
Electronic Journal of Statistics
Vol. 12 (2018) 1210–1255
ISSN: 1935-7524
https://doi.org/10.1214/18-EJS1408

Convex and non-convex regularization

methods for spatial point processes

intensity estimation

Achmad Choiruddin∗

Department of Mathematical Sciences, Aalborg University, Denmark
e-mail: achmad@math.aau.dk

Jean-François Coeurjolly†

Department of Mathematics, Université du Québec à Montréal (UQAM), Canada
Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

e-mail: coeurjolly.jean-francois@uqam.ca

and

Frédérique Letué‡
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1. Introduction

Spatial point pattern data arise in many contexts where interest lies in describ-
ing the distribution of an event in space. Some examples include the locations
of trees in a forest, gold deposits mapped in a geological survey, stars in a clus-
ter star, animal sightings, locations of some specific cells in the retina, or road
accidents (see e.g. Møller and Waagepetersen, 2004; Illian et al., 2008; Baddeley
et al., 2015). Interest in methods for analyzing spatial point pattern data is
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rapidly expanding across many fields of science, notably in ecology, epidemiol-
ogy, biology, geosciences, astronomy, and econometrics.

One of the main interests when analyzing spatial point pattern data is to
estimate the intensity which characterizes the probability that a point (or an
event) occurs in an infinitesimal ball around a given location. In practice, the
intensity is often assumed to be a parametric function of spatial covariates (e.g.
Waagepetersen, 2007; Møller and Waagepetersen, 2007; Waagepetersen, 2008;
Waagepetersen and Guan, 2009; Guan and Shen, 2010; Coeurjolly and Møller,
2014). In this paper, we assume that the intensity function ρ is parameterized
by a vector β and has a log-linear specification

ρ(u;β) = exp(z(u)�β), u ∈ D ⊂ R
d, (1.1)

where z(u) = {z1(u), . . . , zp(u)}� are the p spatial covariates measured at coor-
dinate u, β = {β1, . . . , βp}� is a real p-dimensional parameter, D is the domain
of observation, and d represents the state space of the spatial point processes
(usually d = 2, 3).

Methods to estimate β when p is reasonable are now quite standard. In-
stead of the maximum likelihood estimation which is computationally expen-
sive (Møller and Waagepetersen, 2004), standard methods are based on esti-
mating equation derived from the Campbell theorem and include the Poisson
likelihood (e.g. Waagepetersen, 2007) and logistic regression likelihood methods
(e.g. Baddeley et al., 2014) (see Appendix A for the details on these methods).
An important advantage of such methods is their simple implementation. From
a numerical point of view, it has been demonstrated (see e.g. Baddeley et al.,
2015) that the Poisson likelihood and logistic regression likelihood can be effi-
ciently approximated by a generalized linear model (more precisely a weighted
quasi-Poisson regression for the first one and a logistic regression for the second
one). GLM software can, therefore, be adapted to accurately estimate β. This
is exactly what is proposed by the R package spatstat (Baddeley et al., 2015)
devoted to the analysis of spatial point patterns.

In recent decades, with the advancement of technology and huge investment
in data collection, many applications for estimating the intensity function which
involves a large number of covariates are rapidly available (e.g. Hubbell et al.,
2005; Renner and Warton, 2013; Thurman et al., 2015). When the intensity is
a function of many variables, covariates selection becomes inevitable. Variable
selection in the context of spatial point processes is a recent topic. Thurman
and Zhu (2014) focus on using adaptive lasso to select variables for inhomoge-
neous Poisson point processes. This study is extended to clustered spatial point
processes by Thurman et al. (2015) who establish asymptotic properties (con-
sistency, sparsity, and asymptotic normality distribution) of the estimates. Yue
and Loh (2015) consider modeling spatial point data with Poisson, pairwise in-
teraction point processes, and Neyman-Scott cluster models, incorporated lasso,
adaptive lasso, and elastic net regularization methods. The latter work does not
provide any theoretical result.

In this paper, we intend to extend from a theoretical point of view the previ-
ous papers by considering more methods, more penalties. We propose regularized
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versions of either the Poisson or logistic regression likelihoods to estimate the
intensity of the spatial point processes. The penalty functions we consider are
either convex or non-convex. We provide general conditions on the character-
istics of the spatial point process (finite moments, mixing conditions) and on
the penalty function to ensure an oracle property and a central limit theorem.
It is also to be noted that our theoretical results hold under less restrictive
assumptions on the model and on the asymptotic covariance matrix than the
ones required by Thurman et al. (2015) (see Remark 3). Since we outline the
link between the criteria we maximize and penalized generalized linear models,
our work is mainly based on the pioneering paper by Fan and Li (2001). Our
contribution is to exploit and extend this paper: First, the asymptotic we con-
sider is an increasing domain asymptotic, i.e. the domain of observation, say
Dn ⊂ R

d, increases to R
d with n (so |Dn| the volume of Dn plays the same

role as n in standard literature); Second, unlike the work by Fan and Li (2001)
which assumes the independence of observations, our results can be applied to
spatial point processes which exhibit dependence (e.g. Neyman-Scott processes,
log-Gaussian Cox processes).

From a numerical point of view, we are led to implement regularization meth-
ods for generalized linear models. This is quite straightforward since we only
need to combine the spatstat R package with the two R packages implement-
ing penalized estimation for generalized linear models, glmnet (Friedman et al.,
2010) and ncvreg (Breheny and Huang, 2011).

The rest of the paper is organized as follows. Section 2 gives necessary back-
ground on spatial point processes, details briefly how a parametric intensity
function is classically estimated and formulates the problem we tackle. This
section is quite short but the non expert readers can find more details in Ap-
pendices A-D. Our main contribution is to obtain asymptotic properties for
various spatial point processes models, estimation methods, and penalty func-
tions. These results are detailed in Section 3. Section 4 investigates the finite-
sample properties of the proposed method in simulation study, followed by an
application to tropical forestry datasets in Section 5, and finished by conclu-
sion and discussion in Section 6. Proofs of the main results are postponed to
Appendices E-G.

2. Background and problem formulation

2.1. Spatial point processes and intensity functions

Let X be a spatial point process on R
d. Let D ⊂ R

d be a compact set of
Lebesgue measure |D| which will play the role of the observation domain. We
view X as a locally finite random subset of Rd, i.e. the random number of points
of X in B, N(B), is almost surely finite whenever B ⊂ R

d is a bounded region.
A realization of X in D is thus a set x = {x1, x2, . . . , xm}, where xi ∈ D and
m is the observed number of points in D. Note that m is obtained from the
realization of a random variables and 0 ≤ m < ∞.
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Suppose X has intensity function ρ and second-order product density ρ(2).
Campbell theorem (see e.g. Møller and Waagepetersen, 2004) states that, for
any function k : Rd → [0,∞) or k : Rd × R

d → [0,∞)

E

( ∑
u∈X

k(u)
)
=

∫
Rd

k(u)ρ(u)du (2.1)

E

( �=∑
u,v∈X

k(u, v)
)
=

∫
Rd

∫
Rd

k(u, v)ρ(2)(u, v)dudv. (2.2)

In particular, Campbell theorem provides an intuitive interpretation of ρ and
ρ(2). We may interpret ρ(u)du as the probability of occurrence of a point in
an infinitesimally small ball with center u and volume du. In the same way,
ρ(2)(u, v)dudv is the probability for observing a pair of distinct points from X
occurring jointly in each of two infinitesimally small balls with centers u, v and
volume du, dv. Without entering into details, we can define ρ(k) the k-th order
intensity function (see Møller and Waagepetersen, 2004, for more details). For
further background materials on spatial point processes, see for example Møller
and Waagepetersen (2004); Illian et al. (2008).

In order to study whether a point process deviates from independence (i.e.,
Poisson point process), we often consider the pair correlation function given by

g(u, v) =
ρ(2)(u, v)

ρ(u)ρ(v)

when both ρ and ρ(2) exist with the convention 0/0 = 0. For a Poisson point
process (Appendix B.1), we have ρ(2)(u, v) = ρ(u)ρ(v) so that g(u, v) = 1. If,
for example, g(u, v) > 1 (resp. g(u, v) < 1), this indicates that pair of points
are more likely (resp. less likely) to occur at locations u, v than for a Poisson
point process with the same intensity function as X. If for any u, v, g(u, v)
depends only on u−v, the point process X is said to be second-order reweighted
stationary.

2.2. Parametric intensity estimation

In our study, we assume that the intensity function depends on a vector of pa-
rameters β, i.e. ρ(·) = ρ(·;β). As outlined in the introduction, maximum likeli-
hood estimation is almost unfeasible for general spatial point processes models.
Instead of this method, Campbell formula provides a nice tool for defining es-
timating equations based methods. These methods are now standard in the
context of spatial point processes but we refer the reader to Appendix A for
a more detailed presentation. The standard parametric methods for estimating
β are obtained by maximizing the weighted Poisson likelihood (e.g. Guan and
Shen, 2010) or the logistic regression likelihood (e.g. Baddeley et al., 2014) given
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respectively by

�PL(w;β) =
∑

u∈X∩D

w(u) log ρ(u;β)−
∫
D

w(u)ρ(u;β)du, (2.3)

�LRL(w;β) =
∑

u∈X∩D

w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)

−
∫
D

w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du, (2.4)

where w(·) is a non-negative weight function depending on the first and the
second-order characteristics of X and δ(·) is a non-negative real-valued function.
Appendix A reminds the pertinence of (2.3)-(2.4): Campbell theorem shows that
the gradient vector of (2.3)-(2.4) constitute unbiased estimating equations. The
solution obtained by maximizing (2.3) (resp. (2.4)) is called Poisson estimator
(resp. the logistic regression estimator). We refer readers to Appendix A for
further details on the weight function w(·) and for the role of the function δ(·).

From a numerical point of view, it has been demonstrated that (2.3) and (2.4)
can be efficiently approximated by a weighted generalized linear model (more
precisely a weighted quasi-Poisson regression for the first one and a logistic
regression for the second one). GLM software can therefore be adapted to ac-
curately estimate β. More details about this numerical implementation can be
found in Appendices C.1 and C.2 respectively.

2.3. Regularization techniques

Regularization techniques are introduced as alternatives to stepwise selection for
variable selection and parameter estimation. In general, a regularization method
attempts to maximize the penalized likelihood function �(θ)− η

∑p
j=1 pλj (|θj |),

where �(θ) is the likelihood function of θ, η is the number of observations,
and pλ(·) is a nonnegative penalty function parameterized by a real number
λ ≥ 0. The same general strategy is adopted here in the context of spatial point
processes.

Let �(w;β) be either the weighted Poisson likelihood function (2.3) or the
weighted logistic regression likelihood function (2.4). In a similar way, we define
the penalized weighted likelihood function given by

Q(w;β) = �(w;β)− |D|
p∑

j=1

pλj (|βj |), (2.5)

where |D| is the volume of the observation domain, which plays the same role
as the number of observations η in our setting, λj is a nonnegative tuning
parameter corresponding to βj for j = 1, . . . , p, and pλ is a penalty function
which we now describe. For any λ ≥ 0, we say that pλ(·) : R+ → R is a penalty
function if pλ is a nonnegative function with pλ(0) = 0. Examples of penalty
function are the
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• �2 norm: pλ(θ) =
1
2λθ

2,
• �1 norm: pλ(θ) = λθ,
• Elastic net: for 0 < γ < 1, pλ(θ) = λ{γθ + 1

2 (1− γ)θ2},

• SCAD: for any γ > 2, pλ(θ) =

⎧⎪⎪⎨
⎪⎪⎩
λθ if θ ≤ λ

γλθ− 1
2 (θ

2+λ2)

γ−1 if λ ≤ θ ≤ γλ

λ2(γ2−1)
2(γ−1) if θ ≥ γλ,

• MC+: for any γ > 1, pλ(θ) =

{
λθ − θ2

2γ if θ ≤ γλ
1
2γλ

2 if θ ≥ γλ.

The first and second derivatives of the above functions are given in Table 1. It is
to be noticed that p′λ is not differentiable at θ = λ, γλ (resp. θ = γλ) for SCAD
(resp. for MC+) penalty.

Table 1

The first and the second derivatives of several penalty functions.

Penalty p′λ(θ) p′′λ(θ)

�2 λθ λ

�1 λ 0

Elastic net λ{(1− γ)θ + γ} λ(1− γ)

SCAD

⎧⎪⎪⎨
⎪⎪⎩
λ if θ ≤ λ
γλ−θ
γ−1

if λ ≤ θ ≤ γλ

0 if θ ≥ γλ

⎧⎪⎪⎨
⎪⎪⎩
0 if θ < λ

−1
γ−1

if λ < θ < γλ

0 if θ > γλ

MC+

{
λ− θ

γ
if θ ≤ γλ

0 if θ ≥ γλ

{−1
γ

if θ < γλ

0 if θ > γλ

Penalty functions give rise to specific well-known methods which are summa-
rized in Table 2. More details can be found in Appendix D.

The solution obtained by maximizing (2.5) is called either regularized Poisson
or logistic estimator. From the previous section, the numerical implementation
of the maximization of (2.5) can be done using procedures which estimate a
penalized weighted generalized linear model. This is now quite standard for
instance in R with packages such as glmnet and ncvreg. More details about this
can be found in Appendix C.3.

What is expected from maximizing (2.5) is that the procedure correctly se-
lects the true covariates and that the estimate is consistent and still satisfies a
central limit theorem. To obtain such properties when the observation domain
increases to R

d, specific conditions on the point process, the covariates, the reg-
ularity of the penalty function and most of all on the tuning parameters λj are
required. This is investigated in the next section.
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Table 2

Details of some regularization methods.

Method
∑p

j=1 pλj
(|βj |)

Ridge (Hoerl and Kennard, 1988)
∑p

j=1
1
2
λβ2

j

Lasso (Tibshirani, 1996)
∑p

j=1 λ|βj |
Enet (Zou and Hastie, 2005)*

∑p
j=1 λ{γ|βj |+ 1

2
(1− γ)β2

j }
AL (Zou, 2006)*

∑p
j=1 λj |βj |

Aenet (Zou and Zhang, 2009)*
∑p

j=1 λj{γ|βj |+ 1
2
(1− γ)β2

j }

SCAD (Fan and Li, 2001)
∑p

j=1 pλ(|βj |), pλ(θ) =

⎧⎪⎪⎨
⎪⎪⎩
λθ if θ ≤ λ
γλθ− 1

2
(θ2+λ2)

γ−1
if λ ≤ θ ≤ γλ

λ2(γ2−1)
2(γ−1)

if θ ≥ γλ

MC+ (Zhang, 2010)
∑p

j=1

{(
λ|βj | −

β2
j

2γ

)
I(|βj | ≤ γλ) + 1

2
γλ2

I(|βj | ≥ γλ)
}

* Enet, AL and Aenet, respectively, stand for elastic net, adaptive lasso and adaptive elastic
net

3. Asymptotic theory

In this section, we present the asymptotic results for the regularized Poisson
estimator when considering X as a d-dimensional point process observed over
a sequence of observation domain D = Dn, n = 1, 2, . . . which expands to R

d

as n → ∞. The regularization parameters λj = λn,j for j = 1, . . . , p are now
indexed by n. For sake of conciseness, we do not present the asymptotic results
for the regularized logistic estimator. The results are very similar. The main dif-
ference is lying in the conditions (C.6) and (C.7) for which the matrices An,Bn,
and Cn have a different expression (see Remark 2). So, from now on, we let
�n = �n,PL and Q = Qn be indexed by n.

3.1. Notation and conditions

We recall the classical definition of strong mixing coefficients adapted to spatial
point processes (e.g. Politis et al., 1998): for k, l ∈ N ∪ {∞} and q ≥ 1, define

αk,l(q) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F (Λ1), B ∈ F (Λ2),

Λ1 ∈ B(Rd),Λ2 ∈ B(Rd), |Λ1| ≤ k, |Λ2| ≤ l, d(Λ1,Λ2) ≥ q},
(3.1)

where F is the σ-algebra generated by X∩Λi, i = 1, 2, d(Λ1,Λ2) is the minimal
distance between sets Λ1 and Λ2, and B(Rd) denotes the class of Borel sets in
R

d.

Let β0 = {β01, . . . , β0p}� = {β�
01,β

�
02}� = {β�

01,0
�}� be the p-dimensional

vector of true coefficient values, where β01 is the s-dimensional (s < p) vector of
nonzero coefficients and β02 is the (p-s)-dimensional vector of zero coefficients.
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We define the p× p matrices An(w;β0),Bn(w;β0), and Cn(w;β0) by

An(w;β0) =

∫
Dn

w(u)z(u)z(u)�ρ(u;β0)du,

Bn(w;β0) =

∫
Dn

w(u)2z(u)z(u)�ρ(u;β0)du, and

Cn(w;β0) =

∫
Dn

∫
Dn

w(u)w(v)z(u)z(v)�{g(u, v)− 1}ρ(u;β0)ρ(v;β0)dvdu.

In what follows, for a squared symmetric matrix Mn, νmin(Mn) denotes the
smallest eigenvalue of Mn. Consider the following conditions (C.1)-(C.8) which
are required to derive our asymptotic results.:

(C.1) For every n ≥ 1, Dn = nE = {ne : e ∈ E}, where E ⊂ R
d is convex,

compact, and contains o (the origin of Rd) in its interior.
(C.2) We assume that the intensity function has the log-linear specification given

by (1.1) where β ∈ Θ and Θ is an open convex bounded set of Rp.
(C.3) The covariates z and the weight function w satisfy

sup
u∈Rd

||z(u)|| < ∞ and sup
u∈Rd

|w(u)| < ∞.

(C.4) There exists an integer t ≥ 1 such that for k = 2, . . . , 2 + t, the product
density ρ(k) exists and satisfies ρ(k) < ∞.

(C.5) For the strong mixing coefficients (3.1), we assume that there exists some

t̃ > d(2 + t)/t such that α2,∞(q) = O(q−t̃).
(C.6) lim inf

n→∞
νmin

(
|Dn|−1{Bn,11(w;β0) +Cn,11(w;β0)}

)
> 0.

(C.7) lim inf
n→∞

νmin

(
|Dn|−1An(w;β0)

)
> 0.

(C.8) The penalty function pλ(·) is nonnegative on R+, satisfies pλ(0) = 0 and
is continuously differentiable on R

+\{0} with derivative p′λ assumed to be
a Lipschitz function on R

+ \ {0}. Furthermore, given (λn,j)n≥1, for j =
1, . . . , s, we assume that there exists (r̃n,j)n≥1, where |Dn|1/2r̃n,j → ∞
as n → ∞, such that, for n sufficiently large, pλn,j is thrice continuously
differentiable in the ball centered at |β0j | with radius r̃n,j and we assume
that the third derivative is uniformly bounded.

Under the condition (C.8), we define the sequences an, bn and cn by

an = max
j=1,...s

|p′λn,j
(|β0j |)|, (3.2)

bn = inf
j=s+1,...,p

inf
|θ|≤εn
θ �=0

p′λn,j
(θ), for εn = K1|Dn|−1/2, (3.3)

cn = max
j=1,...s

|p′′λn,j
(|β0j |)| (3.4)

where K1 is any positive constant. These sequences an, bn and cn, detailed in
Table 3 for the different methods considered in this paper, play a central role in
our results. Even if this will be discussed later in Section 3.3, we specify right
now that we require that an|Dn|1/2 → 0, bn|Dn|1/2 → ∞ and cn → 0.
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Table 3

Details of the sequences an, bn and cn for a given regularization method.

Method an bn cn

Ridge λn max
j=1,...s

{|β0j |} 0 λn

Lasso λn λn 0

Enet λn

[
(1− γ) max

j=1,...s
{|β0j |}+ γ

]
γλn (1− γ)λn

AL max
j=1,...s

{λn,j} min
j=s+1,...p

{λn,j} 0

Aenet max
j=1,...s

{λn,j

(
(1− γ)|β0j |+ γ

)
} γ min

j=s+1,...p
{λn,j} (1− γ) max

j=1,...,s
{λn,j}

SCAD 0* λn
** 0*

MC+ 0* λn − K1

γ|Dn|1/2
** 0*

* if λn → 0 as n → ∞
** if |Dn|1/2λn → ∞ as n → ∞

3.2. Main results

We state our main results here. Proofs are relegated to Appendices E-G.
We first show in Theorem 1 that the regularized Poisson estimator converges

in probability and exhibits its rate of convergence.

Theorem 1. Assume the conditions (C.1)-(C.8) hold and let an and cn be given
by (3.2) and (3.4). If an = O(|Dn|−1/2) and cn = o(1), then there exists a local
maximizer β̂ of Qn(w;β) such that ‖β̂ − β0‖ = OP(|Dn|−1/2 + an).

This implies that, if an = O(|Dn|−1/2) and cn = o(1), the regularized Poisson
estimator is root-|Dn| consistent. Furthermore, we demonstrate in Theorem 2
that such a root-|Dn| consistent estimator ensures the sparsity of β̂; that is, the
estimate will correctly set β2 to zero with probability tending to 1 as n → ∞,
and β̂1 is asymptotically normal.

Theorem 2. Assume the conditions (C.1)-(C.8) hold. If an|Dn|1/2 → 0,
bn|Dn|1/2 → ∞ and cn → 0 as n → ∞, the root-|Dn| consistent local maxi-

mizers β̂ = (β̂
�
1 , β̂

�
2 )

� in Theorem 1 satisfy:

(i) Sparsity: P(β̂2 = 0) → 1 as n → ∞,

(ii) Asymptotic Normality: |Dn|1/2Σn(w;β0)
−1/2(β̂1 − β01)

d−→ N (0, Is),

where

Σn(w;β0) =|Dn|{An,11(w;β0) + |Dn|Πn}−1{Bn,11(w;β0) +Cn,11(w;β0)}
{An,11(w;β0) + |Dn|Πn}−1, (3.5)

Πn =diag{p′′λn,1
(|β01|), . . . , p′′λn,s

(|β0s|)}, (3.6)

and where An,11(w;β0) (resp. Bn,11(w;β0),Cn,11(w;β0)) is the s × s top-left
corner of An(w;β0) (resp. Bn(w;β0),Cn(w;β0)).
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As a consequence, Σn(w;β0) is the asymptotic covariance matrix of β̂1. Note
that Σn(w;β0)

−1/2 is the inverse of Σn(w;β0)
1/2, where Σn(w;β0)

1/2 is any

square matrix with Σn(w;β0)
1/2

(
Σn(w;β0)

1/2
)�

= Σn(w;β0).

Remark 1. For lasso and adaptive lasso, Πn = 0. For other penalties, be-
cause cn = o(1), then ‖Πn‖ = o(1). Since ‖An,11(w;β0)‖ = O(|Dn|) from
conditions (C.2) and (C.3), |Dn| ‖Πn‖ is asymptotically negligible with respect
to ‖An,11(w;β0)‖.

Remark 2. Theorems 1 and 2 remain true for the regularized logistic estima-
tor if we replace in the expression of the matrices An,Bn, and Cn, w(u) by
w(u)δ(u)/(ρ(u;β0) + δ(u)), u ∈ Dn and extend the condition (C.3) by adding
supu∈Rd δ(u) < ∞.

The proofs of Theorems 1 and 2 for this estimator are slightly different mainly

because unlike the Poisson likelihood for which we have �
(2)
n (w;β) = −An(w;β),

for the regularized logistic regression likelihood �
(2)
n (w;β) is now stochastic and

we only have E(�
(2)
n (w;β)) = −An(w;β). Despite the additional difficulty, we

maintain that no additional assumption is required.

Remark 3. We want to highlight here the main theoretical differences with
the work by Thurman et al. (2015). First, the methodology and results are
available for the logistic regression likelihood. Second, we consider very gen-
eral penalty function while Thurman et al. (2015) only consider the adaptive
lasso method. Third, Thurman et al. (2015) assume that that |Dn|−1Mn → M
as n → ∞, where Mn is An,Bn or Cn, and where M, i.e. either A, B
or C, are positive definite matrices. Instead we assume the sharper condition
lim infn→∞ νmin(|Dn|−1Mn) > 0, where Mn is either An or Bn + Cn. The
latter point makes the proofs a little bit more technical.

3.3. Discussion of the conditions

We split the conditions we assume into two different categories: conditions (C.1)-
(C.7) and condition (C.8) combined with the assumptions on the behavior of the
sequences an, bn and cn.

Conditions (C.1)-(C.7) are standard in the literature, see e.g. Coeurjolly and
Møller (2014). Essentially, these assumptions ensure that when there is no reg-
ularization, the estimate β̂ is consistent and satisfies a central limit theorem.
To help the reader, we reproduce comments that can be done on these assump-
tions. In condition (C.1), the assumption that E contains o in its interior can
be made without loss of generality. If instead u is an interior point of E, then
condition (C.1) could be modified to that any ball with centre u and radius
r > 0 is contained in Dn = nE for all sufficiently large n. Condition (C.3) is
quite standard. From conditions (C.2)-(C.5), the matrices An(w;β0), Bn(w;β0)
and Cn(w;β0) are bounded by |Dn| (see e.g. Coeurjolly and Møller, 2014). As
mentioned, conditions (C.1)-(C.6) are used to establish a central limit theorem

for |Dn|−1/2�
(1)
n (w;β0) using a general central limit theorem for triangular ar-

rays of nonstationary random fields obtained by Karácsony (2006), which is an
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extension from Bolthausen (1982), then later extended to nonstationary ran-
dom fields by Guyon (1995). As pointed out by Coeurjolly and Møller (2014),
condition (C.6) is a spatial average assumption. This assumption is similar for
linear models to an assumption like νmin(n

−1X�X) where n would play the role
of the number of observations and X would represent the design matrix.

Conditions (C.6)-(C.7) ensure that the matrix Σn(w;β0) is invertible for suf-
ficiently large n. We refer the reader to e.g. Coeurjolly and Møller (2014) where
these conditions are shown to hold for large class of models including Poisson
and Cox processes discussed in Appendix B.

Condition (C.8) controls the higher order terms in Taylor expansion of the
penalty function. Roughly speaking, we expect the penalty function to be at
least Lipschitz and thrice differentiable in a neighborhood of the true parameter
vector. As it is, the condition looks technical, however, it is obviously satisfied
for ridge, lasso, elastic net (and the adaptive versions). According to the choice
of λn, it is satisfied for SCAD and MC+ when |β0j |, for j = 1, . . . , s, is not equal
to γλn and/or λn.

As a consequence of the previous discussion, the main assumptions we require
in this paper are the ones related to the sequences an, bn and cn. We require
that an|Dn|1/2 → 0, bn|Dn|1/2 → ∞ and cn → 0 as n → ∞ simultaneously. For
the ridge regularization method, bn = 0, preventing from applying Theorem 2
for this penalty. For lasso and elastic net, an = K2bn for some constant K2 > 0
(K2=1 for lasso). The two conditions an|Dn|1/2 → 0 and bn|Dn|1/2 → ∞ as
n → ∞ cannot be satisfied simultaneously. This is different for the adaptive
versions where a compromise can be found by adjusting the λn,j ’s, as well as
the two non-convex penalties SCAD and MC+, for which λn can be adjusted.
For the regularization methods considered in this paper, the condition cn → 0
is implied by the condition an|Dn|1/2 → 0 as n → ∞.

4. Simulation study

We conduct a simulation study with three different scenarios, described in Sec-
tion 4.1, to compare the estimates of the regularized Poisson likelihood (PL)
and that of the regularized weighted Poisson likelihood (WPL). We also want
to explore the behavior of the estimates using different regularization methods.
Empirical findings are presented in Section 4.2. Furthermore, we compare, in
Section 4.3, the regularized Poisson and logistic estimators.

4.1. Simulation set-up

The setting is quite similar to that of Waagepetersen (2007) and Thurman et al.
(2015). The spatial domain is D = [0, 1000] × [0, 500]. We center and scale the
201×101 pixel images of elevation (x1) and gradient of elevation (x2) contained
in the bei datasets of spatstat library in R (R Core Team, 2016), and use them
as two true covariates. In addition, we create three different scenarios to define
extra covariates:
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Scenario 1. We generate eighteen 201 × 101 pixel images of covariates as stan-
dard Gaussian white noise and denote them by x3, . . . , x20. We de-
fine z(u) = {1, x1(u), . . . , x20(u)}� as the covariates vector. The
regression coefficients for z3, . . . , z20 are set to zero.

Scenario 2. First, we generate eighteen 201 × 101 pixel images of covariates as
in Scenario 1. Second, we transform them, together with x1 and x2,
to have multicollinearity. In particular, we define z(u) = V�x(u),
where x(u) = {x1(u), . . . , x20(u)}�. More precisely, V is such that
Ω = V�V, and (Ω)ij = (Ω)ji = 0.7|i−j| for i, j = 1, . . . , 20, except
(Ω)12 = (Ω)21 = 0, to preserve the correlation between x1 and x2.
The regression coefficients for z3, . . . , z20 are set to zero.

Scenario 3. We consider a more complex situation. We center and scale the 13
50 × 25 pixel images of soil nutrients covariates obtained from the
study in tropical forest of Barro Colorado Island (BCI) in central
Panama (see Condit, 1998; Hubbell et al., 1999, 2005), convert them
to be 201×101 pixel images as x1 and x2, and use them as the extra
covariates. Together with x1 and x2, we keep the structure of the
covariance matrix to preserve the complexity of the situation. In
this setting, we have z(u) = {1, x1(u), . . . , x15(u)}�. The regression
coefficients for z3, . . . , z15 are set to zero.

The different maps of the covariates obtained from Scenarios 2 and 3 are
depicted in Appendix H. Except for z3 which has high correlation with z2,
the extra covariates obtained from Scenario 2 tend to have a constant value
(Figure 3). This is completely different from the ones obtained from Scenario 3
(Figure 4).

The mean number of points over the domain D, μ, is chosen to be 1600. We
set the true intensity function to be ρ(u;β0) = exp{β0 + β1z1(u) + β2z2(u)},
where β1 = 2 represents a relatively large effect of elevation, β2 = 0.75 reflects
a relatively small effect of gradient, and β0 is selected such that each realization
has 1600 points in average. Furthermore, we erode regularly the domain D such
that, with the same intensity function, the mean number of points over the new
domainD�R becomes 400. The erosion is used to observe the convergence of the
procedure as the observation domain expands. We consider the default number
of dummy points for the Poisson likelihood, denoted by nd2, as suggested in the
spatstat R package, i.e. nd2 ≈ 4m, where m is the number of points. With these
scenarios, we simulate 2000 spatial point patterns from a Thomas point process
(see Appendix B.2) using the rThomas function in the spatstat package. We
also consider two different κ parameters (κ = 5×10−4, κ = 5×10−5) as different
levels of spatial interaction and let ω = 20. For each of the four combinations
of κ and μ, we fit the intensity to the simulated point pattern realizations. We
also fit the oracle model which only uses the two true covariates.

All models are fitted using modified internal function in spatstat (Badde-
ley et al., 2015), glmnet (Friedman et al., 2010), and ncvreg (Breheny and
Huang, 2011). A modification of the ncvreg R package is required to include the
penalized weighted Poisson and logistic likelihoods.
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4.2. Simulation results

To better understand the behavior of Thomas processes designed in this study,
Figure 1 shows the plot of the four realizations using different κ and μ. The
smaller value of κ, the tighter the clusters since there are fewer parents. When
μ = 400, i.e. by considering the realizations observed onD�R, the mean number
of points over the 2000 replications and standard deviation are 396 and 47 (resp.
400 and 137) when κ = 5 × 10−4 (resp. κ = 5 × 10−5). When μ = 1600, the
mean number of points and standard deviation are 1604 and 174 (resp. 1589
and 529) when κ = 5× 10−4 (resp. κ = 5× 10−5).

Fig 1. Realizations of a Thomas process for μ = 400 (row 1), μ = 1600 (row 2), κ = 5×10−4

(column 1), and κ = 5× 10−5 (column 2).

Tables 4 and 5 present the selection properties of the estimates using the
penalized PL and the penalized WPL methods. Similarly to Bühlmann and
Van De Geer (2011), the indices we consider are the true positive rate (TPR),
the false positive rate (FPR), and the positive predictive value (PPV). TPR
corresponds to the ratio of the selected true covariates over the number of true
covariates, while FPR corresponds to the ratio of the selected noisy covariates
over the number of noisy covariates. TPR explains how the model can correctly
select both z1 and z2. Finally, FPR investigates how the model incorrectly select
among z3 to zp (p = 20 for Scenarios 1 and 2 and p = 15 for Scenario 3). PPV
corresponds to the ratio of the selected true covariates over the total number of
selected covariates in the model. PPV describes how the model can approximate
the oracle model in terms of selection. Therefore, we want to find the methods
which have a TPR and a PPV close to 100%, and a FPR close to 0.

Generally, for both the penalized PL and the penalized WPL methods, the
best selection properties are obtained for a larger value of κ which shows weaker
spatial dependence. For a more clustered one, indicated by a smaller value of
κ, it seems more difficult to select the true covariates. As μ increases from 400
(Table 4) to 1600 (Table 5), the TPR tends to improve, so the model can select
both z1 and z2 more frequently.

Ridge, lasso, and elastic net are the regularization methods that cannot sat-
isfy our theorems. It is firstly emphasized that all covariates are always selected
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Table 4

Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of
Thomas processes on the domain D�R (μ = 400) for different values of κ and for the three

different scenarios. Different penalty functions are considered as well as two estimating
equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson

likelihood (WPL).

Method

κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100* 27 35 56 0* 98 89 35 34 33 0* 62

Enet 100* 59 18 39 4 36 91 60 21 31 0* 57

AL 100* 1 93 58 0* 100* 88 7 72 35 0* 67

Aenet 100* 6 72 59 0* 99 89 12 61 34 0* 64

SCAD 100* 18 41 66 0* 98 90 17 46 31 0* 56

MC+ 100* 21 36 68 0* 96 90 21 42 30 0* 54

Scenario 2

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100* 25 35 52 1 88 90 38 29 31 0* 55

Enet 100* 52 19 49 4 62 90 60 20 24 1 38

AL 99 4 80 52 0* 100* 87 9 67 36 0* 67

Aenet 99 8 65 53 0* 99 88 14 54 35 0* 65

SCAD 100* 17 43 64 0* 92 88 17 45 28 0* 50

MC+ 100* 18 41 59 1 87 88 21 41 27 0* 50

Scenario 3

Ridge 100 100 13 100 100 13 100 100 13 100 100 13

Lasso 100* 56 24 52 2 87 98 89 15 13 2 20

Enet 100* 76 18 47 4 63 99 94 14 8 2 11

AL 100* 29 42 52 0* 100* 95 77 17 18 2 30

Aenet 100* 38 33 54 0* 99 96 82 16 15 1 25

SCAD 100* 34 33 58 0* 85 95 71 18 13 1 22

MC+ 100* 35 32 56 0* 84 95 71 18 13 1 23

* Approximate value

by the ridge so that the rates are never changed whatever the method used. For
the penalized PL with lasso and elastic net regularization, it is shown that they
tend to have quite large values of FPR, meaning that they wrongly keep the
noisy covariates more frequently. When the penalized WPL is applied, we gain
smaller FPR, but we suffer from smaller TPR at the same time. This smaller
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Table 5

Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of
Thomas processes on the domain D (μ = 1600) for different values of κ and for the three
different scenarios. Different penalty functions are considered as well as two estimating
equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson

likelihood (WPL).

Method

κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Scenario 1

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100 26 35 52 0* 100* 98 48 22 56 0* 96

Enet 100 64 16 55 6 50 99 76 14 50 5 45

AL 100 0* 98 50 0 100 96 6 77 55 0* 98

Aenet 100 4 79 54 0* 100* 97 11 60 57 0* 96

SCAD 100 17 50 60 0* 100* 98 18 47 52 0* 90

MC+ 100 22 47 60 0* 97 98 23 42 44 0* 79

Scenario 2

Ridge 100 100 10 100 100 10 100 100 10 100 100 10

Lasso 100 26 33 51 0* 97 98 43 24 52 1 91

Enet 100 56 18 51 5 55 99 69 15 49 4 62

AL 100 1 92 51 0 100 96 10 67 53 0* 99

Aenet 100 4 78 51 0* 100* 97 15 52 53 0* 98

SCAD 100 21 37 53 1 85 96 16 50 45 1 77

MC+ 100 24 35 47 2 76 97 19 47 42 2 72

Scenario 3

Ridge 100 100 13 100 100 13 100 100 13 100 100 13

Lasso 100 69 19 52 1 96 100 95 14 48 4 75

Enet 100 85 16 52 5 71 100 97 14 43 5 62

AL 100 43 32 51 0* 100* 99 86 15 51 2 86

Aenet 100 49 27 52 0* 99 99 89 15 50 3 82

SCAD 100 47 27 43 2 72 99 78 17 40 2 63

MC+ 100 48 26 44 2 75 99 79 17 37 2 61

* Approximate value

TPR actually comes from the unselection of z2 which has smaller coefficient
than that of z1.

When we apply adaptive lasso, adaptive elastic net, SCAD, and MC+, we
achieve better performance, especially for FPR which is closer to zero which
automatically improves the PPV. Adaptive elastic net (resp. elastic net) has
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slightly larger FPR than adaptive lasso (resp. lasso). Among all regularization
methods considered in this paper, adaptive lasso seems to outperform the other
ones.

Considering Scenarios 1 and 2, we observe best selection properties for the
penalized PL combined with adaptive lasso. As the design is getting more com-
plex for Scenario 3, applying the penalized PL suffers from much larger FPR,
indicating that this method may not be able to overcome the complicated situa-
tion. However, when we use the penalized WPL, the properties seem to be more
stable for the different designs of simulation study. One more advantage when
considering the penalized WPL is that we can remove almost all extra covari-
ates. It is worth noticing that we may suffer from smaller TPR when we apply
the penalized WPL, but we lose the only less informative covariates. From Ta-
bles 4 and 5, when we are faced with a complex situation, we would recommend
the use of the penalized WPL method with adaptive lasso penalty if the focus is
on selection properties. Otherwise, the use of the penalized PL combined with
adaptive lasso penalty is more preferable.

Tables 6 and 7 give the prediction properties of the estimates in terms of bi-
ases, standard deviations (SD), and square root of mean squared errors (RMSE),
some criteria we define by

Bias =

⎡
⎣ p∑
j=1

{Ê(β̂j)− βj}2
⎤
⎦

1
2

, SD =

⎡
⎣ p∑
j=1

σ̂2
j

⎤
⎦

1
2

,RMSE =

⎡
⎣ p∑
j=1

Ê(β̂j − βj)
2

⎤
⎦

1
2

,

where Ê(β̂j) and σ̂2
j are respectively the empirical mean and variance of the

estimates β̂j , for j = 1, . . . , p, where p = 20 for Scenarios 1 and 2, and p = 15
for Scenario 3.

In general, the properties improve with larger value of κ and μ due to weaker
spatial dependence and larger sample size. For the oracle model where the model
contains only z1 and z2, the WPL estimates are more efficient than the PL
estimates, particularly in the more clustered case, agreeing with the findings by
Guan and Shen (2010) in the unregularized setting.

When the regularization methods are applied, the bias increases in general,
especially when we consider the penalized WPL method. The regularized WPL
has a larger bias since this method does not select z2 much more frequently.
Furthermore, weighted method seems to introduce extra bias, even though the
regularization is not considered as in the oracle model. For a low clustered
process, the SD using the penalized WPL is similar to that of the penalized
PL which may be because of the weaker dependence represented by larger κ,
making weight surface w(·) closer to 1. However, a larger RMSE is obtained
from the penalized WPL. When we observe the more clustered process, we
obtain smaller SD using the penalized WPL which explains why in some cases
(mainly Scenario 3) the RMSE gets smaller.

For the ridge method, the bias is closest to that of the oracle model, but it has
the largest SD. Among the regularization methods, the adaptive lasso method
has the best performance in terms of prediction.
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Table 6

Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of
Thomas processes on the domain D�R (μ = 400) for different values of κ and for the three

different scenarios. Different penalty functions are considered as well as two estimating
equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson

likelihood (WPL).

Method

κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1

Oracle 0.11 0.18 0.21 0.64 0.20 0.67 0.29 0.81 0.86 0.57 0.54 0.78

Ridge 0.11 0.38 0.40 0.72 0.69 1.00 0.28 1.26 1.29 0.98 1.03 1.42

Lasso 0.28 0.32 0.42 1.06 0.32 1.11 0.47 0.99 1.10 1.40 0.73 1.58

Enet 0.24 0.38 0.44 1.28 0.28 1.31 0.45 1.04 1.13 1.59 0.58 1.70

AL 0.10 0.29 0.31 0.87 0.32 0.92 0.38 0.96 1.03 1.18 0.93 1.50

Aenet 0.14 0.30 0.33 0.93 0.39 1.01 0.40 0.96 1.04 1.29 0.82 1.53

SCAD 0.26 0.27 0.38 1.06 0.37 1.12 0.46 0.79 0.91 1.49 0.67 1.64

MC+ 0.28 0.28 0.39 1.04 0.38 1.11 0.47 0.78 0.92 1.48 0.70 1.64

Scenario 2

Oracle 0.12 0.23 0.26 0.71 0.26 0.76 0.30 0.78 0.84 0.59 0.62 0.84

Ridge 0.14 0.46 0.48 0.69 0.93 1.16 0.32 1.23 1.27 0.92 1.15 1.47

Lasso 0.34 0.33 0.48 1.20 0.37 1.26 0.45 0.96 1.06 1.50 0.69 1.65

Enet 0.38 0.40 0.55 1.40 0.35 1.44 0.44 1.03 1.12 1.78 0.49 1.85

AL 0.20 0.33 0.39 0.85 0.32 0.91 0.37 0.93 1.00 1.17 0.86 1.45

Aenet 0.25 0.33 0.42 0.96 0.34 1.02 0.40 0.94 1.02 1.29 0.78 1.51

SCAD 0.38 0.30 0.48 0.95 0.48 1.06 0.44 0.80 0.91 1.53 0.70 1.68

MC+ 0.39 0.30 0.49 1.01 0.49 1.13 0.44 0.80 0.92 1.52 0.71 1.68

Scenario 3

Oracle 0.12 0.46 0.48 0.70 0.26 0.75 0.65 1.14 1.31 0.87 0.88 1.24

Ridge 0.13 1.03 1.04 0.71 1.45 1.62 0.52 3.10 3.14 0.90 2.86 3.00

Lasso 0.20 0.69 0.71 1.26 0.40 1.32 0.51 2.91 2.95 1.93 0.68 2.04

Enet 0.21 0.83 0.86 1.53 0.40 1.58 0.52 2.94 2.99 2.03 0.60 2.12

AL 0.18 0.57 0.60 0.91 0.33 0.97 0.52 2.80 2.85 1.77 0.84 1.96

Aenet 0.22 0.61 0.65 1.04 0.36 1.10 0.52 2.80 2.85 1.86 0.73 2.00

SCAD 0.27 0.61 0.67 1.18 0.59 1.32 0.48 2.49 2.54 1.91 0.64 2.02

MC+ 0.27 0.62 0.68 1.20 0.58 1.33 0.48 2.49 2.54 1.89 0.67 2.00

Considering Scenarios 1 and 2, we obtain best properties when we apply the
penalized PL with adaptive lasso penalty. As the design is getting much more
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Table 7

Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of
Thomas processes on the domain D (μ = 1600) for different values of κ and for the three
different scenarios. Different penalty functions are considered as well as two estimating
equations, the regularized Poisson likelihood (PL) and the regularized weighted Poisson

likelihood (WPL).

Method

κ = 5× 10−4 κ = 5× 10−5

Regularized PL Regularized WPL Regularized PL Regularized WPL

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

Scenario 1

Oracle 0.05 0.11 0.12 0.33 0.15 0.37 0.16 0.45 0.48 0.41 0.22 0.46

Ridge 0.04 0.21 0.21 0.70 0.55 0.90 0.13 0.72 0.73 0.74 0.58 0.94

Lasso 0.14 0.19 0.24 1.03 0.20 1.05 0.23 0.60 0.64 0.99 0.43 1.08

Enet 0.11 0.22 0.24 1.14 0.29 1.17 0.20 0.62 0.65 1.12 0.43 1.20

AL 0.04 0.18 0.18 0.87 0.18 0.89 0.16 0.58 0.60 0.87 0.42 0.96

Aenet 0.05 0.18 0.18 0.96 0.22 0.99 0.17 0.58 0.60 0.90 0.48 1.02

SCAD 0.19 0.18 0.26 1.30 0.34 1.34 0.14 0.53 0.55 1.37 0.51 1.46

MC+ 0.20 0.18 0.27 1.33 0.28 1.36 0.15 0.53 0.55 1.38 0.52 1.48

Scenario 2

Oracle 0.05 0.15 0.16 0.36 0.17 0.40 0.18 0.46 0.49 0.39 0.26 0.47

Ridge 0.05 0.27 0.27 0.69 0.62 0.94 0.17 0.74 0.80 0.78 0.64 1.01

Lasso 0.16 0.20 0.25 1.16 0.24 1.18 0.23 0.60 0.64 1.14 0.43 1.22

Enet 0.17 0.23 0.29 1.24 0.24 1.26 0.23 0.63 0.67 1.33 0.42 1.40

AL 0.07 0.18 0.20 0.85 0.18 0.87 0.18 0.58 0.61 0.83 0.41 0.93

Aenet 0.09 0.19 0.21 0.94 0.20 0.96 0.20 0.59 0.62 0.92 0.41 1.01

SCAD 0.26 0.20 0.33 1.26 0.51 1.36 0.19 0.51 0.55 1.31 0.60 1.44

MC+ 0.26 0.20 0.33 1.31 0.55 1.42 0.19 0.51 0.55 1.32 0.61 1.46

Scenario 3

Oracle 0.13 0.31 0.34 0.43 0.18 0.47 0.31 0.96 1.01 0.75 0.35 0.83

Ridge 0.11 0.84 0.86 0.70 0.96 1.19 0.23 2.50 2.51 1.02 1.43 1.76

Lasso 0.12 0.64 0.65 1.14 0.29 1.17 0.22 2.41 2.42 1.40 0.61 1.52

Enet 0.13 0.71 0.73 1.35 0.30 1.39 0.23 2.42 2.43 1.63 0.56 1.73

AL 0.14 0.55 0.57 0.89 0.18 0.91 0.22 2.37 2.38 1.12 0.67 1.31

Aenet 0.15 0.56 0.58 1.00 0.22 1.03 0.22 2.36 2.37 1.26 0.64 1.41

SCAD 0.24 0.58 0.62 1.41 0.40 1.47 0.24 2.09 2.10 1.50 0.68 1.65

MC+ 0.24 0.58 0.63 1.44 0.42 1.50 0.24 2.09 2.10 1.49 0.71 1.65

complex for Scenario 3, when we use the penalized PL with adaptive lasso, the
SD is doubled and even quadrupled due to the over selection of many unimpor-
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tant covariates. In particular, for the more clustered process, the better proper-
ties are even obtained by applying the regularized WPL combined with adaptive
lasso. From Tables 6 and 7, when the focus is on prediction properties, we would
recommend to apply the penalized WPL combined with adaptive lasso penalty
when the observed point pattern is very clustered and when covariates have a
complex structure of covariance matrix. Otherwise, the use of the penalized PL
combined with adaptive lasso penalty is more favorable. Our recommendations
in terms of prediction support as what we recommend in terms of selection.

4.3. Logistic regression

Our concern here is to compare the regularized Poisson estimator to the regu-
larized logistic estimator with a different number of dummy points. We remind
that the number of dummy points comes up when we discretize the integral
terms in (2.3) and in (2.4).

Table 8

Empirical selection properties (TPR, FPR, and PPV in %) based on 2000 replications of
Thomas processes on the domain D (μ = 1600) for κ = 5× 10−5, for two different

scenarios, and for three different numbers of dummy points. Different estimating equations
are considered, the regularized Poisson and logistic regression likelihoods, employing

adaptive lasso regularization method.

Method nd

Scenario 2 Scenario 3

Unweighted Weighted Unweighted Weighted

TPR FPR PPV TPR FPR PPV TPR FPR PPV TPR FPR PPV

Poisson

20 96 35 32 53 0* 96 98 82 16 47 2 79

40 95 6 77 52 0* 95 98 83 16 46 2 77

80 95 4 83 50 0* 94 98 83 16 43 2 74

Logistic

20 94 11 60 49 0* 91 98 72 20 41 2 73

40 94 8 67 50 0* 93 99 81 16 43 2 74

80 94 5 77 50 0* 93 99 83 16 42 2 73

* Approximate value

We consider three different numbers of dummy points denoted by nd2. By
these different numbers of dummy points, we want to observe the properties
with three different situations: (a) nd2 < m, (b) nd2 ≈ m, and (c) nd2 > m,
where m is the number of points. In the following, m ≈ 1600 and nd2 = 400,
1600, and 6400. Note that the choice by default from the Poisson likelihood in
spatstat corresponds to case (c). Baddeley et al. (2014) show that for datasets
with very large number of points and for very structured point processes, the
logistic likelihood method is clearly preferable as it requires a smaller number
of dummy points to perform quickly and efficiently. We want to investigate a
similar comparison when these methods are regularized.

We only repeat the results for κ = 5×10−5 and μ = 1600, and for Scenarios 2
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Table 9

Empirical prediction properties (Bias, SD, and RMSE) based on 2000 replications of
Thomas processes on the domain D (μ = 1600) for κ = 5× 10−5, for two different

scenarios, and for three different numbers of dummy points. Different estimating equations
are considered, the regularized Poisson and logistic regression likelihoods, employing

adaptive lasso regularization method.

Method nd

Scenario 2 Scenario 3

Unweighted Weighted Unweighted Weighted

Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

No regularization

Poisson

20 0.37 0.64 0.74 0.29 0.74 0.79 0.28 2.15 2.16 0.42 2.06 2.11

40 0.14 0.63 0.65 0.16 0.73 0.75 0.33 2.47 2.50 0.42 2.32 2.35

80 0.17 0.64 0.66 0.11 0.75 0.76 0.26 2.57 2.58 0.43 2.40 2.43

Logistic

20 0.03 0.69 0.69 0.32 1.34 1.37 0.20 2.31 2.32 0.36 2.95 2.97

40 0.07 0.60 0.61 0.12 0.96 0.97 0.23 2.31 2.32 0.37 2.56 2.58

80 0.10 0.60 0.61 0.14 0.81 0.82 0.25 2.36 2.38 0.42 2.38 2.42

Adaptive lasso

Poisson

20 0.30 0.59 0.67 0.86 0.47 0.98 0.30 2.00 2.03 1.14 0.68 1.33

40 0.20 0.58 0.61 0.86 0.49 0.99 0.33 2.33 2.35 1.18 0.70 1.37

80 0.18 0.59 0.62 0.88 0.51 1.02 0.28 2.41 2.43 1.22 0.71 1.41

Logistic

20 0.19 0.50 0.53 0.95 0.55 1.09 0.23 2.06 2.07 1.26 0.73 1.45

40 0.18 0.52 0.55 0.89 0.52 1.03 0.23 2.15 2.16 1.22 0.72 1.42

80 0.18 0.55 0.58 0.89 0.52 1.03 0.25 2.21 2.22 1.24 0.71 1.43

and 3. We use the same selection and prediction indices examined in Section 4.2
and consider only the adaptive lasso method.

Table 8 presents selection properties for the regularized Poisson and logistic
estimators using adaptive lasso regularization. For unweighted versions of the
procedure, the regularized logistic method outperforms the regularized Poisson
method when nd = 20, i.e. when the number of dummy points is much smaller
than the number of points. When nd2 ≈ m or nd2 > m, the methods tend to
have similar performances. When we consider weighted versions of the meth-
ods, the results do not change that much with nd and the regularized Poisson
likelihood slightly outperforms the regularized logistic likelihood. In addition,
for Scenario 3 which considers a more complex situation, the methods tend to
select the noisy covariates much more frequently.

Empirical biases, standard deviation and the square root of mean squared
errors are presented in Table 9. We include all empirical results for the stan-
dard Poisson and logistic estimates (i.e. no regularization is considered). Let
us first consider the unweighted methods with no regularization. The logistic
method clearly has a smaller bias, especially when nd = 20, which explains why
in most situations the RMSE is smaller. However, for the weighted methods,
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although the logistic method has a smaller bias in general, it produces much
larger SD, leading to larger RMSE for all cases. When we compare the weighted
and the unweighted methods for logistic estimates, in general, not only do we
fail to reduce the SD, but we also have a larger bias. When the adaptive lasso
regularization is considered, combined with the unweighted methods, we can
preserve the bias in general and in parallel improve the SD, and hence improve
the RMSE. The logistic likelihood method slightly outperforms the Poisson like-
lihood method. When the weighted methods are considered, we obtain smaller
SD, but we have a larger bias. For weighted versions of the Poisson and logis-
tic likelihoods, the results do not change that much with nd and the weighted
Poisson method slightly outperforms the weighted logistic method. From Ta-
bles 8 and 9, when the number of dummy points can be chosen as nd2 ≈ m
or nd2 > m, we would recommend to apply the Poisson likelihood method.
When the number of dummy points should be chosen as nd2 < m, the logistic
likelihood method is more favorable. Our recommendations regarding whether
weighted or unweighted methods follow the ones as in Section 4.2.

5. Application to forestry datasets

In a 50-hectare region (D = 1, 000m×500m) of the tropical moist forest of Barro
Colorado Island (BCI) in central Panama, censuses have been carried out where
all free-standing woody stems at least 10 mm diameter at breast height were
identified, tagged, and mapped, resulting in maps of over 350,000 individual trees
with more than 300 species (see Condit, 1998; Hubbell et al., 1999, 2005). It is
of interest to know how the very high number of different tree species continues
to coexist, profiting from different habitats determined by e.g. topography or
soil properties (see e.g. Waagepetersen, 2007; Waagepetersen and Guan, 2009).
In particular, the selection of covariates among topological attributes and soil
minerals as well as the estimation of their coefficients are becoming our most
concern.

We are particularly interested in analyzing the locations of 3,604 Beilschmiedia
pendula Lauraceae (BPL) tree stems. We model the intensity of BPL trees as
a log-linear function of two topological attributes and 13 soil properties as the
covariates. Figure 2 contains maps of the locations of BPL trees, elevation,
slope, and concentration of Phosphorus. BPL trees seem to appear in greater
abundance in the areas of high elevation, steep slope, and low concentration of
Phosphorus. The covariates maps are depicted in Figure 4.

We apply the regularized Poisson and logistic likelihoods, combined with
adaptive lasso regularization to select and estimate parameters. Since we do
not deal with datasets which have a very large number of points, we can set
the default number of dummy points for Poisson likelihood as in the spatstat
package, i.e. the number of dummy points can be chosen to be larger than the
number of points, to perform quickly and efficiently. It is worth emphasizing
that we center and scale the 15 covariates to observe which one has the largest
effect on the intensity. The results are presented in Table 10: 12 covariates for
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Fig 2. Maps of locations of BPL trees (top left), elevation (top right), slope (bottom left),
and concentration of Phosphorus (bottom right).

the Poisson likelihood and 11 for the logistic method are selected out of the
15 covariates using the unweighted methods while only 5 covariates (both for
the Poisson and logistic methods) are selected using the weighted versions. The
unweighted methods tend to overfit the model by over selecting unimportant
covariates.

The weighted methods tend to keep out the uninformative covariates. Both
Poisson and logistic estimates own similar selection and estimation results. First,
we find some differences in estimation between the unweighted and the weighted
methods, especially for slope and Manganese (Mn), for which the weighted meth-
ods have approximately two times larger estimators. Second, we may lose some
nonzero covariates when we apply the weighted methods, even though it is only
for the covariates which have relatively small coefficient. Borron (B) has a high
correlation with many of the other covariates, particularly with them which are
not selected. This is possibly why Boron which is selected and may have a non-
negligible coefficient in the unweighted methods is not chosen in the model. This
may explain why the weighted methods introduce extra biases. However, since
the situation appears to be quite close to the Scenario 3 from the simulation
study, the weighted methods are more favorable in terms of both selection and
prediction.

In this application, we do not face any computational problem. Nevertheless,
if we have to model a species of trees with much more points, the default value
for nd will lead to numerical problems. In such a case, the logistic likelihood
would be a good alternative.

These results suggest that BPL trees favor living in areas of higher elevation
and slope. Further, higher levels of Manganese (Mn) and lower levels of both
Phosphorus (P) and Zinc (Zn) concentrations in soil are associated with higher
appearance of BPL trees.
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Table 10

Barro Colorado Island data analysis: Parameter estimates of the regression coefficients for
Beilschmiedia pendula Lauraceae trees applying regularized Poisson and logistic regression

likelihoods with adaptive lasso regularization.

Unweighted method Weighted method

Poisson estimates Logistic estimates Poisson estimates Logistic estimates

Elev 0.39 0.40 0.41 0.45

Slope 0.26 0.32 0.51 0.60

Al 0 0 0 0

B 0.30 0.30 0 0

Ca 0.10 0.15 0 0

Cu 0.10 0.12 0 0

Fe 0.05 0 0 0

K 0 0 0 0

Mg -0.17 -0.18 0 0

Mn 0.12 0.13 0.23 0.24

P -0.60 -0.60 -0.50 -0.52

Zn -0.43 -0.46 -0.35 -0.37

N 0 0 0 0

N.min -0.12 -0.10 0 0

pH -0.14 -0.14 0 0

Nb of cov. 12 11 5 5

6. Conclusion and discussion

We develop regularized versions of estimating equations based on Campbell the-
orem derived from the Poisson and the logistic regression likelihoods. Our proce-
dure is able to perform covariates selection for modeling the intensity of spatial
point processes. Furthermore, our procedure is also generally easy to implement
in R since we need to combine spatstat package with glmnet and ncvreg pack-
ages. We study the asymptotic properties of both regularized weighted Poisson
and logistic estimates in terms of consistency, sparsity, and asymptotic normal-
ity. We find that, among the regularization methods considered in this paper,
adaptive lasso, adaptive elastic net, SCAD, and MC+ are the methods that can
satisfy our theorems.

We carry out some scenarios in the simulation study to observe selection
and prediction properties of the estimates. We compare the penalized Poisson
likelihood (PL) and the penalized weighted Poisson likelihood (WPL) with dif-
ferent penalty functions. From the results, when we deal with covariates having a
complex covariance matrix and when the point pattern looks quite clustered, we
recommend to apply the penalized WPL combined with adaptive lasso regular-
ization. Otherwise, the regularized PL with the adaptive lasso is more preferable.
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The further and more careful investigation to choose the tuning parameters may
be needed to improve the selection properties. We note the bias increases quite
significantly when the regularized WPL is applied. When the penalized WPL is
considered, a two-step procedure may be needed to improve the prediction prop-
erties: (1) use the penalized WPL combined with the adaptive lasso to choose
the covariates, then (2) use the selected covariates to obtain the estimates. This
post-selection inference procedure has not been investigated in this paper.

We also compare the estimates obtained from the Poisson and the logistic
likelihoods. When the number of dummy points can be chosen to be either
similar to or larger than the number of points, we recommend the use of the
Poisson likelihood method. Nevertheless, when the number of dummy points
should be chosen to be smaller than the number of points, the logistic method
is more favorable.

A further work would consist in studying the situation when the number of
the covariates is much larger than the sample size. In such a situation, the coor-
dinate descent algorithm used in this paper may cause some numerical troubles.
The Dantzig selector procedure introduced by Candes and Tao (2007) might be
a good alternative as the implementation for linear models (and for generalized
linear models) results in a linear programming. It would be interesting to bring
this approach to spatial point process setting.

Another direction could consist in extending the intensity model itself to get
more flexibility, for instance using single-index type models. Such models have
already been proposed for spatial point processes by Fang and Loh (2017) with
moderate number of covariates. Using e.g. Zhu et al. (2011), combining such
models and regularization techniques for inhomogeneous spatial point processes
seems feasible. Kernel-type regression methods could also appear as interesting
perspectives and the work by Crawford et al. (2018) could serve as a basis to
investigate such methods for spatial point processes feature selection problem.

Appendix A: Parametric intensity estimation

One of the standard ways to fit models to data is by maximizing the likelihood of
the model for the data. While maximum likelihood method is feasible for para-
metric Poisson point process models (Appendix A.1), computationally intensive
Markov chain Monte Carlo (MCMC) methods are needed otherwise (Møller and
Waagepetersen, 2004). As MCMC methods are not yet straightforward to im-
plement, estimating equations based on Campbell theorem have been developed
(see e.g. Waagepetersen, 2007; Møller and Waagepetersen, 2007; Waagepetersen,
2008; Guan and Shen, 2010; Baddeley et al., 2014). We review the estimating
equations derived from the Poisson likelihood in Appendix A.2-A.3 and from
the logistic regression likelihood in Appendix A.4.

A.1. Maximum likelihood estimation

For an inhomogeneous Poisson point process with intensity function ρ parame-
terized by β, the likelihood function is
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L(β) =
∏

u∈X∩D

ρ(u;β) exp

(∫
D

(
1− ρ(u;β)

)
du

)
,

and the log-likelihood function of β is

�(β) =
∑

u∈X∩D

log ρ(u;β)−
∫
D

ρ(u;β)du, (A.1)

where we have omitted the constant term
∫
D
1du = |D|. As the intensity func-

tion has log-linear form (1.1), (A.1) reduces to

�(β) =
∑

u∈X∩D

β�z(u)−
∫
D

exp(β�z(u))du.

Rathbun and Cressie (1994) show that the maximum likelihood estimator is
consistent, asymptotically normal and efficient as the sample region goes to R

d.

A.2. Poisson likelihood

Let β0 be the true parameter vector. By applying Campbell theorem (2.1) to
the score function, i.e. the gradient vector of �(β) denoted by �(1)(β), we have

E�(1)(β) = E

∑
u∈X∩D

z(u)−
∫
D

z(u) exp(β�z(u))du

=

∫
D

z(u) exp(β�
0 z(u))du−

∫
D

z(u) exp(β�z(u))du

=

∫
D

z(u)(exp(β�
0 z(u))− exp(β�z(u)))du = 0

when β0 = β. So, the score function of the Poisson log-likelihood appears to
be an unbiased estimating equation, even though X is not a Poisson point pro-
cess. The estimator maximizing (A.1) is referred to as the Poisson estimator.
The properties of the Poisson estimator have been carefully studied. Schoen-
berg (2005) shows that the Poisson estimator is still consistent for a class of
spatio-temporal point process models. The asymptotic normality for a fixed ob-
servation domain is obtained by Waagepetersen (2007) while Guan and Loh
(2007) establish asymptotic normality under an increasing domain assumption
and for suitable mixing point processes.

Regarding the parameter ψ (see Appendix B.2), Waagepetersen and Guan
(2009) study a two-step procedure to estimate both β and ψ, and they proved
that, under certain mixing conditions, the parameter estimates (β̂, ψ̂) enjoy the
properties of consistency and asymptotic normality.

A.3. Weighted Poisson likelihood

Although the estimating equation approach derived from the Poisson likelihood
is simpler and faster to implement than maximum likelihood estimation, it
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potentially produces a less efficient estimate than that of maximum likelihood
(Waagepetersen, 2007; Guan and Shen, 2010) because information about inter-
action of events is ignored. To regain some lack of efficiency, Guan and Shen
(2010) propose a weighted Poisson log-likelihood function given by

�(w;β) =
∑

u∈X∩D

w(u) log ρ(u;β)−
∫
D

w(u)ρ(u;β)du, (A.2)

where w(·) is a weight surface. By regarding (A.2), we see that a larger weight
w(u) makes the observations in the infinitesimal region du more influent. By
Campbell theorem, �(1)(w;β) is still an unbiased estimating equation. In addi-
tion, Guan and Shen (2010) prove that, under some conditions, the parameter
estimates are consistent and asymptotically normal.

Guan and Shen (2010) show that a weight surface w(·) that minimizes the
trace of the asymptotic variance-covariance matrix of the estimates maximiz-
ing (A.2) can result in more efficient estimates than Poisson estimator. In par-
ticular, the proposed weight surface is

w(u) = {1 + ρ(u)f(u)}−1,

where f(u) =
∫
D
{g(‖v − u‖;ψ)− 1}du and g(·) is the pair correlation function.

For a Poisson point process, note that f(u) = 0 and hence w(u) = 1, which re-
duces to maximum likelihood estimation. For general point processes, the weight
surface depends on both the intensity function and the pair correlation func-
tion, thus incorporates information on both inhomogeneity and dependence of
the spatial point processes. When clustering is present so that g(v−u) > 1, then
f(u) > 0 and hence the weight decreases with ρ(u). The weight surface can be

achieved by setting ŵ(u) = {1+ ρ̂(u)f̂(u)}−1. To get the estimate ρ̂(u), β is sub-
stituted by β̃ given by Poisson estimates, that is, ρ̂(u) = ρ(u; β̃). Alternatively,
ρ̂(u) can also be computed non parametrically by kernel method. Furthermore,
Guan and Shen (2010) suggest to approximate f(u) by K(r)− πr2, where K(·)
is the Ripley’s K−function estimated by

K̂(r) =

�=∑
u,v∈X∩D

I[‖u− v‖ ≤ r]

ρ̂(u)ρ̂(v)|D ∩Du−v|
.

Guan et al. (2015) extend the study by Guan and Shen (2010) and consider
more complex estimating equations. Specifically, w(u)z(u) is replaced by a func-
tion h(u;β) in the derivative of (A.2) with respect to β. The procedure results
in a slightly more efficient estimate than the one obtained from (A.2). However,
the computational cost is more important and since we combine estimating
equations and penalization methods (see Section 2.3), we have not considered
this extension.

A.4. Logistic regression likelihood

Although the estimating equations discussed in Appendices A.2 and A.3 are un-
biased, these methods do not, in general, produce unbiased estimator in practi-
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cal implementations. Waagepetersen (2008) and Baddeley et al. (2014) propose
another estimating function which is indeed close to the score of the Poisson
log-likelihood but is able to obtain less biased estimator than Poisson estimates.
In addition, their proposed estimating equation is in fact the derivative of the
logistic regression likelihood.

Following Baddeley et al. (2014), we define the weighted logistic regression
log-likelihood function by

�(w;β) =
∑

u∈X∩D

w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)

−
∫
D

w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du, (A.3)

where δ(u) is a nonnegative real-valued function. Its role as well as an explana-
tion of the name ’logistic method’ will be explained further in Appendix C.2.
Note that the score of (A.3) is an unbiased estimating equation. Waagepetersen
(2008) shows asymptotic normality for Poisson and some clustered point pro-
cesses for the estimator obtained from a similar procedure. Furthermore, the
methodology and results are studied by Baddeley et al. (2014) considering spa-
tial Gibbs point processes.

To determine the optimal weight surface w(·) for logistic method, we follow
Guan and Shen (2010) who minimize the trace of the asymptotic covariance
matrix of the estimates. We obtain the weight surface defined by

w(u) =
ρ(u) + δ(u)

δ(u){1 + ρ(u)f(u)} ,

where ρ(u) and f(u) can be estimated as in Appendix A.3.

Appendix B: Examples of spatial point processes models with
prescribed intensity function

We discuss spatial point process models specified by deterministic or random in-
tensity function. Particularly, we consider two important model classes, namely
Poisson and Cox processes. Poisson point processes serve as a tractable model
class for no interaction or complete spatial randomness. Cox processes form
major classes for clustering or aggregation. For conciseness, we focus on the
two later classes of models. We could also have presented determinantal point
processes (e.g. Lavancier et al., 2015) which constitute an interesting class of
repulsive point patterns with explicit moments. This has not been further in-
vestigated for the sake of brevity. In this paper, we focus on log-linear models
of the intensity function given by (1.1).

B.1. Poisson point process

A point process X on D is a Poisson point process with intensity function ρ,
assumed to be locally integrable, if the following conditions are satisfied:
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1. for any B ⊆ D with 0 ≤ μ(B) < ∞, N(B) ∼ Poisson(μ(B)),
2. conditionally on N(B), the points in X ∩ B are i.i.d. with joint density

proportional to ρ(u), u ∈ B.

A Poisson point process with a log-linear intensity function is also called a
modulated Poisson point process (e.g. Møller and Waagepetersen, 2007; Waage-
petersen, 2008). In particular, for Poisson point processes, ρ(2)(u, v) = ρ(u)ρ(v),
and g(u, v) = 1, ∀u, v ∈ D.

B.2. Cox processes

A Cox process is a natural extension of a Poisson point process, obtained by
considering the intensity function of the Poisson point process as a realization
of a random field. Suppose that Λ = {Λ(u) : u ∈ D} is a nonnegative random
field. If the conditional distribution of X given Λ is a Poisson point process
on D with intensity function Λ, then X is said to be a Cox process driven by
Λ (see e.g. Møller and Waagepetersen, 2004). There are several types of Cox
processes. Here, we consider two types of Cox processes: a Neyman-Scott point
process and a log Gaussian Cox process.

Neyman-Scott point processes. Let C be a stationary Poisson process
(mother process) with intensity κ > 0. Given C, let Xc, c ∈ C, be independent
Poisson processes (offspring processes) with intensity function

ρc(u;β) = exp(β�z(u))k(u− c;ω)/κ,

where k is a probability density function determining the distribution of off-
spring points around the mother points parameterized by ω. Then X = ∪c∈CXc

is a special case of an inhomogeneous Neyman-Scott point process with mothers
C and offspring Xc, c ∈ C. The point process X is a Cox process driven by
Λ(u) = exp(β�z(u))

∑
c∈C k(u− c, ω)/κ (e.g. Waagepetersen, 2007; Coeurjolly

and Møller, 2014) and we can verify that the intensity function of X is indeed

ρ(u;β) = exp(β�z(u)).

One example of Neyman-Scott point process is the Thomas process where

k(u) = (2πω2)−d/2 exp(−‖u‖2/(2ω2))

is the density for Nd(0, ω
2Id). Conditionally on a parent event at location c, chil-

dren events are normally distributed around c. Smaller values of ω correspond to
tighter clusters, and smaller values of κ correspond to fewer number of parents.
The parameter vector ψ = (κ, ω)� is referred to as the interaction parameter
as it modulates the spatial interaction (or, dependence) among events.

Log Gaussian Cox process. Suppose that logΛ is a Gaussian random
field. Given Λ, the point process X follows Poisson process. Then X is said to
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be a log Gaussian Cox process driven by Λ (Møller and Waagepetersen, 2004).
If the random intensity function can be written as

logΛ(u) = β�z(u) + φ(u)− σ2/2,

where φ is a zero-mean stationary Gaussian random field with covariance func-
tion c(u, v;ψ) = σ2R(v−u; ζ) which depends on parameter ψ = (σ2, ζ)� (Møller
and Waagepetersen, 2007; Coeurjolly and Møller, 2014). The intensity function
of this log Gaussian Cox process is indeed given by

ρ(u;β) = exp(β�z(u)).

One example of correlation function is the exponential form (e.g. Waagepetersen
and Guan, 2009)

R(v − u; ζ) = exp(−‖u− v‖/ζ), for ζ > 0.

Here, ψ = (σ2, ζ)� constitutes the interaction parameter vector, where σ2 is
the variance and ζ is the correlation scale parameter.

Appendix C: Numerical methods

We present numerical aspects in this section. For nonregularized estimation,
there are two approaches that we consider. Weighted Poisson regression is ex-
plained in Appendix C.1, while logistic regression is reviewed in Appendix C.2.
Penalized estimation procedure is done by employing coordinate descent al-
gorithm (Appendix C.3). We separate the use of the convex and non-convex
penalties in Appendices C.3.1 and C.3.2.

C.1. Weighted Poisson regression

Berman and Turner (1992) develop a numerical quadrature method to approxi-
mate maximum likelihood estimation for an inhomogeneous Poisson point pro-
cess. They approximate the likelihood by a finite sum that had the same ana-
lytical form as the weighted likelihood of generalized linear model with Poisson
response. This method is then extended to Gibbs point processes by Badde-
ley and Turner (2000). Suppose we approximate the integral term in (A.1) by
Riemann sum approximation

∫
D

ρ(u;β)du ≈
M∑
i

viρ(ui;β)

where ui, i = 1, . . . ,M are points inD consisting of them data points andM−m
dummy points. The quadrature weights vi > 0 are such that

∑
i vi = |D|. To

implement this method, the domain is firstly partitioned into M rectangular
pixels of equal area, denoted by a. Then one dummy point is placed in the
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center of the pixel. Let Δi be an indicator of whether the point is an event of
point process (Δi = 1) or a dummy point (Δi = 0). Without loss of gener-
ality, let u1, . . . , um be the observed events and um+1, . . . , uM be the dummy
points. Thus, the Poisson log-likelihood function (A.1) can be approximated and
rewritten as

�(β) ≈
M∑
i

vi{yi log ρ(ui;β)− ρ(ui;β)}, where yi = v−1
i Δi. (C.1)

Equation (C.1) corresponds to a quasi Poisson log-likelihood function. Maximiz-
ing (C.1) is equivalent to fitting a weighted Poisson generalized linear model,
which can be performed using standard statistical software. Similarly, we can
approximate the weighted Poisson log-likelihood function (A.2) using numerical
quadrature method by

�(w;β) ≈
M∑
i

wivi{yi log ρ(ui;β)− ρ(ui;β)}. (C.2)

where wi is the value of the weight surface at point i. The estimate ŵi is ob-
tained as suggested by Guan and Shen (2010). The similarity between (C.1) and
(C.2) allows us to compute the estimates using software for generalized linear
model as well. This fact is in particular exploited in the ppm function in the
spatstat R package (Baddeley and Turner, 2005; Baddeley et al., 2015) with
option method="mpl". To make the presentation more general, the number of
dummy points is denoted by nd2 for the next sections.

C.2. Logistic regression

To perform well, the Berman-Turner approximation often requires a quite large
number of dummy points. Hence, fitting such generalized linear models can be
computationally intensive, especially when dealing with a quite large number
of points. When the unbiased estimating equations are approximated using de-
terministic numerical approximation as in Appendix C.1, it does not always
produce unbiased estimator. To achieve unbiased estimator, we estimate (A.3)
by

�(w;β) ≈
∑

u∈X∩D

w(u) log

(
ρ(u;β)

δ(u) + ρ(u;β)

)
+

∑
u∈D∩D

w(u) log

(
δ(u)

ρ(u;β) + δ(u)

)
,

(C.3)

where D is dummy point process independent of X and with intensity function
δ. The form (C.3) is related to the estimating equation defined by Baddeley et al.
(2014, eq. 7). Besides that, we consider this form since if we apply Campbell
theorem to the last term of (C.3), we obtain

E

∑
u∈D∩D

w(u) log

(
δ(u)

ρ(u;β) + δ(u)

)
=

∫
D

w(u)δ(u) log

(
ρ(u;β) + δ(u)

δ(u)

)
du,
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which is exactly what we have in the last term of (A.3). In addition, conditional
on X ∪ D, (C.3) is the weighted likelihood function for Bernoulli trials, y(u) =
1{u ∈ X} for u ∈ X ∪ D, with

P{y(u) = 1} =
ρ(u;β)

δ(u) + ρ(u;β)
=

exp
(
− log δ(u) + β�z(u)

)
1 + exp

(
− log δ(u) + β�z(u)

) .
Precisely, (C.3) is a weighted logistic regression with offset term − log δ. Thus,
parameter estimates can be straightforwardly obtained using standard software
for generalized linear models. This approach is in fact provided in the spatstat
package in R by calling the ppm function with option method="logi" (Baddeley
et al., 2014, 2015).

In spatstat, the dummy point process D generates nd2 points in average
in D from a Poisson, binomial, or stratified binomial point process. Baddeley
et al. (2014) suggest to choose δ(u) = 4m/|D|, where m is the number of points
(so, nd2 = 4m). Furthermore, to determine δ, this option can be considered as a
starting point for a data-driven approach (see Baddeley et al., 2014, for further
details).

C.3. Coordinate descent algorithm

LARS algorithm (Efron et al., 2004) is a remarkably efficient method for com-
puting an entire path of lasso solutions. For linear models, the computational
cost is of order O(Mp2), which is the same order as a least squares fit. Coor-
dinate descent algorithm (Friedman et al., 2007, 2010) appears to be a more
competitive algorithm for computing the regularization paths by costs O(Mp)
operations. Therefore we adopt cyclical coordinate descent methods, which can
work really fast on large datasets and can take advantage of sparsity. Coordinate
descent algorithms optimize a target function with respect to a single parameter
at a time, iteratively cycling through all parameters until convergence criterion
is reached. We detail this for some convex and non-convex penalty functions in
the next two sections. Here, we only present the coordinate descent algorithm
for fitting generalized weighted Poisson regression. A similar approach is used
to fit penalized weighted logistic regression.

C.3.1. Convex penalty functions

Since �(w;β) given by (C.2) is a concave function of the parameters, the Newton-
Raphson algorithm used to maximize the penalized log-likelihood function can
be done using the iteratively reweighted least squares (IRLS) method. If the
current estimate of the parameters is β̃, we construct a quadratic approximation
of the weighted Poisson log-likelihood function using Taylor expansion:

�(w;β) ≈ �Q(w;β) = −1

2

M∑
i

νi(y
∗
i − z�i β)

2 + C(β̃), (C.4)
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where C(β̃) is a constant, y∗i are the working response values and νi are the
weights,

νi = wivi exp(z
�
i β̃)

y∗i = z�i β̃ +
yi − exp(z�i β̃)

exp(z�i β̃)
.

Regularized Poisson linear model works by firstly identifying a decreasing se-
quence of λ ∈ [λmin, λmax], for which starting with minimum value of λmax such
that the entire vector β̂ = 0. For each value of λ, an outer loop is created to
compute �Q(w;β) at β̃. Secondly, a coordinate descent method is applied to
solve a penalized weighted least squares problem

min
β∈Rp

Ω(β) = min
β∈Rp

{−�Q(w;β) + |D|
p∑

j=1

pλj (|βj |)}. (C.5)

The coordinate descent method is explained as follows. Suppose we have the
estimate β̃l for l �= j, l, j = 1, . . . , p. The method consists in partially optimizing
(C.5) with respect to βj , that is

min
βj

Ω(β̃1, . . . , β̃j−1, βj , β̃j+1, . . . , β̃p).

Friedman et al. (2007) provide the form of the coordinate-wise update for
several penalized regression estimators. For instance, the coordinate-wise update
for the elastic net, which embraces the ridge and lasso regularization by setting
respectively γ to 0 or 1, is

β̃j ←
S

(
M∑
i=1

νjzij(yi − ỹ
(j)
i ), |D|λγ

)

M∑
i=1

νjz
2
ij + |D|λ(1− γ)

, (C.6)

where ỹ
(j)
i = β̃0 +

∑
l �=j zilβ̃l is the fitted value excluding the contribution from

covariate zij , and S(z, λ) is the soft-thresholding operator with value

S(z, λ) = sign(z)(|z| − λ)+ =

⎧⎪⎨
⎪⎩
z − λ if z > 0 and λ < |z|
z + λ if z < 0 and λ < |z|
0 if λ ≥ |z|.

(C.7)

The update (C.6) is repeated for j = 1, . . . , p until convergence. Coordinate
descent algorithm for several convex penalties is implemented in the R package
glmnet (Friedman et al., 2010). For (C.6), we can set γ = 0 to implement ridge
and γ = 1 to lasso, while we set 0 < γ < 1 to apply elastic net regularization. For
adaptive lasso, we follow Zou (2006), take γ = 1 and replace λ by λj = λ/|β̃j |τ ,
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where β̃ is an initial estimate, say β̃(ols) or β̃(ridge), and τ is a positive tuning
parameter. To avoid the computational evaluation for choosing τ , we follow
Zou (2006, Section 3.4) and Wasserman and Roeder (2009) who also considered
τ = 1, so we choose λj = λ/|β̃j(ridge)|, where β̃(ridge) is the estimates obtained
from ridge regression. Implementing adaptive elastic net follows along similar
lines.

C.3.2. Non-convex penalty functions

Breheny and Huang (2011) investigate the application of coordinate descent
algorithm to fit penalized generalized linear model using SCAD and MC+,
for which the penalty is non-convex. Mazumder et al. (2011) also study the
coordinate-wise optimization algorithm in linear models considering more gen-
eral non-convex penalties.

Mazumder et al. (2011) conclude that, for a known current estimate θ̃, the
univariate penalized least squares function Qu(θ) =

1
2 (θ− θ̃)2+pλ(|θ|) should be

convex to ensure that the coordinate-wise procedure converges to a stationary
point. Mazumder et al. (2011) find that this turns out to be the case for SCAD
and MC+ penalty, but it cannot be satisfied by bridge (or power) penalty and
some cases of log-penalty.

Breheny and Huang (2011) derive the solution of coordinate descent algo-
rithm for SCAD and MC+ in generalized linear models cases, and it is imple-
mented in the ncvreg package of R. Let β̃l be a vector containing estimates
β̃l for l �= j, l, j = 1, . . . , p, and we wish to partially optimize (C.5) with re-

spect to βj . If we define g̃j =
∑M

i=1 νjzij(yi − ỹ
(j)
i ) and η̃j =

∑M
i=1 νjz

2
ij , the

coordinate-wise update for SCAD is

β̃j ←

⎧⎪⎪⎨
⎪⎪⎩

S(g̃j ,|D|λ)
η̃j

if |g̃j | ≤ λ(η̃j + |D|)
S(g̃j ,|D|γλ/(γ−1))

η̃j−|D|/(γ−1) if λ(η̃j + |D|) ≤ |g̃j | ≤ η̃jλγ
g̃j
η̃j

if |g̃j | ≥ η̃jλγ,

for any γ > maxj(1 + 1/η̃j). Then, for γ > maxj(1/η̃j) and the same definition
of g̃j and η̃j , the coordinate-wise update for MC+ is

β̃j ←
{

S(g̃j ,|D|λ)
η̃j−|D|/γ if |g̃j | ≤ η̃jλγ
g̃j
η̃j

if |g̃j | ≥ η̃jλγ,

where S(z, λ) is the soft-thresholding operator given by (C.7).

C.4. Selection of regularization or tuning parameter

It is worth noticing that coordinate descent procedures (and other computation
procedures computing the penalized likelihood estimates) rely on the tuning
parameter λ so that the choice of λ is also becoming an important task. The
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estimation using a large value of λ tends to have smaller variance but larger
biases, whereas the estimation using a small value of λ leads to have zero biases
but larger variance. The trade-off between the biases and the variances yields
an optimal choice of λ (Fan and Lv, 2010).

To select λ, it is reasonable to identify a range of λ values extending from
a maximum value of λ for which all penalized coefficients are zero to λ = 0
(e.g. Friedman et al., 2010; Breheny and Huang, 2011). After that, we select a
λ value which optimizes some criterion. By fixing a path of λ ≥ 0, we select the
tuning parameter λ which minimizes WQBIC(λ), a weighted version of the BIC
criterion, defined by

WQBIC(λ) = −2�(w; β̂(λ)) + s(λ) log |D|,

where s(λ) =
∑p

j=1 I{β̂j(λ) �= 0} is the number of selected covariates with
nonzero regression coefficients and |D| is the observation volume which rep-
resents the sample size. For linear regression models, Y = X�β̂+ε, Wang et al.
(2007) propose a BIC-type criterion for choosing λ by

BIC(λ) = log
‖Y −X�β̂(λ)‖2

η
+

1

η
log(η)DF(λ),

where η is the number of observations and DF(λ) is the degree of freedom. This
criterion is consistent, meaning that, it selects the correct model with probability
approaching 1 in large samples when a set of candidate models contains the true
model. Their findings is in line with the study of Zhang et al. (2010) for which
the criterion was presented in more general way, called generalized information
criterion (GIC). The criterion WQBIC is the specific form of GIC proposed by
Zhang et al. (2010).

The selection of γ for SCAD and MC+ is another task, but we fix γ = 3.7
for SCAD and γ = 3 for MC+, following Fan and Li (2001) and Breheny and
Huang (2011) respectively, to avoid more complexities.

Appendix D: A few references for regularization methods

As a first penalization technique to improve ordinary least squares, ridge re-
gression (e.g. Hoerl and Kennard, 1988) works by minimizing the residual sum
of squares subject to a bound on the �2 norm of the coefficients. As a continu-
ous shrinkage method, ridge regression achieves its better prediction through a
bias-variance trade-off. Ridge can also be extended to fit generalized linear mod-
els. However, the ridge cannot reduce model complexity since it always keeps
all the predictors in the model. Then, it is introduced a method called lasso
(Tibshirani, 1996), where it employs �1 penalty to obtain variable selection and
parameter estimation simultaneously. Despite lasso enjoys some attractive sta-
tistical properties, it has some limitations in some senses (Fan and Li, 2001; Zou
and Hastie, 2005; Zou, 2006; Zhang, 2010), making huge possibilities to develop
other methods. In the scenario where there are high correlations among predic-
tors, Zou and Hastie (2005) propose an elastic net technique which is a convex
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combination between �1 and �2 penalties. This method is particularly useful
when the number of predictors is much larger than the number of observations
since it can select or eliminate the strongly correlated predictors together.

The lasso procedure suffers from nonnegligible bias and does not satisfy an
oracle property asymptotically (Fan and Li, 2001). Fan and Li (2001) and Zhang
(2010), among others, introduce non-convex penalties to get around these draw-
backs. The idea is to bridge the gap between �0 and �1, by trying to keep unbiased
the estimates of nonzero coefficients and by shrinking the less important vari-
ables to be exactly zero. The rationale behind the non-convex penalties such as
SCAD and MC+ can also be understood by considering its first derivative (see
Table 1). They start by applying the similar rate of penalization as the lasso, and
then continuously relax that penalization until the rate of penalization drops
to zero. However, employing non-convex penalties in regression analysis, the
main challenge is often in the minimization of the possible non-convex objective
function when the non-convexity of the penalty is no longer dominated by the
convexity of the likelihood function. This issue has been carefully studied. Fan
and Li (2001) propose the local quadratic approximation (LQA). Zou and Li
(2008) propose a local linear approximation (LLA) which yields an objective
function that can be optimized using least angle regression (LARS) algorithm
(Efron et al., 2004). Finally, Breheny and Huang (2011) and Mazumder et al.
(2011) investigate the application of coordinate descent algorithm to non-convex
penalties.

In (2.5), it is worth emphasizing that we allow each direction to have a
different regularization parameter. By doing this, the �1 and elastic net penalty
functions are extended to the adaptive lasso (e.g. Zou, 2006) and adaptive elastic
net (e.g. Zou and Zhang, 2009). Table 2 details the regularization methods
considered in this study.

Appendix E: Auxiliary Lemma

The following result is used in the proof of Theorems 1-2. Throughout the proofs,
the notation Xn = OP(xn) or Xn = oP(xn) for a random vector Xn and a
sequence of real numbers xn means that ‖Xn‖ = OP(xn) and ‖Xn‖ = oP(xn). In
the same way for a vectorVn or a squared matrixMn, the notationVn = O(xn)
and Mn = O(xn) mean that ‖Vn‖ = O(xn) and ‖Mn‖ = O(xn).

Lemma 1. Under the conditions (C.1)-(C.6), the following convergence holds
in distribution as n → ∞

{Bn(w;β0) +Cn(w;β0)}−1/2�(1)n (w;β0)
d−→ N (0, Ip). (E.1)

Moreover as n → ∞,
|Dn|−

1
2 �(1)n (w;β0) = OP(1). (E.2)

Proof. Let us first note that using Campbell Theorems (2.1)-(2.2)

Var[�(1)n (w;β0)] = Bn(w;β0) +Cn(w;β0).
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The proof of (E.1) follows Coeurjolly and Møller (2014). Let Ci = i+(−1/2, 1/2]d

be the unit box centered at i ∈ Z
d and define In = {i ∈ Z

d, Ci ∩Dn �= ∅}. Set
Dn =

⋃
i∈In

Ci,n, where Ci,n = Ci ∩Dn. We have

�(1)n (w;β0) =
∑
i∈In

Yi,n

where

Yi,n =
∑

u∈X∩Ci,n

w(u)z(u)−
∫
Ci,n

w(u)z(u) exp(β�
0 z(u))du.

For any n ≥ 1 and any i ∈ In, Yi,n has zero mean, and by condition (C.4),

sup
n≥1

sup
i∈In

E(‖Yi,n‖2+δ) < ∞. (E.3)

If we combine (E.3) with conditions (C.1)-(C.6), we can apply Karácsony
(2006, Theorem 4), a central limit theorem for triangular arrays of random
fields, to obtain (E.1) which also implies that

{Bn(w;β0) +Cn(w;β0)}−1/2�(1)n (w;β0) = OP(1)

as n → ∞. The second result (E.2) is deduced from condition (C.6) which in
particular implies that |Dn|1/2{Bn(w;β0) +Cn(w;β0)}−1/2 = O(1).

Appendix F: Proof of Theorem 1

In the proof of this result and the following ones, the notation κ stands for a
generic constant which may vary from line to line. In particular this constant is
independent of n, β0 and k.

Proof. Let dn = |Dn|−1/2 + an, and k = {k1, k2, . . . , kp}� ∈ R
p. We remind

the reader that the estimate of β0 is defined as the maximum of the function
Q (given by (2.5)) over Θ, an open convex bounded set of Rp. For any k such
that ‖k‖ ≤ K < ∞, β0 + dnk ∈ Θ for n sufficiently large. Assume this is valid
in the following. To prove Theorem 1, we follow the main argument by Fan and
Li (2001) and aim at proving that for any given ε > 0, there exists K > 0 such
that for n sufficiently large

P

(
sup

‖k‖=K

Δn(k) > 0

)
≤ ε, where Δn(k) = Qn(w;β0 + dnk)−Qn(w;β0).

(F.1)
Equation (F.1) will imply that with probability at least 1−ε, there exists a local
maximum in the ball {β0 + dnk : ‖k‖ ≤ K}, and therefore a local maximizer β̂
such that ‖β̂ − β0‖ = OP(dn). We decompose Δn(k) as Δn(k) = T1+T2 where

T1 =�n(w;β0 + dnk)− �n(w;β0)
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T2 =|Dn|
p∑

j=1

(
pλn,j (|β0j |)− pλn,j (|β0j + dnkj |)

)
.

Since ρ(u; ·) is infinitely continuously differentiable and �
(2)
n (w;β) = −An(w;β),

then using a second-order Taylor expansion there exists t ∈ (0, 1) such that

T1 = dnk
��(1)n (w;β0)−

1

2
d2nk

�An(w;β0)k

+
1

2
d2nk

� (An(w;β0)−An(w;β0 + tdnk))k.

Since Θ is convex and bounded and since w(·) and z(·) are uniformly bounded
by conditions (C.2)-(C.3), there exists a nonnegative constant κ such that

1

2
‖An(w;β0)−An(w;β0 + tdnk)‖ ≤ κdn|Dn|.

Now, denote ν̌ := lim infn→∞ νmin(|Dn|−1An(w;β0)). By condition (C.6), we
have that for any k

0 < ν̌ ≤
k� (

|Dn|−1An(w;β0)
)
k

‖k‖2 .

Hence

T1 ≤ dn‖�(1)n (w;β0)‖ ‖k‖ −
ν̌

2
d2n|Dn|‖k‖2 + κd3n|Dn|.

Regarding the term T2,

T2 ≤ T ′
2 := |Dn|

s∑
j=1

(
pλn,j (|β0j |)− pλn,j (|β0j + dnkj |)

)

since for any j the penalty function pλn,j is nonnegative and pλn,j (|β0j |) = 0 for
j = s+ 1, . . . , p.

Since dn|Dn|1/2 = O(1), then by (C.8), for n sufficiently large, pλn,j is twice
continuously differentiable for every βj = β0j + tdnkj with t ∈ (0, 1). Therefore
using a third-order Taylor expansion, there exist tj ∈ (0, 1), j = 1, . . . , s such
that

−T ′
2 = dn|Dn|

s∑
j=1

kjp
′
λn,j

(|β0j |) sign(β0,j) +
1

2
d2n|Dn|

s∑
j=1

k2jp
′′
λn,j

(|β0j |)

+
1

6
d3n|Dn|

s∑
j=1

k3jp
′′′
λn,j

(|β0j + tjdnkj |).

Now by definition of an and cn and from condition (C.8), we deduce that there
exists κ such that

T ′
2 ≤ andn|Dn| |k�1|+ κcnd

2
n|Dn|+ κd3n|Dn|
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≤
√
sandn|Dn|‖k‖+ cnd

2
n|Dn|‖k‖2 + κd3n|Dn|

from Cauchy-Schwarz inequality. Since cn = o(1), dn = o(1) and andn|Dn| =
O(d2n|Dn|), then for n sufficiently large

Δn(k) ≤ dn‖�(1)n (w;β0)‖ ‖k‖ −
ν̌

4
d2n|Dn|‖k‖2 + 2

√
sd2n|Dn|‖k‖

We now return to (F.1): for n sufficiently large

P

(
sup

‖k‖=K

Δn(k) > 0

)
≤ P

(
‖�(1)n (w;β0)‖ >

ν̌

4
dn|Dn|K − 2

√
sdn|Dn|

)

Since dn|Dn| = O(|Dn|1/2), by choosing K large enough, there exists κ such
that for n sufficiently large

P

(
sup

‖k‖=K

Δn(k) > 0

)
≤ P

(
‖�(1)n (w;β0)‖ > κ|Dn|1/2

)
≤ ε

for any given ε > 0 from (E.2).

Appendix G: Proof of Theorem 2

To prove Theorem 2(i), we provide Lemma 2 as follows.

Lemma 2. Assume the conditions (C.1)-(C.6) and condition (C.8) hold. If an =
O(|Dn|−1/2) and bn|Dn|1/2 → ∞ as n → ∞, then with probability tending to 1,
for any β1 satisfying ‖β1 − β01‖ = OP(|Dn|−1/2), and for any constant K1 > 0,

Qn

(
w; (β1

�,0�)�
)
= max

‖β2‖≤K1|Dn|−1/2
Qn

(
w; (β1

�,β2
�)�

)
.

Proof. It is sufficient to show that with probability tending to 1 as n → ∞, for
any β1 satisfying ‖β1 − β01‖ = OP(|Dn|−1/2), for some small εn = K1|Dn|−1/2,
and for j = s+ 1, . . . , p,

∂Qn(w;β)

∂βj
< 0 for 0 < βj < εn, and (G.1)

∂Qn(w;β)

∂βj
> 0 for − εn < βj < 0. (G.2)

First note that by (E.2), we obtain ‖�(1)n (w;β0)‖ = OP(|Dn|1/2). Second, by
conditions (C.2)-(C.3), there exists t ∈ (0, 1) such that

∂�n(w;β)

∂βj
=

∂�n(w;β0)

∂βj
+ t

p∑
l=1

∂2�n(w;β0 + t(β − β0))

∂βj∂βl
(βl − β0l)

= OP(|Dn|1/2) +OP(|Dn||Dn|−1/2) = OP(|Dn|1/2).
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Third, let 0 < βj < εn and bn the sequence given by (3.3). By condition (C.8),
bn is well-defined and since by assumption bn|Dn|1/2 → ∞, in particular, bn > 0
for n sufficiently large. Therefore, for n sufficiently large,

P

(
∂Qn(w;β)

∂βj
< 0

)
= P

(
∂�n(w;β)

∂βj
− |Dn|p′λn,j

(|βj |) sign(βj) < 0

)

= P

(
∂�n(w;β)

∂βj
< |Dn|p′λn,j

(|βj |)
)

≥ P

(
∂�n(w;β)

∂βj
< |Dn|bn

)

= P

(
∂�n(w;β)

∂βj
< |Dn|1/2|Dn|1/2bn

)
.

P (∂Qn(w;β)/∂βj < 0) −→ 1 as n → ∞ since ∂�n(w;β)/∂βj = OP(|Dn|1/2) and
bn|Dn|1/2 −→ ∞. This proves (G.1). We proceed similarly to prove (G.2).

Proof. We now focus on the proof of Theorem 2. Since Theorem 2(i) is proved by
Lemma 2, we only need to prove Theorem 2(ii), which is the asymptotic normal-
ity of β̂1. As shown in Theorem 1, there is a root-|Dn| consistent local maximizer
β̂ of Qn(w;β), and it can be shown that there exists an estimator β̂1 in The-

orem 1 that is a root-(|Dn|) consistent local maximizer of Qn

(
w; (β1

�,0�)�
)
,

which is regarded as a function of β1, and that satisfies

∂Qn(w; β̂)

∂βj
= 0 for j = 1, . . . , s, and β̂ = (β̂

�
1 ,0

�)�.

There exists t ∈ (0, 1) and β̆ = β̂ + t(β0 − β̂) such that

0 =
∂�n(w; β̂)

∂βj
− |Dn|p′λn,j

(|β̂j |) sign(β̂j)

=
∂�n(w;β0)

∂βj
+

s∑
l=1

∂2�n(w; β̆)

∂βj∂βl
(β̂l − β0l)− |Dn|p′λn,j

(|β̂j |) sign(β̂j)

=
∂�n(w;β0)

∂βj
+

s∑
l=1

∂2�n(w;β0)

∂βj∂βl
(β̂l − β0l) +

s∑
l=1

Ψn,jl(β̂l − β0l)

− |Dn|p′λn,j
(|β0j |) sign(β0j)− |Dn|φn,j , (G.3)

where

Ψn,jl =
∂2�n(w; β̆)

∂βj∂βl
− ∂2�n(w;β0)

∂βj∂βl

and φn,j = p′λn,j
(|β̂j |) sign(β̂j) − p′λn,j

(|β0j |) sign(β0j). We decompose φn,j as
φn,j = T1 + T2 where

T1 = φn,jI(|β̂j − β0j | ≤ r̃n,j) and T2 = φn,jI(|β̂j − β0j | > r̃n,j)
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and where r̃n,j is the sequence defined in the condition (C.8). Under this condi-
tion, the following Taylor expansion can be derived for the term T1: there exists
t ∈ (0, 1) and β̌j = β̂j + t(β0j − β̂j) such that

T1 = p′′λn,j
(|β0j |)(β̂j − β0j)I(|β̂j − β0j | ≤ r̃n,j)

+
1

2
(β̂j − β0j)

2p′′′λn,j
(|β̆j |)sign(β̌j)I(|β̂j − β0j | ≤ r̃n,j)

= p′′λn,j
(|β0j |)(β̂j − β0j)I(|β̂j − β0j | ≤ r̃n,j) +OP(|Dn|−1)

where the latter equation ensues from Theorem 1 and condition (C.8). Again,

from Theorem 1, I(|β̂j − β0j | ≤ r̃n,j)
L1

−−→ 1 which implies that I(|β̂j − β0j | ≤
r̃n,j)

P−→ 1, so T1 = p′′λn,j
(|β0j |)(β̂j − β0j)

(
1 + oP(1)

)
+OP(|Dn|−1).

Regarding the term T2, since p′λ is a Lipschitz function, there exists κ ≥ 0
such that

T2 ≤ κ|β̂j − β0j | I(|β̂j − β0j | > r̃n,j).

By Theorem 1, |β̂j − β0j | = OP(|Dn|−1/2) and I(|β̂j − β0j | > r̃n,j) = oP(1), so
T2 = oP(|Dn|−1/2) and we deduce that

φn,j = p′′λn,j
(|β0j |)(β̂j − β0j)

(
1 + oP(1)

)
+ oP(|Dn|−1/2). (G.4)

Let �
(1)
n,1(w;β0) (resp. �

(2)
n,11(w;β0)) be the first s components (resp. s×s top-

left corner) of �
(1)
n (w;β0) (resp. �

(2)
n (w;β0)). Let also Ψn be the s × s matrix

containing Ψn,jl, j, l = 1, . . . , s. Finally, let the vector p′
n, the vector φn and the

s× s matrix Mn be

p′
n = {p′λn,1

(|β01|) sign(β01), . . . , p
′
λn,s

(|β0s|) sign(β0s)}�,
φn = {φn,1, . . . , φn,s}�, and

Mn = {Bn,11(w;β0) +Cn,11(w;β0)}−1/2.

We rewrite both sides of (G.3) as

�
(1)
n,1(w;β0) + �

(2)
n,11(w;β0)(β̂1 − β01) +Ψn(β̂1 − β01)− |Dn|p′

n − |Dn|φn = 0.
(G.5)

By definition of Πn given by (3.6) and from (G.4), we obtain φn = Πn(β̂1 −
β01)

(
1 + oP(1)

)
+ oP(|Dn|−1/2). Using this, we deduce, by premultiplying both

sides of (G.5) by Mn, that

Mn�
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01)

= O(|Dn| ‖Mnp
′
n‖) + oP(|Dn| ‖MnΠn(β̂1 − β01)‖)

+ oP(‖Mn‖ |Dn|1/2) +OP(‖MnΨn(β̂1 − β01)‖).

The condition (C.6) implies that there exists an s × s positive definite ma-
trix I′′0 such that for all sufficiently large n, we have |Dn|−1(Bn,11(w;β0) +
Cn,11(w;β0)) ≥ I′′0 , hence ‖Mn‖ = O(|Dn|−1/2).
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Now, ‖Ψn‖ = OP(|Dn|1/2) by conditions (C.3)-(C.4) and by Theorem 1, and
‖β̂1 − β01‖ = OP(|Dn|−1/2) by Theorem 1 and by Theorem 2(i). Finally, since
by assumption an = o(|Dn|−1/2), we deduce that

‖MnΨn(β̂1 − β01)‖ = OP(|Dn|−1/2) = oP(1),

|Dn| ‖MnΠn(β̂1 − β01)‖ = oP(1),

‖Mn‖ |Dn|1/2 = o(1),

|Dn| ‖Mnp
′
n‖ = O(an|Dn|1/2) = o(1).

Therefore, we have that

Mn�
(1)
n,1(w;β0)−Mn

(
An,11(w;β0) + |Dn|Πn

)
(β̂1 − β01) = oP(1).

From (E.1), Theorem 2(i) and by Slutsky’s Theorem, we deduce that

{Bn,11(w;β0) +Cn,11(w;β0)}−1/2{An,11(w;β0) + |Dn|Πn}(β̂1 − β01)

d−→ N (0, Is)

as n → ∞, which can be rewritten, in particular under (C.7), as

|Dn|1/2Σn(w;β0)
−1/2(β̂1 − β01)

d−→ N (0, Is)

where Σn(w,β0) is given by (3.5).

Appendix H: Maps of covariates

Fig 3. Maps of covariates designed in Scenario 2. The first two top left images are the
elevation and the slope. The other 18 covariates are generated as standard Gaussian white
noise but transformed to get multicollinearity.
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Fig 4. Maps of covariates used in Scenario 3 and in the application. From left to right:
Elevation, slope, Aluminium, Boron, and Calcium (1st row), Copper, Iron, Potassium, Mag-
nesium, and Manganese (2nd row), Phosphorus, Zinc, Nitrogen, Nitrogen mineralization,
and pH (3rd row).
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