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Abstract: A class of density estimators based on observed incomplete
data are proposed. The method is to use a conditional kernel, defined as
the expectation of a given kernel for the complete data conditioning on the
observed data, to construct the density estimator. We study such kernel
density estimators for several commonly used incomplete data models and
establish their basic asymptotic properties. Some characteristics different
from the classical kernel estimators are discovered. For instance, the asymp-
totic results of the proposed estimator do not depend on the choice of the
kernel k(·). Simulation study is conducted to evaluate the performance of
the estimator and compared with some exising methods.
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1. Introduction

Estimating the density function is one of the fundamental problems in nonpara-
metric statistics. Many approaches are proposed to address this issue, such as
the kernel method, histogram, orthogonal series method and wavelet method.
Among them, the kernel estimator proposed by Rosenblatt[1] and Parzen[2], is
perhaps most popular. Devroye[3] derived basic asymptotic properties of the
kernel estimator. Chai[4] proposed random window-width kernel and proved its
consistency. For a comprehensive description of theoretical aspects on the kernel
estimation, see the book by Rao.[5]. The monograph of Silverman[6] provided
detailed accounts of various density estimation methods and their applications.

In many situations such as medical follow-up studies, clinical trials, economics
and reliability studies, incomplete/missing data are frequently encountered. In
these cases, the original data of interest are partially or completely missing and
we only observe a functional part of them or their status and with accompanying
data. Common models of incomplete/missing data include the left truncated,
right censoring, doubly censoring, interval censoring of types I (or the current
status data) and II, multiplicative censoring and convolution model.

For these types of data, estimates of the survival function, distribution func-
tion and density function has been extensively explored. Various estimators are
proposed, including the Kaplan-Meier estimator of survival function for cen-
sored data [7], survival function estimator for doubly censored data [8], kernel
density estimator with right censored data [9], nonparametric maximum likeli-
hood estimators with truncated data [10], density and hazard rate estimation
for censored data [11], density estimation with interval censoring data [12], sur-
vival function estimator for truncated and censored data [13], and ROC curve
estimation for survival data [14].

The kernel smoothing type estimator is one of the commonly method for
missing data. For example, for survival data, [15] introduced the kernel estimator
of density f by

f̂n(x) =
1

hn

∫
K(

x− y

hn
)dFn(y),

where Fn(·) is an estimator of the corresponding distribution function based
on the observed survival data. [16] derived asymptotic properties of a similar
type. Dubnicka [17, 18] studied kernel density estimator with missing data by
weighting the kernel over the estimated propensity scores. Ren [19] studied such
kernel density estimators for doubly censored data based on the self-consistent
estimators proposed by Turnbull [8]. Gine [20] derived the convergence rate
of the difference between kernel smooth estimators with and without right-
censoring using the Kaplan-Meier estimator. The multiplicative censoring model
introduced by Vardi [21] is another missing type and has been studied by Bickel
[22], van der Vaart [23] and references wherein. Vardi and Zhang[37] derived the
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asymptotic behavior of solutions of its nonparametric score equation. Asgharian
et.al [24] established the large-sample properties of kernel density estimators.

Other common methods for density estimation in incomplete data models
include the nonparametric maximum likelihood estimator (NPMLE), or tak-
ing the left/right derivative of an estimated distribution function. Huang and
Wellner [25, 26] studied such estimators (with shape constraint such as mono-
tone for the NPMLE). Such estimators are intuitively appealing and have nice
asymptotic properties. However, they are piecewise linear and not continuous.

One method of density estimation with missing data is to estimate the haz-
ard rate function λ(x) = f(x)/(1 − F (x)), where f and F are the density and

distribution functions. When estimates λ̂n(x) for λ(x) and F̂n(x) for F (x) are

available, estimate f(x) by f̂n(x) = λ̂n(x)(1 − F̂n(x)). Another way is to esti-
mate the cumulative hazard function Λ(x) by Λ̂(x), such as the Nelson-Aalen
estimator [27, 28], then estimate λ(x) by smoothing Λ̂, such as kernel method.
These methods and the kernel smoothing methods mentioned above are the
same in principle.

Here we propose a class of density estimator using the observed incomplete
data. Instead of kernel smoothing an estimated distribution or survival func-
tion, we use the conditional kernel, which is the expectation of the kernel for
the complete data conditioning on the observed data, and then construct the
estimator based on the conditional kernel.

Formally, let the interested complete data are X1, . . . , Xn from the underly-
ing distribution F (·), but the complete data are unobserved. We only observe
data Y1, . . . , Yn that implicitly contain information about the complete data.
The aim is to estimate the density f(·) of the original data using the observed
data Y1, . . . , Yn. The common kernel density estimator using the complete data
is fn(x) = (nh)−1

∑n
i=1 k((Xi − x)/h), where the kernel k(·) is a given func-

tion (often a known density function) and h (= hn → 0 as n → ∞) is the
bandwidth. This estimator can not be used since we do not observe the orig-
inal complete data Xi’s. Instead, we use a conditional kernel K(x|F, h, Y ) =
h−1

EF [k(X − x)/h)|Y ] based on the observed data, and construct the esti-
mator of f(x) as fn(x) = n−1

∑n
i=1 K(x|F, h, Yi). Since the conditional kernel

K(·|F, h, Y ) involves the underlying unknown distribution F , we plug in an es-
timator F̂n based on the observed data such as NPMLE. This kernel estimator
has some features different from the other methods, such as its asymptotic dis-
tribution does not depend on the sujectively chosen kernel, this is in contrast to
most existing methods using kernel smoothing. As far as we know, the proposed
method hasn’t been seen elsewhere, except that Yuan et.al [29] used conditional
kernel to construct U-statistics with missing data on a different topic.

In Section 2 we introduce the framework of the proposed estimators for five
commonly used incomplete data models, type I and type II interval censor-
ing, convolution model, double censoring model, and multiplicative censoring
model, and investigate their basic asymptotic properties. Numerical simulation
and comparison with other existing methods are provided in Section 3. Further
discussion is given in Section 4. All proofs are given in the Appendix.
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2. The proposed method

We first give a brief review of the kernel density estimator for complete data.
Let X1, . . . , Xn be i.i.d. observations from density function f(·). The kernel
estimator for original complete data is [1, 2, 30]

fn(x) =
1

nh

n∑
i=1

k(
Xi − x

h
),

where the kernel k(·) is any given density function, and h (= hn → 0 as n → ∞)
depending on n, is the bandwidth. The large-sample theories of fn(x) have been
established by [2], [31], [32], [3] and among others. Chai [4] studied the case with
data dependent bandwidth.

Density estimation for incomplete data has been widely studied, mostly by
kernel smoothing some existing estimator of distribution function, survival func-
tion, or cumulative hazard function. These methods do not use the observed
data directly. Although the NPMLE density estimator uses the observed data
directly, it often needs some shape constraint and is non-smooth.

Below we introduce conditional kernel density estimators based on the ob-
served data for five commonly used incomplete data models, interval censoring
types I and II, convolution model, and investigate their large-sample properties.
The results for double censoring and multiplicative censoring models are basi-
cally parallel, so we only given a brief presentation for these two models, with
details given in a separate supplementary document. At the end of this section,
we summarize the results for general incomplete data models.

2.1. Interval censoring type I

The interval censoring model type I is also called the current status model,
see [12] for the background of this model. In this model, the original random
variables are (X,T ) ∈ (R+)2, where X and T are independent, with distribution
functions F and G, and densities f and g with respect to the Lebesque measure
on R+. The observed incomplete data are {(Ti, 1[Xi<Ti]) : i = 1, . . . , n} i.i.d.
with (T, 1[X≤T ]) := (T, δ), and 0 < P (δ = 1) < 1. The density-mass function of
(T, δ) is

pF (t, δ) = F (t)δ(1− F (t))1−δg(t).

Remark 1. The observed data is a sufficient statistic for G (or g), thus con-
ditioning on the observed data, the resulting kernel is free of G (or g), so is
the conditioning kernel density estimator. Thus, the estimator is adaptive, i.e.,
G (or g) is known or not does not affect the behavior of the estimator, even
though G (or g) will appear in the asymptotic results. Moreover, since the data
Ti (i = 1, . . . , n) are fully observed, the underlying distribution (or density) G
(or g) can be estimated by standard methods if needed.
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The same remark applies to the interval censoring model type II model, the
double censoring model, and the multiplicative censoring model to be considered
latter.

Let Yi = (Ti, δi) (i = 1, . . . , n) be the observed data. The aim is to estimate
the density function f(·) of the unobserved Xi’s. Since the Xi’s are not directly
observable, the existing kernel density estimator cannot be directly obtained.
Instead, we define the conditional kernel based on the data Y , evaluated at x,
as

K(x|F, h, Y ) =
1

h
EF [k(

X − x

h
)|Y ].

For fixed F , h and Y , K(·|F, h, Y ) is a density function, and hence a valid kernel.
For this model, the conditional kernel is

K(x|F, h, Y ) =
1

h

∫
k(

s− x

h
)

(
δ
1[0,T ](s)

F (T )
+ (1− δ)

1(T,∞)(s)

1− F (T )

)
F (ds).

However, F is unknown. We use the NPMLE F̂n of F based on the observed
data Y1, . . . , Yn as in [12] to replace F , and get

K(x|F̂n, h, Y ) =
1

h

∫
k(

s− x

h
)

(
δ
1[0,T ](s)

F̂n(T )
+ (1− δ)

1(T,∞)(s)

1− F̂n(T )

)
F̂n(ds). (2.1)

We define the kernel estimator fn(x|F̂n) of f(x) as

fn(x|F̂n) =
1

n

n∑
i=1

K(x|F̂n, h, Yi). (2.2)

For this model, it is known that F̂n = F+Op(n
−1/3), and we hope that fn(x|F̂n)

will have desirable asymptotic behavior.
Let B(h) be the two-sided Brownian motion, originating from zero, i.e., it is

a zero-mean Gaussian process on R and the increment B(r)−B(h) has variance
|r − h|, and denote

A(t) =

(
4F (t)(1− F (t))f(t)

g(t)

)1/3

and Z = argmin
h

{B(h) + h2}.

Then under suitable conditions, it is known (as in [12])

sup
t

|F̂n(t)− F (t)| → 0, a.s., and n1/3(F̂n(t)− F (t))
D→ A(t)Z.

To study the asymptotic behavior of the estimator, we need the notion of
Hadamard differentiability. There are several different equivalent definitions of
this notion, we adopt a simpler one as below. For a map φ : D �→ E between
Banach spaces D and E, φ is Hadamard differentiable at g ∈ D in the direction
h ∈ D, if there exists a map φ(1) : D �→ E such that, for all sequences hn → h
and real numbers tn ↘ 0,

φ(g + tnhn)− φ(g)

tn
→ φ(1)(h).
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φ(1) is called the first order Hadamard differential of φ in the direction h. Higher
order Hadamard differential is defined similarly.

For fixed (h, Y ), let K(r)(x|F, h, Y ;A, . . . , A) be the r-th Hadamard differen-
tial of K(x|F, h, Y ) with respect to F in the direction A. For this model,

K(1)(x|F, h, Y ;A) =
1

h

∫
k(

s− x

h
)

(
δ
1[0,T ](s)[F (T )A(ds)−A(T )F (ds)]

F 2(T )

+ (1− δ)
1(T,∞)(s)[(1− F (T ))A(ds) +A(T )F (ds)]

(1− F (T ))2

)
. (2.3)

Recall that for a measure K (with density k(·)), its total variation is defined
as |K| = sup

∑
i K(Ei), where the supreme is taken over all partitions ∪Ei of

the support of K. We say that K(·|F, hn, Y ) is of order r at F and x in the
direction A(·), if it is r-th Hadamard differentiable at F and x in the direction
A, and for F̃ (·) in a small neighborhood of F (·), i.e. ||F̃ −F || ≤ ε for some small
ε,

lim
h→0

EK(m)(X|F̃ , h, Y ;A, . . . , A) = 0, (m = 1, . . . , r − 1) and

0 	= lim
h→0

EK(r)(X|F, h, Y ;A, ..., A) < ∞.

Define,

Lr(x|F, Y ;A) = lim
h→0

K(r)(x|F, h, Y ;A, . . . , A), and

Lr(x|F ;A) = E[Lr(x|F, Y ;A)].

Assume the above limits exist. Denote by
D→ for convergence in distribution. We

list the following conditions:

(C1). h = hn → 0 as n → ∞.
(C2).

∑∞
n=1 exp(−γnh2) < ∞ for every γ > 0.

(C3). k(·) is of bounded variation,
∫
k(s)ds = 1 and |x|k(x) → 0 as |x| → ∞.

(C4). f(·) is uniformly continuous on R+.
(C5). f(·) and g(·) are bounded.
(C6). A(·) is bounded and has a continuous derivative a(·).
(C7). The sequence {n1/3(F̂n(·)− F (·))} is asymptotically tight.

Theorem 1. (i). Assume (C1)-(C4), then we have

sup
x∈[a,b]

|fn(x|F̂n)− f(x)| → 0. a.s., for all 0 < a < b < ∞.

(ii). Assume (C1), (C5)-(C7), and that K(·|F, ·) is of order r at F and x in the
direction A(·). Then as nh → ∞,

(a). If r = 1 & nh5
n → 0 or r > 1,

(hnn)
1/2

(
fn(x|F̂n)− f(x)

) D→ N(0, σ2),
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where, σ2 = f2(x)
( ∫ x

0
1

1−F (t) +
∫∞
x

1
F (t)

)
g(t)dt.

(b). If r = 1 & hn1/3 → ∞,

n1/3
(
fn(x|F̂n)− f(x) + bn

) D→ L1(x|F ;A)Z,

where, L1(x|F ;A) = a(x) + f(x)
( ∫ x

0
1

1−F (t) −
∫∞
x

1
F (t)

)
A(t)g(t)dt,

a(x) = dA(x)/dx and the bias bn = h2[f (2)(x)/2]
∫
t2k(t)dt+ o(h2).

Remark 2. (1) In Theorem 1 (ii) we omitted the case h = O(n−1/3). In this
case the weak limit is determined by the two limits displayed and appears more
complex. Since we can choose h to avoid this case, we don’t explore this problem
here.

(2) The weak limit of the proposed estimator does not depend on the ker-
nel k(·). In contrast, for the commonly used kernel method for such data, the
asymptotic variance depends on k(·), often a term like

∫
k2(u)du appearing.

(3) Conditions (C1)-(4) are commonly used for uniform consistency of kernel
density estimator, for example, as given in Rao, B.L.S. (1983, Theorems 2.1.1-
2.1.3, p.35-37). (C5) is satisfied by most of the commonly used density func-
tions. (C6) is satisfied for most commonly used density functions with bounded
derivative. Note that

( ∫ x

0
1

1−F (t) +
∫∞
x

1
F (t)

)
g(t)dt ≤ (1 − F (x))−1

∫ x

0
g(t)dt +

(F (x))−1
∫∞
x

g(t)dt = (1 − F (x))−1G(x) + (F (x))−1(1 − G(x)) < ∞, so σ2 in
Theorem 1 (ii) (a) is finite. Similarly, L1(x|F ;A) in Theorem 1 (ii) (b) is fi-
nite. Condition (C7) is a technical assumption to ensure the functional delta
method can be used. It is pointed out by Huang and Wellner [33] (p.9) that
{n1/3(F̂n(·) − F (·))} is generally not tight. We make (C7) as an assumption
and intuitively it can be true under sufficient smoothness conditions for F (·),
although we are not clear about the exact conditions.

It is known ([33, 34, 35]) that under some conditions, for some smooth func-

tional G(·), √
n(G(F̂n) − G(F0))

D→ N(0, τ2) for some τ2 < ∞, despite the
convergence rate of F̂n is only n1/3. So, if (C7) is not satisfied, alternatively

one may investigate conditions such that
√
nh

(
fn(x|F̂n)− f(x)

) D→ a Gaussian
weak limit, and the result of (ii) in Theorems 1-6 will be modified accordingly.
This can be a future research topic.

(4) By Theorem 1 (ii), an approximate (1 − α) confidence interval for the
density f(x) is fn(x|F̂n)±(nhn)

−1/2zα/2σ̂, where zα denote the upper α-quantile
of the standard normal distribution and

σ̂2 = [fn(x|F̂n)]
2
(∫ x

0

1

1− F̂n(t)
+

∫ ∞

x

1

F̂n(t)

)
g(t)dt.

For the other models considered in this paper, there are also similar results for
the confidence interval of the density and we will not emphasize them.
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2.2. Interval censoring type II

For this model, (X,U, V ) ∈ R+ × (R+)2, where X ∼ F and (U, V ) ∼ G are
independent, and U < V a.s.. G has a density g with respect to the Lebesgue
measure on (R+)2, G and g are assumed known. See [12] for background for this
model. We observe {yi = (ui, vi, 1[xi≤ui], 1[ui<xi≤vi]) : i = 1, . . . , n} i.i.d. with
(U, V, 1[X≤U ], 1[U<X≤V ]) := (U, V, δ, γ), and 0 < P (δ = 1), P (γ = 1) < 1. The
density-mass function of (U, V, δ, γ) is

pF (u, v, δ, γ) = F δ(u)(F (v)− F (u))γ(1− F (v))1−δ−γg(u, v).

The algorithm for computing the NPMLE F̂n for type I and II interval cen-
soring model is given in [12] To study the asymptotic distribution of F̂n(·), they
used the following working hypothesis (W1) and condition (W2).

(W1). Starting from the real underlying distribution function F , the iterative
convex minorant algorithm will give at the first iteration step the estimator

F̂
(1)
n (·), which is asymptotically equivalent to the NPMLE F̂n(·).

(W2). f(t) > 0, g(t, t) > 0 and g(t, ·) is left continuous at t.

Under (W1) and (W2), [12] obtained (Theorem 5.3, p.100)

(n log n)1/3(F̂ (1)
n (t)− F (t))

D→
(
6f2(t)

g(t, t)

)1/3

argmax
h

{B(h)− h2} := A(t)Z,

where B(h) and Z are defined in section 2.1 for the interval censoring model
type I.

When (δ, γ) = (0, 0) or equivalently {X > V }, F (x|u, v, 0, 0) = 1[x>v]F (x)/(1−
F (v)); (δ, γ) = (0, 1) or {U < X ≤ V }, F (x|u, v, 0, 1) = 1[u<x≤v]F (x)/(F (v) −
F (u)) and (δ, γ) = (1, 0) or {X ≤ U}, F (x|u, v, 1, 0) = 1[x≤u]F (x)/F (u), the
conditional density/mass of X|Y is

f(x|u, v, δ, γ) =(
(1− δ)(1− γ)

1(v,∞)(x)

1− F (v)
+ γ(1− δ)

1(u,v](x)

F (v)− F (u)
+ δ(1− γ)

1[0,u](x)

F (u)

)
f(x).

So the conditional kernel is

K(x|F, h, Y ) =
1

h
EF [k(

X − x

h
)|Y ]

=
1

h

∫
k(

s− x

h
)

(
(1− δ)(1− γ)

1(V,∞)(s)

1− F (V )

+γ(1− δ)
1(U,V ](s)

F (V )− F (U)
+ δ(1− γ)

1[0,U ](s)

F (U)

)
F (ds).
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In the above equation, F is unknown. We use the NPMLE F̂n as in [12] to
replace F in K(x|F, h, Y ). Let K(·|F̂n, h, Y ) be K(·|F, h, Y ) with F replaced by
F̂n, i.e.

K(x|F̂n, h, Y ) =
1

h

∫
k(

s− x

h
)

(
(1− δ)(1− γ)

1(V,∞)(s)

1− F̂n(V )

+ γ(1− δ)
1(U,V ](s)

F̂n(V )− F̂n(U)
+ δ(1− γ)

1[0,U ](s)

F̂n(U)

)
F̂n(ds). (2.4)

and define the kernel estimator fn(x|F̂n) of f(x) as

fn(x|F̂n) =
1

n

n∑
i=1

K(x|F̂n, h, Yi). (2.5)

Let K(1)(x|F, h, Y ;A) be the 1-st Hadamard differential of K(x|F, h, Y ) at x
and F with respect to F in the direction A,

K(1)(x|Y, h, F ;A)

=
1

h

∫
k(

s− x

h
)

(
(1− δ)(1− γ)

1(V,∞)(s)[(1− F (s))A(ds) +A(s)F (ds)]

(1− F (V ))2

+γ(1− δ)
1(U,V ](s)[(F (V )− F (U))A(ds)− (A(V )−A(U))F (ds)]

(F (V )− F (U))2

+δ(1− γ)
1[0,U ](s)[F (U)α1(ds)− α1(U)F (ds)]

F 2(U)

)

= (1 + o(1))

{
(1− δ)(1− γ)

(
1(V,∞)(x)[(1− F (x))a(x)dx+A(x)f(x)]

(1− F (V ))2

)

+γ(1− δ)
1(U,V ](x)[(F (V )− F (U))a(x)− (A(V )−A(U))f(x)]

(F (V )− F (U))2

+ δ(1− γ)
1[0,U ](x)[F (U)a(x)−A(U)f(x)]

F 2(U)

}
:= (1 + o(1))L1(x|Y, F ), (2.6)

where

L1(x|F, Y ;A) = lim
h→0

K(1)(·|F, h, Y ;A)

and

L1(x|F ;A) = E[L1(x|F, Y ;A)].

Consider the following conditions

(C8).
( ∫ x

0

∫ v

0
1

1−F (v) +
∫∞
x

∫ x

0
1

F (v)−F (u) +
∫∞
x

∫ v

x
1

F (u)

)
g(u, v)dudv < ∞.



1308 T. Yan et al.

Note that
∫ x

0

∫ v

0
[g(u, v)/(1−F (v))]dudv ≤ (1−F (x))−1

∫ x

0

∫ v

0
g(u, v)dudv <

∞, and
∫∞
x

∫ v

x
[g(u, v)/F (u)]dudv ≤ (F (x))−1

∫∞
x

∫ v

x
g(u, v)dudv < ∞, (C8)

is satisfied if
∫∞
x

∫ x

0
[g(u, v)/(F (v) − F (u))]dudv < ∞, which is automatic if

U ≤ V + c for some constant c > 0 and F (·) is strictly increasing. These
conditions are very reasonable for this model.

Theorem 2. (i). Assume (C1)-(C4), then we have

sup
x∈[a,b]

|fn(x|F̂n)− f(x)| → 0 a.s. for all 0 < a < b < ∞.

(ii). Assume (C1), (C6), (C7)-(C8) ((C7) with F̂n and F for the model here),
(W1)-(W2), and that K(·|F, Y ) is of order r at F and x in the direction A(·).
Then as nh → ∞,

(a). If r = 1 & hn(n log n)1/3 → 0 or r > 1,

(hnn)
1/2

(
fn(x|F̂n)− f(x)

) D→ N(0, σ2),

where,

σ2 = f2(x)
(∫ x

0

∫ v

0

g(u, v)

1− F (v)
dudv +

∫ ∞

x

∫ x

0

g(u, v)

F (v)− F (u)
dudv

+

∫ ∞

x

∫ v

x

g(u, v)

F (u)
dudv

)
.

(b). If r = 1 & hn(n log n)1/3 → ∞,

(n log n)1/3
(
fn(x|F̂n)− f(x) + bn

) D→ L1(x|F ;A)Z,

where,

L1(x|F ;A) = a(x) + f(x)
(∫ x

0

∫ v

0

A(v)

1− F (v)
−

∫ ∞

x

∫ x

0

A(v)−A(u)

F (v)− F (u)

−
∫ ∞

x

∫ v

x

A(u)

F (u)

)
g(u, v)dudv,

a(x) = dA(x)/dx and bn is given in Theorem 1 (b).

2.3. Convolution model

For this model, (X,W ) ∼ F ×G. F is unknown and G, with density g, is known
(otherwise the model is not identifiable). It is also a type of measurement error
model. We observe Y1, ..., Yn i.i.d. Y = X +W . The density of Y is

q(y) =

∫
g(y − w)F (dw).

Since P (X < x,X + W < y) =
∫ x

−∞
∫ y−s

−∞ f(s)g(w)dsdw =
∫ x

−∞ f(s)G(y −
s)ds, the joint density of (X,Y ) is p(x, y) = f(x)g(y−x), the conditional density
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of X|Y is p(x|y) = p(x, y)/p(y) = f(x)g(y − x)/
∫
g(y − w)F (dw), and the

conditional kernel is

K(x|F, h, Y ) =

∫
k( s−x

h )g(Y − s)F (ds)

h
∫
g(Y − w)F (dw)

.

In the above equation, F is unknown. We can use an existing estimate, for
example the one-step NPMLE F̂n of F based on the observed data Y1, ..., Yn as
in [12] in which the following condition will be used.

(W3). g be a right-continuous decreasing density on [0,∞), having only a fi-
nite number of discontinuity points at a0 = 0 < a1 < · · · < ak; and g has a
derivative g′(x) at x 	= ai, i = 0, ..., k, satisfying

∫∞
0

g′(x)2/g(x)dx < ∞, where
the integrand is defined to be 0 at ai and at points where g = 0; g′ is bounded
and continuous on (ai−1, ai) for i = 1, ...,m+ 1, with am+1 := ∞.

Let Z as in Theorem 1, q(·) be the density of Y ,

A(t) =

(
4f(t)

k∑
j=0

q(t+ aj)[g(aj)− g(aj−)]−1

)1/3

.

By Theorem 5.4 of [12], under (W3) we have

n1/3(F̂n(t)− F (t))
D→ A(t)Z.

Define the estimator of f(x) based on the observed data Yi’s by

fn(x|F̂n) =
1

n

n∑
i=1

K(x|F̂n, h, Yi). (2.7)

The first order of Hadamard differential of K(x|F, h, Y, α) at F and x in the
direction α is

K(1)(x|F, h, Y ;α) =
1

h
[

∫
g(Y − w)F (dw)]−2

×
[ ∫

k(
s− x

h
)g(Y − s)α(ds)

∫
g(Y − w)F (dw)

−
∫

k(
s− x

h
)g(Y − s)F (ds)

∫
g(Y − w)α(dw)

]
. (2.8)

The following conditions will be used.

(C9). supx
∫ |g′(y−x)

∫
g(y−w)f(w)dw−g(y−x)

∫
g′(y−x)f(w)dw|

[
∫
g(y−w)f(w)dw]2

dy < ∞.

(C10).
∫ (

g2(y−x)−[
∫
g(y−w)f(w)dw]2∫

g(y−w)f(w)dw

)
dy < ∞.

Note that
∫
g(y − w)f(w)dw = q(y), if q(·) is bounded below, (C10) will be

true; if in addition g′(·) is bounded (C9) will be true.
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Theorem 3. Assume (C1)-(C4) and (C9), then we have

sup
x∈[a,b]

|fn(x|F̂n)− f(x)| → 0, a.s. for all 0 < a < b < ∞.

ii) Assume (C1), (C5)-(C7) ((C7) with F̂n and F for the model here), (C10),
and that K(x|F, h, Y,A) is of order r at F and x in the direction A(·). Then as
nh → ∞, (a). If r = 1 & hnn

1/3 → 0 or r > 1,

(hnn)
1/2

(
fn(x|F̂n)− f(x)

) D→ N(0, σ2),

where, σ2 = f2(x)
∫ (

g2(y−x)∫
g(y−w)F (dw)

)
dy and a(x) = dA(x)/dx.

(b). If r = 1 & hnn
1/3 → ∞,

n1/3
(
fn(x|F̂n)− f(x) + bn

) D→ L1(x|F ;A),

where, L1(x|F ;A) = a(x) − f(x)
∫ g(y−x)

∫
g(y−w)A(dw)∫

g(y−w)F (dw)
dy and bn is given in

Theorem 1 (b).

2.4. Double censoring

For this model, we only briefly present the results. In this model, the original
data is (X,U, V ) ∈ (R+)3, U < V a.s., X and (U, V ) are independent, X ∼ F (·),
(U, V ) ∼ G, assumed known. We observe Y = ((X∨U)∧V, 1[X≤U ], 1[U<X≤V ]) =
(Z, δ, γ). Here (δ, γ) can only take values (0, 0), (0, 1) and (1, 0). The density-
mass function p

F,G
for y is

p
F
(y) = p

F
(z, δ, γ) = [M(z)f(z)]γ [F (z)g

U
(z)]δ[(1− F (z))g

V
(z)]1−γ−δ,

where M(z) = P (U < z ≤ V ) = GU (z) −G(z, z), GU is the marginal distribu-
tion of U , and g

U
and g

V
are the marginal densities of U and V , respectively. Let

GU |V (·|v) be the conditional distribution of U given V = v, and let GV |U (·|u)
be similarly defined. This model was studied by Turnbull [8], Tsai and Crowley
[32], among others. When (δ, γ) = (0, 0), (0, 1) and (1, 0), we observe V , X and
U , respectively.

For (δi, γi) = (0, 1), we observe the original data Xi, and one possibility is to
define the density estimator using only the observed original data as

f1n(x) = (n1h1)
−1

∑
i∈D1

k(
Xi − x

h1
),

where n1 =
∑n

i=1(1 − δi)γi and D1 is the set of data corresponding to the
subset for which (δi, γi) = (0, 1). Thus by standard kernel density estimator
theory, under suitable conditions we have supx |f1,n(x)− f(x)| → 0 (a.s.) and√

n1h1(f1n(x)− Efn(x))
D→ N(0, σ2

1),

with σ2
1 = f(x)

∫∞
−∞ k2(w)dw.
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However, since f1,n(x) uses only the original data, the data that is not directly
observed (with (δi, γi) 	= (0, 1)) is ignored. We want to use all the data to
construct the estimator. The conditional kernel is

K(x|F, h, Y ) =
1

h
E(k(

X − x

h
)|Y )

=
1

h

(
(1− δ − γ)

∫ ∞

0

1(s>Z)

1− F (Z)
k(

s− x

h
)F (ds) + δ

∫ ∞

0

1(s≤Z)

F (Z)
k(

s− x

h
)F (ds)

)
.

In the above expression, F (·) is unknown and it needs to be estimated. Let
Yi, i = 1, . . . , n1 be the data that X is observed and Yi, i = n1 + 1, . . . , n be the
data that X is unobserved. Denote n2 = n− n1.

Tsai [36] studied the NPMLE Ŝn(x) of the survival function S(x) for this
model, based on the observed data Y1, . . . , Yn. Since F (·) = 1 − S(·), F̂n(·) =
1 − Ŝn(·) is the NPMLE of F (·). Define the kernel estimator fn(x|F̂n) of f(x)
as

fn(x|F̂n) =
n1

n

1

n1

n1∑
i=1

1

h1
k(

Xi − x

h1
) +

n2

n

1

n2

n∑
i=n1+1

K2(x|F̂n, h2, Yi)

:=
n1

n
f1n(x) +

n2

n
f2n(x|F̂n). (2.9)

Dubnicka [17, 18] studied kernel density estimator with missing data, which is
a weighted kernel method, with the inverse estimated propensity scores as the
weights. Our estimator (2.9) can also be viewed as a weighted kernel estimator,
with weights in the second term being the conditional kernel evaluated at the
observations.

The kernel density estimator is biased. If we use f1n(x) to estimate f(x),
the bias is O(hn1). Similarly, if only f2n(x|F̂n) is used, the bias is O(hn2). If
both are used, the bias is O(hn), which is smaller than using f1n or f2n(x|F̂n)
alone. We will see that under suitable conditions fn(x|F̂n) is

√
n-consistent, and

a (1− α)% confidence interval for f(x) can be obtained as below. Since

n1/2
(
fn(x|F̂n)− Efn(x|F )

)
= h−1/2

n1

√
n1n(n1hn1)

1/2(f1n(x)− Efn(x))

+
√
n2/n

√
n2(f2n(x|F̂n2)− Efn(x|F ))

≈ h−1/2
n1

α
3/2
1 N(0, σ2

1) + α
3/2
2 N(0, σ2

2) ≈ N(0, h−1
n1

α3
1σ

2
1 + α3

2σ
2
2).

So a (1− α)% confidence interval for f(x) is

[fn(x|F̂n) +O(h)± z1−α/2

√
h−1
n1 α

3
1σ

2
1 + α3

2σ
2
2

n
].

Let Λ(r, t) = E[S(r)S(t)] be the covariance function of S(·) and λ(r, t) =
∂2Λ(r, t)/(∂r∂t). Assume it exists. Denote gu(·) and gv(·) the U and V margins
of g(·, ·) respectively. In the following Theorems 4 and 6, conditions (C11)-(C18)
are given in the Appendix.
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Theorem 4. (i) Assume (C1) - (C4), then

sup
x∈[a,b]

|fn(x|F̂n)− f(x)| → 0, a.s. for all 0 < a < b < ∞.

(ii), Assume (C1), (C12)-(C14), (W4) and that the operator H∗′

4 from Tsai
and Crowley (1985) is invertible, and that K(·|F, ·) is Hadamard differentiable
at F and x in the direction S(·). Then, with α1 = 1 − α2 = P (U < X ≤ V ) =∫∞
0

(GU (x)−G(x, x))F (dx), as nkhk → ∞ (k = 1, 2),

n1

n

(
n1h1)

1/2
(
f1n(x)− f(x) + bn1

)
+

n2

n
(h2n2)

1/2
(
f2n(x|F̂n)− f(x) + bn2

)
D→ α1N(0, σ2

1) + α2N(0, σ2
2) +

√
α2N(0, σ2

3),

where, bn is given in Theorem 1, σ2
1 = f(x)

∫
k2(s)ds, σ2

2 = f2(x)
( ∫ x

0
gv(z)

1−F (z)dz+∫∞
x

gu(z)
F (z) dz − 1

)
, and with A(x) = GU (x) +GV (x)− 1,

σ2
3 = f2(x)

(∫ x

0

gv(s)

1− F (s)
−
∫ ∞

x

gu(s)

F (s)

)(∫ x

0

gv(t)

1− F (t)
−
∫ ∞

x

gu(t)

F (t)

)
Λ(s, t)dsdt

+2f(x)A(x)
(∫ x

0

gv(s)

1− F (s)
−

∫ ∞

x

gu(s)

F (s)

)
Λ(ds, x) +A2(x)λ(x, x).

2.5. Multiplicative censoring

For this model, we only briefly present the results. Let 0 < p < 1 be known, and
δ{1} be the measure with unit mass at 1. Suppose (X,W ) ∼ F × G, F on R+

is unknown with density f , and G = pδ{1} + (1− p)U(0, 1). Let T = XW , δ =
1(W=1). Thus T = X with probability p and T = XW1(W<1) with probability
1− p. For this model we observe Yi = (Ti, δi) (i = 1, . . . , n) iid Y = (T, δ). The
mass-density function of Y is

pF (t, δ) = (pf(t))δ
(
(1− p)

∫ ∞

t

1

s
dF (s)

)1−δ

.

With δ = 0, the density for T is g(t) =
∫ 1

0
(1/w)f(t/w)dw =

∫∞
t

(1/s)F (ds),

the joint distribution function for (X,T ) is P (x, t) =
∫ x

0
(t/s)f(s)ds, the joint

density is p(x, t) = (f(x)/x)1[0,x](t), and the conditional density forX|(T, δ = 0)

is (f(x)/x)1[0,x](t)/
∫∞
t

(1/s)F (ds). For this model, the conditional kernel is

K(x|F, h, Y ) =
1

h

(
δk(

T − x

h
) + (1− δ)

∫∞
T

k( s−x
h ) 1sF (ds)∫∞

T
1
sF (ds)

)

:=
δ

h
k(

T − x

h
) +K2(x|F, h, Y ).
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Let n1 =
∑n

i=1 δi, n2 = n− n1. Define the kernel estimator fn(x|F̂n) of f(x) as

fn(x|F̂n) =
n1

n

1

n1

n1∑
i=1

1

h
k(

Xi − x

h
) +

n2

n

1

n2

n∑
i=n1+1

K2(x|F̂n2 , h, Yi)

:=
n1

n
f1n(x) +

n2

n
f2n(x|F̂n2). (2.10)

Let Λ(r, t) = E[S(r)S(t)] be the covariance function of S(·) and λ(r, t) =
∂2Λ(r, t)/(∂r∂t).

The iterative convex minorant algorithm in [37] can be used to compute the
NPMLE F̂n of F based on the observed data Y1, . . . , Yn for this model.

Theorem 5. i). Assume (C1)-(C4) and (C14), then we have

sup
x∈[a,b]

|fn(x|F̂n)− f(x)| → 0, a.s. for all 0 < a < b < ∞.

ii) Assume (C1), (C13) and (C15), then as nkhk → ∞ (k = 1, 2),

n1

n
(n1h1)

1/2
(
fn1(x|F̂n1)− f(x) + bn1

)
+

n2

n
(h2n2)

1/2
(
fn2(x|F̂n2)− f(x) + bn2

)
D→ pN(0, σ2

1) + (1− p)N(0, σ2
2) + (1− p)1/2N(0, σ2

3),

where bn is given in Theorem 1, σ2
1 = f(x)

∫
k2(s)ds, σ2

2 = f2(x)
(
x−2 ×∫ x

0
g−1(t)dt− 1

)
, and

σ2
3 =

λ(x, x)

x2

∫ x

0

g−1(t)dt− 2
f(x)

x2

∫ x

0

g−2(t)

∫ ∞

t

1

v
λ(x, v)dvdt

+
f2(x)

x2

∫ x

0

g−3(t)

∫ ∞

t

∫ ∞

t

1

uv
λ(u, v)dudvdt.

For the multiplicative censoring model, Asgharian et.al [24] investigated ker-
nel smoothed estimator of the density function. Put m = n = k/2 in their case,
as they mentioned (p.170), using their Theorem 4, they may show that their
estimator is asymptotically Gaussian with rate (hnn)

1/2, and with mean zero
and covariance function σg (given in line -8, p.170), which again depends on the
subjectively chosen kernel K(·). If take n1 = n2 = n/2, our estimator, in the
mixture format, is asymptotically a mixture normal, with rate (hnn)

1/2 which
is the same as in [24]. Our asymptotic variance partially depend on the kernel
k(·) only in the first component in the equation (2.10).

2.6. Summary

After studying the conditional kernel density estimation for the above five in-
complete data models, we summarize the results for general incomplete data
models as in Theorem 6, without proof.
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Suppose the conditional kernel K(x|H,h, Y ) depends on an unknown quan-
tity H(·), defined on T , which can be consistently estimated by Ĥn based on the
observed data Y1, . . . , Yn, define the estimator fn(x|Ĥn) for the density f(x) of
the original data X as

fn(x|Ĥn) =
1

n

n∑
i=1

K(x|Ĥn, h, Yi). (2.11)

Recall l∞(T ) is the space of all bounded functions on T equipped with the
supremum norm. Consider the following conditions.

(C16). supt∈T |Ĥn(t)−H(t)| → 0 , a.s..

(C17). supx,y |K(x|Ĥn, h, y)−K(x|H,h, y)| → 0, a.s..
(C18). supx |fn(x)− f(x)| → 0, a.s..
(C19). For some tight stochastic process S(·) on T , and bn → ∞, bn(Ĥn(·) −
H(·)) D→

S(·) on l∞(T ).
(C20). (nh)1/2(fn(x)− Efn(x)) is asymptotic normal.
(C21). K(x|H,h, Y ) is of order r (r ≥ 1) at x and H in the direction S;
Lr(x|F, Y ;S, ..., S)

= limh→0 K
(r)(H,h, Y ;S, ..., S) exists, and Lr(x|F ;S, ..., S) =

EY [Lr(x|F, Y ;S, ..., S)] exists.

Theorem 6. i) Assume (C16) - (C18), then

sup
x

|fn(x|Ĥn)− f(x)| → 0, a.s..

ii) Assume (C19)-(C21). Then, with 0 < σ2 = limh→0 V ar[K(x|H,h, Y )] < ∞,

an
(
fn(x|Ĥn)− f(x) + bn

) D→

⎧⎪⎪⎨⎪⎪⎩
1
r!Lr(x|H;S, ..., S)],
1
r!Lr(x|H;S, ..., S)] +N(0, σ2),
N(0, σ2),
N(0, σ2

1),

where,

⎧⎪⎪⎨⎪⎪⎩
an = brn, if brn/

√
hn → 0;

an =
√
hn, if brn/

√
hn → C, 0 < C < ∞;

an =
√
hn, if brn/

√
hn → ∞;

an =
√
hn, if 0 < σ2

1 = limh→0 hV ar[K(x|H,h, Y )] < ∞.

3. Numerical studies

In this section, we conduct the simulation studies to evaluate the performance
of the proposed conditional kernel density estimators, and compare them with
some existing estimators for the corresponding models. The limiting distribu-
tions of conditional kernel density estimators are functional of Chernoff distri-
bution for type I and II interval censoring models, and functional of Gaussian
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process for other models. Instead of studying these weak limits, we investigate
the finite sample performances of the estimators. The purpose of the simula-
tions is to provide a straight perception on the conditional estimator. We draw
the plots of the conditional kernel density estimators against the true density.
We compare our method with some existing methods in terms of the integrated
square errors (ISE).

For Type I, II interval censoring models, we assume that the variable of
interest X and the observed variables U and V all from Gamma distributions
Gamma(k, θ) with density

g(x; k, θ) = [θkΓ(k)]−1xk−1e−x/θ1(x>0).

In our simulations, we chose k = 5 as the shape parameter and θ = 1 as the scale
parameter for the random variables X and U and let V = U + Gamma(5, 1).
For type I interval censoring model, we compare our esitmator with that of [39]
(GJW); for type II interval censoring, we compare with the kernel smoothing
estimator.

For the convolution model, we assume X from the normal distribution

g(x;μ, σ) = e−(x−μ)2/(2σ2)/
√
2πσ,

We chose μ = 0 and σ = 1 (i.e., the standard normal distribution) for X and
W in this model. For this model, we compare our estimator with the kernel
smoothing estimator.

For the double censoring model, we chose the Gamma distributions for U,X
with the respective parameters k = 2, θ = 1 and k = 5, θ = 1 and let V =
U+Gamma(1, 1). For the multiplicative censoring model, we chose the Gamma
distribution Gamma(5, 1) for the latent distribution for X and X was censored
with probability 1 − p = 1/2. For this model, we compare our estimator with
that of [19].

For the multiplicative censoring model, our method is compared with that of
[24] (ACF).

For all the models we used the standard normal density as the kernel k(·).
Various sample sizes and bandwidths were considered as given in Table 1. We
presented 50 sample paths for the conditional kernel density estimators. The
plots for the Type I, II interval censoring models and convolution model are
drawn in Figures 1, 2 and 3, respectively, and those for the the doubly censor-
ing model and multiplicative censoring model are putted in the supplementary
material.

The first, second and third rows were generated from datasets of 200, 500,
and 1000 total observations, respectively. Plots of the first, second and third
columns were based on the different bandwidths h = n−1/5, n−1/10, and n−1/20,
respectively. In Figures 1, 2 and 3, we also plot the average 95% confidence
interval given in Remark 2 (4). The integrated square errors (ISEs) are reported
in Table 1.

Figures 1 and 2 have similar behavior. When h = n−1/5, the points of the
fn(x|F̂n) deviate the true values very much with a larger range in the case n =
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Fig 1. Sample paths for Type I interval censoring model. The red line is the true density and
the blue line is the average 95% confidence interval.

200. This is different from the traditional kernel density estimator for uncensored
samples, in which the optimal bandwidth is in the magnitude of n−1/5. But when
h = n−1/10 and n−1/20, fn(x|F̂n) fit f(x) well, with the pointwise average of
the sample plots very closing to the true plots (in red color). On the other

hand, as the sample size increases, the deviation range of the fn(x|F̂n) becomes
smaller as expected. These phenomena can also be observed from the integrated
square errors in Table 1. The average length of confidence interval decreases as n
increases. We also observe that for most models, except the convolution model,
the ISEs under h = h−1/20 are smaller than those under h = n−1/10 for all the
methods.

In Figure 3 for the convolution model, X and W both are assumed the
normal distribution N(0, 1). We used the R-package “Decon” developed by
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Fig 2. Sample paths for Type II interval censoring model. The red line is the true density
and the blue line is the average 95% confidence interval.

[38] to compute the NPMLE F̂n of F . When h = n−1/10, n−1/20, the plots

of the fn(x|F̂n) are evidently lower than those of the true density at around
the unimodal point, although the plots depict the shape of the normal distri-
bution. In the case h = n−1/5, the plots of the fn(x|F̂n) look much better than
those of h = n−1/10, n−1/20, although there is some deviation at the mode.
For all the methods, the ISEs under h = n−1/5 are smaller than those under
h = n−1/10, n−1/20.

For the doubly censoring model and the multiplicative censoring model, we
can see that for all the methods, the bandwidths h = n−1/10 and h = n−1/20

are better than h = n−1/5 from the figures of the supplementary material and
Table 1.

From Table 1, we can see that the ISEs of our method are smaller than or
comparable to those of the other methods under the Type I/II interval censoring
model, convolution model and double censoring model. For example, when n =
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Fig 3. Sample paths for the convolution model. The red line is the true density and the blue
line is the average 95% confidence interval.

200 and h = n−1/5 under the convolution model, the ISE of our method is
1.21, which is smaller than the ISE of the kernel smoothing estimator (= 2.10).
However, for the multiplicative censoring model, the ACF’s method gives better
performance than ours. Part of the reason may due to the fact that the ISE of the
ACF estimator depends on the variance square of the chosen kernel (Theorem 5
in ACF). Our estimator in this case is a mixture of kernel smoothing estimator
and a conditional kernel estimator, the ISE of the latter part does not depend
on the kernel. The ISE of our estimator in this case partially depends on the
variance square of the chosen kernel, so the ISE’s of the two estimator varies
with the choosen kernel. With samll variance of the kernel, the ACF method is
expected to have smaller ISE than ours, and vice versa.
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Table 1

Integrated squared errors (multiplied by 10−2).

Type I interval censoring model

n h = n−1/5 h = n−1/10 h = n−1/20

200 5.38 1.63 0.87
500 3.83 0.01088422 0.006131349
1000 0.03489001 0.006388937 0.003422104

Type II interval censoring model

n h = n−1/5 h = n−1/10 h = n−1/20

200 0.039184744 0.017096865 0.006979607
500 0.023368021 0.006844263 0.003465765
1000 0.012759035 0.003581359 0.001820693

Convolution model

n h = n−1/5 h = n−1/10 h = n−1/20

200 0.01209222 0.02438077 0.0309852
500 0.03192705 0.03992805 0.06300134
1000 0.007925386 0.0233965 0.03142238

Double censoring

n h = n−1/5 h = n−1/10 h = n−1/20

200 0.046281770 0.021137848 0.028588153
500 0.02858815 0.01140205 0.00846038
1000 0.01515069 0.008508595 0.005758564

multiplicative censoring

n h = n−1/5 h = n−1/10 h = n−1/20

200 0.007722237 0.005886002 0.006067418
500 0.004929110 0.004117460 0.004323686
1000 0.003320455 0.003735651 0.003769296

4. Discussion

In this paper, we have proposed the conditional kernel density estimation for a
class of incomplete data models and derived the uniform consistency and limiting
distributions for the proposed estimators. Simulation studies show that the finite
sample performances of the conditional kernel estimators crucially depend on
the choices of bandwidth. In our simulations, when the bandwidths are chosen
between n−1/10 and n−1/20, the plots of the conditional kernel estimator fit the
true density well for Type I, II censoring models. But for the convolution model,
the appropriate bandwidth is approximate n−1/5.

The basic properties of the proposed estimators are established. Condition
(C7) is not easy to check. An alternative is to consider different conditions as
discussed in last paragraph of Remark 2 (3), and the results will be modified
and will be our future work.

For interval censoring data type I, [39] studied two versions of kernel smoothed
estimator of the density function f(·). Their density estimator is the derivative
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of F̂MS
n (·), which is the maximizer of their (3.1), and not given in closed form.

As in their Theorem 3.6 and Theorem 4.3, the convergence rate of their den-
sity estimators is n2/7, and the asymptotic variances depend on

∫
k′(u)2du,

where k(·) is the subjectively chosen kernel, and so the asymptotic variances of
their estimators can have a range of values depending on the choices of k(·),
a phenomenon shared by all the kernel smooth methods. For our estimator, it
is given in closed form, the convergence rate is either n1/3 or (hnn)

1/2 = n2/5,
if we choose the commonly used rate for bandwidth hn = O(n−1/5). In either
case, our convergence rate is faster than n2/7, and the asymptotic variance does
not depend on the kernel k(·), a subjective input.

Ren [19] studied kernel density estimator with doubly censored data, by
smoothing an estimated distribution function. It is asymptotic normal (Theorem
2) with rate (nh)1/2 and asymptotic variance (f(x)/[SY (x)−SZ(x)])

∫
k2(u)du,

which depends on the subjective choice k(·). In contrast, the asymptotic be-
havior of our estimator for this type of data is given in Theorem 4 here, it is
asymptotic normal with asymptotic variance not depending on the subjective
input k(·), though with much more complicated form than that in [19].

Asgharian et.al [24] studied kernel density estimator for multiplicative cen-
soring data. Their observed data is (X1, . . . , Xm;Y1, . . . , Yn), Yi = ZiUi ∼ F ,
Xj , Zi ∼ G and Ui ∼ N(0, 1). Their data is different from what we consider
here. They first compute the empirical distribution functions Gm and Fn, then
construct an Ĝ(·) and based on Ĝ construct estimator ĝm,n of g(·) by kernel

smoothing Ĝ. They studied strong consistency, convergence rate and integrated
squared error of their estimator, without providing asymptotic distribution. We
provided asymptotic distribution for our estimator.

In recent years, the multivariate current status and other multivariate inter-
val censoring data, generalizations of one dimensional interval censoring, has
received much attention. The multivariate current status data can be briefly
described as follows. Let X = (X1, . . . , Xd) ∼ F on R+d = [0,∞)d and T =
(T1, . . . , Td) ∼ G on R+d be independent of X. The interest is to estimate the
unknown multivariate distribution F and G is assumed to be known. The ob-
servation is Y = (Δ, T ) where Δ = (Δ1, . . . ,Δd) is given by Δj = 1[Xj≤Tj ].
The characterizations and computations of the NPMLE for the case d = 2 have
been studies by [40], [41], [42]. [43] established the consistency of the generalized
MLE for a class of multivariate interval censoring models. [44] have obtained
global rates of convergence of the MLE for multivariate current status data. The
conditional density estimation in the present paper could be directly extended
into the multivariate case without much difficulty. But the investigation of the
large-sample theories may be challenging.

Appendix

The following more conditions are needed for Theorems 4 and 5.

(C11).
∫ x

0
f(z)

(1−F (z))2 dz +
∫∞
x

f(z)
F 2(z)dz < ∞.
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(C12).
∫ x

0
gv(z)

1−F (z)dz +
∫∞
x

gu(z)
F (z) dz < ∞.

(C13). Λ(r, t) is second order continuous differentiable.

Recall g(t) =
∫∞
t

(1/s)F (ds). Some conditions are listed below.

(C14). supx∈R+
f(x)
x

∫ x

0
1

tg2(t)F (dt) < ∞.

(C15).
∫ x

0
g−1(t)dt+

∫ x

0
g−2(t)

∫∞
t

1
vλ(x, v)dvdt

+
∫ x

0
g−3(t)

∫∞
t

∫∞
t

1
uvλ(u, v)dudvdt < ∞.

We first describe the basic strategy for the proofs of Theorems 1-3, parts (i)
and (ii). For part (i), we decompose fn(x|F̂n)− f(x) into three parts, i.e.,

fn(x|F̂n)− f(x) =

(
fn(x|F̂n)− fn(x|F )

)
+

(
fn(x|F )− E[fn(x|F )]

)
+

(
E[fn(x|F )]− f(x)

)
:= V1,n(x) + V2,n(x) + V3,n(x).

It is sufficient to show that under the given conditions, the followings hold:

sup
x∈[a,b]

|V1,n(x)| → 0, a.s, (A.1)

sup
x∈[a,b]

|V2,n(x)| → 0, a.s, (A.2)

sup
x∈[a,b]

|V3,n(x)| → 0, a.s. (A.3)

Since E[fn(x|F )] = 1
n

∑n
i=1 E(h

−1k[(Xi − x)/h]) is the expectation of the
classical kernel estimator, by results of standard density estimation (e.g., Theo-
rem 2.1.1 in [5]), under (C1) and (C3), we have (A.3). Therefore, we only prove
(A.1) and (A.2).

For part (ii), the proofs of the central limit theorem of fn(x|F̂n) take two
steps. First, we show

(nh)1/2(fn(x|F )− Efn(x|F ))
D→ N(0, σ2), (A.4)

by constructing standard double arrays. Second, when K(x|F, h, Y ) has order
r ≥ 1 at F and x in the direction A, then by (C7) and the functional delta
method,

nr/3(fn(x|F̂n)− fn(x|F ))
D→ lim

n→∞
1

r!
E[K(r)(x|F, hn, Y ;AZ, ..., AZ)], (A.5)

Combining (A.4) and (A.5) will yield Theorems 1-3 (ii). Note that for r = 1,
E[K(1)(x|F, hn, Y ;AZ)] = E[K(1)(x|F, hn, Y ;A)]Z = L1(x|F ;A)Z.

The kernel density estimators under doubly censoring and multiplicative
models are the sum of the classical estimators and conditional estimators. The
large-sample results for the part of classical estimators could be derived from



1322 T. Yan et al.

the standard density estimation theory. For the asymptotic results of condi-
tional parts, the proofs are similar to those of Theorems 1-3. These ingredients
combine to prove Theorems 4-5.

Proof of Theorem 1. (i) Let Qn(δ, t) be the empirical distribution of the obser-
vations Y1, . . . , Yn, Q(δ, t) be the distribution of (δ, T ). Then as in [5]

sup
x∈[a,b]

|V2,n(x)|

= sup
x∈[a,b]

∣∣∣∣ ∑
δ=0,1

∫ ∞

−∞
K(x|F, h, δ, t)Qn(δ, dt)−

∑
δ=0,1

∫ ∞

−∞
dK(x|F, h, δ, t)Q(δ, t)

∣∣∣∣
≤ sup

x∈[a,b]

∑
δ=0,1

∫ ∞

−∞
|Qn(δ, t)−Q(δ, t)|

∣∣∣∣K(x|F, h, δ, dt)
∣∣∣∣

≤ sup
x

∑
δ=0,1

sup
t

|Qn(δ, t)−Q(δ, t)| 1
h
μ(x), (A.6)

where μ(x) = max{μ0(x), μ1(x)} and μδ(x) is the total variation ofK(x|F, h, δ, t)
as a function of t (for a function g(x), its total variation is defined as
supP

∑
i |g(x+1)− g(xi)|, where supreme is over all partitions over the support

of g(·)). Note

K(x|F, h, 0, t) = 1

h

∫
k(

s− x

h
)
1(t,∞)(s)F (ds)

1− F (t)

=

∫
k(v)

1(t,∞)(x+ hv)f(x+ hv)dv

1− F (t)

=
1

1− F (t)

∫ ∞

(t−x)/h

k(v)f(x+ hv)dv.

Note that x > 0. If 0 < x < t, then
∫∞
(t−x)/h

k(v)f(x + hv)dv = o(1); if x > t,

then
∫∞
(t−x)/h

k(v)f(x+ hv)dv = (1 + o(1))f(x). Therefore,

K(x|F, h, 0, t) = (1 + o(1))
f(x)1(t,∞)(x)

1− F (t)
:= (1 + o(1))K0(t). (A.7)

The derivative of K0(t) on t is

K ′
0(t) = −1(t,∞)(x)f(x)×

f(t)

(1− F (t))2
.

By Condition (C4) and
∫
f(x) = 1, it is easy to show that f(·) is bounded. Fur-

ther,
∫∞
0

|K ′
0(t)|dt = f(x)

∫ x

0
[1/(1 − F (t)2]dF (t) = f(x)F (x)/(1 − F (x)) < C

uniformly over [a, b] for some constant 0 < C < ∞. Thus K0(·) has uniformly
(over x) bounded variation on [a, b], which in turn implies K(x|F, h, 0, t) has a
uniformly (over x) bounded variation on [a, b], i.e, μ0 := supx∈[a,b] μ0(x) < ∞.
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By the similar argument, μ1 := supx∈[a,b] μ1(x) < ∞, and so μ = supx∈[a,b] μ(x) <
∞. Now we have

sup
x∈[a,b]

|V2,n(x)| ≤ μ
∑
δ=0,1

sup
t

|Qn(δ, t)−Q(δ, t)|.

Let
Dn(j) = sup

−∞<t<∞
|Qn(j, t)−Q(j, t)|, (j = 0, 1),

by the results in [45], there exist positive constants C and α, 0 < α ≤ 2 such
that

P (Dn(j) > λn−1/2) ≤ C exp(−αλ2), (j = 0, 1)

for every λ > 0 and any continuous distribution function F . Now we get

P
(

sup
x∈[a,b]

|V2,n(x)| > ε
)

≤ P
(
sup
t

∑
δ=0,1

|Qn(δ, t)−Q(δ, t)| > εhμ−1
)

≤ 2C exp(−βn),

where β = αε2μ−2/4. Since
∑∞

n=1 exp(−βnh2) < ∞ for any given ε > 0, by the
Borel-Cantelli lemma, we have (A.1).

Since supt |F̂n(t)−F (t)| → 0 (a.s.), we have K(x|F̂n, h, yi) = K(x|F, h, yi) +
o(1) (a.s.) uniformly over (x, yi). This gives

V1,n(x) =
1

n

n∑
i=1

[K(x|F̂n, h, Yi)−K(x|F, h, Yi)] = o(1), a.s.

This proves part (i).

(ii). Let Zi,h = K(x|F, h, Yi) − E[K(x|F, h, Yi)], then Z1,h, . . . , Zn,h are i.i.d,
with E(Zi,h) = 0. Since E[K(x|F, h, Yi)] =

1
hE[k(

Xi−x
h )], we have

fn(x|F )− Efn(x|F ) =
1

n

n∑
i=1

Zi,h

is the average of the i.i.d. double array {Zi,h}. By (C3), we have

E[K(x|F, h, Yi)] =
1

h
E[k(

Xi − x

h
)] =

∫
k(v)f(x+ hv)dv → f(x), as h → 0.

Note the joint distribution-mass function of (T, 1(X<T )) is

P (T ≤ t, δ = 1) =

∫ t

0

∫ y

0

f(x)dxg(y)dy =

∫ t

0

F (y)g(y)dy,

and so the density-mass function of (T, 1(X<T )) is

d

dt

∫ t

0

F (y)g(y)dy = F (t)g(t).
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Similarly,the joint distribution-mass function of (T, 1(X≥T )) is

P (T ≤ t, δ = 0) =

∫ t

0

∫ ∞

y

f(x)dxg(y)dy =

∫ t

0

(1− F (y))g(y)dy,

and so the density-mass function of (T, 1(X≥T )) is

d

dt

∫ t

0

(1− F (y))g(y)dy = (1− F (t))g(t).

Thus,

E[K2(x|F, h, Yi)] =
1

h

∫ (∫
k(v)

1[0,t](x+ hv)f(x+ hv)dv

F (t)

)2

F (t)g(t)dt

+
1

h

∫ (∫
k(v)

1(t,∞)(x+ hv)f(x+ hv)dv

1− F (t)

)2

(1−

F (t))g(t)dt

=
1

h

∫ (∫ (t−x)h

−x/h

k(v)f(x+ hv)dv

)2

F−1(t)g(t)dt

+
1

h

∫ (∫ ∞

(t−x)/h

k(v)f(x+ hv)dv

)2

(1− F (t))−1g(t)dt.

Note x > 0, so if t < x, then
∫ (t−x)/h

−x/h
k(v)f(x + hv)dv = o(1); if t > x, then∫ (t−x)/h

−x/h
k(v)f(x+ hv)dv = f(x) + o(1), so

∫ (∫ (t−x)h

−x/h

k(v)f(x+ hv)dv

)2

F−1(t)g(t)dt = [f2(x) + o(1)]

∫ ∞

x

g(t)

F (t)
dt.

Similarly, ∫ (∫ ∞

(t−x)/h

k(v)f(x+ hv)dv

)2

(1− F (t))−1g(t)dt

= [f2(x) + o(1)]

∫ x

0

g(t)

(1− F (t))
dt.

Thus, with “∼” standing for asymptotically equivalent,

V ar(Zi,h) = E[K2(x|F, h, Yi)]− {E[K(x|F, h, Yi)]}2 ∼ E[K2(x|F, h, Yi)

= h−1f2(x)

(∫ x

0

g(t)

1− F (t)
dt+

∫ ∞

x

g(t)

F (t)
dt

)
= h−1σ2. (A.8)

Consequently, (A.4) comes immediately from the central limit theorem for i.i.d.
double array if (C3) hold.
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Now we prove (A.5) for r = 1. First we have

L1(x|F, Y ;A) = lim
h→0

K(1)(x|F, h, Y ;A)

= lim
h→0

∫
k(v)

(
δ
1[0,T ](x+ hv)[F (T )a(x+ hv)−A(T )f(x+ hv)]

F 2(T )

+(1− δ)
1(T,∞)(x+ hv)[(1− F (T ))a(x+ hv) +A(T )f(x+ hv)]

(1− F (T ))2

)
dv

= lim
h→0

(1 + o(1))

∫
k(v)

(
δ
1[0,T ](x)[F (T )a(x)−A(T )f(x)]

F 2(T )

+(1− δ)
1(T,∞)(x)[(1− F (T ))a(x) +A(T )f(x)]

(1− F (T ))2

)
dv

= δ
1[0,T ](x)[F (T )a(x)−A(T )f(x)]

F 2(T )
+

(1− δ)
1(T,∞)(x)[(1− F (T ))a(x) +A(T )f(x)]

(1− F (T ))2
.

Let l∞(R+) be the space of all bounded functions on R+ equipped with the
supremum metric. For fixed t with f(t) > 0 and g(t) > 0 and conditions (C5)
and (C6), it is known (see, for example, [12], that

n1/3[F̂n(t)− F (t)]
D→ A(t)Z. in l∞(R+),

so by the functional delta method (e.g. [46]), for fixed Y , we have

n1/3[K(x|F̂n, h, Y )−K(x|F, h, Y )] = K(1)(x|F, h, Y ;AZ) + op(1)

= L1(x|F, Y ;A)Z + op(1).

Since the weak convergence of n1/3[F̂n(t)− F (t)] is in l∞(R+), in the above
the o(1) is uniform over Y , by the strong law of large numbers, for small b and
large d we obtain

n1/3(fn(x|F̂n)− fn(x|F ))

=
1

n

n∑
i=1

n1/3[K(x|F̂n, h, Yi)−K(x|F, h, Yi)](1[b,d](Yi) + 1[b,d]c(Yi))

=
1

n

n∑
i=1

[L1(x|F, Yi;A)Z1[b,d](Y ) + op(1)]

D→ E[L1(x|F, Y ;A)]Z + ε,

where ε is such that 1
n

∑n
i=1 n

1/3[K(x|F̂n, h, Yi) − K(x|F, h, Yi)]1[b,d]c(Yi) ∼ ε,
which can be arbitrarily small, and so E[L1(x|F, Y ;A)1[b,d](Y )]Z is arbitrarily
close to E[L1(x|F, Y ;A)]Z. Thus we have

n1/3(fn(x|F̂n)− fn(x|F ))
D→ E[L1(x|F, Y ;A)]Z.
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Note L1(x|F ;A) is finite and is given by

L1(x|F ;A)

= E[L1(x|F, Y ;A)]

= a(x) + f(x)

(∫ x

0

A(t)

1− F (t)
g(t)dt−

∫ ∞

x

A(t)

F (t)
g(t)dt

)
.

Similarly, when K(r)(·|F, h, Y ) has order r > 1, we have

nr/3(fn(x|F̂n)− fn(x|F ))
D→ 1

r!
E[Lr(x|F, Y ;A, ..., A)]Zr.

i.e., we proved (A.5).
If r = 1 and hn1/3 → ∞, with (A.4) and (A.5), then [n1/3/(nh)1/2]

= 1/
√
hn1/3 → 0, and by standard result for kernel density estimator,

(nh)1/2(fn(x|F )− Ef(x|F )) is asymptotic normal, so we have

n1/3(fn(x|F̂n)− Efn(x|F )) = n1/3(fn(x|F̂n)− fn(x|F ))

+[n1/3/(nh)1/2](nh)1/2(fn(x|F )− Efn(x|F ))

= n1/3(fn(x|F̂n)− fn(x|F )) + op(1)
D→ E[L1(x|F, Y ;A)]Z;

If r = 1 and hn1/3 → 0, then (nh)1/2/n1/3 = (hn1/3)1/2 → 0, and

(nh)1/2(fn(x|F̂n)− Efn(x|F )) = [(nh)1/2/n1/3]n1/3(fn(x|F̂n)− fn(x|F ))

+(nh)1/2(fn(x|F )− Efn(x|F ))

= (nh)1/2(fn(x|F )− Efn(x|F )) + op(1)
D→ N(0, σ2).

Similarly, if r > 1, then (nh)1/2/nr/3 = (hn1−2r/3)1/2 → 0 and

(nh)1/2[fn(x|F̂n)− Ef(x|F )] = [(nh)1/2/nr/3]nr/3(fn(x|F̂n)− fn(x|F ))

+(nh)1/2(fn(x|F )− Efn(x|F ))

= (nh)1/2(fn(x|F )− Efn(x|F )) + op(1)
D→ N(0, σ2).

Also, recall fn(x) is the kernel density estimate of f(x) based on X1, . . . , Xn,
assume

∫
xrk(x)dx = 0 (1 ≤ r ≤ m − 1),

∫
xmk(x)dx 	= 0 and f being m-th

differentiable, then Efn(x|F ) = Efn(x) = f(x) − hm
n Amf (m)(x)/m! + o(hm

n ),
with Am =

∫
xmk(x)dx [5], In the case m = 2 and nh5

n → 0, we have (hn)1/2h =
(nh5

n)
1/2 → 0. This completes the proof of Theorem 1 (ii).

The proofs of Theorems 2-5 are similar and omitted, and can be provided
upon request.
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