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Abstract: The mean density of a random closed set with integer Haus-
dorff dimension is a crucial notion in stochastic geometry, in fact it is a
fundamental tool in a large variety of applied problems, such as image
analysis, medicine, computer vision, etc. Hence the estimation of the mean
density is a problem of interest both from a theoretical and computational
standpoint. Nowadays different kinds of estimators are available in the lit-
erature, in particular here we focus on a kernel–type estimator, which may
be considered as a generalization of the traditional kernel density estima-
tor of random variables to the case of random closed sets. The aim of the
present paper is to provide asymptotic properties of such an estimator in
the context of Boolean models, which are a broad class of random closed
sets. More precisely we are able to prove large and moderate deviation
principles, which allow us to derive the strong consistency of the estimator
of the mean density as well as asymptotic confidence intervals. Finally we
underline the connection of our theoretical findings with classical literature
concerning density estimation of random variables.
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1. Introduction

The mean density of lower dimensional random closed sets, such as fiber pro-
cesses and surfaces of full dimensional random sets, is an important quantity
which arises in different scientific fields. As a consequence its evaluation and
estimation have undergone a growing interest during the last decades [6, 19].
Recent areas of applications include pattern recognition and image analysis
[40, 28], computer vision [42], medicine [1, 8, 15, 16, 17], material science [14].
We remind that, given a probability space (Ω,F ,P), a random closed set Θ in
Rd is a measurable map

Θ : (Ω,F ) −→ (F, σF),

where F denotes the class of the closed subsets in Rd, and σF is the σ-algebra
generated by the so called Fell topology, or hit-or-miss topology, that is the
topology generated by the set system

{FG : G ∈ G } ∪ {FC : C ∈ C }

where G and C are the system of the open and compact subsets of Rd, respec-
tively (e.g., see [36]). We say that a random closed set Θ : (Ω,F ) → (F, σF)
satisfies a certain property (e.g., Θ has Hausdorff dimension n) if Θ satisfies
that property P-a.s.; throughout the paper we shall deal with countably H n-
rectifiable random closed sets, having denoted by H n the n-dimensional Haus-
dorff measure.

A random closed set Θn of locally finite n-dimensional Hausdorff measure
H n induces a random measure μΘn(A) := H n(Θn ∩ A), A ∈ BRd , and the
corresponding expected measure is defined as

E[μΘn ](A) := E[H n(Θn ∩A)], A ∈ BRd , (1)
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where BRd is the Borel σ-algebra of Rd. (The important issue of the measura-
bility of the random variable μΘn(A) has been addressed in [5, 45].) Whenever
the measure E[μΘn ] is absolutely continuous with respect to the d-dimensional
Hausdorff measure H d, its density (i.e. its Radon-Nikodym derivative) with re-
spect to H d is called mean density of Θn, and, according to notation in previous
works (e.g., see [18, 20]), denoted by λΘn .

It is worth mentioning that, while the estimation of the mean density in sta-
tionary settings has been widely studied in the literature (see, e.g., [6, 23]), only
recently the non-stationary case has been addressed, and, to the best of our
knowledge, a general density estimation theory for random sets is still missing.
The aim of the present paper is the investigation of this area. As a matter of
fact, the problem of the local and global approximation of λΘn for non station-
ary random sets has been tackled by the authors in [2, 18, 19, 20, 44]. More

specifically, given an i.i.d. random sample Θ
(1)
n , . . . ,Θ

(N)
n of size N for the ran-

dom closed set Θn, the authors have provided two different kinds of estimators
for the mean density of Θn: the so-called “Minkowski content”–based estimator,
introduced in [43] through the notion of the Minkowski content of a set (see,
e.g., [3]), and the so-called kernel-type estimator, introduced in [10] and denoted

here λ̂κ,N
Θn

(for its precise definition see Eq. (6) bellow). We refer to [10] for a
discussion on similarities and differences among them; we mention here that,
even if the evaluation of λ̂κ,N

Θn
(x) is a non–trivial issue for very general random

sets, it has been shown in [11] that it approaches the true value of λΘn(x) much
faster than the “Minkowski content”–based estimator.

We point out that the importance of the estimator λ̂κ,N
Θn

(x) arises in the gen-
eral theory of random sets, because it may be regarded as a generalization of
the classical kernel density estimator of random variables to the case of random
sets (see also Section 6); this is the reason why we shall refer to λ̂κ,N

Θn
(x) as

“kernel-type” estimator (or briefly kernel density estimator), and why its in-
vestigation plays a pivotal role in the whole theory of random sets, providing a
unifying approach to density estimation. While the asymptotic properties of the
“Minkowski content”–based estimator, as well as asymptotic confidence inter-
vals and central limit theorems, have been studied in [13], no analogous results
are still available for the kernel–type estimator of the mean density. Hence the
main aim of the present paper is the investigation of large and moderate de-
viation principles of λ̂κ,N

Θn
(x) for a large class of random closed sets, known as

Boolean models, leaving to subsequent works extensions to more general classes.
The analysis we will carry out is much in the spirit of [31, 35], who proved simi-
lar results for kernel estimators of random variables. Even if Boolean models do
not cover all the variety of random sets, as stated in [4], they are usually con-
sidered basic random sets models in stochastic geometry. So the present paper
may be seen as the first step in extending large and moderate deviation princi-
ples for kernel density estimators of random variables to the case of kernel-type
estimators of the mean density of random sets. The theorems we are going to
prove are interesting in their own right, in addition they provide tools to derive
asymptotic normality and strong consistency of kernel-type estimators, which
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are useful to determine asymptotic confidence intervals, as well.
The paper is organized as follows. In Section 2, we depict the general frame-

work of Boolean models that we want to handle in this paper; besides we briefly
recall all the results on stochastic geometry and large deviation theory that are
necessary to the aim of the present paper. Large and moderate deviation princi-
ples for the kernel–type estimator of the mean density are presented in Section
3, namely in Theorem 2 and Theorem 3, respectively. These theorems are the
basic building blocks to derive statistical properties of such an estimator. Indeed
we are able to prove its strong consistency and to derive asymptotic confidence
intervals (see Section 4). Some noteworthy examples of Boolean models are dis-
cussed as well in Section 5. Finally Section 6 contains a discussion on relevant
connections with the literature and paves the way for future developments of
the present work. For the reader’s convenience, the proofs of the main theorems,
and some related technical lemmas, are deferred to Appendix A.

2. Preliminaries and notations

This section gathers some basics on stochastic geometry and large deviations,
which are necessary to understand our main results. Clearly the treatment is
not exhaustive here, thus throughout the paper we provide some interesting
references for those readers who want to deepen the results we just recall.

2.1. Point processes, intensity measure and Boolean models

Roughly speaking a point process, denoted here by Φ̃, is a locally finite collection
{ξi}i∈N of random points; more formally Φ̃ is a random counting measure, that
is a measurable map from a probability space (Ω,F ,P) into the space of locally
finite counting measures on Rd. Throughout the paper we will deal with simple
point processes, that is Φ̃({x}) ≤ 1 ∀x ∈ Rd, P-a.s.

The measure Λ̃(A) := E[Φ̃(A)] on BRd is called intensity measure of Φ̃;
whenever it is absolutely continuous with respect to H d, its density is called
intensity of Φ̃.

Marked point processes may be regarded as a generalization of point pro-
cesses. They are collections of random points ξi in Rd, each one associated with
a mark Ki, which usually belongs to a complete and separable metric space
(c.s.m.s.) K. Hence the resulting collection of random points Φ = {(ξi,Ki)}i∈N

is a point process on Rd × K, with the property that the unmarked process
{Φ̃(B) : B ∈ BRd} := {Φ(B × K) : B ∈ BRd} is a point process in Rd. K is
called mark space, while the random element Ki of K is the mark associated
to the point ξi. Φ is said to be stationary if the distribution of {ξi + x,Ki}i is
independent of x ∈ Rd. The intensity measure of Φ, say Λ, is a σ-finite measure
on BRd×K defined as Λ(B × L) := E[Φ(B × L)]. A common assumption (e.g.,
see [33]) is that there exists a measurable function f : Rd × K → R+ and a
probability measure Q on K such that Λ(d(x,K)) = f(x,K)dxQ(dK). We also
recall that point processes can be considered on quite general metric spaces. In



Boolean models: large and moderate deviations 431

particular, a point process in C d, the class of compact subsets of Rd, is called
particle process (see [4] and references therein). It is well known that, by a cen-
ter map, a particle process can be transformed into a marked point process Φ
on Rd with marks in C d, by representing any compact set C as a pair (x, Z),
where x may be interpreted as the “location” of C and Z := C − x the “shape”
(or “form”) of C. In this case the marked point process Φ = {(Xi, Zi)} is also
called germ-grain model. Every random closed set Θ in Rd can be represented as
a germ-grain model by means of a suitable marked point process Φ = {Xi, Zi}.
In a large variety of applications the random sets Zi are uniquely determined by
a suitable random parameter S ∈ K. Typical examples include: union of ran-
dom balls, where K = R+ and S is the radius of a ball centered at the origin;
segment processes in R2 in which K = R+× [0, 2π] and S = (L,α) where L and
α are the random length and orientation of the segment attached to the origin,
respectively.

In order to be consistent with the notation used in previous works (e.g.,
[44, 10]), we shall consider random sets Θn described by marked point processes
Φ in Rd with marks in a suitable mark space K so that Z = Z(S) is a random
set containing the origin:

Θn(ω) =
⋃

(ξ,s)∈Φ(ω)

ξ + Z(s), ω ∈ Ω. (2)

Whenever Φ is a marked Poisson point process, Θn is said to be a Boolean
model. Since we are going to consider here Boolean models, we also recall that a
marked Poisson point process in Rd with marks in K may be seen as a Poisson
point process on Rd×K with intensity measure Λ if Λ(·×K) is continuous and
locally bounded.

For an exhaustive treatment of point processes we refer to [24, 25], and to
[34] for an elegant presentation of Poisson processes. Further, we mention [36,
37, 38, 39] for a unified theory on germ-grain models.

2.2. Basics on large and moderate deviations

The theory of large deviations is concerned with the asymptotic estimation of
probabilities of rare events, by giving an asymptotic computation of small proba-
bilities in exponential scale. Assume that (X,X ) is a Polish space equipped with
its Borel σ–algebra. The large deviation principle characterizes the asymptotic
behavior of a family of probability measures {μN}N≥1 on (X,X ) as N goes to
infinity in terms of a rate function. A rate function is a map J∗ : X → [0,+∞)
lower semicontinuous, i.e. the level sets {x : J∗(x) ≤ α} are closed for every
α ≥ 0; J∗ is said to be a good rate function if the level sets are compact. The
set {x : J∗(x) < +∞} amounts to be the domain of J∗. Let vN be a velocity,
namely a function such that vN → +∞ as N → ∞.

A family of probability measure {μN}N≥1 is said to satisfy a Large Deviation
Principle (LDP) with rate function J∗ and velocity vN if and only if for any
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A ∈ X

− inf
x∈

◦
A

J∗(x) ≤ lim inf
N→+∞

1

vN
log(μN (A))

≤ lim sup
N→+∞

1

vN
log(μN (A)) ≤ − inf

x∈A
J∗(x),

(3)

where
◦
A and A are the interior and the closure af A, respectively, and with

the convention that the infimum over the empty set equals +∞. We say that a
sequence of random variables satisfies the LDP when the sequence of measures
induced by these variables satisfies the LDP.

The Gärtner-Ellis Theorem [26, Theorem 2.3.6] is the main tool to prove
large deviations results. For our purposes, we consider the case X = Rm, with
m ≥ 1, and X = BRm . In what follows a · b :=

∑m
j=1 ajbj denotes the scalar

product between two generic vectors a = (a1, . . . , am) and b = (b1, . . . , bm)
of Rm. We also remind that a convex function f : Rm → (−∞,∞] is said

to be essentially smooth (see e.g. Definition 2.3.5 in [26]) if the interior
◦
Df of

Df := {γ ∈ Rm : f(γ) < ∞} is non-empty, f is differentiable throughout
◦
Df ,

and f is steep, i.e. limh→∞ ‖∇ f(γh)‖ = ∞ whenever {γh : h ≥ 1} is a sequence

in
◦
Df converging to some boundary point of

◦
Df .

Theorem 1 (Gärtner-Ellis Theorem). Let {ZN}N≥1 be a sequence of Rm–
valued random variables and define the function J : Rm → [−∞,+∞] by

J(γ) := lim
N→+∞

1

vN
logE[evNγ·ZN ],

whenever the limit exists. Assume that the origin 0 = (0, . . . , 0) ∈ Rm belongs
to the interior DJ := {γ ∈ Rm : J(γ) < ∞}. Then, if J is essentially smooth
and lower semi-continuous, then {ZN : N ≥ 1} satisfies the LDP with speed vN
and good rate function J∗ defined by J∗(y) := supγ∈Rm{γ · y − J(γ)}.

Formally a Moderate Deviation Principle (MDP) is nothing else but a LDP.
We speak of moderate deviation when, for a suitable class of sequences of positive
numbers {aN} such that

lim
N→∞

aN = 0 and lim
N→∞

wNaN = ∞, (4)

where wN → ∞ as N → ∞, a LDP holds for suitable centered random variables
with speed vN = 1/aN and the same quadratic rate which does not depend on
the choice of {aN}. Moderate deviations may be employed to obtain the weak
convergence to a centered Normal distribution whose variance is determined by
a suitable application of the Gärtner-Ellis Theorem (e.g., see also [9]). This will
be clarified in Section 4 where we shall apply LDP and MDP to show that, for
every x ∈ Rd, the kernel estimator λ̂κ,N

Θn
(x) of λΘn(x) is strongly consistent and

asymptotically Normal, respectively.
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2.3. Notations and assumptions

To fix the notation, bn denotes the volume of the unit ball in Rn, and Br(x)
is the closed ball centered at x ∈ Rd with radius r > 0. For any A ⊂ Rd

and r > 0, its Minkowski enlargement at size r > 0 is denoted by A⊕r :={
x ∈ Rd : dist(x,A) ≤ r

}
, where dist(x,A) stands for the euclidean distance

of the point x to the set A. The diameter of A will be denoted by diam(A).
It is worth to recall that a compact set A ∈ BRd is said to be countably H n-
rectifiable if there exist countably many n-dimensional Lipschitz graphs Γi ⊂ Rd

such that A \ ∪iΓi is H n-negligible. For further definitions and properties on
rectifiable sets refer to [3, 29, 30].

In the sequel, we will say that Θn satisfies a certain property if such a prop-
erty is satisfied for P-almost every ω ∈ Ω; in particular Θn will be a Boolean
model driven by a Poisson point process Φ in Rd × K with intensity measure
Λ(d(x, s)) = f(x, s)dxQ(ds), satisfying the following assumptions:

(A1) for any s ∈ K, Z(s) is a countably H n-rectifiable and compact sub-
set of Rd, such that there exists a closed set Ξ(s) ⊇ Z(s) such that∫
K

H n(Ξ(s))Q(ds) < ∞ and

γrn ≤ H n(Ξ(s) ∩Br(x)) ≤ γ̃rn ∀x ∈ Z(s), r ∈ (0, 1)

for some γ, γ̃ > 0 independent of s;
(A2) for any s ∈ K, H n(disc(f(·, s))) = 0, where disc(f(·, s)) contains the

discontinuity points of f(·, s), and f(·, s) is locally bounded such that for
any compact K ⊂ Rd

sup
x∈K⊕diam(Z(s))

f(x, s) ≤ ξ̃K(s)

for some ξ̃K(s) with
∫
K

H n(Ξ(s))ξ̃K(s)Q(ds) < ∞.

These assumptions may seem to be a little bit technical at a first glance, but
they are natural hypotheses fulfilled by a wide class of germ-grain models, and
their meaning has been extensively discussed in [10, 44]; indeed, for the reader’s
convenience, we use here the same notation (A1) and (A2) introduced in [10]
and in [44], respectively. We also recall that the assumption (A1) guarantees
(see Remark 4 and Proposition 5 in [44]) that the measure E[μΘn ] defined in
(1) is locally bounded and absolutely continuous with density

λΘn(x) =

∫
K

∫
x−Z(s)

f(y, s)H n(dy)Q(ds). (5)

In order to define the kernel density estimator of the mean density, we remind
that a multivariate kernel is a probability density function κ : Rd → R which
is radially symmetric.

Summing up, throughout the paper, unless otherwise specified, we suppose
the validity of:
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Assumptions.

• Θn is a Boolean model with integer Hausdorff dimension n < d as in (2),
satisfying (A1) and (A2).

•
{
Θ

(i)
n

}
i∈N

is a sequence of i.i.d. random closed sets as Θn.

• κ is a continuous kernel with compact support supp(κ) ⊂ BR(0), and such
that κ(x) ≤ M , for all x ∈ Rd and for some M > 0.

The kernel-type estimator λ̂κ,N
Θn

(x) of the mean density λΘn(x) at a point x ∈ Rd

is defined as follows [10]:

λ̂κ,N
Θn

(x) :=
1

N

N∑
i=1

κrN ∗ H n
|
Θ

(i)
n

(x) =
1

NrdN

N∑
i=1

∫
Θ

(i)
n

κ
(x− y

rN

)
H n(dy), (6)

where ∗ stands for the usual convolution product, while κrN := κ(x/rN )/rdN is
the scaled kernel.

It can be shown (see [10, Corollary 7]) that if the bandwidth rN is such that

lim
N→∞

rN = 0 and lim
N→∞

Nrd−n
N = +∞,

then λ̂κ,N
Θn

(x) is weakly consistent and asymptotically unbiased for H d–a.e.

x ∈ Rd.
The notion of approximate tangent space shall appear in the expression for

the rate function both in the LDP and in the MDP stated in Theorem 2 and
Theorem 3, respectively. Such a notion is borrowed from geometric measure
theory and it is recalled below, for the reader’s convenience. Denoted by Gn the
set of unoriented n-dimensional subspaces of Rd, and by Cc(R

d;R) the space of
all the real valued continuous functions with compact support in Rd, we remind
that a H n-rectifiable compact set A ⊂ Rd admits approximate tangent space
πxA ∈ Gn at x ∈ A if

lim
r→0

∫
(A−x)/r

φ(y)H n(dy) =

∫
πxA

φ(y)H n(dy) ∀φ ∈ Cc(R
d;R). (7)

By Theorem 2.83 and Proposition 1.62 in [3], πxA exists for H n-a.e. x ∈ A;
moreover, (7) holds for any bounded Borel measurable function φ : Rd → R

with compact support such that H n
|πxA

(disc(φ)) = 0. For the sake of simplicity,

we have assumed that κ is continuous: this allows us to directly apply Eq. (7)
in the sequel. We refer to [10, Remark 9] for a more detailed discussion on the
non-continuous case.

3. Large and moderate deviations for the kernel-type estimator

In this section we state large and moderate deviation principles for the kernel
density estimator defined in (6), by deferring their proof to the Appendix. Such
results will be useful to derive statistical properties and confidence intervals for
the involved estimator, as we will see in Section 4.
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Theorem 2 (LDP). Let Θn and κ be as in the Assumptions. Then the sequence

of kernel estimators
{
λ̂κ,N
Θn

(x)
}
N≥1

satisfies a LDP with speed vN = Nrd−n
N and

good rate function

J∗
x(y) = sup

t∈R

{
ty −

∫
K

∫
x−Z(s)

∫
Rd

κ(w)f(y, s)

×
exp

{
t
∫
πy(x−Z(s))

κ(θ + w)H n(dθ)
}
− 1∫

πy(x−Z(s))
κ(θ + w)H n(dθ)

dwH n(dy)Q(ds)
}
,

(8)

where πy(x − Z(s)) ∈ Gn is the approximate tangent space to x − Z(s) at
y ∈ x− Z(s).

Theorem 3 (MDP). Let Θn and κ be as in the Assumptions, and let {bN}N≥1

be a sequence of positive real numbers such that

lim
N→+∞

bN√
Nrd−n

N

= +∞ and lim
N→+∞

bN

Nrd−n
N

= 0. (9)

Then the sequence of estimators
{
Nrd−n

N /bN (λ̂κ,N
Θn

(x) − E[λ̂κ,N
Θn

(x)])
}
N≥1

sat-

isfies a LDP with speed function vN := b2N/Nrd−n
N and good rate function

J∗
x(y) :=

y2

2CV ar(x)
,

where CV ar(x) is the quantity so defined

CV ar(x) :=

∫
K

∫
Rd

∫
x−Z(s)

∫
πy(x−Z(s))

κ(z)

× κ(z + w)f(y, s)H n(dw)H n(dy)dzQ(ds).

(10)

4. Statistical properties and confidence intervals

In the previous section we stated large and moderate deviation principles for the
kernel estimator of the mean densities of random closed sets; these results allow
to derive useful statistical properties for such an estimator. Indeed, proceeding
along the same lines of [12, Remark 2], we can show how an estimate of the rate

of convergence of λ̂κ,N
Θn

(x) to λΘn(x) follows as a byproduct of Theorem 2 and
that an immediate application of the Borel-Cantelli Lemma leads to a strong
consistency result:

Proposition 4 (Convergence rate). Let Θn and κ be as in the Assumptions,
and let Cδ := {y ∈ R : |y − λΘn(x)| ≥ δ}, with δ > 0. Denoted by Γ∗

δ :=
infy∈Cδ

J∗
x(y), where J∗

x(y) has been defined in Theorem 2, we have that for any
0 < η < Γ∗

δ there exists N0 such that

P
(∣∣∣λ̂κ,N

Θn
(x)− λΘn(x)

∣∣∣ ≥ δ
)
≤ exp

(
−Nrd−n

N (Γ∗
δ − η)

)
∀N ≥ N0.
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Proof. It is known that when we can apply the Gärtner-Ellis Theorem (see
Theorem 1), the rate function J∗(y) uniquely vanishes at y = y0, where y0 :=
∇J(0). Denoted for any δ > 0

Cδ := {y ∈ Rm : ‖y − y0‖ ≥ δ},

we have that infy∈Cδ
J∗(y) > 0, since J∗ is non-negative and uniquely vanishes

at y0. Therefore, as a consequence of the large deviation upper bound in (3) for
the closed set Cδ, we have

lim sup
N→∞

1

vN
log

(
P(ZN ∈ Cδ)

)
≤ − inf

y∈Cδ

J∗(y). (11)

By virtue of Theorem 2, the previous bound holds true for ZN = λ̂κ,N
Θn

(x), and

vn = Nrd−n
N . Besides, using equations (5) and (29), it can be easily seen that

in our setup y0 := J ′
x(0) = λΘn(x). Hence, in view of these remarks and (11),

one concludes that for all η such that 0 < η < Γ∗
δ , there exists N0 such that

P
(
|λ̂κ,N

Θn
(x)− λΘn(x)| ≥ δ) ≤ exp

(
−Nrd−n

N (Γ∗
δ − η)

)
for all N ≥ N0.

Corollary 5 (Strong consistency). Let Θn and κ be as in the Assumptions,
with rN → 0 such that Nrd−n

N /Nα → C for some C,α > 0 as N → ∞.

Then the kernel estimator λ̂κ,N
Θn

(x) of λΘn(x) is strongly consistent for every

x ∈ Rd, i.e.
λ̂κ,N
Θn

(x)
a.s.→ λΘn(x), as N → ∞.

Proof. Let H := (Γ∗
δ − η), with Γ∗

δ defined as in Proposition 4 and η ∈ (0,Γ∗
δ).

ThenH is a positive quantity independent of N , and observe that
∑

N≥1 exp
(
−

Nrd−n
N H

)
< ∞, since Nrd−n

N ∼ Nα for some α > 0. Thus the result follows by

Proposition 4 and a standard application of the Borel–Cantelli lemma.

At the end of Section 2.2, we mentioned that the term moderate deviation is
used when for a sequence {aN} of positive numbers satisfying the conditions in
(4), a LDP holds for suitable centered random variables with speed vN = 1/aN .
If we choose wN = Nrd−n

N , we may observe that by Theorem 3 we are in the

case aN = Nrd−n
N /b2N , with bN satisfying the conditions in (9).

Moreover we also mention that the case aN = 1/wN (so here bN = Nrd−n
N )

and aN = 1 (so here bN =
√

Nrd−n
N ) should correspond to the convergence to

zero and to the weak convergence to a centered normal distribution, respectively,

of the associated centered random variables (here
{
λ̂κ,N
Θn

(x)− E[λ̂κ,N
Θn

(x)]
}
N≥1

and

{√
Nrd−n

N (λ̂κ,N
Θn

(x)−E[λ̂κ,N
Θn

(x)])

}
N≥1

, respectively). This is in accordance

with the corollary above and with the proposition below.
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Proposition 6 (Asymptotic Normality). Let Θn and κ be as in the Assump-

tions. Then the sequence

{√
Nrd−n

N (λ̂κ,N
Θn

(x)− E[λ̂κ,N
Θn

(x)])

}
N≥1

converges

weakly, as N → +∞, to the normal distribution N(0, CV ar(x)), where CV ar(x)
is the quantity defined in (10).

Proof. One can proceed as in the proof of Theorem 3 with bN =
√

Nrd−n
N ,

noticing that the proof is still valid, even if the first condition in (9) is violated.
As a consequence one is able to show that

lim
N→+∞

E
[
exp

{
t

√
Nrd−n

N (λ̂κ,N
Θn

(x)− E[λ̂κ,N
Θn

(x)])
}]

= et
2CV ar(x)/2

which is tantamount to saying that
{√

Nrd−n
N (λ̂κ,N

Θn
(x)−E[λ̂κ,N

Θn
(x)])

}
N≥1

con-

verges weakly to the normal distribution N(0, CV ar(x)), as N → +∞.

We conclude the investigation of the statistical properties related to λ̂κ,N
Θn

(x)
providing asymptotic confidence intervals for λΘn(x), relying on Proposition 6.
In order to do this we have to choose a specific bandwidth rN , which is assumed
to be the optimal bandwidth determined in [10]. Here we recall some useful
results in this direction.

We remind that the best choice for rN should be the one which minimizes
the mean square error (MSE), given by

MSE(λ̂κ,N
Θn

(x)) := E[(λ̂κ,N
Θn

(x)− λΘn(x))
2] = Bias2(λ̂κ,N

Θn
(x)) + V ar(λ̂κ,N

Θn
(x)).

The minimization of the MSE is a quite challenging problem, which cannot be
solved even in the simplest case of kernel density estimators of random variables.
Hence one should look for an rN which minimizes the asymptotic mean square
error (AMSE). For Θn and κ as in the Assumptions, the following asymptotic
approximation of the variance may be deduced by the proof of Theorem 8 in
[10]:

V ar(λ̂κ,N
Θn

(x)) =
CV ar(x)

Nrd−n
N

+ o
( 1

Nrd−n
N

)
, for H d–a.e. x ∈ Rd, (12)

where CV ar(x) is the quantity defined in (10). For what concernes the asymp-
totic approximation of the bias, further differentiability assumptions on f are
required. To fix the notation (the same used in [10] for the reader’s convenience),
in the sequel α := (α1, ..., αd) will denote a multi-index of Nd

0; we will further
define

|α| := α1 + · · ·+ αd

α! := α1! · · ·αd!
yα := yα1

1 · · · yαd

d

Dα
y f(y, s) :=

∂|α|f(y, s)

∂yα1
1 · · · ∂yαd

d

;
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besides, for all s ∈ K, we will put

D (α)(s) := disc(Dα
y f(y, s)), D(s) := disc(f(·, s)).

For now on we assume that f(·, s) is at least twice differentiable, and that the
following assumption is fulfilled for any |α| = 2:

(A2bis) for any s ∈ K, H n(D (α)(s)) = 0 and Dα
y f(y, s) is locally bounded

such that for any compact C ⊂ Rd

sup
y∈C⊕diamZ(s)

|Dα
y f(y, s)| ≤ ξ̃

(α)
C (s)

for some ξ̃
(α)
C (s) with∫

K

H n(Ξ(s))ξ̃
(α)
C (s)Q(ds) < ∞.

An asymptotic approximation of the bias has been proved in [10, Theorem 8]:

Bias(λ̂κ,N
Θn

(x)) = CBias(x)r
2
N + o(r2N ), for H d-a.e. x ∈ Rd, (13)

where

CBias(x) :=
∑
|α|=2

1

α!

∫
Rd

κ(z)zαdz

∫
K

∫
x−Z(s)

Dα
y f(y, s)H

n(dy)Q(ds).

From (12) and (13) one gets the following asymptotic expansion of the MSE for
H d–a.e. x ∈ Rd

AMSE(λ̂κ,N
Θn

(x)) = C2
Bias(x)r

4
N +

1

Nrd−n
N

CV ar(x),

from which, forN sufficiently large, the optimal bandwidth ro,AMSE
N (x) amounts

to be (see [10, Eq. (17)])

ro,AMSE
N (x) := argmin

rN

AMSE(λ̂κ,N
Θn

(x)) = 4+d−n

√
(d− n)CV ar(x)

4NC2
Bias(x)

, (14)

H d–a.e.x ∈ Rd, provided that CBias(x) �= 0. (For a discussion on the case
CBias(x) = 0 we refer to [10].)

Proposition 7. Let Θn and κ be as in the Assumptions, and such that (A2bis)

is fulfilled. If rN is the asymptotic optimal bandwidth ro,AMSE
N in (14), then√

Nrd−n
N

CV ar(x)
(λ̂κ,N

Θn
(x)− λΘn(x))

d−→ Z as N → ∞,

where Z ∼ N(
√

(d− n)/2, 1), for H d–a.e. x ∈ Rd.
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Proof. First of all note that√
Nrd−n

N

CV ar(x)
(λ̂κ,N

Θn
(x)− λΘn(x)) =

√
Nrd−n

N

CV ar(x)
(λ̂κ,N

Θn
(x)− E[λ̂κ,N

Θn
(x)])

+

√
Nrd−n

N

CV ar(x)
(E[λ̂κ,N

Θn
(x)]− λΘn(x))

(15)

and the first term in (15) converges weakly to the standard normal distribution
as N → +∞, by Proposition 6. Let us notice now that the non–random term√

Nrd−n
N

CV ar(x)
(E[λ̂κ,N

Θn
(x)]− λΘn(x)) =

√
Nrd−n

N

CV ar(x)
Bias(λ̂κ,N

Θn
(x))

(13)
=

CBias(x)√
CV ar(x)

√
Nrd−n+4

N + o
(√

Nrd−n+4
N

)
(14)
=

√
d− n

2
+ o(1),

as N → +∞, for H d–a.e. x ∈ Rd, if rN = ro,AMSE
N , and so the assertion.

Corollary 8 (Asymptotic confidence interval). Under the assumptions of Pro-

position 7, if rN ≡ ro,AMSE
N , then an asymptotic confidence interval for λΘn(x)

of level α is[
λ̂κ,N
Θn

(x)−
√

CV ar(x)

Nrd−n
N

(
Jα +

√
d− n

2

)
, λ̂κ,N

Θn
(x) +

√
CV ar(x)

Nrd−n
N

(
Jα −

√
d− n

2

)]
for H d–a.e. x ∈ Rd, where Jα is such that P(−Jα ≤ Z ≤ Jα) = 1 − α with
Z ∼ N(0, 1).

Proof. Thanks to Proposition 7 we can state that√
Nrd−n

N

CV ar(x)
(λ̂κ,N

Θn
(x)− λΘn(x))−

√
d− n

2
∼ AN(0, 1),

hence

1− α � P
(
− Jα ≤

√
Nrd−n

N

CV ar(x)
(λ̂κ,N

Θn
(x)− λΘn(x))−

√
d− n

2
≤ Jα

)
= P

(
λ̂κ,N
Θn

(x)−
√

CV ar(x)

Nrd−n
N

(
Jα +

√
d− n

2

)
≤ λΘn(x)

≤ λ̂κ,N
Θn

(x) +

√
CV ar(x)

Nrd−n
N

(
Jα −

√
d− n

2

))
.

The asymptotic confidence intervals we have derived in the present section
are based on the assumption CBias(x) �= 0, this does not happen for stationary
Boolean models. However in such a situation the kernel–estimator is unbiased
(see [10]) and Proposition 6 gives immediately the following:
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Proposition 9 (Stationary case). Let Θn and κ be as in the Assumptions;
furthermore suppose that Θn is a stationary Boolean model with constant mean
density λΘn = fEQ[H n(Z)], where f is the intensity of the underlying Pois-

son point process. Then the sequence

{√
Nrd−n

N (λ̂κ,N
Θn

− λΘn)

}
N≥1

converges

weakly, as N → +∞, to the normal distribution N(0, CV ar), being

CV ar := f

∫
K

∫
Rd

∫
{−Z(s)}

∫
πy(−Z(s))

κ(z)κ(z + w)H n(dw)H n(dy)dzQ(ds).

The previous Proposition is the basic building block to determine asymptotic
confidence intervals for stationary Boolean models as well. Indeed, proceeding
along the same lines as in the proof of Corollary 8, an asymptotic confidence
interval for λΘn of level α is

[
λ̂κ,N
Θn

−
√

CV ar

Nrd−n
N

Jα, λ̂
κ,N
Θn

+

√
CV ar(x)

Nrd−n
N

Jα

]
where Jα is such that P(−Jα ≤ Z ≤ Jα) = 1 − α with Z ∼ N(0, 1). Note that
here rN can be any bandwidth.

5. Noteworthy examples

Here we discuss some relevant examples of Boolean models, in particular a
Boolean segment process, the Poisson point process and the Matérn cluster
process.

5.1. A Boolean segment process

As simple example of applicability of the previous results we discuss the Boolean
segment process already introduced in [10].

Let n = 1 and assume that Θ1 is an inhomogeneous Boolean model of seg-
ments in R2 with random length L and uniform orientation, so that the mark
space is K = R+ × [0, 2π]. For all s = (�, α) ∈ K, let Z(s) := {(u, v) ∈ R2 :
u = τcosα, v = τsinα, τ ∈ [0, �]} be the segment with length � ∈ R+, and
orientation α ∈ [0, 2π]. Denoted by PL(d�) the probability law of the ran-
dom length L, we assume that E[L3] < +∞. Finally the segment process
Θ1 is driven by the marked Poisson process Φ in R2 × K having intensity
measure Λ(d(y, s)) = f(y)dyQ(ds), where f(y) = f(y1, y2) = y21 + y22 and
Q(ds) = 1

2πdαPL(d�). We are going to consider the kernel k(z) = 1B1(0)(z)/π,
which is not continuous, anyway the theory developed here apply for this kernel
thanks to [10, Remark 9]. More precisely, λ̂κ,N

Θ1
(x) is given here by

λ̂κ,N
Θ1

(x) =
1

Nπr2N

N∑
i=1

H1(Θ
(i)
1 ∩BrN (x)),
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whereas in [10] it is shown that

CV ar(x) =
16

3π2
λΘ1(x), for any x ∈ R2,

and the asymptotic optimal bandwidth is

ro,AMSE
N = 5

√
16(E[L](x2

1 + x2
2) + E[L3]/3)

3π2N(E[L])2
.

Hence Proposition 7 and Corollary 8 now apply with the previous specifications
of λ̂κ,N

Θ1
(x), rN and CV ar(x).

5.2. Poisson point processes

Let Ψ be a Poisson point process in Rd with a continuous intensity λΨ. We recall
that Ψ may be seen as a particular Boolean model with Hausdorff dimension
n = 0 and mean density λΨ, by choosing K = Rd as mark space, Z(s) = s ∈ Rd

as trivial typical grain, and Λ(d(y, s)) := λΨ(y)dyδ0(s)ds. As expected, observe
that

(5) =

∫
K

∫
x−Z(s)

λΨ(y)H
0(dy)δ0(s)ds =

∫
K

λΨ(x− s)δ0(s)ds = λΨ(x).

Let
{
Ψi
}
i∈N

be a sequence of i.i.d. point processes as Ψ, and κ as in the

Assumptions. Then, by noticing that Assumptions (A1) and (A2) are trivially

fulfilled, all the previous results for λ̂κ,N
Θn

(x) specialize now for the sequence of

kernel estimators
{
λ̂κ,N
Ψ (x)

}
N≥1

of λΨ(x) defined by

λ̂κ,N
Ψ (x) :=

1

NrdN

N∑
i=1

∑
xj∈Ψi

κ
(x− xj

rN

)
.

In particular, by observing that πy(x− Z(s)) = {0}, we get∫
πy(x−Z(s))

κ(θ + w)H n(dθ) =

∫
{0}

κ(θ + w)H 0(dθ) = κ(w),

and

CV ar(x)
(10)
=

∫
R

∫
Rd

∫
x−s

∫
{0}

κ(z)κ(z + w)λΨ(y)H
0(dw)H 0(dy)dzδ0(s)ds

= λΨ(x)

∫
Rd

κ2(z)dz.

Hence we can specialize large and moderate deviation principles for λ̂κ,N
Ψ (x) by

a direct application of Theorem 2 and Theorem 3, respectively:



442 F. Camerlenghi and E. Villa

(LDP) the sequence of kernel estimators
{
λ̂κ,N
Ψ (x)

}
N≥1

satisfies a LDP with

speed vN = NrdN and good rate function

J∗
x(y) = sup

t∈R

{
ty − λΨ(x)

∫
Rd

(etκ(w) − 1)dw
}
; (16)

(MDP) assume that
{
bN

}
N≥1

is a sequence of positive real numbers satisfying

lim
N→+∞

bN√
NrdN

= +∞ and lim
N→+∞

bN
NrdN

= 0;

then the sequence
{
(NrdN/bN )(λ̂κ,N

Ψ (x) − E[λ̂κ,N
Ψ (x)])

}
N≥1

satisfies a

LDP with speed vN = b2N/NrdN and good rate function

J∗
x(y) =

y2

2||κ||22λΨ(x)
. (17)

Finally, as a direct consequence of Proposition 6 it follows that the sequence{√
NrdN (λ̂κ,N

Ψ (x) − E[λ̂κ,N
Ψ (x)])

}
N≥1

converges weakly, as N → +∞, to the

normal distribution N(0, ||κ||22λΨ(x)).

5.3. Matérn cluster processes

Clustering is a fundamental operation on point processes, well-known in stochas-
tic geometry, and it allows to construct new point processes (see [23] for a more
exhaustive treatment). The clustering operation consists in replacing each point
x of a given point process Φp, called parent point process, by a cluster Nx of
points, called daughter points. Each cluster Nx is itself a point process, and it is
assumed to have only a finite mean number of points. The resulting point pro-
cess given by the union of all the clusters Nx is said to be a cluster point process.
Let us assume that the parent point process Φp is a homogeneous Poisson point
process with intensity λp, and the clusters Nx are of the form Nxi = Ni+xi for
each xi ∈ Φp, where the sequence {Ni}i is independent of Φp, and independent
and identically distributed as N0 (the representative cluster, centered at 0). As-
suming that the number of points of N0 is distributed according to a Poisson
random variable with parameter nc, and that these points are independently
and uniformly distributed in the ball BR(0), where R is a further parameter of
the model, then the resulting cluster point process

Φ =
⋃

xi∈Φp

xi +Ni

is called Matérn cluster process. It follows that Φ has constant intensity λΦ =
λpnc, and may be regarded as a Boolean model Θ0 with dimension n = 0,
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underlying Poisson point process Φp, and typical grain Z0 := N0 given by
a Poisson point process restricted to BR(0) whose intensity equals λN0(x) =
nc

bdRd 1BR(0)(x). The resulting Boolean model Θ0 ≡ Φ is driven by a marked Pois-

son point process in Rd ×S having intensity measure Λ(d(ξ, η)) = λpdξQ(dη),
where the mark space coincides with K := S the space of all sequences of points
in Rd and Q is the probability distribution of N0.

Note that all the assumptions (A1) and (A2) are trivially fulfilled; as a conse-

quence, all the previous results on λ̂κ,N
Θ0

(x) ≡ λ̂κ,N
Φ (x) hold in such a context. A

LDP follows from Theorem 2, more specifically one can observe that the general
expression for J∗

x appearing in the statement of that theorem simplifies in the
context of Matérn cluster processes, indeed

∫
K

∫
x−Z(s)

∫
Rd

exp
{
t
∫
πy(x−Z(s))

κ(θ + w)H n(dθ)
}
− 1∫

πy(x−Z(s))
κ(θ + w)H n(dθ)

× κ(w)f(y, s)dwH n(dy)Q(ds)

now equals

∫
S

∫
x−η

∫
Rd

exp
{
t
∫
{0} κ(θ + w)H 0(dθ)

}
− 1∫

{0} κ(θ + w)H 0(dθ)
κ(w)dwλpH

0(dy)Q(dη)

=

∫
S

∫
x−η

(∫
Rd

(etκ(w) − 1)dw
)
λpH

0(dy)Q(dη)

=
(∫

Rd

(etκ(w) − 1)dw
)
λp

∫
S

H 0(x− η)Q(dη)︸ ︷︷ ︸
=nc

= λΦ

∫
Rd

(etκ(w) − 1)dw.

Hence one can see that the same large deviation principle (LDP) stated in
Section 5.2 for a Poisson point process Ψ holds even for the Matérn cluster
process Φ, replacing the intensity λΨ with λΦ in the expression for the rate
function J∗

x (16). In a similar vein one can prove the validity of the MDP stated
in Section 5.2 for the Matérn cluster process Φ, where again the intensity λΨ is
replaced with λΦ in (17).

Finally it is easy to see that CV ar(x)
(10)
= ||κ||22λΦ, from which we may claim

that the sequence
{√

NrdN (λ̂κ,N
Φ (x)−Eλ̂κ,N

Φ (x))
}
N≥1

converges weakly, asN →
+∞, to the normal distribution N(0, ||κ||22λΦ).

6. Discussion and concluding remarks

We have proved large and moderate deviation principles for kernel–type estima-
tors of the mean density of Boolean models. Thanks to these results, we have
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been able to derive the consistency of the estimator, and asymptotic confidence
intervals as well.

Theorems 2 and 3 are connected with classical results concerning the kernel–
type estimator of the density function of an absolutely continuous random vari-
able due to [31, 35]. Here we want to pinpoint the connection with the classical
literature in view of future developments. More specifically, let X be a ran-
dom variable taking values in Rd with probability density function fX , and let
X1, . . . , XN be a random sample for X. The kernel density estimator f̂N

X (x) of
f(x) at a point x ∈ Rd is traditionally [27, 32, 41] defined as

f̂N
X (x) :=

1

NrdN

N∑
i=1

κ
(x−Xi

rN

)
, x ∈ Rd.

The scaling parameter rN , known as the bandwidth, determines the smoothness
of the estimator, and it has to be chosen such that

rN → 0 NrdN → ∞

to obtain an asymptotically unbiased and weakly consistent estimator f̂N
X (x).

The kernel density estimator λ̂κ,N
Θn

(x) of λΘn(x) defined in Eq.(6) may be seen

as the natural extension of f̂N
X (x) to the case of very general random geometric

objects in Rd of Hausdorff dimension n > 0, i.e. not necessarily Boolean models.
See also [10, Section 3.3.1].

Large and moderate deviation principles for kernel density estimators of fX
have been investigated in [31, 35] with different techniques, in particular, in
[31] the author establishes pointwise, as well as uniform, moderate and large

deviations principles for the sequence
{
f̂N
X (x) − E[f̂N

X (x)]
}
N≥1

, even for more

general kernel functions κ. We recall here the pointwise results for large and
moderate deviations given in [31, Proposition 3.1] and [31, Proposition 2.1],
respectively, specializing them with our notation and assumptions on κ:

(LDP) the sequence
{
f̂N
X (x)−E[f̂N

X (x)]
}
N≥1

satisfies a LDP with speed vN =

NrdN and rate function

J∗
x(y) = sup

t∈R

{
ty −

(
fX(x)

∫
Rd

(etκ(w) − 1)dw − tfX(x)
)}

; (18)

(MDP) assume that
{
bN

}
N≥1

is a sequence of positive real numbers satisfying

lim
N→+∞

bN√
NrdN

= +∞ and lim
N→+∞

bN
NrdN

= 0;

then the sequence
{
(NrdN/bN )(f̂N

X (x)− E[f̂N
X (x)])

}
N≥1

satisfies a LDP

with speed vN = b2N/NrdN and rate function

J∗
x(y) =

y2

2||κ||22fX(x)
. (19)
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If Theorems 2 and 3 were true for a general germ–grain model (not only for
Boolean models), then the results concerning random variables just recalled here
would follow as a particular case. Indeed a random variable X ≡ Θ0 can be seen
as a trivial germ–grain process driven by the marked point process Φ = {(X, s)}
in Rd with mark space K = Rd, consisting of one point (X) only, with grain
Z(s) := s, and intensity measure Λ(d(y, s)) = f(y)dyδ0(s)ds. With these choices
equation (5) implies that λΘ0(x) = f(x), i.e. the mean density of X amounts to
be its probability density function, and the expressions in (18) and (19) follow
(formally) by replacing Λ(d(y, s)) = f(y)dyδ0(s)ds and Θn = X in Theorem 2
and Theorem 3, respectively, in analogous way as we did in Section 5.2. Note
that the further term tfX(x) appearing in (18) is due to having considered now

the sequence
{
f̂N
X (x)− E[f̂N

X (x)]
}
N≥1

instead of
{
f̂N
X (x)

}
N≥1

.

Hence we may ask whether the theorems obtained for Boolean models extend
to more general random closed sets, e.g. germ–grain models. In such a case, as
just observed here, the results of [31, 35] would follow as a particular case of
a more general theory. Otherwise, if the extension is not possible, the indepen-
dence property of the underlying Poisson point processes would be peculiar in
obtaining such expressions. This problem remains open and requires different
kinds of techniques with respect to the ones employed here, which are mainly
based on the availability of the Laplace functional of a Poisson point process.

Finally it is worth to underline that the theoretical results proved in this
paper and in [12] may be useful in many applications, for example to determine
confidence intervals for the estimators. A future work in this direction, we are
working on, will be focused on simulation studies of the kernel–type estimator
in comparison with other estimators, such as the “Minkowski content”–based
estimator mentioned in the Introduction.

Appendix A: Proofs of the main theorems

A.1. Proof of Theorem 2

Before proving Theorem 2, we provide two thecnical lemmas. For the sake of
simplifying notation we define

h(ξ, s) :=
1

rn

∫
ξ+Z(s)

κ
(x− y

r

)
H n(dy), (20)

and we shall write hN (ξ, s) if r = rN in the above definition.

Lemma 10. Let Θn and κ be as in the Assumptions. For any r < 1 and t ∈ R

E
[
exp

{ t

rn

∫
Θn

κ
(x− y

r

)
H n(dy)

}]
= exp

{∫
Rd×K

(eth(ξ,s) − 1)f(ξ, s)dξQ(ds)
}
.

(21)
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Proof. First of all we remind that (see [34, pg. 28]) if Ψ is a Poisson point process
on X with intensity measure μ, then, for any measurable function g : X → R

such that
∫
X
min {|g(x)|, 1}μ(dx) < ∞, it holds

E
[
exp

{
ϑ
∑
x∈Ψ

g(x)
}]

= exp
{∫

X

(eϑg(x) − 1)μ(dx)
}

(22)

for any complex number ϑ.

By observing that min{h(ξ, s), 1} ≤ h(ξ, s), and that 1/rn ≤ 1/rd if r ≤ 1,
we have ∫

Rd×K

min
{
h(ξ, s), 1

}
f(ξ, s)dξQ(ds)

≤ 1

rd

∫
K

∫
Rd

∫
ξ+Z(s)

κ
(x− y

r

)
H n(dy)f(ξ, s)dξQ(ds)

=
1

rd

∫
K

∫
Rd

∫
Z(s)

κ
(x− ỹ − ξ

r

)
H n(dỹ)f(ξ, s)dξQ(ds)

=

∫
K

∫
Rd

κ(w)

∫
Z(s)

f(x− ỹ − rw, s)H n(dỹ)dwQ(ds)

We remind that κ is a kernel with supp(κ) ∈ BR(0), Z(s) ⊆ Ξ(s), and we notice
that if ỹ ∈ Z(s) and w ∈ BR(0) then x − rw ∈ BRr(x) ⊆ BR(x). Therefore
x− ỹ − rw ∈ BR(x)− Z(s) ⊂ BR(x)⊕diam(Z(s)), so that by (A2) we get∫

K

∫
Rd

κ(w)

∫
Z(s)

f(x− ỹ − rw, s)H n(dỹ)dwQ(ds)

≤
∫
K

ξ̃BR(x)(s)H
n(Ξ(s))Q(ds)

(A2)
< ∞.

(23)

Thus we may write

E
[
exp

{
t
∑

(ξ,s)∈Φ

h(ξ, s)
}]

(22)
= exp

{∫
Rd×K

(eth(ξ,s) − 1)f(ξ, s)dξQ(ds)
}
.

Finally, Lemma 3 in [44] guarantees that the event that different grains of Θn

overlap in a subset of Rd of positive H n-measure has null probability, therefore
we may claim that

E
[
exp

{ t

rn

∫
Θn

κ
(x− y

r

)
H n(dy)

}]
= E

[
exp

{ t

rn

∑
(ξ,s)∈Φ

∫
ξ+Z(s)

κ
(x− y

r

)
H n(dy)

}]
,

that is the assertion.
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Lemma 11. Let Θn and κ be as in the Assumptions. If r < min
{
1, 1/(2R)

}
,

the following bound holds for any s ∈ K, t ∈ R, w ∈ Rd, and H n-a.e. y ∈
x− Z(s):

∣∣∣∣∣∣
(
exp

{
t
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
}
− 1

)
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

∣∣∣∣∣∣
≤ Ψ(t)κ(w)ξ̃BR(x)(s),

(24)

where

Ψ(t) =
{ |t| if t ≤ 0

etMγ̃(2R)n − 1

Mγ̃(2R)n
if t > 0

with ∫
K

∫
x−Z(s)

∫
Rd

Ψ(t)κ(w)ξ̃BR(x)(s)dwH n(dy)Q(ds) < +∞. (25)

Proof. First of all consider the case t ≤ 0.

∣∣∣
(
exp

{
t
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
}
− 1

)
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

∣∣∣
=

(
1− exp

{
t
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
})

∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

≤ |t|κ(w)f(y − wr, s),

being 1− eα ≤ −α for any α ∈ R.

The case t > 0 is less trivial, and we employ the Taylor series expansion of
the exponential

∣∣∣
(
exp

{
t
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
}
− 1

)
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

∣∣∣
=

(
exp

{
t
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
}
− 1

)
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

= κ(w)f(y − wr, s)
∑
k≥1

tk

k!

(∫
[(x−Z(s))−y]/r

κ(θ + w)H n(dθ)
)k−1

. (26)
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Now we focus on the integral in (26):∫
[(x−Z(s))−y]/r

κ(θ + w)H n(dθ)

≤
∫
[(x−Z(s))−y]/r

M1BR(0)(θ + w)H n(dθ)

=
M

rn

∫
Z(s)

1BR(0)

(
w +

x− θ̃ − y

r

)
H n(dθ̃)

≤ M

rn

∫
Z(s)

1BrR(wr+(x−y))(θ̃)H
n(dθ̃)

≤ M

rn
H n(Ξ(s) ∩BrR(wr + (x− y))).

(27)

By replacing this in (26) and by remembering that supp(κ) ⊂ BR(0), we obtain

∣∣∣
(
exp

{
t
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
}
− 1

)
∫
[(x−Z(s))−y]/r

κ(ỹ + w)H n(dỹ)
κ(w)f(y − wr, s)

∣∣∣
≤ κ(w)f(y − wr, s)

×
∑
k≥1

tkMk−1

r(k−1)nk!
(H n(Ξ(s) ∩BrR(wr + (x− y))))k−1

= 1BR(0)(w)κ(w)f(y − wr, s)

×
∑
k≥1

tkMk−1

r(k−1)nk!
(H n(Ξ(s) ∩BrR(wr + (x− y))))k−1

≤ 1BR(0)(w)κ(w)f(y − wr, s)

×
∑
k≥1

tkMk−1

r(k−1)nk!
(H n(Ξ(s) ∩B2rR(x− y)))k−1 (28)

where we have used the fact that w ∈ BR(0). By assumption, x− y ∈ Z(s) and
2Rr ≤ 1; thus (A1) implies

∑
k≥1

tkMk−1

r(k−1)nk!
(H n(Ξ(s) ∩B2rR(x− y)))k−1 ≤

∑
k≥1

tkMk−1

r(k−1)nk!
(γ̃(2rR)n)k−1

=
1

Mγ̃(2R)n

∑
k≥1

(tMγ̃(2R)n)k

k!
= Ψ(t)

Moreover, being y ∈ x− Z(s) and r ≤ 1, we observe that, for any w ∈ BR(0),

y − wr ∈ x− Z(s) +BR(0) ⊆ BR(x)⊕diam(Z(s)),

therefore 1BR(0)(w)f(y − wr, s)
(A2)

≤ ξ̃BR(x)(s), and (24) it is now proved by
replacing the above inequalities in (28).
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Finally, the integrability condition (25) easy follows:∫
K

∫
x−Z(s)

∫
Rd

Ψ(t)κ(w)ξ̃BR(x)(s)dwH n(dy)Q(ds)

≤ Ψ(t)MbdR
d

∫
K

ξ̃BR(x)(s)
(∫

x−Z(s)

H n(dy)
)
Q(ds)

≤ Ψ(t)MbdR
d

∫
K

H n(Ξ(s))ξ̃BR(x)(s)Q(ds)
(A2)
< ∞.

Proof of Theorem 2. The proof relies on the Gärtner-Ellis Theorem. First of all
we will show that

J(t) := lim
N→∞

1

vN
logE[etvN λ̂κ,N

Θn
(x)] (29)

=

∫
K

∫
x−Z(s)

∫
Rd

exp
{
t
∫
πy(x−Z(s))

κ(θ + w)H n(dθ)
}
− 1∫

πy(x−Z(s))
κ(θ + w)H n(dθ)

× κ(w)dwf(y, s)H n(dy)Q(ds)

then we observe that J is a smooth function defined on R, hence satisfying the

assumptions of the Gärtner-Ellis Theorem. Since
{
Θ

(i)
n

}
i∈N

is a sequence of

i.i.d. random sets, then for N sufficiently big so that rN < 1

1

vN
logE[etvN λ̂κ,N

Θn
(x)]

=
1

vN
logE

[
exp

{
tNrd−n

N

1

NrdN

N∑
i=1

∫
Θ

(i)
n

κ
(x− y

rN

)
H n(dy)

}]
= N

1

vN
logE

[
exp

{ t

rnN

∫
Θn

κ
(x− y

rN

)
H n(dy)

}]
=

1

rd−n
N

logE
[
exp

{ t

rnN

∑
(ξ,s)∈Φ

∫
ξ+Z(s)

κ
(x− y

rN

)
H n(dy)

}]
(21)
=

1

rd−n
N

∫
Rd×K

(
exp

{ t

rnN

∫
ξ+Z(s)

κ
(x− y

rN

)
H n(dy)

}
− 1

)
f(ξ, s)dξQ(ds)

=
1

rd−n
N

∫
K

∫
Rd

(
exp

{
t

∫
[(x−Z(s))−ξ]/rN

κ(ỹ)H n(dỹ)
}
− 1

)
f(ξ, s)dξQ(ds).

It is worth to multiply and divide the above integrand by
∫
[(x−Z(s))−ξ]/rN

κ(y)×
H n(dy); then, by suitable changes of variable, the following chain of equality
holds:
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1

vN
logE[etvN λ̂κ,N

Θn
(x)]

=
1

rd−n
N

∫
K

∫
Rd

exp
{
t
∫
[(x−Z(s))−ξ]/rN

κ(ỹ)H n(dỹ)
}
− 1∫

[(x−Z(s))−ξ]/rN
κ(ỹ)H n(dỹ)

×
∫
ξ+Z(s)

κ
(x− y

rN

)
r−n
N H n(dy)f(ξ, s)dξQ(ds)

=
1

rdN

∫
K

∫
Z(s)

∫
Rd

exp
{
t
∫
[(x−Z(s))−ξ]/rN

κ(ỹ)H n(dỹ)
}
− 1∫

[(x−Z(s))−ξ]/rN
κ(ỹ)H n(dỹ)

× κ
(x− y − ξ

rN

)
f(ξ, s)dξH n(dy)Q(ds)

=

∫
K

∫
Z(s)

∫
Rd

exp
{
t
∫
[(y−Z(s))/rN+w]

κ(ỹ)H n(dỹ)
}
− 1∫

[(y−Z(s))/rN+w]
κ(ỹ)H n(dỹ)

× κ(w)f(x− y − wrN , s)dwH n(dy)Q(ds)

=

∫
K

∫
Z(s)

∫
Rd

exp
{
t
∫
(y−Z(s))/rN

κ(ỹ + w)H n(dỹ)
}
− 1∫

(y−Z(s))/rN
κ(ỹ + w)H n(dỹ)

× κ(w)f(x− y − wrN , s)dwH n(dy)Q(ds)

=

∫
K

∫
x−Z(s)

∫
Rd

exp
{
t
∫
[(x−Z(s))−y]/rN

κ(ỹ + w)H n(dỹ)
}
− 1∫

[(x−Z(s))−y]/rN
κ(ỹ + w)H n(dỹ)

× κ(w)f(y − wrN , s)dwH n(dy)Q(ds).

Denoted by Df (s) the set of discontinuity points of f(·, s) for any s ∈ K,
assumption (A2) implies H n(Df (s)) = 0, therefore we can see that

lim
N→+∞

exp
{
t
∫
[(x−Z(s))−y]/rN

κ(ỹ + w)H n(dỹ)
}
− 1∫

[(x−Z(s))−y]/rN
κ(ỹ + w)H n(dỹ)

κ(w)f(y − wrN , s)

(7)
=

exp
{
t
∫
πy(x−Z(s))

κ(ỹ + w)H n(dỹ)
}
− 1∫

πy(x−Z(s))
κ(ỹ + w)H n(dỹ)

κ(w)f(y, s)

for any s ∈ K, w ∈ Rd, and H n-a.e. y ∈ x− Z(s) .

Thus the (29) follows by a simple application of the dominated convergence
theorem, whose validity is guaranteed by Lemma 11.

To conclude the proof we observe that J satisfies the assumptions of The-
orem 1. More precisely, as a byproduct of the application of the dominated
convergence theorem, J(t) < +∞ for any t ∈ R. Finally we show that J is
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differentiable on R with

J ′(t0) =

∫
K

∫
x−Z(s)

∫
Rd

exp

{
t0

∫
πy(x−Z(s))

κ(ỹ + w)H n(dỹ)

}
× k(w)f(y, s)dwH n(dy)Q(ds)

for any t0 ∈ R. In order to prove this, fix t0 ∈ R and δ > 0 sufficiently small;
following [7, Theorem 16.8], we need to show that the integrand

exp

{
t

∫
πy(x−Z(s))

κ(ỹ + w)H n(dỹ)

}
k(w)f(y, s)1(x−Z(s))(y) (30)

is bounded from above for any t ∈ (t0 − δ, t0 + δ) by an integrable function. To
this end, the definition of approximate tangent space and similar arguments as
in (27) give∫

πy(x−Z(s))

κ(ỹ + w)H n(dỹ) = lim
r→0

∫
x−Z(s)−y

r

κ(ỹ + w)H n(dỹ) ≤ Mγ̃(2R)n,

with w ∈ BR(0) ⊃ supp(k). Therefore

(30) ≤ max
{
e(t0+δ)Mγ̃(2R)n , e(t0−δ)Mγ̃(2R)n

}
k(w)f(y, s)1(x−Z(s))(y)

when t ∈ (t0 − δ, t0 + δ), with∫
K

∫
x−Z(s)

∫
Rd

max
{
e(t0+δ)Mγ̃(2R)n , e(t0−δ)Mγ̃(2R)n

}
× k(w)f(y, s)dwH n(dy)Q(ds)

≤ λΘn(x)max
{
e(t0+δ)Mγ̃(2R)n , e(t0−δ)Mγ̃(2R)n

}
< +∞,

hence the thesis follows.

A.2. Proof of Theorem 3

Before proving Theorem 3 we need some useful lemmas.

Lemma 12. Let Θn and κ be as in the Assumptions, and let us define

τq(u) :=

∫
K

∫
Rd

e−uh(ξ,s)hq(ξ, s)f(ξ, s)dξQ(ds), q ≥ 1 (31)

for any measurable function h : Rd ×K → R+ and u ≥ 0.
If r < min {1, 1/(2R)}, the function h(ξ, s) defined in (20) satisfies τq(u) <

+∞ for any u ≥ 0 and q ≥ 1.
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Proof. For any q ≥ 1, and u ≥ 0 we have

e−uh(ξ,s)hq(ξ, s) ≤ hq(ξ, s)

=
1

rnq

[ ∫
ξ+Z(s)

κ
(x− ỹ

r

)
H n(dỹ)

]q−1
∫
ξ+Z(s)

κ
(x− ỹ

r

)
H n(dỹ),

therefore

τq(u) ≤
1

rqn

∫
K

∫
Rd

∫
Z(s)

[ ∫
ξ+Z(s)

κ
(x− ỹ

r

)
H n(dỹ)

]q−1

× κ
(x− ξ − y

r

)
H n(dy)f(ξ, s)dξQ(ds)

≤ 1

rqn−d

∫
K

∫
Z(s)

∫
Rd

(∫
Z(s)

κ
(y − ỹ

r
+ w

)
H n(dỹ)

)q−1

× κ(w)f(x− y − rw, s)dwH n(dy)Q(ds).

(32)

By remembering that κ(x) ≤ M1BR(0)(x) for all x ∈ Rd, and Z(s) ⊆ Ξ(s),

∫
Z(s)

κ
(y − ỹ

r
+ w

)
H n(dỹ) ≤ M

∫
Z(s)

1BR(0)

(y − ỹ

r
+ w

)
H n(dỹ)

= M

∫
Z(s)

1BrR(y+rw)(ỹ)H
n(dỹ) ≤ MH n(Ξ(s) ∩BrR(y + rw)). (33)

Note that BrR(y + rw) ⊆ B2rR(y) if w ∈ BR(0), and that

MH n(Ξ(s) ∩B2rR(y))
(A1)

≤ Mγ̃(2rR)n ∀y ∈ Z(s), r < 1.

Thus, by replacing (33) in (32) we get

τq(u) ≤
1

rqn−d

∫
K

∫
Z(s)

∫
Rd

(Mγ̃(2rR)n)q−1

× κ(w)f(x− y − rw, s)dwH n(dy)Q(ds)

(23)

≤ (Mγ̃)q−1(2R)n(q−1)rd−n

∫
K

H n(Ξ(s))ξ̃BR(x)(s)Q(ds) < ∞

In order to make the proof of the next lemma more readable, we recall here
some basics on Stirling numbers. The Stirling numbers of the second kind S(n, k)
count the number of partitions of n objects in k groups. They are extensively
studied in [21, 22]: refer to them for additional details on the subject. The
Stirling number of the second kind is defined by

S(n, k) =
n!

k!

∑
(�)

1

q1! . . . qk!
(34)
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where the summation is extended over all positive integers which are solution
of the equation q1 + . . .+ qn = n. It is worth noticing that the summation

Bn :=
n∑

k=0

S(n, k)

is knows as the Bell number, which amounts to be the number of partition of k
objects in distinct sets (see [21, pg. 292]). By [21, pg. 97] we have the following
representation

Bn = e−1
+∞∑
j=0

jn

j!
. (35)

The Stirling number of the second kind satisfy a useful recurrence relation

S(n+ 1, k) = S(n, k − 1) + kS(n, k), k = 1, . . . , n− 1, n = 0, 1, . . .

with initial conditions

S(0, 0) = 1, S(n, 0) = 0 for n > 0, S(n, k) = 0 for k > n.

Lemma 13. Let Θn and κ be as in the Assumptions; then for any t0 > 0

∑
k≥3

tk0
k!
E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
= O(rd−n) as r → 0. (36)

Proof. With the notation introduced in (20), the same argument at the end of
the froof of Lemma 10, together with traditional combinatorial arguments, show
that for any k ≥ 3:

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
= E

⎡⎢⎣
⎛⎝ ∑

(ξ,s)∈Φ

h(ξ, s)

⎞⎠k
⎤⎥⎦

=

k∑
i=1

∑
(�)

(
k

q1 . . . qi

)
E

⎡⎢⎢⎢⎢⎢⎣
∑

ξ�1 < . . . < ξ�i

(ξ�r , s�r ) ∈ Φ

i∏
r=1

hqr (ξ
r , s
r )

⎤⎥⎥⎥⎥⎥⎦
where the sum over (�) runs over all the vectors (q1, . . . , qi) of positive integers
such that q1+ · · ·+ qi = k. Besides we have used the fact that the marked point
process is simple.
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Since there are i! possible permutations of the points ξ
1 , . . . , ξ
i we can write

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]

=

k∑
i=1

1

i!

∑
(�)

(
k

q1 . . . qi

)
E

⎡⎢⎢⎢⎢⎢⎣
∑

ξ�r 
= ξ�s

(ξ�r , s�r ) ∈ Φ

i∏
r=1

hqr(ξ
r , s
r )

⎤⎥⎥⎥⎥⎥⎦
=

k∑
i=1

1

i!

∑
(�)

(
k

q1 . . . qi

)∫
(Rd×K)i

i∏
r=1

hqr(ξ
r , s
r )ν[i](d(x1, s1), . . . d(xi, si)),

where ν[i] is the i–th factorial moment measure of Φ (e.g. see [23]). Being Φ a
marked Poisson pont processes, then ν[i] =

⊗
i Λ (see for example [39, Corollary

3.2.4]); hence we get

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
=

k∑
i=1

1

i!

∑
(�)

(
k

q1 . . . qi

)
τq1(0) . . . τqi(0),

where τ is the function defined in (31). By the end of the proof of Lemma 12
we konw that

τq(0) ≤ Mq−1γ̃q−1(2R)n(q−1)rd−nE[H n(Ξ)ξ̃BR(x)]

whenever r is sufficiently small, i.e. r ≤ min
{
1, 1/(2R)

}
, therefore

tauq1(0) · · · τqi(0) ≤ (Mγ̃(2R)n)k−ir(d−n)iE[H n(Ξ)ξ̃BR(x)]
i,

and so

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
(34)
=

k∑
i=1

(rd−nE[H n(Ξ)ξ̃BR(x)]

Mγ̃(2R)n

)i
S(k, i)(Mγ̃(2R)n)k.

Now we define the constant function C := C(Θn, κ), depending on Θn and the
kernel κ,

C := max
{
1,

E[H n(Ξ)ξ̃BR(x)]

Mγ̃(2R)n

}
;

as a consequence

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
≤

k∑
i=1

CkS(k, i)(Mγ̃(2R)n)kr(d−n)i

=
k∑

i=1

C̃kS(k, i)r(d−n)i
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where we have put

C̃ := max
{
Mγ̃(2R)n,E[H n(Ξ)ξ̃BR(x)]

}
.

Recalling the definition of the Bell numbers Bk (see (35)) we have

E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
≤ C̃k

k∑
i=1

S(k, i)rd−n = C̃krd−n
k∑

i=1

S(k, i)

= BkC̃
krd−n = C̃krd−n 1

e

∞∑
m=0

mk

m!
.

Now we consider the summation in (36) for any t0 > 0. Finally, the previous
bound for the expectation yields

∑
k≥3

tk0
k!
E
[( ∫

Θn

1

rn
κ
(x− y

r

)
H n(dy)

)k]
≤
∑
k≥3

tk0
k!

C̃krd−n

e

∞∑
m=0

mk

m!

=
rd−n

e

∞∑
k=3

tk0C̃
k

k!

∞∑
m=0

mk

m!
≤ rd−n

e

∞∑
m=0

1

m!

∞∑
k=0

(C̃mt0)
k

k!

=
rd−n

e

∞∑
m=0

et0C̃m

m!
= rd−n exp

{
et0C̃ − 1

}
,

and the r.h.s. of this inequality turns out to be a O(rd−n), which implies the
assertion.

Finally we recall that the discrete version of the Hölder inequality can be
written as follows

n∑
i=1

xiyi ≤
(

n∑
i=1

xp
i

)1/p

·
(

n∑
i=1

yqi

)1/q

, (37)

where xi, yi ≥ 0 for any i = 1, . . . , n, and p, q > 0 are such that 1/p+ 1/q = 1.
By specializing (37) with n = 2, yi = 1 for i = 1, 2, p = k and q = k/(k − 1), it
directly follows that

(x1 + x2)
k ≤

[( 2∑
i=1

xk
i

)1/k
·
( 2∑

i=1

1
)k/(k−1)]k

= (xk
1 + xk

2) · 2k−1 (38)

for any x1, x2 > 0 and for any integer k > 0.
We are now ready to prove the theorem.

Proof of Theorem 3. Let us define

HN (t) := E
[
exp

{
vN t

Nrd−n
N

bN

(
λ̂κ,N
Θn

(x)− E[λ̂κ,N
Θn

(x)]
)}]

,
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and

Jx(t) := lim
N→+∞

1

vN
logHN (t), (39)

after proving that the limit exists finite for any t ∈ R; then the good rate
function will turn out to be

J∗
x(y) = sup

t∈R

{
ty − Jx(t)

}
,

as a direct application of Theorem 1.
First of all observe that, for any t ∈ R,

HN (t) = E
[
exp

{ tbN
NrdN

( N∑
i=1

(∫
Θ

(i)
n

κ
(x− y

rN

)
H n(dy)

− E

∫
Θ

(i)
n

κ
(x− y

rN

)
H n(dy)

))}]
=
(
E
[
exp

{ tbN
NrdN

(∫
Θn

κ
(x− y

rN

)
H n(dy)

− E

∫
Θn

κ
(x− y

rN

)
H n(dy)

)}])N
=
(
1 +

1

2

( tbN
NrdN

)2
V ar

(∫
Θn

κ
(x− y

rN

)
H n(dy)

)
+R(N)

)N
, (40)

In order to bound the term R(N) appearing in the previous equation, we note
that for any real valued random variable X the following inequality holds

E(X − EX)k ≤ E|X − EX|k
(38)

≤ 2k−1E(|X|k + (E|X|)k) ≤ 2kE[|X|k],

where the last inequality follows from a standard application of the Hölder

inequality, namely (E|X|)k ≤ E|X|k. Hence, if X =
∫
Θn

κ
(

x−y
rN

)
H n(dy), the

remainder term R(N) in (40) may be estimated as follows

R(N) :=
∑
k≥3

1

k!

( tbN
NrdN

)k
E
[( ∫

Θn

κ
(x− y

rN

)
H n(dy)

− E

∫
Θn

κ
(x− y

rN

)
H n(dy)

)k]
≤
∑
k≥3

1

k!

( |t|bN
NrdN

)k
2kE

[( ∫
Θn

κ
(x− y

rN

)
H n(dy)

)k]
.

For N sufficiently big, the second condition in (9) implies that

2|t|bN
Nrd−n

N

≤ t0
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for some t0 > 0, so that(2|t|bN
NrdN

)k
=
( 2|t|bN
Nrd−n

N t0

)k( t0
rnN

)k
≤
( 2|t|bN
Nrd−n

N t0

)3( t0
rnN

)k
∀k ≥ 3;

hence we can bound R(N) as

R(N) ≤
( 2|t|bN
Nrd−n

N t0

)3∑
k≥3

tk0
k!
E
[( 1

rnN

∫
Θn

κ
(x− y

rN

)
H n(dy)

)k]
(36)
= O

(
rd−n
N

( bN

Nrd−n
N

)3)
.

Hence we obtain

HN (t) =
(
1 +

1

2

( tbN
NrdN

)2
V ar

(∫
Θn

k
(x− y

rN

)
H n(dy)

)
+O

(
rd−n
N

( bN

Nrd−n
N

)3))N
.

(41)

By assumption {Θ(i)
n }i∈N is a sequence of i.i.d. random closed sets as Θn; there-

fore

V ar
(∫

Θn

k
(x− y

rN

)
H n(dy)

)
= Nr2dN V ar(λ̂κ,N

Θn
(x))

(12)
= Nr2dN

(CV ar(x)

Nrd−n
N

+ o(
1

Nrd−n
N

)
)

= rd+n
N (CV ar(x) + o(1)), as N → +∞. (42)

Thus, we conclude that

Jx(t)
(39)
= lim

N→+∞

Nrd−n
N

b2N
logHN (t)

(41),(42)
=

N2rd−n
N

b2N
log

(
1 +

1

2

( tbN
NrdN

)2
rd+n
N (CV ar(x) + o(1))

+O
(
rd−n
N

( bN

Nrd−n
N

)3))
=

N2rd−n
N

b2N
log

(
1 +

t2b2N
2N2rd−n

N

CV ar(x) + o
( b2N
N2rd−n

N

))
(9)
=

t2

2
CV ar(x).

As a consequence the rate function is given by

J∗
x(y) = sup

t∈R

{
ty − Jx(t)

}
= sup

t∈R

{
ty − t2

2
CV ar(x)

}
=

y2

2CV ar(x)

and the assertion follows.
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