
rately. The changes in the model structure after the overall effect is added are
considered first.

Let RM(A) be a relational model without the overall effect and RM(Ā) be
the corresponding augmented model. LetA = (aji) for j = 1, . . . , J , i = 1, . . . , I.
For any p ∈ RM(Ā):

log pi = θ0 + a1iθ1 + · · ·+ aJiθJ ,

where θj = θj(p), j = 0, 1, . . . , J , are the log-linear parameters of p. In partic-
ular, θ0(p) is the overall effect of p.
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Theorem 2. The following holds:

(i) RM(Ā) is a regular exponential family.
(ii) RM(A) ⊆ RM(Ā). In particular, RM(A) = {p ∈ RM(Ā) : θ0(p) = 0}.
(iii) RM(Ā) is minimal in the sense that any regular exponential family con-

taining RM(A) also contains RM(Ā).

Proof. (i) The claim is part of Theorem 3.1 in Klimova et al. (2012).
(ii) Denote M0 = {p ∈ RM(Ā) : θ0(p) = 0}. Let D be a kernel basis matrix

of A, having the form (8), and notice that

D log p =

(
d1

D̄

)
logp =

(
θ0(p)d

′
11

D̄A′θ

)
=

(
−θ0(p)

0

)
.

Therefore, any p ∈ M0, satisfiesD logp = 0, and thus, belongs toRM(A).
On the other hand, for any p ∈ RM(A), both D̄ logp = 0 and θ0(p) = 0
must hold, which immediately implies that p ∈ M0.

(iii) The design space, i.e., the row space of the model matrix of any exponential
family containing RM(A) has to contain the rows of A. For the family
to be regular, it also has to contain the row of 1’s. As the design space of
RM(Ā) is generated by these vectors, i.e., it is the smallest linear subspace
containing these, the proof is complete.

Example 1. The relational models generated by the matrices

A =

(
1 1 1 0
0 0 1 1

)
, Ā =

⎛
⎝ 1 1 1 1

1 1 1 0
0 0 1 1

⎞
⎠

consist of positive probability distribution which can be written in the following
parametric forms: ⎧⎪⎪⎨

⎪⎪⎩
p1 = α1,
p2 = α1,
p3 = α1α2,
p4 = α2,

⎧⎪⎪⎨
⎪⎪⎩

p1 = β0β1,
p2 = β0β1,
p3 = β0β1β2,
p4 = β0β2,

where β0 is the overall effect. The dual representations can be written in the
log-linear form, using d1 = (−1, 0, 1,−1)′ ∈ Ker(A), and d2 = (−1, 1, 0, 0)′ ∈
Ker(A) ∩Ker(Ā): {

d′1 log p = 0,
d′2 log p = 0,

{
d′2 log p = 0.

By Theorem 1, after the overall effect is added, the model specification does not
include the non-homogeneous constraint anymore. In terms of the generalized
odds ratios: {

p3/(p1p4) = 1,
p1/p2 = 1,

{
p1/p2 = 1.
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The second model may be defined using restrictions only on homogeneous odds
ratios, and there is no need to place an explicit restriction on the non-homoge-
neous odds ratio.

A relational model with the overall effect can be reparameterized so that
its model matrix has a row of 1’s, and because of full row rank, this vector is
not spanned by the other rows. The implications of the removal of the overall
effect will be investigated using a model matrix of this structure, say Ā1. By
the removal of the row 1′, one may obtain a different model matrix on the
same sample space, but it may happen that there exists a cell i0, whose only
parameter is the overall effect, and after its removal, the i0-th column contains
zeros only. In such cases, to have a proper model matrix, such columns, that
is such cells, need to be removed. Write I0 for the set of all such cells i0, and
let I0 = |I0|. Then, the reduced model matrix, A1, is obtained from Ā1 after
removing the row of 1’s and deleting the columns which, after this, contain only
zeros. This is a model matrix on I \ I0. Without loss of generality, the matrix
Ā1 can be written as:

Ā1 =

(
1′
(I−I0)

1′
I0

A1 O(J−1)×I0

)
.

If the sample spaces of RM(Ā1) and RM(A1) are the same that is, when I0
is empty, the reduced model is the subset of the original one, consisting of the
distributions whose overall effect is zero, see Theorem 2. If the sample space is
reduced, the relationship between the kernel basis matrices is described in the
next result.

Theorem 3. The following holds:

(i) dim(Ker(A1)) = dim(Ker(Ā1))− I0 + 1.
(ii) The kernel basis matrix D1 of A1 may be obtained from the kernel basis

matrix D̄1 of Ā1 by deleting the the columns in I0 and then leaving out
the redundant rows.

Proof. (i) Because Ā1 is a J × I matrix of full row rank, dim(Ker(Ā1)) =
I − J . The linear independence of its rows implies that the rows of A1 are
also linearly independent. Therefore, because A1 is a (J − 1) × (I − I0)
matrix, dim(Ker(A1)) = I − I0 − (J − 1), which implies the result.

(ii) Let d1,d2, . . . ,dI−J be a kernel basis of Ā1. Write

di = (u′
i,v

′
i)

′, for i = 1, . . . , I − J,

so that each vi has length I0.Then,

0 = Ā1di =

(
1′
(I−I0)

1′
I0

A1 O

)(
ui

vi

)
, for i = 1, . . . , I − J,

which implies that

1′
(I−I0)

ui + 1′
I0vi = 0, A1ui = 0, for i = 1, . . . , I − J. (11)
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Suppose A1 does not have the overall effect. Apply a non-singular linear
transformation to the basis vectors d1,d2, . . . ,dI−J to reduce them to the
form:

d1 = (u′
1, 1, 0, . . . , 0)

′

d2 = (u′
2, 0, 1, . . . , 0)

′

· · ·
dI0 = (u′

I0 , 0, 0, . . . , 1)
′

dI0+1 = (u′
I0+1, 0, 0, . . . , 0)

′

dI0+2 = (u′
I0+2, 0, 0, . . . , 0)

′

· · ·
dI−J = (u′

I−J , 0, 0, . . . , 0)
′.

The equations (11) imply that

1′
(I−I0)

ui = −1, for i = 1, . . . , I0,

1′
(I−I0)

ui = 0, for i = I0 + 1, . . . , I − J,

A1ui = 0, for i = 1, . . . , I − J.

The linear independence of dI0+1, . . . ,dI−J in RI entails the linear inde-
pendence of uI0+1, . . . ,uI−J in RI−I0 . Notice that u1, . . . ,uI0 are jointly
linearly independent from uI0+1, . . . ,uI−J , but not necessarily linearly in-
dependent from each other. A kernel basis of A1 comprises I − J − I0 + 1
linearly independent vectors in Ker(A1), and, for example, uI0 , uI0+1,
. . . , uI−J form such a basis. Therefore, D1 can be derived from a kernel
basis matrix of Ā1 by removing the columns for I0 and leaving out the
I0 − 1 redundant rows.
Suppose A1 does contain the overall effect and then, without loss of gen-
erality, 1′ is a row of A1. In this case, (11) implies that both 1′

(I−I0)
ui = 0

and 1′
I0vi = 0, for i = I0 +1, . . . , I − J . Because the ui’s and vi’s vary in-

dependently from each other, the linear independence of d1,d2, . . . ,dI−J

will imply that (ui,0), for i = I0 + 1, . . . , I − J , are also linearly indepen-
dent in RI . Consequently, any I − J − I0 + 1 vectors among the ui’s are
linearly independent in RI−I0 and can form a kernel basis of A1. Thus,
as in the previous case, D1 can be derived from a kernel basis matrix of
Ā1 by removing the columns for I0 and leaving out the I0 − 1 redundant
rows.

The next two examples illustrate the theorem.

Example 2. Let RM(Ā1) be the relational model generated by

Ā1 =

⎛
⎝ 1 1 1 1 1 1

1 0 1 0 0 0
0 1 1 1 0 0

⎞
⎠ .
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Here, I0 = {5, 6}. In terms of the generalized odds ratios the model can be
written as: ⎧⎨

⎩
p3p5/(p1p2) = 1,
p3p6/(p1p2) = 1,
p2/p4 = 1.

Remove the row 1′ and the last two columns and consider the reduced matrix:

A1 =

(
1 0 1 0
0 1 1 1

)
.

The model RM(A1) does not have the overall effect and can be specified by two
generalized odds ratios: {

p2/(p1p4) = 1,
p2/p4 = 1.

These odds ratios are defined on the smaller probability space, and may be ob-
tained by removing p5 and p6, and the redundant odds ratio, from the odds ratio
specification of the original model.

Example 3. Consider the relational model RM(Ā1) generated by

Ā1 =

⎛
⎝ 1 1 1 1

1 1 1 0
1 0 1 0

⎞
⎠ .

In terms of the generalized odds ratios, the model specification is p1/p3 = 1.
Notice that Ā1 is row equivalent to

Ā2 =

⎛
⎝ 0 0 0 1

1 1 1 0
1 0 1 0

⎞
⎠ .

Because every d in Ker(Ā2) is orthogonal to (0, 0, 0, 1), its last component has
to be zero: d4 = 0. Therefore, p4 will not be present in any specification of
RM(Ā1) in terms of the generalized odds ratios. Set

A1 =

(
1 1 1
1 0 1

)
.

The model RM(A1) has the overall effect and can be specified by exactly the
same generalized odds ratio as the model RM(Ā1): p1/p3 = 1.

As a further illustration, take

Ā1 =

⎛
⎝ 1 1 1 1 1 1

1 1 1 0 0 0
1 0 1 0 0 0

⎞
⎠ .

Then,

Ā2 =

⎛
⎝ 0 0 0 1 1 1

1 1 1 0 0 0
1 0 1 0 0 0

⎞
⎠ ,
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and A1 is the same as above. In this case, RM(Ā1) is specified by p1/p3 =
1, p4/p5 = 1, p4/p6 = 1, and RM(Ā1) is described as previously: p1/p3 = 1.

The polynomial variety XĀ1
, with Ā1 described in Theorem 3, defining the

model RM(Ā1) is homogeneous. If the removal of the cells comprising I0 leads
to a model without the overall effect, the variety XĀ1

is dehomogenized, yielding
the affine variety XA1 (cf. Cox et al., 2015).

The converse to this procedure, homogenization of an affine variety, is also
studied in algebraic geometry, and is performed by introducing a new variable
in such a way that all polynomials defining the variety become homogeneous
(cf. Cox et al., 2015, p.400, Proposition 8.2.7). This procedure leaves the ho-
mogeneous polynomials and the corresponding homogeneous odds ratios un-
changed. For example, the polynomial p2 − p1p4, corresponding to the odds
ratio p2/(p1p4) = 1 in Example 2, can be homogenized using a new variable,
say p0, as p

2
0(p2/p0−p1/p0 ·p4/p0) = p0p2−p1p4, yielding the homogeneous odds

ratio p0p2/(p1p4) = 1. Here p0 can be seen as the probability of an additional
cell.

Although a straightforward procedure in algebraic geometry, homogenization
does not necessarily have a clear interpretation in statistical inference. Introduc-
ing a new variable and a new cell for the purpose of homogenization can be made
meaningful in some situations, if the sample space may be extended by one cell,
and the new variable is the parameter (probability) of this cell. Homogenization
requires this new variable to appear in every cell, too, so the parameter may
be seen as the overall effect. The new cell has only the overall effect, thus no
feature is present in this cell.

The augmentation of the sample space by an additional cell does make sense,
if that cell exists in the population but was not observed because of the design
of the data collection procedure, as in Example 4. The additional cell has the
overall effect only, thus is a “no feature present” cell.

Example 4. In a study of swimming crabs by Kawamura, Matsuoka, Tajiri,
Nishida, & Hayashi (1995), three types of baits were used in traps to catch
crabs: fish alone, sugarcane alone, fish-sugarcane combination. The sample space
consists of three cells, I = {(0, 1), (1, 0), (1, 1)}, and the cell (0, 0) is absent by
design, because there were no traps without any bait. Under the AS independence
(cf. Klimova & Rudas, 2015), the cell parameter associated with both bait types
present is the product of the parameters associated with the other two cells. This
is a relational model without the overall effect, generated by the matrix

A =

(
1 0 1
0 1 1

)
.

The overall effect cannot be included in this situation, because it would saturate
the model.

The affine variety associated with this model can be homogenized by including
a new variable. The new variable is not associated with any of the bait types and
may only be interpreted as the parameter associated with no bait present, and it
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calls for an additional cell in the sample space, which may only be interpreted
as setting up a trap without any bait. This would also be a plausible research
design. The resulting model is generated by A0:

A0 =

⎛
⎝ 1 1 1 1

0 1 0 1
0 0 1 1

⎞
⎠ ,

and indeed, is the model of traditional independence on the complete 2× 2 con-
tingency table.

For situations like in Example 4, the AS independence (cf. Klimova & Rudas,
2015) is a natural model, but it also applies to cases, when the “no feature
present” situation is logically impossible (like market basket analysis, or records
of traffic violations, see Klimova et al. (2012); Klimova & Rudas (2015), and also
the biological examples in Section 5), and in such cases, the cell augmentation
procedure is not meaningful. Further, there are situations, when the existence of
the “no feature present” cell is logically not impossible, but the actual existence
in the population is dubious. For example, the experimental design for testing
interaction between two toxic drugs described in Wahrendorf, Zentgraf, & Brown
(1981) accounted for a possibility of “spontaneous response”, and thus included
an untreated control group. The interaction was tested using the traditional
model of independence for the 2×2 table. On the other hand, drug interaction is
typically tested by comparing only the treated groups. One of the conventionally
used models, Bliss independence (Bliss, 1939), expresses the multiplicative effect
of two agents applied together, and is, in fact, the AS independence for two
variables.

For a more general discussion of the homogenization of AS independence, let
d1, . . . ,dK be a kernel basis of A, satisfying (8) with d′

11 = −1. The polynomial
ideal IA associated with the matrix A is generated by one non-homogeneous

polynomial pd+
1 −pd−

1 , and K−1 homogeneous polynomials, pd+
k −pd−

k . Notice
that, because (d+

1 )
′1−(d−

1 )
′1 = (d+

1 −d−
1 )

′1 = d′
11, the difference in the degrees

of the monomials pd
+
1 and pd

−
1 is −1. Therefore, the polynomial pd+

1 − pd−
1 can

be homogenized by multiplying the first monomial by one additional variable,
say p0:

p0p
d+
1 − pd−

1 .

The polynomial ideal generated by

p0p
d+
1 − pd−

1 ,pd+
2 − pd−

2 , . . . ,pd+
K − pd−

K

and the corresponding variety are homogeneous, and can be described by the
matrix of size (J + 1)× (I + 1) of the following structure:

A0 =

(
1 1′

I

0J A

)
.

Here, 1′
I is the row of 1’s of length I, and 0J is the column of zeros of length J .
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In fact, the homogeneous variety XA0 is the projective closure of the affine
variety XĀ0

(cf. Cox et al., 2015, p.418, Definition 8.4.6). The latter can be
obtained from the former by dehomogenization via setting p0 = 1.

The homogenization of the model of AS independence for three features is
discussed next.

Example 5. Consider the model of AS independence for three attributes, A,
B, and C, described in Klimova & Rudas (2015):

p110 = p100p010, p101 = p100p001, p011 = p010p001, p111 = p100p010p001. (12)

Here pijk = P(A = i, B = j, C = k) for i, j, k ∈ {0, 1}, but the combination
(0, 0, 0) does not exist, and

∑
ijk pijk = 1. The equations (12) specify the rela-

tional model generated by

A =

⎛
⎝ 1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞
⎠ . (13)

Consider the following kernel basis matrix which is of the form (8):

D =

⎛
⎜⎜⎝

−1 −1 0 1 0 0 0
−1 0 1 1 0 −1 0
0 −1 1 1 −1 0 0
0 0 −1 0 1 1 −1

⎞
⎟⎟⎠ .

The corresponding polynomial ideal is IA = 〈 p110−p100p010, p110p001−p011p100,
p110p001 − p101p010, p111p001 − p101p011 〉. The generating set of IA includes at
least one non-homogeneous polynomial, due to d1, and can be homogenized by
introducing a new variable, say p000. The resulting ideal, IA0 = 〈 p000p110 −
p100p010, p110p001 − p011p100, p110p001 − p101p010, p111p001 − p101p011 〉, is ho-
mogeneous, and its zero set

XA0 =
{
p ∈ R

|I+1|
≥0 : pd+

= pd−
, ∀d ∈ Ker(A0)

}
, (14)

where

A0 =

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

⎞
⎟⎟⎠ ,

is thus a homogeneous variety. The relational model RM(A0) is defined on a
larger sample space, namely I ∪ (0, 0, 0). The model has the overall effect and is
the following set of distributions:

p ∈ XA0 ∩ int(ΔI). (15)

The rows of A0 are the indicators of the cylinder sets of the total (the row of
1’s), and of the A, B, and C marginals. Therefore, the relational model RM(A0)
is the traditional model of mutual independence.
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The next theorem states in general what was seen in the example. Let
X1, . . . , XT be the random variables taking values in {0, 1}. Write I0 for the
Cartesian product of their ranges, and let I = I0 \ (0, . . . , 0).
Theorem 4. Let RM(A) be the model of AS independence of X1, . . . , XT on
the sample space I. The intersection of the projective closure of this model with
int(ΔI−1) is the log-linear model of mutual independence of X1, . . . , XT on the
sample space I0.

Proof. Let A be the model matrix for the AS independence:

A =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 1 1 . . . 1
0 1 0 . . . 0 1 0 . . . 1
0 0 1 . . . 0 0 1 . . . 1
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 1 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ .

The number of columns of A is equal to the number of cells in the sample space
I, I = 2T − 1. The model RM(A) is the intersection of the polynomial variety
XA and the interior of the simplex ΔI−1. The variety XA is non-homogeneous,
because among its generators there is at least one non-homogeneous polynomial.
In order to obtain the projective closure of XA (cf. Cox et al., 2015, p.419,
Theorem 8.4.8), include the “no feature present” cell, indexed by 0, to the
sample space, choose a Gröbner basis of the ideal IA, and homogenize all non-
homogeneous polynomials in this basis using the cell probability p0. Because the
projective closure of XA is the minimal homogeneous variety in the projective
space whose dehomogenization is XA (cf. Cox et al., 2015, p.418, Proposition
8.4.7), Theorem 3(ii) implies that this projective closure can be described using
the matrix

A0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 . . . 1 1 1 . . . 1
0 1 0 0 . . . 0 1 1 . . . 1
0 0 1 0 . . . 0 1 0 . . . 1
0 0 0 1 . . . 0 0 1 . . . 1
...

...
...

...
. . .

...
...

...
. . .

...
0 0 0 0 . . . 1 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Each distribution in RM(A) has the multiplicative structure prescribed by
A (Klimova & Rudas, 2016), and during the homogenization, is mapped in
a positive distribution in XA0 . Because all strictly positive distributions in XA0

have the multiplicative structure prescribed by A0, they comprise the relational
model RM(A0). This matrix describes the model of mutual independence be-
tween X1, . . . , XT in the effect coding, and the proof is complete.

The homogenization (in the language of algebraic geometry) or regularization
(in the language of the exponential families) leads to a simpler structure, which
allows a simpler calculation of the MLE. However, if the additional cell was not
observed in these cases, assuming its frequency is zero is ungrounded and may
lead to wrong inference.
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The framework developed here may also be used to define context specific
independence, so that in one context conditional independence holds, in another
one, AS independence does. To illustrate, let X1, X2, X3 be random variables
taking values in {0, 1}. Assume that the (0, 0, 0) outcome is impossible, so the
sample space can be expressed as:

X3 = 0 X3 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

X1 = 0 - p010 p001 p011
X1 = 1 p100 p110 p101 p111

Let p = (p001, p010, p011, p100, p101, p110, p111), and consider the relational model
without the overall effect generated by

A0 =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 0 0 0 1 0 1
0 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , (16)

The kernel basis matrix is equal to:

D0 =

(
0 −1 0 −1 0 1 0
1 0 −1 0 −1 0 1

)
, (17)

and thus, the model can be specified in terms of the following two generalized
odds ratios:

COR(X1X2 | X3 = 0) =
p110

p010p100
= 1, COR(X1X2 | X3 = 1) =

p001p111
p011p101

= 1.

The second constraint expresses the (conventional) context-specific indepen-
dence of X1 and X2 given X3 = 1. The first odds ratio is non-homogeneous, and
the corresponding constraint may be seen as the context-specific AS-indepen-
dence of X1 and X2 given X3 = 0.

4. ML estimation with and without the overall effect

The properties of the ML estimates under relational models, discussed in detail
in Klimova et al. (2012) and Klimova & Rudas (2016), are summarized here
in the language of the linear and multiplicative families defined by the model
matrix and its kernel basis matrix. The conditions of existence of the MLE are
reviewed first.

Let a1, . . . ,a|I| denote the columns of A, and let CA = {t ∈ RJ
≥0 : ∃p ∈

R
|I|
≥0 t = Ap} be the polyhedral cone whose relative interior comprises such

t ∈ RJ
>0, for which there exists a p > 0 that satisfies t = Ap. A set of indices
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F = {i1, i2, . . . , if} is called facial if the columns ai1 ,ai2 , . . . ,aif are affinely
independent and span a proper face of CA (cf. Grünbaum, 2003; Geiger, Meek,
& Sturmfels, 2006; Fienberg & Rinaldo, 2012). It can be shown that a set F is
facial if and only if there exists a c ∈ RJ , such that c′ai = 0 for every i ∈ F
and c′ai > 0 for every i /∈ F .

Let q ∈ P and let K be the set of κ > 0, such that, for a fixed κ, the linear
family

F(A, q, κ) = {r ∈ P : Ar = κAq} (18)

is not empty, and let F(A, q) =
⋃

K F(A, q, κ). For each κ > 0, the linear family
F(A, q, κ) is a polyhedron in the cone CA.

Theorem 5. (Klimova & Rudas, 2016) Let RM(A) be a relational model, with
or without the overall effect, and let q be the observed distribution.

1. The MLE p̂q given q exists if only:

(i) supp(q) = I, or
(ii) supp(q) � I and, for all facial sets F of A, supp(q) �⊆ F .

In either case, p̂q = F(A, q)∩ int(XA), and there exists a unique constant
γq > 0, also depending on A, such that:

Ap̂q = γqAq, 1′p̂q = 1.

2. The MLE under the extended model RM(A), defined in (7), always exists
and is the unique point of XA which satisfies:

Ap = γqAq, for some γq > 0; (19)

1′p = 1.

The statements follow from Theorem 4.1 in Klimova & Rudas (2016) and
Corollary 4.2 in Klimova et al. (2012), and the proof is thus omitted. The con-
stant γq, called the adjustment factor, is the ratio between the subset sums of
the MLE, Ap̂q, and the subset sums of the observed distribution, Aq. If the
overall effect is present in the model, γq = 1 for all q.

Let A be a model matrix whose row space does not contain 1′, and let Ā
be the matrix obtained by augmenting A with the row 1′. It will be shown
in the proof of the next theorem that every facial set of A is facial for Ā. If
the observed q is positive, the MLEs p̂q and p̄q under the models RM(A) and
RM(Ā), respectively, exist. However, as implied by the relationship between the
facial sets of A and Ā, if q has some zeros, the MLE may exist under RM(A),
but not under RM(Ā), or neither of the MLEs exist.

Theorem 6. Let A be a model matrix whose row space does not contain 1′,
and let Ā be the matrix obtained by augmenting A with the row 1′. Let q be the
observed distribution. If, given q, the MLE under RM(Ā) exists, so does the
MLE under RM(A).
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Proof. If q > 0, both MLEs exists.

Assume that q has some zeros, that is, supp(q) � I, and that the MLE under
RM(Ā) exists. It will be shown next that for any facial set F ofA, supp(q) �⊆ F .

The proof is by contradiction. Let F0 be a facial set of A, such that supp(q) ⊂
F0. Therefore, there exists a c ∈ RJ , such that c′ai = 0 for every i ∈ F and
c′ai > 0 for every i /∈ F .

Denote by ā1, . . . , āI the columns of Ā. By construction, āi = (1,a′
i)

′, i =
1, . . . , I. Let c̄ = (0, c′)′. Then,

c̄′āi = 0 · 1 + c′ai =

{
c′ai = 0, for i ∈ F0,
c̄′āi > 0, for i /∈ F0,

and thus, F0 is a facial set of Ā. Because supp(q) ⊂ F0, the MLE under RM(Ā),
given q, does not exist, which contradicts the initial assumption. This completes
the proof.

Example 5 (revisited). Let q1 = (0, 0, 0, 0, 0, 0, 1)′ be the observed distribution.
Because supp(q1) = {7} is not a subset of any facial sets of A, the MLE exists:

p̂q1 =
(

3
√
2− 1,

3
√
2− 1,

3
√
2− 1, (

3
√
2− 1)2, (

3
√
2− 1)2, (

3
√
2− 1)2, (

3
√
2− 1)3

)′
,

with γ̂q = 2− 3
√
4.

On the other hand, the set of indices F = {1, 4, 5, 7} is facial for Ā, and
supp(q1) � F . In this case, the MLE exists only in the extended model RM(Ā),
and is equal to q1 itself.

Let q2 = (1, 0, 0, 0, 0, 0, 0)′. Because supp(q2) = {1} is a subset of a facial set
of A and of a facial set of Ā, the MLEs exist only in the corresponding extended
models.

Further properties of the adjustment factor, including its geometrical mean-
ing, are described next, relying on the following result:

Theorem 7. Let A be a model matrix whose row space does not contain 1′,
and let Ā be the matrix obtained by augmenting A with the row 1′. For any
r1, r2 ∈ P, r1 �= r2, the following holds:

1. (i) The MLEs under RM(A), given they exist, are equal if and only if
the subset sums entailed by A are proportional:

p̂r1 = p̂r2 ⇔ Ar1 = κAr2 for some κ ∈ K

and the adjustment factors in the MLE satisfy: κγ̂r1 = γ̂r2 .
2. The MLEs under RM(Ā), given they exist, are equal if and only if the

subset sums entailed by A coincide:

p̄r1 = p̄r2 ⇔ Ar1 = Ar2.
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The statements are a reformulation of Theorem 4.4 in Klimova et al. (2012),
and no proofs are provided here. The relationship between the adjustment fac-
tors is obvious.

The theorem implies that F(A, q) is an equivalence class in P , in the sense
that, for any r ∈ F(A, q), the MLE under RM(A) satisfies p̂r = p̂q. Each
sub-family F(A, q, κ) is characterized by its unique adjustment factor under
RM(A). That is, for every r1, r2 ∈ F(A, q, κ), r1 �= r2,

p̂r1 = p̂r2 = p̂q, γ̂r1 = γ̂r2 = γ̂q/κ.

In addition, p̄r1 = p̄r2 for any r1, r2 ∈ F(A, q, κ), and therefore, for a fixed κ,
F(A, q, κ) is an equivalence class under RM(Ā).

From a geometrical point of view, F(A, q) is a polyhedron which decomposes
into polyhedra F(A, q, κ), with κ > 0; clearly, q ∈ F(A, q, 1). The MLE under
RM(Ā) given r ∈ F(A, q, κ) is the unique point common to the polyhedron
F(A, q, κ) and the variety XĀ. Among the feasible values of κ there exists a
unique one, say κ̂, such that the MLE p̄r, ∀r ∈ F(A, q, κ̂), coincides with the
MLE of q under RM(A), p̂q. This happens when γ̂r = 1 so that, from (ii) in
Theorem 7, κ̂ = γ̂q. This latter point, p̂q, is the intersection between F(A, q)
and the non-homogeneous variety XA. This specific value of the adjustment
factor γq = κ̂, is the adjustment factor of the MLE under RM(A) given q. An
illustration is given next.

Relational models for probabilities without the overall effect are curved ex-
ponential families, and the computation of the MLE under such models is not
straightforward. An extension of the iterative proportional fitting procedure,
G-IPF, that can be used for both models with and models without the overall
effect was proposed in Klimova & Rudas (2015) and is implemented in Klimova
& Rudas (2014). Alternatively, the MLEs can be computed, for instance, using
the Newton-Raphson algorithm or the algorithm of Evans & Forcina (2013).
One of the algorithms described in Forcina (2017) gave an idea of a possible
modification of G-IPF. A brief description of the original and modified versions
of G-IPF is given below:

G-IPF G-IPFm

Fix γ > 0 Fix γ > 0

Run IPF(γ) to obtain pγ , where

Apγ = γAq Āpγ =

(
1

γAq

)

D log pγ = 0 D̄ logpγ = 0

Adjust γ, to approach the solution of

1′pγ = 1 d′
1 logpγ = 0

Iterate with the new γ
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Theorem 8. If q > 0, the G-IPFm algorithm converges, and its limit is equal
to p̂q, the ML estimate of p under RM(A).

Proof. The convergence of one iteration of G-IPFm, when γ is fixed, can be
proved similarly to Theorem 3.2 in Klimova & Rudas (2015). The limit is pos-
itive, p̃γ > 0, and thus, by Lemma 1 in Forcina (2017), f(γ) = d′

1 log p̃γ is a
strictly increasing and differentiable function of γ. So, one can update γ, until
for some γq the G-IPFm limit satisfies: f(γq) = d1 log p̃γq

= 0. Because, in this
case,

Ap̃γq = γqAq, D log p̃γq = 0, 1′p̃γq = 1,

the uniqueness of the MLE implies that p̃γq = p̂q and γq = γ̂q.

The original G-IPF can be used whether or not q has some zeros, and it
computes a sequence whose elements are the unique intersections of the vari-
ety XA and each of the polyhedra defined by Aτ̃ = γAq for different γ. This
sequence converges, and its limit belongs to the hyperplane 1′τ = 1 (Klimova
& Rudas, 2016). G-IPFm produces a sequence whose elements are the unique
intersections of the interior of the homogeneous variety XĀ and each of the
polyhedra F(A, q, γ). The limit of this sequence belongs to the interior of the
non-homogeneous variety XA. To ensure the existence, differentiability, and
monotonicity of f(γ), described above, the G-IPFm algorithm should be ap-
plied only when q > 0. If q has some zero components, the positive MLE p̂q
may still exist, see Theorem 5(ii). However, for some q, because, in general, the
matrices A and Ā have different facial sets, no strictly positive pγ would satisfy

Āpγ =

(
1

γAq

)
.

Some limitations and advantages of using the generalized IPF were addressed
in Klimova & Rudas (2015), Section 2. In particular, while the assumption of
the model matrix to be of full row rank can be relaxed for G-IPF, it is one of the
major assumptions for the Newton-Raphson and the Fisher scoring algorithms.
The algorithms proposed in Forcina (2017) also require the model matrix to be
of full row rank, and their convergence relies on the positivity of the observed
distribution.

5. Modeling cell differentiation in hematopoiesis

Hematopoietic stem cells (HSC) are able to become progenitors that, in turn,
may develop into mature blood cells. Understanding the process of forming ma-
ture blood cells, called hematopoiesis, is one of the most important aims of cell
biology, as it may help to develop new cancer treatments. The HSC progenitors
can proliferate (produce cells of the same type) or differentiate (produce cells
of different types). Multiple experiments suggested that HSC progenitors are
multipotent cells and differentiate by losing one of the potentials. While the
mature blood cells are unipotent, they do not proliferate or differentiate The
differentiation is believed to be a hierarchical process, with HSC progenitors
and mature blood cells at the highest and the lowest levels, respectively.
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The models discussed below apply to the steady-state of hematopoiesis, under
the assumption that cells neither proliferate nor die and can undergo only first
phase of differentiation. Various hierarchical models for differentiation have been
proposed (cf. Kawamoto, Wada, & Katsura, 2010; Ye, Huang, & Guo, 2017). The
equal loss of potentials (ELP) model was introduced in Perié et al. (2014), and
is described next. Denote by MDB the three-potential HSC progenitor of the
M , D, and B mature blood cell types. During the first phase of differentiation,
an MDB progenitor can differentiate by losing either one or two potentials at
the same time, and thus produce a cell of one of the six types: M , D, B, MD,
MB, DB.

Let p be the vector of probabilities of losing the corresponding potentials
from MDB:

p = (p∗DB , pM∗B , pMD∗, p∗∗B , p∗D∗, pM∗∗)
′.

For example, p∗DB is the probability of losing the M potential from MDB,
pM∗B is the probability of loosing the D potential from MDB, and p∗∗B is the
probability of losing the M and D potentials from MBD at the same time, and
so on. The ELP model assumes that “the probability to lose two potentials at
the same time is the product of the probability of losing each of the potentials”
(see Caption to Fig 3A in Perié et al. (2014)):

p∗∗B = p∗DB · pM∗B , pM∗∗ = pMD∗ · pM∗B , p∗D∗ = p∗DB · pMD∗. (20)

The model specified by (20) is the relational model generated by the matrix

A =

⎛
⎝1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎞
⎠ , (21)

or, in a parametric form,

p∗DB = αM , pM∗B = αD, pMD∗ = αB ,

p∗∗B = αMαD, p∗D∗ = αMαB , pM∗∗ = αDαB , (22)

where, using the notation in Perié et al. (2014), αM , αD, αB are the parameters
associated with the loss of the corresponding potential from MDB. It can be
easily verified that the relational model generated by (21) does not have the
overall effect, so the normalization has to be added as a separate condition:

Z = p∗DB + pM∗B + pMD∗ + p∗∗B + p∗D∗ + pM∗∗ = 1.

Perié et al. (2014) define the ELP model in the following parametric form:

p∗DB = αM/Z, pM∗B = αD/Z, pMD∗ = αB/Z,

p∗∗B = αMαD/Z, p∗D∗ = αMαB/Z, pM∗∗ = αDαB/Z. (23)
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Table 1

Lineage sharing distribution of 85 clones (Ramos et al. 2010).

E M L ML EL EM EML
0.025 0 0 0.165 0.07 0.045 0.695

That is, the authors rescaled the loss probabilities to force them sum to 1. In
fact, (23) is also a relational model; it is generated by

Ā =

⎛
⎜⎜⎝

1 1 1 1 1 1
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

⎞
⎟⎟⎠ , (24)

and can be obtained by adding the overall effect to the model defined by (21).
Because the original model does not have the overall effect, adding a row of
1’s changed this model. One can check by substitution that the probabilities
in (23) do not satisfy the multiplicative constraints (20). The estimates of the
probabilities of loss of potentials from the MDB cells are shown in Figure 3B
of Perié et al. (2014). In the notation used here,

p̂∗DB = 0.35, p̂M∗B = 0.08, p̂MD∗ = 0.49,

p̂∗∗B = 0.01, p̂∗D∗ = 0.06, p̂M∗∗ = 0.01. (25)

These probabilities sum to 1, but also do not satisfy (20).
Another approach to discovering cell differentiation pathways focuses on trac-

ing cell clones, rather than individual cells, where a clone is the collection of
cells with the same progenitor. This approach was used by Ramos et al. (2010)
who studied cell differentiation toward the endothelial, myeloid, and lymphoid
lineages, and aimed to show the existence of a cell that is able to differentiate
toward the endothelial (E), myeloid (M), and lymphoid (M) lineages. The fre-
quency distribution of 85 clones with regard to differentiation potential towards
the E, M, and L lineages is shown in Table 1. Among the 85 observed clones,
no one appeared only in the M or only in the L lineages. Because the existence
of such clones is biologically plausible, the corresponding zero entries in Table
1 can be seen as observed zeros rather than structural zeros.

Because a fixed number of clones were involved in the experiment, one can
assume that multinomial sampling was used and a relational model for probabil-
ities is relevant. Let q = (qE , qM , qL, qEM , qEL, qML, qEML)

′ denote the vector
of probabilities of presence in the corresponding combination of lineages, that
is, of keeping the corresponding potentials. The hypothesis of AS independence
between the lineages, is defined as:

qEM = qEqM , qEL = qEqL, qML = qMqL, qEML = qEqMqL,

see Example 5. Augmenting the model matrix (13) with the row of 1’s, leads to
the model with the overall effect which can be specified using the multiplicative
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Table 2

The observed and estimated relative frequencies of the lineage sharing between 85 clones.

The potentials kept: E M L EM EL ML EML

Observed 0.025 0 0 0.045 0.07 0.165 0.695

MLE without OE 0.2399 0.2654 0.2747 0.0637 0.0659 0.0729 0.0175

MLE with OE 0.0057 0.0107 0.0148 0.0536 0.0745 0.1395 0.7012

constraints:

qE/qEM = qEL/qEML, qM/qEM = qML/qEML, qL/qEL = qML/qEML.

In this model, the odds of keeping one potential as opposed two, does not depend
on whether or not the third potential is present.

The ML estimates for the cell frequencies under these models are consider-
ably different, as shown in Table 2. The model of AS independence does not
have a good fit, the deviance G2 = 446.41 on four degrees of freedom. Thus, the
data provide evidence against independence of the lineages. The estimated ad-
justment factor given the data is γ̂ = 0.4635. The corresponding model with the
overall effect fits better, the deviance G2 = 7.8637 on three degrees of freedom.
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